### Block F Soil Remedial Action Plan Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

| Prepared for:               |
|-----------------------------|
| Lockheed Martin Corporation |
| Prepared by:                |
| Tetra Tech Inc              |

January 2014

Michael Martin, P.G. Regional Manager

Shiva Kumar

Milal Mart

Shiva Kumar Project Manager

#### **TABLE OF CONTENTS**

| <u>S</u> | ecti | <u>on</u> |                                                           | <u>Page</u> |
|----------|------|-----------|-----------------------------------------------------------|-------------|
| Δ        | CR   | ONYN      | ns                                                        | vii         |
| G        | LO   | SSAR      | Υ                                                         | xi          |
| E        | XE   | CUTIV     | /E SUMMARY                                                | ES-1        |
| 1        | II   | NTRO      | DUCTION                                                   | 1-1         |
|          | 1.1  | PUF       | RPOSE OF THE REMEDIAL ACTION PLAN                         | 1-1         |
|          | 1.2  | SCC       | OPE                                                       | 1-2         |
|          | 1.3  | ORG       | GANIZATION                                                | 1-2         |
| 2        | N    | /IIDDL    | E RIVER COMPLEX BLOCK F OVERVIEW                          | 2-1         |
|          | 2.1  | MID       | DDLE RIVER COMPLEX BACKGROUND                             | 2-1         |
|          | 2.2  | BLC       | OCK F BACKGROUND                                          | 2-2         |
|          | 2.3  | BLC       | OCK F PREVIOUS INVESTIGATIONS                             | 2-4         |
|          | 2    | 2.3.1     | Phase I Environmental Site Assessment (2003)              | 2-5         |
|          | 2    | 2.3.2     | Phase II Investigation (Fall/Winter 2003)                 | 2-5         |
|          | 2    | 2.3.3     | Historical Survey (2004)                                  | 2-7         |
|          | 2    | 2.3.4     | Site-Wide Phase II Investigation (2004)                   | 2-7         |
|          | 2    | 2.3.5     | Phase II Soil Investigation (Summer 2005)                 | 2-9         |
|          | 2    | 2.3.6     | Geophysical Survey/Soil Investigation (Fall 2005)         | 2-10        |
|          | 2    | 2.3.7     | Site Characterization Report (May 2006)                   | 2-11        |
|          | 2    | 2.3.8     | Additional Soil Characterization (Fall 2007)              | 2-11        |
|          | 2    | 2.3.9     | Final Soil Delineation (Blocks D, F, G, and H, Fall 2009) | 2-12        |
|          | 2    | 2.3.10    | Data Gap Investigation (Fall 2010)                        | 2-13        |
|          | 2    | 2.3.11    | Human Health Risk Assessment                              | 2-14        |

| <u>S</u> | <u>Pag</u> |     |                                                                                | <u>Page</u> |  |
|----------|------------|-----|--------------------------------------------------------------------------------|-------------|--|
|          | 2.4        | CO  | NCEPTUAL SITE MODEL                                                            | 2-15        |  |
|          | 2.         | 4.1 | Contaminant Sources and Soil Chemicals of Concern                              | 2-16        |  |
|          | 2.         | 4.2 | Land Use Scenario and Exposure Pathways                                        | 2-16        |  |
| 3        | E          | XPO | SURE ASSESSMENT                                                                | 3-1         |  |
|          | 3.1        | CU  | RRENT AND FUTURE LAND USE                                                      | 3-1         |  |
|          | 3.2        | _   | TENTIAL CONTAMINANT-RELEASE MECHANISMS AND ANSPORT PATHWAYS                    | 3-1         |  |
|          | 3.3        |     | E AND TRANSPORT OF PRIMARY SITE CHEMICALS OF<br>TENTIAL CONCERN (COPC) IN SOIL | 3-2         |  |
|          | 3.4        |     | TENTIAL CURRENT AND FUTURE RECEPTORS OF CONCERN AND ID EXPOSURE PATHWAYS       | 3-2         |  |
| 4        | R          | EME | DIAL GOALS                                                                     | 4-1         |  |
|          | 4.1        | RE  | MEDIAL ACTION OBJECTIVES                                                       | 4-1         |  |
|          | 4.2        | СН  | EMICALS OF CONCERN                                                             | 4-2         |  |
|          | 4.3        | PR  | ELIMINARY REMEDIAL GOAL                                                        | 4-2         |  |
|          | 4.4        | RE  | SIDUAL-RISK ANALYSIS                                                           | 4-3         |  |
|          | 4.5        |     | CAINMENT OF PRELIMINARY REMEDIAL GOALS AND MEDIAL ACTION OBJECTIVES            | 4-5         |  |
| 5        | R          | EME | DIAL ACTION ALTERNATIVE EVALUATION AND SELECTION                               | 5-1         |  |
|          | 5.1        |     | PLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS D GENERAL RESPONSE ACTIONS   | 5-1         |  |
|          | 5.2        | SC  | REENING OF TECHNOLOGIES AND PROCESS OPTIONS                                    | 5-3         |  |
|          | 5.3        | DE  | VELOPMENT AND DETAILED ANALYSES OF ALTERNATIVES                                | 5-3         |  |
|          | 5.         | 3.1 | Development and Preliminary Screening of Alternatives                          | 5-4         |  |
|          | 5.         | 3.2 | Evaluation Criteria                                                            | 5-7         |  |

| <u>S</u> | <u>ectio</u> | <u>n</u> |                                                           | <u>Page</u> |
|----------|--------------|----------|-----------------------------------------------------------|-------------|
|          | 5            | 3.3      | Detailed Analyses of Alternatives                         | 5-11        |
|          | 5.4          |          | MPARATIVE ANALYSIS OF ALTERNATIVES AND PROPOSED TERNATIVE | 5-24        |
| 6        | DI           | ESIG     | ON CHARACTERIZATION SAMPLING                              | 6-1         |
| 7        | C            | ТИС      | INGENCY MEASURES FOR THE SELECTED REMEDIAL ACTION         | 7-1         |
|          | 7.1          | EX       | CAVATION AREAS CONTINGENCY MEASURES                       | 7-1         |
|          | 7.2          |          | DERGROUND STORAGE TANK REMOVAL CONTINGENCY EASURES        | 7-2         |
| 8        | PF           | ROP      | OSED REMEDIAL ACTIONS                                     | 8-1         |
|          | 8.1          | SU       | MMARY OF MAJOR COMPONENTS                                 | 8-1         |
|          | 8.           | 1.1      | Excavation                                                | 8-3         |
|          | 8.           | 1.2      | Dewatering                                                | 8-4         |
|          | 8.           | 1.3      | Underground Storage Tank Removal                          | 8-4         |
|          | 8.           | 1.4      | Confirmation Soil Sampling                                | 8-6         |
|          | 8.           | 1.5      | Waste Characterization and Disposal                       | 8-7         |
|          | 8.           | 1.6      | Backfilling                                               | 8-7         |
|          | 8.           | 1.7      | Restoration                                               | 8-8         |
|          | 8.2          | LA       | ND USE CONTROLS                                           | 8-8         |
| 9        | PE           | ERM      | IITS AND NOTIFICATIONS                                    | 9-1         |
|          | 9.1          | PEI      | RMITS                                                     | 9-1         |
|          | 9.2          | NO       | TIFICATIONS                                               | 9-2         |
| 10       | ) IM         | IPLE     | EMENTATION SCHEDULE                                       | 10-1        |
| 11       | RI           | EFEI     | RENCES                                                    | 11-1        |

#### **APPENDICES**

| APPENDIX A— | VOLUNTARY CLEANUP PROGRAM WITHDRAWAL LETTER                             |
|-------------|-------------------------------------------------------------------------|
| APPENDIX B— | BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA (TABLE) |
| APPENDIX C— | PREVIOUS INVESTIGATIONS SOIL DATA (TABLE)                               |
| APPENDIX D— | RESIDUAL-RISK ANALYSIS                                                  |
| APPENDIX E— | BaPEq CALCULATION                                                       |
| APPENDIX F— | BLOCK F DEPTH-TO-WATER CONTOURS                                         |
| APPENDIX G— | SITEWISE™ INFORMATION                                                   |
| APPENDIX H— | TOTAL COST ANALYSIS                                                     |
| APPENDIX I— | CRITERIUM® DECISIONPLUS® ANALYSIS                                       |
| APPENDIX J— | PERMITS                                                                 |
|             | LIST OF FIGURES                                                         |

|            |                                                                                                                     | <u>Page</u> |
|------------|---------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 1-1 | Middle River Complex Location Map                                                                                   | 1-4         |
| Figure 1-2 | Locations of Block F Recognized Environmental Conditions                                                            | 1-5         |
| Figure 2-1 | Middle River Complex Tax Blocks and Block F Recognized Environmental Conditions                                     |             |
| Figure 2-2 | Previous Soil Sample Locations Western Portion of Block F                                                           | 2-30        |
| Figure 2-3 | Previous Soil Sample Locations Eastern Portion of Block F                                                           | 2-31        |
| Figure 2-4 | Summary of Exceedances of Industrial Land Use Screening Values,<br>Block F                                          | 2-32        |
| Figure 4-1 | Soil Remediation Areas Based on Residual Risk Analysis in Surface and Subsurface Soil and UST Removal Area, Block F | 4-7         |
| Figure 6-1 | Pre-Design Characterization Sampling Locations, Block F                                                             | 6-3         |

#### **LIST OF TABLES**

|            |                                                                                                     | <u>Page</u> |
|------------|-----------------------------------------------------------------------------------------------------|-------------|
| Table 2-1  | Historical Soil Investigations                                                                      | 2-18        |
| Table 2-2  | Block F Applicable Soil Screening Criteria                                                          | 2-19        |
| Table 2-3  | Summary of 2003 to 2005 Soil Samples                                                                | 2-20        |
| Table 2-4  | 2007 Soil Characterization Samples                                                                  | 2-23        |
| Table 2-5  | 2009 Soil Delineation Samples                                                                       | 2-24        |
| Table 2-6  | 2010 Data Gap Investigation Samples                                                                 | 2-28        |
| Table 5-1  | Chemical-Specific Applicable or Relevant and Appropriate Requirements and To Be Considered Guidance | 5-26        |
| Table 5-2  | Location-Specific Applicable and Relevant and Appropriate Requirements                              | 5-27        |
| Table 5-3  | Action-Specific Applicable or Relevant and Appropriate Requirements                                 | 5-28        |
| Table 5-4  | Remedial Action Objectives and General Response Actions                                             | 5-31        |
| Table 5–5  | Results of Preliminary Technology Screening                                                         | 5-32        |
| Table 5-6  | Technologies and Process Options for Soil Remedial Actions                                          | 5-36        |
| Table 5-7  | Development of Remedial Alternatives                                                                | 5-37        |
| Table 5-8  | Ranking of Alternatives Based on Preliminary Screening                                              | 5-38        |
| Table 5-9  | Comparative Analysis of Alternatives                                                                | 5-39        |
| Table 5-10 | Criteria Weighting and Ranking                                                                      | 5-43        |
| Table 8-1  | Backfill Material Acceptance Criteria                                                               | 8-10        |

This page intentionally left blank.

#### **ACRONYMS**

AASHTO American Association of State Highway and Transportation Officials

API American Petroleum Institute

ARARs applicable or relevant and appropriate requirements

ASTM International Inc.

ATC anticipated typical concentration

BaPEq benzo(a)pyrene equivalent

bgs below ground surface

CDP Criterium® DecisionPlus®

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

CHS Controlled Hazardous Substances

COC chemical(s) of concern

COMAR Code of Maryland Regulations
COPC chemical(s) of potential concern

CSM conceptual site model
DRO diesel-range organics
EM electromagnetic

EM electromagnetic
EPC exposure-point concentration

ESA environmental site assessment

FRTR Federal Remediation Technologies Roundtable

gal gallon

GPR ground penetrating radar
GRA general response action
GRO gasoline-range organics

HHRA human health risk assessment

HI hazard index

ILCR incremental lifetime-cancer risk

ITRC Interstate Technology and Regulatory Council

LUCs land use controls

LMCPI LMC Properties, Inc.

Lockheed Martin Corporation

MDE Maryland Department of the Environment

μg/kg microgram(s) per kilogram
 mg/kg milligram(s) per kilogram
 MMBTU million British thermal units
 MRC Middle River Complex

msl mean sea level

NCP National Oil and Hazardous Substances Pollution Contingency Plan

No. number

NO<sub>x</sub> nitrogen oxides

OCP Oil Control Program

O&M operation and maintenance

OM&M operation, maintenance, and monitoring

PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls

pH hydrogen ion content; a measure used to express the relative acidity or alkalinity of a

solution

PM<sub>10</sub> particulate matter, smaller than 10 microns

PPE personal protective equipment
PRG preliminary remedial goal
RAO remedial action objective

RAP remedial action plan

RCRA Resource Conservation and Recovery Act

REC recognized environmental condition

RRA residual-risk analysis
RSL regional screening level

SARA Superfund Amendments and Reauthorization Act

SB soil boring or subsurface (soil sample)

SO<sub>x</sub> sulfur oxides

SVOC semivolatile organic compound

TBC to be considered
TCA total cost analysis

TCLP toxicity characteristic leaching procedure

TEF toxicity equivalence factor

Tetra Tech, Inc.

TPH total petroleum hydrocarbons

TSDF treatment, storage, and disposal facility

UCL upper confidence limit

USEPA United States Environmental Protection Agency

UST underground storage tank

VCP Voluntary Cleanup Program
VOC volatile organic compound

This page intentionally left blank.

#### **GLOSSARY**

**applicable or relevant and appropriate requirements** (ARARs)—Environmental cleanup standards and requirements (i.e., federal and state laws and regulations) that must be attained during cleanup operations and maintained at project completion (a directive of the federal Comprehensive Environmental Response, Compensation, and Liability Act [CERCLA]).

**Aroclor**—Aroclor is a polychlorinated biphenyl (PCB; see glossary term) mixture produced from approximately 1930 to 1979. It is one of the most commonly known trade names for PCB mixtures. There are many types of Aroclors and each has a distinguishing suffix number that indicates the degree of chlorination. The numbering standard for the different Aroclors is as follows: The first two digits generally refer to the number of carbon atoms in the phenyl rings (for PCBs this is 12), the second two numbers indicate the percentage of chlorine by mass in the mixture. For example, the name Aroclor 1254 means that the mixture contains approximately 54% chlorine by weight.

background (background level)—As defined by the United States Environmental Protection Agency (USEPA), substances in the environment that are not influenced by releases from a site and usually described as naturally occurring or anthropogenic. Naturally occurring is defined as substances in the environment in forms that have not been influenced by human activity. Anthropogenic is defined as natural and human-made substances in the environment because of human activities, but not specifically related to the site in question.

benzene ring—A chemical structure consisting of six carbon atoms with alternating single and double bonds between them; each carbon atom is bonded to a hydrogen atom in a closed hexagon configuration chemical structure. Individual polycyclic aromatic hydrocarbons (see below) consist of two or more fused benzene rings. These types of "ringed" compounds are referred to as aromatic compounds.

benzo(a)pyrene equivalent (BaPEq)—A risk-weighted concentration which is representative of the additive effects of seven polycyclic aromatic hydrocarbons (PAHs): benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, dibenz(a,h)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, and chrysene. The BaPEq value is a calculated concentration accounting for the combined toxicity of individual PAHs relative to benzo(a)pyrene when they occur together in soil. Toxicity equivalency factors (TEFs) are used to convert each individual PAH concentration into an equivalent concentration of benzo(a)pyrene, and the sum of these equivalent concentrations for the six other PAHs (mentioned above) and benzo(a)pyrene is the calculated BaPEq concentration.

**carcinogen**—Any substance that can cause cancer.

**cathodic protection**—An engineered protective feature, in the case of this document installed on underground storage tanks (UST), to prevent corrosion. The cathodic protection usually consists of a sacrificial anode coated with a material of suitable dielectric properties to electrically isolate

the tank from its environment. For example cathodic protection on a UST isolates the tank from potential electrical charges in the surrounding environment and thus slows or prevents degradation of the tank.

**chemical(s) of concern (COC)**—Chemicals identified through the baseline risk assessment that may potentially cause unacceptable adverse effects to human health and/or ecological receptors.

**chemical(s) of potential concern (COPC)**—Chemicals identified through a preliminary screening, typically the first step in a baseline risk assessment that should be considered further in the site evaluation.

**cleanup**—Actions to deal with a release or threat of release of a hazardous substance that could affect humans and/or the environment. The term "cleanup" is sometimes used interchangeably with the terms remedial action, removal action, response action, or corrective action.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)—Commonly called Superfund, a federal law passed in 1980 and modified in 1986 by the Superfund Amendments and Reauthorization Act (SARA). Among other things, this law addresses the remediation of sites where one or more hazardous substances have been disposed of or released to the environment.

**conceptual site model (CSM)**—A written and/or schematic representation of an environmental system and the physical, chemical, and biological processes that affect the transport of chemicals from sources through environmental media (e.g., air, soil, water, sediment or tissue) to humans and ecological receptors in the system. The CSM is often revised periodically as additional data become available at a site.

**containment**—A technology or design that prevents the movement of contaminants outside of an originating source or property, or onto an outside property, but does not necessarily treat or remove the contaminants.

**controlled hazardous substance regulations** – The statutory and regulatory requirements for hazardous waste sites under the Maryland Department of the Environment Controlled Hazardous Substance Division are found in Section 7-222 of the Environment Article and in COMAR 26.14. Hazardous waste sites are assessed through a three phase process: assessment; cleanup; and operation, maintenance, and monitoring.

ex situ—Away from the original location or place where pollutants are found; in this report, ex situ means on-site and at the surface, but not in place. For example, an ex situ treatment of contaminated soil or groundwater will remove (through pumping or digging, for example) the soil or groundwater from where it was found, and subsequently subject it to a treatment process. (see also in situ, below.)

**exposure assessment**—One step in the human or ecological risk assessment processes. An exposure assessment measures or estimates the magnitude, frequency, duration, and route of exposure for a receptor (human or ecological) that may come into contact with an environmental contaminant (for example, by touching contaminated soils). The most quantitative result achieved by an exposure assessment is the calculation of an exposure dose or intake (i.e., the amount to which the receptor is exposed).

**exposure pathway**—The path from sources of chemicals to humans and ecological receptors from contaminated media including air, soil, sediment, water, or food.

**exposure route**—The way a contaminant enters an organism after contact; i.e., by ingestion, inhalation, or dermal absorption.

**exposure scenario**—A tool to develop estimates of potential exposure, dose, and risk, typically for a specific group of people such as construction workers or residents. An exposure scenario generally includes facts, data, assumptions, inferences, and sometimes professional judgment about how the exposure for the specific group takes place.

**hazard index (HI)**—A numerical indicator of the potential for adverse non-carcinogenic health effects (i.e., any health effect other than cancer) that is derived by summing the individual-chemical hazard quotients. A hazard index greater than 1 suggests that adverse health effects are possible whereas a hazard index equal to or less than one does not.

**hazard quotient** (**HQ**)—The ratio of estimated site specific exposure to a single chemical to a selected toxicity threshold, which is either the level at which no adverse health effects are likely to occur (i.e., the no-observed-adverse-effect level) or at which effects are likely to occur (i.e., the lowest-observed-adverse-effect level).

hazardous substance—From CERCLA, a hazardous substance is: "(A) any substance designated pursuant to section 311(b)(2)(A) of the Federal Water Pollution Control Act [33 U.S.C. 1321(b)(2)(A)], (B) any element, compound, mixture, solution, or substance designated pursuant to section 9602 of this title [i.e., CERCLA], (C) any hazardous waste having the characteristics identified under or listed pursuant to section 3001 of the Solid Waste Disposal Act [42 U.S.C. 6921] (but not including any waste the regulation of which under the Solid Waste Disposal Act [42 U.S.C. 6901 et seq.] has been suspended by Act of Congress), (D) any toxic pollutant listed under section 307(a) of the Federal Water Pollution Control Act [33 U.S.C. 1317(a)], (E) any hazardous air pollutant listed under section 112 of the Clean Air Act [42 U.S.C. 7412], and (F) any imminently hazardous chemical substance or mixture with respect to which the Administrator has taken action pursuant to section 7 of the Toxic Substances Control Act [15 U.S.C. 2606]. The term does not include petroleum, including crude oil or any fraction thereof which is not otherwise specifically listed or designated as a hazardous substance under subparagraphs (A) through (F) of this paragraph, and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas)."

*in situ*—In this report, *in situ* means on-site and in place. For example, an *in situ* treatment of contaminated soil or groundwater will treat these environmental media in place, without removing the soil or groundwater to treat it.

**institutional controls** — Non-engineering measures intended to affect human activities in such a way as to prevent or reduce exposure to hazardous substances. They are almost always used in conjunction with, or as a supplement to, other measures such as waste removal, treatment or containment. There are four categories of institutional controls: governmental controls; proprietary controls; enforcement tools; and informational devices.

**impacted soil** — soils having chemical(s) of concern (COC) concentrations associated with an incremental lifetime cancer risk (ILCR) greater than one in  $100,000 (1 \times 10^{-5})$  that were identified in the residual risk analysis (RRA).

**iteratively**—In the context of the residual risk assessment, a step that is repeated over and over again until the desired outcome or goal is achieved.

land use controls (LUCs)—Engineered and non-engineered (administrative) controls formulated and enforced to regulate current and future land use options. Engineered controls include fencing and signs. Non-engineered controls typically consist of administrative restrictions that prohibit certain types of development and/or groundwater use.

**leachability**—The relative tendency of chemicals to be transferred from soil to groundwater based on the contaminant characteristics, soil properties, and groundwater conditions.

Middle River Complex (MRC)—The site of Lockheed Martin's Mission Systems and Sensors facility; Applied NanoStructured Solutions, which is a Lockheed Martin subsidiary; and General Electric's Middle River Aircraft System; also known locally as Plant 1.

**naphthalene**— Naphthalene is an aromatic volatile or semi-volatile organic compound which occurs naturally in coal and oil. It has a strong odor that smells like tar or mothballs. Naphthalene is used to make products like moth balls, dyes, leather goods, and insecticides.

**National Oil and Hazardous Substances Pollution Contingency Plan (NCP)**—A federal plan that determines the party or parties that will respond, and how they will respond, to a spill or release, or threat of release, of oil or a hazardous substance. It establishes a National Response Team, headed by USEPA, and outlines requirements for accident reporting, spill containment, and cleanup.

**non-detect**—Data point for which the chemical of interest was not detected in the chemical analysis of an environmental sample.

polychlorinated biphenyls (PCBs)—PCBs are man-made organic chemicals manufactured and used in construction materials and electrical products produced before 1979. PCBs belong to the broad family of organic chemicals known as chlorinated hydrocarbons, and vary in consistency from thin, light-colored liquids to yellow or black waxy solids. They have a range of toxicity, including carcinogenic and non-carcinogenic effects. Due to their non-flammability, chemical stability, high boiling point, and electrical insulating properties, PCBs were used in hundreds of industrial and commercial applications including electrical transformers, hydraulic equipment, thermal insulation, fluorescent lights, oil-based paint, carbonless copy paper, and many other industrial applications. The manufacture of PCBs was banned in 1979.

polycyclic aromatic hydrocarbons (PAHs)— A name for a group of semi-volatile organic chemicals that are often found together in groups of two or more. PAHs are created when products like coal, oil, gas, and garbage are burned but the burning process is not complete. They can also be found in the environment as a result of natural processes such as wild fires. PAHs are a concern because they are persistent in the environment, meaning they do not degrade readily and can stay in the environment for long periods of time. A subset of PAHs are considered probable carcinogens based on animal toxicity studies.

**preliminary remedial goal (PRG)**—An acceptable contaminant level or range of levels for a given medium that can be used to support an evaluation of remedial alternatives. Although the preliminary remedial goals are established based on readily available information, the final acceptable exposure levels should be determined on the basis of the results of the baseline risk assessment and the evaluation of the expected exposures and associated risks for each alternative.

**recognized environmental condition** (**REC**)—A condition that is, per ASTM International (ASTM) E 1527-05, defined as "the presence or likely presence (as documented in public or other available records) of any hazardous substances or petroleum products on a property, under conditions that indicate a potential for an existing release, a possible past release, or a material threat of a release of the hazardous materials into structures or into the soil, groundwater, or surface water of the property".

**remediation**—The process of correcting and/or cleaning up environmental contamination. This process is governed by various federal and state laws, regulations, and other requirements.

**response action**—An action or series of actions to reduce, isolate, or remove contamination from an environmental medium (e.g., soil, air, groundwater, surface water), with the goal of preventing harmful exposure to people or animals and reducing its impact to the environment.

**remedial action objective (RAO)**—Cleanup objective specifying contaminants to be cleaned up and the level (i.e., the reduction in contaminant concentrations), the area, and the time required to achieve cleanup adequate to protect human health and the environment.

remedial action plan (RAP)—A "remedial action" is defined in the National Contingency Plan in part as "those actions consistent with a permanent remedy taken instead of, or in addition to, a removal action(s) in the event of a release or threatened release of a hazardous substance into the environment, to prevent or minimize the release of hazardous substances so that they do not migrate or cause substantial danger to present or future public health or welfare, or the environment." The RAP presents an evaluation of remedial alternatives (i.e., a feasibility study) and details the remedial measures to be taken to minimize environmental and health risks associated with known release(s) of hazardous substances. Depending on known or anticipated risks to human health and the environment, appropriate action can include site closure, monitoring and data collection, active or passive remediation, containment, or imposition of institutional controls.

**risk assessment**—A qualitative or quantitative evaluation of the risk posed to human health and/or the environment by the actual or potential presence or release of hazardous substances, pollutants or contaminants.

**site**—The Middle River Complex, in this document specifically Tax Block F, an 11.94 acre portion of the total property owned by Lockheed Martin Properties, Inc.

**solubility**—A measure of the amount of solute that will dissolve in a solution. It is the ability or tendency of one substance to dissolve into another at a given temperature and pressure and is generally expressed in terms of the amount of solute that will dissolve in a given amount of solvent to produce a saturated solution.

**spalling**—Term for breaking apart or fragmentation of a surface or solid object due to physical, chemical, or environmental stresses, or weathering.

**standard proctor**—A standardized mechanical testing method used to determine the compaction property of soil. The test is described in American Association of State Highway and Transportation Officials (AASHTO) specifications T99 and ASTM International (ASTM) standard D698-12.

**total petroleum hydrocarbons** (**TPH**)—TPH refers to a measure of concentration or mass of petroleum hydrocarbon constituents present in a given amount of air, soil, or water.

**toxicity equivalency factor (TEF)**—TEFs are estimates of compound-specific toxicity relative to the toxicity of an index chemical [e.g., benzo(a)pyrene]. TEFs are used in a risk assessment to evaluate the risks associated with exposure to a mixture of similar compounds for human or ecological receptors.

**volatile organic compounds** (**VOCs**)—A group of chemicals (organic compounds) that will vaporize or evaporate into the atmosphere at room temperature. They often have a sharp smell and can come from many products, such as office equipment, adhesives, carpeting, upholstery, paints, petroleum products, solvents, and cleaning products. Trichloroethene is an example of a VOC.

**Voluntary Cleanup Program**—A Maryland Department of the Environment (MDE) administered program providing State oversight for voluntary cleanups of properties contaminated with hazardous substances. The program was established in 1997 as an agreement between MDE and the USEPA. The program provides liability protection for participants such that USEPA will consider sites in the VCP of "no further interest" provided they are successful in cleanup and MDE issues a No Further Requirements Determination or Certificate of Completion. The goal of the program is to increase the number of sites cleaned by streamlining the cleanup process while ensuring compliance with existing environmental regulations.

## **Executive Summary**

Environmental stewardship of our activities is an important aspect of Lockheed Martin Corporation's commitment to the communities in which we operate. Accordingly, the Corporation has assumed responsibility for the assessment and cleanup of environmental impacts associated with the Lockheed Martin Middle River Complex (MRC) located at 2323 Eastern Boulevard in Middle River, Maryland. Tetra Tech Inc. has prepared this soil remedial action plan for Lockheed Martin Corporation in accordance with the requirements of the Maryland Department of the Environment Controlled Hazardous Substances regulations (Section 7-222 of the "Environment Article," Annotated Code of Maryland). This remedial action plan presents an evaluation of remedial alternatives (i.e., a feasibility study) for remediation of soils in Tax Block F, which is one of eight main land parcels that comprise the Middle River Complex. Tax Block F, along with other portions of the Middle River Complex, was accepted into the Maryland Voluntary Cleanup Program in 2006. The land parcel was withdrawn from the program in 2013 in order to combine the environmental restoration of the entire MRC, including soils, groundwater, and offshore sediments, into a single regulatory program. The goal for Tax Block F under this remedial action plan is to receive a No Further Action letter from the Maryland Department of the Environment under an industrial future land use category. Remediation targeted for future industrial land use is being proposed to meet the current and projected future use of the property. This does not prohibit Tax Block F from future development for residential, commercial, or recreational use if additional remediation is conducted to meet the contemplated land use.

Lockheed Martin will submit the remedial action plans for Tax Blocks D, E, G, and H to the Maryland Department of the Environment in the fall of 2013. Block E is on a different overall schedule because the detection of polychlorinated biphenyls above 50 milligrams per kilogram in some soils, storm drains, and off-site shore sediment requires the review and approval of the United States Environmental Protection Agency, in addition to the reviews and approvals required by the Maryland Department of the Environment. The Block E remedial action plan will be

completed during the same period as that of other tax blocks, but remedial activities are expected to occur later than in the other blocks due to the additional agency reviews and approvals.

A response action for groundwater at the Middle River Complex was presented in a separate groundwater response action plan. This plan was approved by Maryland Department of the Environment in September 2012. Design of the groundwater remedy is underway, with construction completion anticipated in early 2014.

Remediation of impacted offshore sediments near the Middle River Complex are also being addressed within the bounds of the controlled hazardous substances regulations, although sediments are within waters of the United States and are not Lockheed Martin Property. A feasibility study for sediment remediation was submitted to the Maryland Department of the Environment and the United States Environmental Protection Agency in December 2012. Sediment remediation will likely occur in near shore sediments of Dark Head Cove and Cow Pen Creek and is scheduled to start in late 2015 and be completed in 2016 pending regulatory approvals and extensive remediation permitting.

Block F of the Middle River Complex comprises approximately 12 acres and consists of four recognized environmental conditions (RECs): REC #4 (former boat launch area), REC #5 (former aviation fuel underground storage tanks), a portion of REC #6 (waterfront lot), and REC #13 (former boat dock area). This remedial action plan primarily addresses a remedy for soil in REC#13 because soil sampling results and risk assessment do not indicate that remedial actions are required for soil in REC #4, REC #5, and REC #6 (Figure 1-2). Although not based on a human health risk requirement, the abandoned-in-place underground storage tanks in REC #5 will be removed as well.

Nature and extent of contamination—Investigations associated with Block F have been conducted since 2003 and include record reviews, discussions with Middle River Complex personnel, geophysical surveys, and soil and groundwater sampling. Most impacted soil at Block F appears to be associated with fill material historically placed in the waterfront lot and the former boat dock area. The results of these investigations show that site surface and subsurface soils are primarily contaminated with polycyclic aromatic hydrocarbons randomly distributed in the soil matrix. As presented in the *Human Health Risk Assessment (HHRA) for Blocks D, E, F, G, and H Soils* (Tetra Tech, 2012b), polycyclic aromatic hydrocarbons are the

primary risk drivers for industrial workers in Block F and have been identified in soils at concentrations exceeding industrial risk-based preliminary remedial goals.

**Exposure assessment**—An exposure assessment has been completed for the site to predict human health risks associated with exposure to site contaminants under current and future exposure scenarios. The results indicate that in some areas contaminated site soils pose unacceptable risks to human receptors according to regulatory standards.

**Remedial goals**—Remedial goals for Block F soil were established using a two-step process. First, a human health risk assessment was conducted that identified contaminants of concern based on exposure to human receptors. The risk assessment also identified preliminary remedial goals for final contaminants of concern. Risk is defined herein as the probability of adverse health effect resulting from exposure to contamination. A residual-risk analysis was then conducted to identify areas in Block F with impacted soils that must be remediated to meet an industrial-use, human health, residual-risk level of 1 x 10<sup>-5</sup> (i.e., a one in 100,000 increased probability of cancer). A 1 x 10<sup>-5</sup> risk level is MDE's upper end risk threshold for carcinogenic compounds.

The risk assessment process resulted in identifying chemicals of concern that will require remediation if a typical industrial worker is the receptor of concern. The risk assessment consists of the following six components:

- data evaluation
- toxicity assessment
- uncertainty analysis

- exposure assessment
- risk characterization
- development of preliminary remedial goal options

Polycyclic aromatic hydrocarbons, expressed as benzo(a)pyrene equivalent concentrations (BaPEq), were identified in the risk assessment as the primary chemicals of concern for Block F soils. The residual-risk analysis identified impacted soil areas upon which remediation was required to meet an industrial risk-based preliminary remedial goal for BaPEq to within a 95% upper confidence level for Block F as a whole. Residual-risk analysis involves sequentially "removing" contaminated soil samples, beginning with the highest concentration and continuing

removal, until the average soil concentration is equal to or less than the industrial risk-based preliminary remedial goal with a 95% certainty. The residual-risk analysis was performed on soil from zero to two feet below ground surface (surface soils), and soil from two feet below ground surface to the water table (subsurface soils). The residual-risk analysis entailed the following five steps:

- identify the chemicals of concern
- determine the preliminary remedial goals
- rank locations
- iteratively remove samples from the surface and subsurface data set and recalculate the industrial-based exposure and residual risk for the block as a whole
- once the 1×10<sup>-5</sup> residual risk criterion is achieved in the analysis, examine remaining contamination and using professional judgment, remove additional elevated-concentration samples from the data set and recalculate exposure and residual risk to provide a margin of safety

The areas identified for remediation in the residual-risk analysis are shown in Figure 4-1. The identification of these areas was based on BaPEq concentrations detected in surface soils located within the zero- to two-foot depth interval below ground surface.

**Remedial action objective**—To obtain a No Further Action letter under an industrial future land use for soils at Block F, the following remedial action objectives were developed (see Section 4):

| Remedial action objective | Description                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                         | Reduce site-related chemicals of concern in Block F soils to $1\times10^{-5}$ human health cancer-risk limits for industrial workers exposed to contaminants of concern via ingestion, dermal contact, and inhalation.                                                                                                                                     |
| 2                         | Excavation and offsite recycling or disposal of seven abandoned-in-place former aviation fuel underground storage tanks at REC #5 in accordance with Maryland Oil Control Program Guidance and Code of Maryland Regulations Title 26 Subtitle 10 "Oil Pollution and Tank Management" to obtain a clean closure in REC #5 under a residential use scenario. |

**Remedial action alternatives**—After identifying the remedial action objectives, remedial action alternatives for soil were identified and evaluated. Various technologies and process options were considered and then separated into seven general response action categories. The general

remedial action categories include "no action," "limited action," "containment," "removal," "in situ treatment," "ex situ treatment," and "disposal." A detailed screening of process options was then conducted, which resulted in the selection of the following six remedial alternatives:

- **Alternative 1:** No action (baseline for comparison to remaining alternatives)
- **Alternative 2:** Institutional controls
- Alternative 3: Excavation and off-site disposal of impacted soils, underground storage tank removal, and institutional controls
- Alternative 4: Limited excavation and soil cover over impacted soils, underground storage tank removal, and institutional controls
- Alternative 5: Enhanced bioremediation of impacted surface soils, underground storage tank removal, and institutional controls
- **Alternative-6:** *In situ* stabilization of impacted soils downward to the groundwater table, underground storage tank removal, and institutional controls

A detailed evaluation was performed upon each alternative according to the following criteria:

- long-term effectiveness and permanence
- implementability
- reduction in toxicity, mobility, and volume through treatment
- environmental impacts

- short-term effectiveness
- costs

The alternatives were then compared to each other qualitatively and quantitatively, based on these same criteria.

**Proposed remedial action**—For Lockheed Martin Corporation, success depends on how well we recognize and fulfill our responsibilities to the environment, to a safe workplace, to stewardship of scarce natural resources, and to our customers and shareholders. All of these responsibilities were considered in selecting the remedial action for Block F. This evaluation led to selection of Alternative 3 (excavation and disposal of impacted soils, underground storage tank removal, and institutional controls) as the soil remedial action for Block F at the Middle River Complex. As part of the proposed remedial action, seven abandoned underground storage tanks located in REC #5 will be removed.

Alternative 3 will reduce human health risk (based on an industrial exposure scenario) to less than a 1×10<sup>-5</sup> risk level (i.e., less than a one in 100,000 probability) by removing soils to a depth of two feet; institutional controls will mitigate risk posed by soils remaining after remediation. The selected alternative will also ensure that both remedial action objectives are met. Acceptance of the proposed remedial action by the Maryland Department of the Environment is required. A No Further Action letter will be sought by Lockheed Martin Corporation from the Maryland Department of the Environment subsequent to completion of the soil remedial action (i.e., when the remedial action objectives are met). In that letter, the Maryland Department of the Environment will establish the institutional controls for Block F. Though the proposed remediation is based on human health risk under an industrial exposure scenario, industrial risk-based remediation aligns remediation with current and anticipated future land use. Remediation to remedial action objectives based on preliminary remedial goals for mitigating risks posed under an industrial exposure scenario does not prohibit the site from future development for residential, commercial or recreational use, although additional remedial activities may be required.

*Schedule*—A schedule of the remedial action implementation for Block F soil is provided in Section 10 of the Block F Soil Remedial Action Plan. Major activities include:

- submit final remedial action plan—fall 2013
- remedial action implementation—late 2014

Communication and community relations—Lockheed Martin Corporation is committed to its partnership with the Middle River community and to maintaining a high level of community outreach, stakeholder engagement, and communication as work progresses. The Corporation has and will continue to invest in the environmental, health, and economic needs of the community. Lockheed Martin Corporation also will provide remediation program updates to the civic association leadership and, upon request, will attend civic association meetings to provide updates and answer questions and listen to issues and concerns. Lockheed Martin Corporation also will hold a public information availability session before the remedial action begins to inform and educate the stakeholders interested in this project. Lockheed Martin Corporation remains committed to two-way communication with the community to ensure that questions are answered and issues and concerns are addressed in a timely manner.

## Section 1 Introduction

This section presents the purpose, scope, and organization of the remedial action plan for Tax Block F soils. A brief summary is provided for each subsequent section of the remedial action plan.

#### 1.1 PURPOSE OF THE REMEDIAL ACTION PLAN

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this remedial action plan (RAP) for soil at Tax Block F ("Block F") of the Lockheed Martin Middle River Complex (MRC) in Middle River, Maryland. The location of the Middle River Complex is shown in Figure 1-1. This remedial action plan was prepared in accordance with the requirements of the Maryland Department of the Environment (MDE) Controlled Hazardous Substances (CHS) Enforcement Division (see Section 7-222 of the "Environment Article," and Code of Maryland Regulations [COMAR] 26.14). Tax Block F, along with other portions of the Middle River Complex, was accepted into the Maryland Voluntary Cleanup Program in 2006. The land parcel was withdrawn from the program in 2013 in order to combine the environmental restoration of the entire Middle River Complex, including soils, groundwater, and offshore sediments, into a single regulatory program. The withdrawal letter documenting this change is included in Appendix A.

The purpose of the remedial action plan is to provide the background, supporting documentation, and framework (i.e., goals, performance evaluation criteria, and schedule) for remediation of soils at Block F. The plan details the remedial action objectives (RAOs), screening of remedial technologies, and the selection of the proposed remedial action. The remedial actions and goals detailed herein are based on current and historical site data derived from the soil investigations described in Section 2, and the current and anticipated future land use. This remedial action plan provides information necessary to support the decision to remove contaminated soil to achieve the following remedial action objectives:

Soil remedial action objective 1—

Reduce site-related chemicals of concern (COC) in Block F soils to a  $1\times10^{-5}$  human health cancerrisk level for industrial workers exposed to chemicals of concern via ingestion, dermal contact, and inhalation

Soil remedial action objective 2—

Excavation and offsite recycling or disposal of abandoned-in-place former aviation fuel underground storage tanks (USTs) at REC #5 in accordance with Maryland Oil Control Program (OCP) Guidance and Code of Maryland Regulations 26.10 "Oil Pollution and Tank Management" to obtain a clean closure in REC #5 under a residential use scenario.

#### 1.2 SCOPE

Block F contains four recognized environmental conditions (RECs): recognized environmental condition #4 (boat launch area), recognized environmental condition #5 (former aviation fuel underground storage tanks [USTs]), a portion of recognized environmental condition #6 (waterfront lot), and recognized environmental condition #13 (former boat dock area). The locations of these recognized environmental conditions are shown in Figure 1-2.

The Maryland Department of the Environment recognizes sites with a cancer risk greater than  $1\times10^{-5}$  (i.e., a one in 100,000 increased probability of cancer) or a hazard index greater than 1, require remedial actions. This remedial action plan contains an evaluation of risk-based remedial actions based on industrial land use and identifies the preferred option that will achieve the remedial action objectives established for Block F soils. The response actions for Middle River Complex groundwater are described under the separate, approved groundwater response action plan. Planning to date for addressing impacts to offshore sediments is described in a separate sediment feasibility study.

#### 1.3 ORGANIZATION

This Block F soil remedial action plan is organized as follows:

<u>Section 1—Introduction</u>: Presents the purpose, scope, and organization of the remedial action plan.

<u>Section 2—Middle River Complex Block F Overview</u>: Briefly describes the Middle River Complex and Block F background, site history, environmental investigations, and results, and presents the conceptual site model and a summary of the proposed soil remedial actions.

<u>Section 3—Exposure Assessment</u>: Presents the current and potential future land use and environmental media of concern, and describes possible exposure pathways.

<u>Section 4—Cleanup Criteria</u>: Presents remedial action objectives, chemicals of concern, preliminary remedial goals, and protocols for attainment of cleanup goals.

<u>Section 5—Remedial Action Alternative Evaluation and Selection</u>: Presents the screening of remediation technologies and process options, the development and analysis of remedial alternatives, a comparative analysis of alternatives, and describes the alternative selected to clean up the soils in Block F.

<u>Section 6—Design Confirmation Sampling</u>: Presents the investigation that is required to address minor data gaps surrounding areas identified for remediation so that remedial action boundaries can be more accurately defined in a final design.

<u>Section 7—Contingency Measures for the Selected Remedial Action</u>: Presents the contingency measures to be employed in the event the selected alternative does not perform as expected.

<u>Section 8—Proposed Remedial Actions</u>: Presents the plan for the work and controls necessary to perform the proposed remedial action.

<u>Section 9—Permits and Notifications</u>: Presents local, state, and federal laws and regulations that prescribe the permits and approvals required to implement the Maryland Department of the Environment-approved remedial action plan.

<u>Section 10—Implementation Schedule</u>: Presents the detailed schedule for the work necessary to implement the Maryland Department of the Environment-approved remedial action plan.

<u>Section 11—References</u>: Lists references and citations used in compiling this remedial action plan.

#### Appendices:

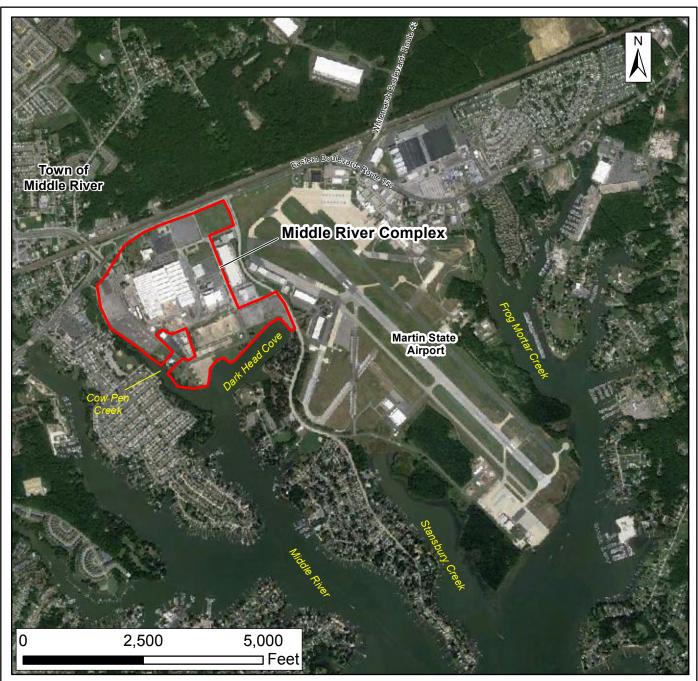
Appendix A – Voluntary Cleanup Program Withdrawal Letter

Appendix B—Block F Industrial Exceedances of Risk-Based Screening Criteria (Table)

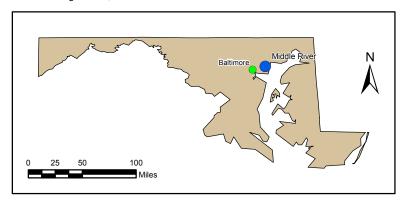
Appendix C—Soil Data from Previous Investigations (Table)

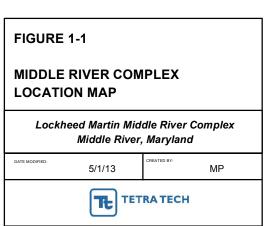
Appendix D —Residual-Risk Analysis

Appendix E—BaPEq Calculation


Appendix F—Block F Depth-to-Water Contours

Appendix G—SiteWise<sup>TM</sup> Information


Appendix H—Total Cost Analysis


Appendix I—Criterium® DecisionPlus® Results

Appendix J—Permits



Source: Google Earth, 2013







# Middle River Complex Block F Overview

The following presents an overview of the site background and site-specific chemicals of concern. Also summarized are the findings of previous site investigations, the understanding of nature and extent of site contaminants, their persistence and migration in the environment, and applicable exposure pathways, collectively known as the conceptual site model.

#### 2.1 MIDDLE RIVER COMPLEX BACKGROUND

In 1929, the Glenn L. Martin Company, a predecessor entity of Lockheed Martin Corporation (Lockheed Martin), acquired a large parcel of undeveloped land in Middle River, Maryland to manufacture aircraft for the United States government and commercial clients. In the early 1960s, Glenn L. Martin Company merged with American-Marietta Company to form Martin Marietta Corporation. In the mid-1990s, Martin Marietta Corporation merged with Lockheed to form Lockheed Martin, in turn focusing its on-site operations on equipment construction and testing for the United States government and commercial clients. Shortly after the merger, General Electric acquired most of Lockheed Martin's aeronautical business in Middle River, which began operating as MRA Systems, Inc.

The Middle River Complex (MRC) is part of the Chesapeake Industrial Park located at 2323 Eastern Boulevard in Middle River, Maryland, approximately 11.5 miles northeast of downtown Baltimore. The MRC comprises several tax blocks and covers approximately 161 acres; it includes 12 main buildings, an active industrial area and yard, perimeter parking lots, an athletic field, vacant lots, and numerous grassy green spaces along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Dark Head Cove to the south, Cow Pen Creek to the west, and Martin State Airport to the east. Figure 2-1 is a layout map of the MRC. This map shows the active industrial facility (Block I) and the external Blocks A, B,

D, E, F, G, and H surrounding Block I. LMC Properties, Inc. (LMCPI) owns and operates the MRC and periodically leases space to other parties for storage and parking.

Block F occupies approximately 11.94 acres in the southern portion of the MRC. Block F is bounded on the north by the former Building D (Block E) and properties formerly owned by Lockheed Martin now occupied by the Tilley Chemical Company and North American Electric. Block F is bounded to the east by the waterfront lot portion of Block D and Dark Head Cove, to the south by Dark Head Cove, and to the west by Cow Pen Creek (see Figure 2-1). East of MRC is the Martin State Airport, totaling approximately 750 acres, which in 1975 was transferred from Martin Marietta to the State of Maryland.

Review and analysis of limited information in the *Phase I Environmental Site Assessment* (ESA; Earth Tech, 2003), MRC records, and historical aerial photographs indicate that a portion of Block D, which includes parking lot number (No.) 6, and the waterfront, were backfilled between 1938 to 1949, raising the topography to its current elevations and extending the MRC property to its current layout. A bulkhead was constructed along much of the current water line at Block F and the cove along the bulkhead was dredged in the early 1940s to create a federally approved navigation channel. Dredged material may have been placed as backfill along the inland side of the bulkhead at the time of its construction, based on review of historical aerial photographs. Portions of the bulkhead are stone riprap covered with concrete and portions are steel sheet piling capped with a concrete wall. Dredging was done near the shoreline to lower the bottom of Dark Head Cove to ten feet below sea level to facilitate use of the creek as a proposed anchor basin. After the shoreline had been reconstructed and backfilling was completed, the waterfront lot in Block F and parking lot No. 6 in Block D were paved with asphalt. Both locations are referred to as recognized environmental condition (REC) #6 in the Phase I ESA (Earth Tech, 2003).

#### 2.2 BLOCK F BACKGROUND

Block F includes RECs #4, #5, #6, and #13, as identified in the Phase I ESA (Earth Tech, 2003) and as shown on Figure 2-1. The former boat launch area (REC #4) and the former aviation-fuel underground storage tanks (USTs) (REC #5) are primarily covered by a concrete tarmac that defines the boundary of REC #4. REC #5 is comprised of seven abandoned-in-place USTs underneath the north central portion of the concrete tarmac; this location has no other structures.

A chain-link fence runs along the northern edge of REC #4, along Chesapeake Park Plaza, prohibiting unauthorized access to these two RECs. Vehicle and personnel access to these RECs is through a locked gate.

The concrete tarmac is comprised of smaller concrete slabs in relatively good condition, with some minor cracks and sinkholes in a few locations. Grass and soil are in many of the slab joints. A grassy strip runs along the southeastern edge of REC #4, separating the southeastern portion of the tarmac from a steel and concrete section of bulkhead along Dark Head Cove. This section of bulkhead is in poor condition; cracking and spalling (or flaking) of the concrete and erosion of the fill adjacent to the bulkhead are evident at numerous locations (Tetra Tech, 2012a).

The waterfront lot, on the eastern portion of Block F, comprises only a portion of REC #6. Parking lot No. 6 on the adjacent Block D is also a part of REC #6. Historical information obtained during the Phase I ESA suggests that the REC #6 area was backfilled behind the bulkhead construction along the Dark Head Cove waterfront (Earth Tech, 2003). Consequently, this area was classified in the Phase I ESA as a REC due to the lack of chemical or physical characterization of the fill. Characterization of this area has since been completed.

The waterfront lot is a well-manicured, grassy strip of land between Chesapeake Park Plaza and Dark Head Cove and between parking lot No. 6 and Dark Head Cove. The lot has several trees, and the grass there appears to be in good condition. A concrete-covered riprap bulkhead bounds the unit along most of its border with Dark Head Cove. The concrete covering on the riprap bulkhead in this area shows significant cracking. Minor erosion of the shoreline behind the riprap and undermining of stormwater outfall structures were observed in the REC #6 portion of the bulkhead during a May 2012 inspection (Tetra Tech, 2012a). Major erosion and washout of the reinforced riprap were also observed at one location near the middle of REC #6 (Tetra Tech, 2012a).

The former boat dock area (REC #13), in the southwestern portion of Block F, is now an open, relatively flat grassy parcel. A chain-link fence running along the perimeter of Chesapeake Park Plaza limits unauthorized access to REC #13. No fences are located along the boundaries shared with North American Electric or with the former boat launch area (REC #4). Vehicle and personnel access to REC #13 is obtained through a locked gate along Chesapeake Park Plaza at REC #4.

The former boat dock area (REC #13) is covered with a well-maintained lawn, with shrubs and trees growing thickly along the Cow Pen Creek shoreline. Several trees are in this REC. Although no structures are currently in REC #13, the severely degraded remnants of several walkways, parking areas, and a few foundations are still evident. A review of available aerial photographs and facility maps shows that the former boat dock area was developed before 1949. Structures in this area once included a cottage, service building, storage building, training school, boathouse, and two docks. This area once reportedly had as many as 11 buildings. Based on historical photographic records, the buildings were demolished before 1969.

#### 2.3 BLOCK F PREVIOUS INVESTIGATIONS

Environmental investigations associated with Block F have been conducted since 2003 and include record reviews, discussions with MRC personnel, geophysical surveys, and soil and groundwater sampling. The primary findings of these investigations as they relate to this remedial action plan (RAP) for soils are included in Sections 2.3.1 through 2.3.11. Figures 2-2 and 2-3 show locations of soil samples collected in the western and eastern portions of Block F, respectively, during previous investigations. Table 2-1 provides a summary of previous investigations related to Block F soils. Appendix B presents positive detections only for soil sampling results from all the previous investigations discussed in this section (non-detect results are not listed). Chemical data in Appendix B are compared to the risk-based preliminary remedial goals (PRGs) developed for Block F. The PRGs are based on a human health risk assessment (HHRA) that evaluated all Block F data (Tetra Tech, 2012b), as described in Section 2.4. A complete database of all existing Block F soils data (including non-detect results) is in Appendix C.

During previous investigations, screening criteria used for data comparison have varied due to revisions in the applicable Maryland Department of Environment (MDE) soil standards. In addition, residential screening criteria have been used to screen data in the past as well as MDE anticipated typical concentrations (ATCs) for some metals (regional background concentrations recognized by the MDE [MDE, 2008]). However, based on the current projected future use of the property, using industrial soil screening criteria is more appropriate. For clarity in the discussion below, previous investigation results are presented in general terms, with qualitative comparison to the preliminary residential or industrial screening criteria that were used at the

time of those previous investigations (referred to hereinafter as the "previously used" criteria). Chemicals detected in soils during the previous investigations that exceeded the more conservative MDE residential screening criteria were evaluated further in each subsequent series of investigations. Exceedances of MDE residential and industrial criteria were collectively addressed as chemicals of potential concern (COPC) in the HHRA, as discussed in Section 2.4. The COPCs are further evaluated to produce a final list of chemicals of concern (COC) and then PRGs are developed and presented in Section 6 of the HHRA. The current screening criteria are the MDE soil cleanup levels, ATCs, and industrial PRGs listed in Table 2-2 and discussed in the following sections.

#### 2.3.1 Phase I Environmental Site Assessment (2003)

A Phase I ESA was conducted on the MRC in February 2003 in accordance with ASTM International, Inc. (ASTM) standard E 1527 (Earth Tech, 2003). The primary goal of the Phase I ESA was to identify RECs through a desktop study of historical documents and a cursory site inspection. The Phase I ESA consisted of a historical review of the facility (i.e., a review of available facility documents, aerial photographs, and city directories); a review of federal, state, and local agency databases; interviews with MRC personnel; and a site visit. Thirteen specific RECs associated with the MRC and four RECs within Block F were identified in the Phase I ESA. The four Block F RECs were as follows:

- former boat launch area (REC #4)
- former aviation fuel USTs (REC #5)
- waterfront lot (part of REC #6)
- former boat dock area (REC #13)

In addition to identifying RECs, a recommendation was included in the Phase I ESA for further investigation of historical activities at MRC to identify other possible environmental concerns.

#### 2.3.2 Phase II Investigation (Fall/Winter 2003)

The initial Phase II investigation entailing soil and groundwater sampling and a geophysical survey was conducted in the fall of 2003 on seven of the 13 Phase I RECs, including RECs #4, #5, and #6 within Block F, to determine and evaluate baseline environmental conditions for the entire MRC (Tetra Tech, 2004a). The geophysical surveys were conducted to provide evidence of

buried USTs, utilities, or metallic debris in the subsurface underlying the RECs. During this investigation, four soil borings (SB-22 through SB-25) were advanced in the concrete tarmac at the boat launch area for general geographic coverage across REC #4. Two subsurface soil samples (five and 10 feet below ground surface [bgs]) were collected from each boring and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), metals, and total petroleum hydrocarbons (TPH)-gasoline-range organics (GRO) and TPH-diesel-range organics (DRO). A summary of the samples acquired and analyses performed from the fall 2003 investigation is in Table 2-3.

Four soil borings (SB-26 through SB-29) were advanced near the former USTs (REC #5), one on each of the four sides of the UST location. One subsurface soil sample (at 10 feet bgs) was collected from each boring and analyzed for VOCs and TPH-GRO. One additional boring (SB-30) was advanced in the waterfront lot area (REC #6) and one subsurface sample (at five feet bgs) was collected. This sample was analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO and TPH-DRO.

VOCs and metals were consistently detected in soil samples collected at RECs #4, #5, and #6. Mercury was detected at a low concentration in one soil sample collected at a depth of five feet in SB-24 (at REC #4).

An electromagnetic (EM) geophysical survey was completed at the waterfront lot and parking lot No. 6 to detect possible areas of waste disposal or possible buried drums or other metallic debris that may be in the REC #6 fill area. Nine EM anomalies were identified. A follow-up ground-penetrating radar (GPR) survey of these anomalies found that eight of the anomalies were associated with utilities (primarily storm drains), but the survey did not identify the source for the final anomaly in parking lot No. 6. The EM signature of this unidentified anomaly was not consistent with commonly encountered utilities or buried metallic objects (e.g., drums, tanks), and was attributed to fill (e.g., cache of concrete or large stones). Results of soil sampling near the anomaly (i.e., SB-30) did not exhibit signs of contamination. The results of the geophysical survey are in Appendix B of the *Final Report, Phase II Site Investigation of Exterior Areas* (Tetra Tech, 2004a).

#### 2.3.3 Historical Survey (2004)

The historical research investigation of the MRC (Tetra Tech, 2004b) was conducted in summer 2004 to review all available historical information identified in the 2003 Phase I ESA. The historical survey included a review of MRC maps (e.g., as-builts, proposed construction plans, and plot maps), interviews with Lockheed Martin and tenant personnel, and documentation of site visits. Relevant to Block F, the review of MRC documents identified a cottage, service building, storage building, training school, and boathouse formerly located in the boat dock area (REC #13). Other MRC maps and data indicate that multiple buildings were on-site from the 1940s until 1969 (Earth Tech, 2003). No additional information regarding chemical and material storage and waste handling practices was identified during the historical survey.

#### 2.3.4 Site-Wide Phase II Investigation (2004)

The site-wide Phase II investigation in 2004 further explored environmental concerns identified at RECs from the 2003 Phase II investigation and in the historical research survey, and addressed possible data gaps associated with the 2003 investigation. All 31 RECs at the MRC were investigated during the site-wide Phase II investigation, which included geophysical surveys of five areas plus soil and groundwater sampling. A summary of the samples and analyses for this investigation is in Table 2-3.

Surface soil samples (SB-22A-SS through SB-25A-SS and SB-50-SS) were collected from the first foot of soil from soil borings installed adjacent to the 2003 soil borings in REC #4 (SB-22 through SB-25). Samples were analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO and TPH-DRO. To verify the subsurface mercury concentrations detected in the earlier samples (SB-24), an additional soil boring (SB-50) was installed, and one surface soil and two subsurface soil (five and 10 feet bgs) samples were collected and analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO and TPH-DRO.

At the waterfront lot, one surface soil sample was collected from the 2003 soil boring location (SB-30). Two new soil borings (SB-55 and SB-56) were also installed in areas associated with a former mound of unknown material, near the former service roads identified on historical aerial photographs and a storm-sewer utility trench. Surface and subsurface samples (from five and 10 feet bgs) from the two new soil borings (SB-55 and SB-56) and the surface soil sample in

SB-30 were analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO and TPH-DRO.

Four soil borings (SB-93 through SB-96) were advanced in the former boat dock area. One surface soil sample and two subsurface soil samples (five and 10 feet bgs) were collected from each boring. An additional subsurface soil sample (15 feet bgs) was collected from each soil boring SB-93, SB-94, and SB-96. All samples were analyzed for VOCs, SVOCs, pesticides, PCBs, metals, TPH-GRO, and TPH-DRO.

Mercury is the only compound in REC #4 that exceeded the previously used MDE residential soil-screening levels. This mercury exceedance was found in surface soil sample SB-24A-SS, collected at a location consistent with a previously elevated mercury level detected in SB-24. Arsenic and lead were detected in soil samples from the waterfront lot and boat dock area at concentrations in excess of previously used MDE residential-soil screening levels. Lead concentrations ranged from non-detect to 420 mg/kg (SB-55-SS). Mercury, arsenic, and lead concentrations in these samples that exceeded residential criteria, however, are less than the subsequently developed risk-based industrial PRGs for Block F soils.

Four polycyclic aromatic hydrocarbons (PAHs), Aroclor-1260, cadmium, chromium, and mercury were detected at concentrations greater than previously used MDE residential-soil screening levels in soil samples collected in the former boat dock area (REC #13) and the waterfront lot (REC #6). The PAH compound benzo(a)anthracene was detected at concentrations ranging from non-detect to 1,800 μg/kg (SB-93-SS); benzo(b)fluoranthene was detected at concentrations ranging from non-detect to 1,800 μg/kg (SB-95-SS); and indeno(1,2,3-cd)pyrene was detected at concentrations ranging from non-detect to 990 μg/kg (SB-95-SS). Benzo(a)pyrene was detected at concentrations ranging from non-detect to 1,600 μg/kg (SB-95-SS). Concentrations of Aroclor-1260 range from non-detect to 1,400 μg/kg (SB-94-SS). Cadmium and chromium exceeded the previously used MDE residential-soil screening levels. Cadmium concentrations ranged from non-detect to 4.5 mg/kg (SB-94-SS); chromium concentrations range from 9.3 mg/kg (SB-96-SS) to 110 mg/kg (SB-93-SS).

Results of this investigation are in the *Final Data Report Site Wide Phase II Investigation*, (Tetra Tech, 2005). As stated, past investigations used residential screening levels for comparison to site concentrations. The projected future use of the property is industrial; thus soil results were

screened in the HHRA and for this RAP in Section 2.3.11 using the more appropriate industrial screening criteria. The 2004 soil sample results exceeding risk-based preliminary remedial goals developed in this RAP for future industrial land use are shown in Figure 2-4 and Appendix B.

### 2.3.5 Phase II Soil Investigation (Summer 2005)

To further delineate elevated detections of mercury in the boat launch area (REC #4), three additional soil borings (SB-236 through SB-238) were advanced in 2005 and soil samples were collected from various depths (0–1, 1–2, and 4–5 feet bgs). These samples were analyzed for metals and TPH-DRO (SB-238 only). An elevated lead concentration detected in a surface soil sample collected in 2004 (SB-55) from along the waterfront led to further evaluation of the area in 2005, through installation of four additional soil borings (SB-250 through SB-253). Soil samples were collected from 0–1 and 1–2 feet bgs from each boring and analyzed for metals. A summary of the samples and analyses from this investigation is in Table 2-3.

In 2005, six additional soil borings (SB-265 through SB-270) were advanced in REC #13 to further evaluate the levels of PAHs, chromium, and PCBs detected in surface soil samples SB-93 to SB-95 in 2004. Soil samples were collected from 0–1 and 1–2 feet bgs and analyzed for SVOCs. Surface soil samples were also analyzed for pesticides/PCBs and metals. Several metals, PAHs, and TPH-DRO were found at concentrations greater than the formerly applied MDE residential-soil screening levels.

PAHs are a class of compounds with a similar chemical structure consisting of two or more fused benzene rings. Rather than assessing potential PAH cancer health risks on an individual compound basis, benzo(a)pyrene equivalents (BaPEq) were calculated during the 2004 investigation. Per United States Environmental Protection Agency (USEPA) guidance (USEPA, 1993b), concentrations of benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene can be combined in a relative-potency adjusted concentration that is expressed in terms of benzo(a)pyrene toxicity. This calculated value, called a BaPEq, uses USEPA-recommended toxicity equivalency factors (TEFs) to estimate the potency of each of these PAH compounds relative to that of benzo(a)pyrene. The TEFs are then used to convert each individual PAH concentration into an equivalent concentration of benzo(a)pyrene; these values are summed to arrive at the calculated BaPEq concentration. Concentrations of BaPEq exceeding the previously

used USEPA residential screening criteria ranged from 219  $\mu$ g/kg (SB-266-02) to 38,098  $\mu$ g/kg (SB-268-SS).

Concentrations of Aroclor-1260, a PCB compound, ranged from 29 μg/kg (SB-270-SS) to 756 μg/kg (SB-266-SS), the latter concentration exceeding the previously used MDE residential-soil PCB screening level of 320 μg/kg. Arsenic, chromium, and lead concentrations exceeded previously used MDE residential-soil screening levels. Arsenic concentrations ranged from 3 mg/kg (SB-236-SS, SB-238-SS, SB-238-01, and SB-238-05) to 7 mg/kg (SB-236-05), chromium concentrations ranged from 11.8 mg/kg (SB-250-SS and SB-252-SS) to 185 mg/kg (SB-237-01), and lead ranged from 10 mg/kg (SB-252-SS) to 447 mg/kg (SB-268-SS). The detected TPH-DRO levels exceeded previously used MDE residential-soil screening level of 230,000 μg/kg in SB-238-SS (271,000 μg/kg) and SB-238-05 (881,000 μg/kg). Results of this investigation are in the *Site Characterization Report, Revision 1.0, Lockheed Martin Middle River Complex* (Tetra Tech, 2006). The 2005 soil sample results exceeding the risk-based PRG developed in this RAP for future industrial land use are shown in Figure 2-4 and Appendix B.

### 2.3.6 Geophysical Survey/Soil Investigation (Fall 2005)

A geophysical survey and subsequent sampling event in 2005 were designed to provide more certainty regarding environmental conditions in Block F. An EM survey in the fall of 2005 screened the REC #13 area in Block F. Identified EM anomalies were further evaluated with GPR. Results of the geophysical surveys are presented in the 2006 site characterization report (Tetra Tech, 2006). These surveys identified four geophysical reading anomalies that could not be resolved as being associated with known features (e.g., utilities). These anomalies were more closely investigated by advancing five additional soil borings (SB-295 through SB-299). Subsurface soil samples were collected from two depths in each boring (4.5 and 9.5 feet bgs) and analyzed for VOCs, SVOCs, pesticides/PCBs, metals, TPH-GRO, and TPH-DRO. A summary of the samples acquired and analyses performed during this investigation is presented in Table 2-3.

Several metals were detected in these soil samples at concentrations greater than the respective soil screening levels used at that time. Arsenic, chromium, and vanadium exceeded their previously used MDE residential-soil screening levels of 2 mg/kg, 23 mg/kg, and 55 mg/kg, respectively. Arsenic concentrations ranged from 1.3 mg/kg (SB-299-0405) to 5.7 mg/kg (SB-296-0405), chromium concentrations ranged from 16 mg/kg (SB-299-0910) to 39.4 mg/kg

(SB-298-0910), and vanadium ranged from 20.7 mg/kg (SB-299-0910) to 61.6 mg/kg (SB-296-0405). The 2005 soil sample results exceeding the risk-based preliminary remedial goal developed in this RAP for future industrial land use are shown in Figure 2-4 and Appendix B.

### 2.3.7 Site Characterization Report (May 2006)

The 2006 site characterization report (Tetra Tech, 2006) was prepared from the fall of 2005 through May 2006 and provided a summary of data collected in all environmental media through 2005. Chemicals detected in soil were screened against site-specific background concentrations collected in Block B in an area of the MRC historically used only for recreation. This report also includes an HHRA that identified potential adverse human health effects resulting from exposure to the detected chemicals for a number of current and hypothetical future use scenarios. The 2006 risk assessment has been superseded by a more current human health risk assessment completed in 2012 (Tetra Tech, 2012b); therefore, the 2006 results are not discussed in detail in this RAP.

### 2.3.8 Additional Soil Characterization (Fall 2007)

Areas of concern for soil in Block F were further delineated in 2007 to better define the boundaries of chemicals of concern as defined in the May 2006 site characterization report (Tetra Tech, 2006) based on the previously used residential-use exposure scenario. These areas were characterized both laterally and vertically, limited by depth to groundwater. Thirty soil borings (SB-382 through SB-490) were installed in REC#13 and REC#4 near previous soil borings SB-93, SB-94, SB-95, SB-265, SB-266, SB-269, and SB-268. The new borings were spaced on a grid pattern across the previously identified geophysical-anomaly areas. Soil borings were advanced to a depth of eight feet bgs. Soil samples were obtained continuously while drilling, and 121 samples collected at two-foot intervals (1–2, 2–3, 4–5 and 7-8 feet bgs) were submitted for chemical analysis. All samples were analyzed for PAHs (using USEPA method SW-846 8270) and PCBs (using USEPA method SW-846 8082). Table 2-4 summarizes the soil sampling and chemical analyses completed for this investigation.

Benzo(a)pyrene concentrations in soils ranged from non-detect to 19,000 μg/kg at soil boring SB-383 (1–2 feet bgs). The remaining 47 detections of benzo(a)pyrene were less than 1,000 μg/kg. PAHs, reported in terms of BaPEq, exceeded the previously used USEPA residential-soil screening criterion in six of 121 soil samples (including duplicates). The 2007 soil

sample results exceeding subsequently developed risk-based preliminary remedial goals that assume future industrial land use are shown in Figure 2-4 and Appendix B.

### 2.3.9 Final Soil Delineation (Blocks D, F, G, and H, Fall 2009)

Some data gaps remained after the 2007 investigation, resulting in the 2009 delineation investigation (Tetra Tech, 2011). In this study, samples were collected in two tiers to help define the horizontal and vertical nature and extent of soil impacts. The vertical clean margin was defined by two clean intervals (e.g., concentrations less than residential screening levels), spaced at one-foot increments beneath impacted intervals. Table 2-5 summarizes the samples collected and analyses completed for Block F samples collected as part of the 2009 investigation.

Samples collected during the first tier of delineation sampling (the "inner tier" samples) came from previously completed, isolated sampling locations in areas where samples with non-detect or less-than-detection-limit results had been used to calculate BaPEq concentrations. BaPEq concentrations had been calculated using the conservative assumption that any non-detect sample with a detection limit greater than the screening level was an exceedance of the screening level. Therefore, to calculate more precise BaPEq concentrations, soil near these borings was resampled and analyzed using a lower quantitation limit (a target quantitation limit of  $6.7 \mu g/kg$ ). BaPEq concentrations were then recalculated using the new inner tier data and compared to the previously used USEPA residential screening level for BaPEq. Inner tier sampling results were also used to identify the vertical clean margin, as the resampling effort collected samples at more evenly spaced depth intervals.

If soil collected from inner tier samples exceeded screening levels, then an "outer tier" sample was collected at the next one-foot depth increment below the deepest exceedance in the inner tier. The outer tier delineation approach was to collect samples from borings at locations extended outward laterally from the area of contamination (as defined by the results of the inner tier sampling). For final delineation sampling, all data were considered in determining the location and depth for vertical and horizontal delineation of impacts. In some cases, the limit of impacts, defined by COC concentrations above the residential screening levels used at the time, was sufficiently delineated in one or both directions, such that the full scope of inner and/or outer tier sampling was unnecessary.

During the delineation investigation, seventy-seven soil borings (28 inner tier and 49 outer tier) were advanced, and 427 soil samples were collected from the areas of concern throughout the MRC. At Block F, 231 soil samples were collected from inner tier borings and 168 soil samples were collected from outer tier borings. Of the 399 samples analyzed (not including duplicates), 363 samples at Block F were analyzed for PAHs, 27 were analyzed for mercury, and 53 were analyzed for PCBs.

Mercury analytical results in all Block F soil delineation samples range from non-detect to 2.7 mg/kg in F-SB-626-2. Mercury concentrations exceeding the previously used residential screening level were found in five shallow subsurface samples collected at 1–2 feet bgs during the 2009 investigation. Detected PCB concentrations did not exceed the previously used MDE residential soil screening level.

BaPEq results in all Block F soil delineation samples ranged from non-detect to  $50,039 \,\mu g/kg$  (F-SB-95RE-1). BaPEq exceedances were detected in the shallow-subsurface samples as well as in subsurface samples as deep as 13 feet bgs. The previously used residential screening level for BaPEq (150  $\mu g/kg$ ) was exceeded in 49 of 363 samples analyzed for PAHs. The 2009 soil sample results exceeding subsequently developed risk-based PRGs for future industrial land use are shown in Figure 2-4 and Appendix B.

### 2.3.10 Data Gap Investigation (Fall 2010)

Upon completion of the 2009 final-delineation sampling event, additional delineation sampling of PAHs and mercury was deemed necessary (based on the previously used residential screening criteria) to more accurately fill data gaps and determine the extent of soil contamination in Block F. The 2010 data gap investigation was conducted to evaluate these areas (Tetra Tech, 2011). The soil sampling program is summarized in Table 2-6. Six soil borings (F-SB-797 through F-SB-802) were advanced to a maximum depth of five feet in the Block F areas requiring additional delineation; three soil samples were collected at two-foot intervals (1, 3, and 5 feet bgs) from each boring. Nine samples plus one duplicate were collected from soil borings F-SB-797 through F-SB-799 and analyzed for total PAHs. Two samples (1 and 5 feet bgs) from location F-SB-797 were also analyzed for alkyl PAHs. Three samples (1, 3, and 5 feet bgs) from borings F-SB-800 to F-SB-802 were analyzed for mercury. The 2010 data gap

soil sample results exceeding the risk-based PRGs for future industrial land use subsequently developed for this RAP are shown in Figure 2-4 and Appendix B.

The 2010 soil investigation verified benzo(a)pyrene and mercury in soil at the six boring locations. Benzo(a)pyrene exceeded the previously used MDE residential screening level in two of 10 samples analyzed. Mercury did not exceed the corresponding residential screening level in any samples analyzed.

#### 2.3.11 Human Health Risk Assessment

The Human Health Risk Assessment for Blocks D, E, F, G, and H Soils, Lockheed Martin Middle River Complex, Middle River, Maryland (Tetra Tech, 2012b) was revised and finalized in 2012 to update the risk evaluations to current standards and in accord with planned property use. The collective MRC environmental characterization data set was used for the 2012 risk assessment; as detailed above, a significant volume of environmental data was collected from 2004 to 2010 to further characterize the nature and extent of impacts to soil in Block F. The HHRA identified COC in Block F soils that require remediation assuming a typical industrial worker is the receptor of concern. The HHRA consisted of the following six components:

- data evaluation
- exposure assessment
- toxicity assessment

- risk characterization
- uncertainty analysis
- development of preliminary remedial goal options

The HHRA used validated soil data from the previous investigations at Block F to assess risks to potential human receptors. Site contaminant concentrations were compared to conservative toxicity-screening values to compose a list of COPC. After the list of COPC was developed, an exposure assessment evaluated the type and magnitude of human exposure to the chemicals at Block F (as described in Section 4). Following the exposure assessment, quantitative estimates of the relationship between the magnitude and type of exposures, and the severity or probability of human health effects, were defined for the identified COPC in a toxicity assessment. The quantitative toxicity values determined during the toxicity assessment were integrated with exposure assessment outputs to characterize the potential occurrence of adverse health effects for each receptor group.

Potential risks to human receptors were estimated on the assumption that no actions would be taken to control contaminant releases. Primary guidance sources used to prepare the HHRA include the MDE Cleanup Standards for Soil and Groundwater, Interim Final Guidance (MDE, 2008) and Voluntary Cleanup Program Guidance (MDE, 2006). Current guidance and reports published by USEPA and USEPA Region 3 were also considered in preparing the risk assessment. Historical land uses suggest that construction workers and industrial workers are the primary receptors that could potentially be exposed to contaminated soils at the MRC.

Cancer and non-cancer risk estimates were calculated for these receptors using reasonable maximum-exposure assumptions, assuming that human exposure may occur via incidental ingestion, dermal contact, and inhalation exposure-routes. Cancer-risk estimates were presented in terms of incremental lifetime-cancer-risks (ILCR); non-cancer-risk estimates were presented in terms of hazard indices. Potential cancer effects were interpreted using the MDE cancer risk benchmark ( $1 \times 10^{-5}$ , or a one-in-100,000 probability of developing cancer) for cumulative risk, and the USEPA target cancer risk range ( $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ ). Non-cancer risks were evaluated using a total hazard index (HI) value of 1 (adverse non-cancer health effects are not anticipated when the estimated HI is equal to or less than 1). BaPEq is the only final COC identified for future industrial use in the HHRA for Block F surface soils. No COC were identified based on non-cancer health effects.

As previously described, the Block F area (and entire MRC) has been intensely developed in the past for industrial purposes. Thus, much of the current land surface is paved or denuded of vegetation other than maintained grass areas (i.e., the available habitat for current flora/fauna populations is limited, thus, the potential for ecological receptor exposure/risk is also limited). In addition, the planned future use of the Block F area will continue to be industrial. Consequently, it is anticipated that the amount and quality of the habitat in the Block F area will continue to be limited. For these reasons an Ecological Risk Assessment was not developed for the site. Remedial action and risk management decisions are based on the results of the HHRA.

#### 2.4 CONCEPTUAL SITE MODEL

RECs #4, #5, and #6 are not considered sources of contamination based on sampling and risk assessment results (although seven abandoned underground storage tanks will be removed from REC #5). Therefore, the action proposed in this RAP addresses soils at REC #13 (former boat

dock area). REC #13 is an open, relatively flat parcel of land covered by a well-maintained lawn with shrubs and trees growing thickly along the Cow Pen Creek shoreline. Severely degraded remnants of several walkways, parking areas, and a few foundations are still evident. The following sections describe the sources of contamination at Block F, as well as land use scenarios and exposure pathways.

#### 2.4.1 Contaminant Sources and Soil Chemicals of Concern

Most PAHs found in soils at Block F are likely related to fill material historically placed in the former boat dock area (REC #13) and used for general fill and grading activities associated with development of the MRC in the 1930's and 1940's. The source(s) of historic fill at Block F are unknown. Soil sampling results suggest that PAHs are randomly distributed in the Block F soil matrix. PAHs, expressed as BaPEq, are the primary risk drivers for industrial workers and have been identified at concentrations exceeding risk-based criteria in REC #13 surface and subsurface soils. Naphthalene at one soil sample location was calculated to be a slight contributor to cancer risk only for the exposure pathway that assumes inhalation of soil particles by the construction worker for subsurface soils. The subsurface soil sample posing risk for naphthalene (F-SB-238) corresponds to a depth of five feet bgs; this depth is below the exposure depth used for the future industrial use scenario and applied for the proposed remedial action. Therefore, naphthalene is not discussed further in this RAP.

### 2.4.2 Land Use Scenario and Exposure Pathways

Currently, the land use scenario at Block F is considered as Tier 3 Industrial under the land use definition provided in the MDE Voluntary Cleanup Program (VCP) guidelines. Under the industrial land use scenario, current and future industrial workers and construction workers are considered potential receptors. The 2012 HHRA also evaluated different potential future land use scenarios for Block F, including future recreational use and hypothetical future residential use, to determine if an institutional control such as a deed restriction might be required for the property. The deed restriction would not prohibit future recreational and residential development, but would indicate the need for additional remedial action for alternate development (other than industrial) to proceed. Possible exposure pathways associated with soil include dermal, inhalation, and incidental ingestion exposure for all potential receptors.

Surface soils are accessible and may become exposed in the grass-covered areas of Block F and in areas not covered by tarmac. If exposed or disturbed, contaminants in surface soil could migrate to air through wind erosion; however, this is unlikely since most of Block F is covered either by asphalt or by well-maintained grass. Subsurface soil is not currently exposed, but if future construction were to bring subsurface soil to the surface, contaminants in these soils could be transported into the air through wind erosion or through volatile emissions.

Surface water runoff generated in the grass-covered areas will generally infiltrate into the underlying soil or discharge to Dark Head Cove or Cow Pen Creek as overland sheet flow. Therefore, overland runoff and erosion can only be potential migration pathways if contaminated soil is exposed during future construction and runoff is not contained and controlled as in its current state. PAHs generally adhere to soils; therefore, migration of these contaminants from soils to groundwater is not considered a complete migration pathway. This is supported by results of years of groundwater monitoring. BaPEq and other chemical constituents in soil do not pose a threat of soil vapor intrusion. This is supported by results of subslab vapor monitoring in Block I.

Section 4 of this RAP provides details of the exposure pathways and receptors for Block F soils.

Table 2-1

# Historical Soil Investigations Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

| Investigation                            | Year          | General scope                                                                                                                | Reference         |
|------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Phase I environmental site investigation | 2003          | 13 recognized environmental conditions (RECs) identified at the Middle River Complex                                         | Earth Tech, 2003  |
| Phase II investigation                   | 2003          | Groundwater and soil sampled at 13 RECs and geophysics performed at seven RECs                                               | Tetra Tech, 2004a |
| Historical survey                        | 2004          | 18 additional RECs identified                                                                                                | Tetra Tech, 2004b |
| Site-wide Phase II investigation         | 2004          | Groundwater and soil sampled at 31 RECs, geophysical survey performed at five locations, radiological survey at one location | Tetra Tech, 2005  |
| Phase II Soil Investigation              | 2005 and 2006 | Installed and sampled wells at various depths and perfromed hydraulic testing                                                | Tetra Tech, 2006  |
| Geophysical Survey/Soil Investigation    | 2005          | Geophysical survey and soil sampled at five locations                                                                        | Tetra Tech, 2006  |
| Soil Charcterization                     | 2007          | Soil sampled at 30 locations                                                                                                 | Tetra Tech, 2011  |
| Final Delineation Investigation          | 2009          | Inner and outer tier soils sampled at 77 locations                                                                           | Tetra Tech, 2011  |
| Data Gap Investigation                   | 2010          | Soil sampled at six locations                                                                                                | Tetra Tech, 2011  |

REC- recognized environmental condition

Table 2-2

## Block F Applicable Soil Screening Critiera Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

| Block F Applicable Soil Screening Criteria (mg/kg)                                     |                                                                  |                                                                      |                                                                  |                                                                      |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Constituents Identified in<br>Soils at Concentrations<br>Exceeding Screening<br>Levels | Current<br>Maryland<br>Residential<br>Cleanup Level <sup>1</sup> | Current<br>Maryland<br>Industrial<br>Screening<br>Level <sup>1</sup> | Maryland<br>Anticipated<br>Typical<br>Concentration <sup>2</sup> | Industrial, Risk-<br>Based Preliminary<br>Remedial Goal <sup>3</sup> |  |  |
| BaPEq                                                                                  | 0.022                                                            | 0.39                                                                 | NA                                                               | 2.89 <sup>4</sup>                                                    |  |  |
| Naphthalene                                                                            | 160                                                              | 200                                                                  | NA                                                               | NA                                                                   |  |  |
| Arsenic                                                                                | 0.43                                                             | 1.9                                                                  | 3.6                                                              | NA                                                                   |  |  |
| Hexavalent chromium                                                                    | 23                                                               | 310                                                                  | 28                                                               | NA                                                                   |  |  |
| Mercury                                                                                | 2.3                                                              | 31                                                                   | -                                                                | NA                                                                   |  |  |
| TPH-DRO                                                                                | 230                                                              | 620                                                                  | NA                                                               | NA                                                                   |  |  |

BaPEq - Benzo(a)pyrene equivalent. [Maryland Cleanup Levels not available for BaPEq, so criteria for benzo(a)pyrene are shown.] TPH-DRO - Total petroleum hydrocarbons diesel-range organics.

mg/kg - milligrams per kilogram, or parts per million concentration in soil.

NA - criteria not available or not applicable for corresponding contaminant.

- 1. Cleanup Levels for soils from "State of Maryland Department of the Environment Cleanup Stanbdards for Soil and Groundwater", June 2008.
- 2. Anticipated Typical Concentration (ATC) for select metals in the Eastern region of Maryland as published in (1) above.
- 3. Site-specific, risk-based cleanup goal determined as part of the Human Health Risk Assessment for Block F (discussed further in Section 4.0).
- 4. BaPEq was the only Block F soil constituent posing risk under the future industrial land use scenario based on the results of the Human Health Risk Assessment. Therefore, for Block F soils, a risk-based (industrial) preliminary cleanup goal was developed for BaPEq only.

<sup>&</sup>quot; - " not available for mercury for the indicated region.

### Table 2-3

# Summary of 2003 to 2005 Soil Samples Block F Remedial Action Plan LMC Middle River Complex, Middle River, Maryland Page 1 of 3

| Location           | Sample             | Depth        | (feet)     |                                                            |
|--------------------|--------------------|--------------|------------|------------------------------------------------------------|
| Identifier         | Identifier         | Тор          | Bottom     | Soil Analyses                                              |
| Phase II Site Inve | stigation Sampl    | es (Fall/Wir | nter 2003) |                                                            |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-022             | SB-22-05           | 5            | 5          | and -DRO                                                   |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-022             | SB-22-10           | 10           | 10         | and -DRO                                                   |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-023             | SB-23-05           | 5            | 5          | and -DRO                                                   |
| GD 022             | GD 22 10           | 10           | 10         | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-023             | SB-23-10           | 10           | 10         | and -DRO                                                   |
| CD 024             | CD 24.05           | _            | _          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-024             | SB-24-05           | 5            | 5          | and -DRO VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |
| SD 024             | SD 24 10           | 10           | 10         | and -DRO                                                   |
| SB-024             | SB-24-10           | 10           | 10         | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-025             | SB-25-05           | 5            | 5          | and -DRO                                                   |
| 3D-023             | 3D-23-03           |              | <i>J</i>   | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-025             | SB-25-10           | 10           | 10         | and -DRO                                                   |
| SB-026             | SB-26-10           | 10           | 10         | VOCs and TPH-GRO                                           |
| SB-027             | SB-27-10           | 10           | 10         | VOCs and TPH-GRO                                           |
| SB-028             | SB-28-10           | 10           | 10         | VOCs and TPH-GRO                                           |
| SB-029             | SB-29-10           | 10           | 10         | VOCs and TPH-GRO                                           |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-030             | SB-30-05           | 5            | 5          | and -DRO                                                   |
| Site-Wide Phase    | e II Investigation | on Samples   | s (2004)   |                                                            |
|                    |                    |              |            |                                                            |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-022             | SB-22A-SS          | 0            | 1          | and -DRO                                                   |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-023             | SB-23A-SS          | 0            | 1          | and -DRO                                                   |
| ar                 | an 244 aa          | 0            |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-024             | SB-24A-SS          | 0            | 1          | and -DRO                                                   |
| CD 025             | CD 25 A CC         | 0            | 1          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-025             | SB-25A-SS          | 0            | 1          | and -DRO VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |
| SB-030             | SB-30A-SS          | 0            | 1          | and -DRO                                                   |
| 3D-030             | 3D-30A-33          | U            | 1          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-050             | SB-50-SS           | 0            | 1          | and -DRO                                                   |
| 3D-030             | 3D-30-33           | 0            | 1          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-050             | SB-50-05           | 5            | 5          | and -DRO                                                   |
| 32 030             | 22 20 03           |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-050             | SB-50-10           | 10           | 10         | and -DRO                                                   |
|                    |                    | -            |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-055             | SB-55-SS           | 0            | 1          | and -DRO                                                   |
|                    |                    |              |            | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO          |
| SB-055             | SB-55-05           | 5            | 5          | and -DRO                                                   |

### Table 2-3

# Summary of 2003 to 2005 Soil Samples Block F Remedial Action Plan LMC Middle River Complex, Middle River, Maryland Page 2 of 3

| Location           | Sample     | Donal | n (feet) |                                                   |  |
|--------------------|------------|-------|----------|---------------------------------------------------|--|
| Identifier         | Identifier | Тор   | Bottom   | Soil Analyses                                     |  |
| luentinei          | identifier | тор   | Bottom   | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-055             | SB-55-10   | 10    | 10       | and -DRO                                          |  |
| SD-033             | SD-33-10   | 10    | 10       | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-056             | SB-56-SS   | 0     | 1        | and -DRO                                          |  |
| 3D-030             | SD-30-SS   | U     | 1        | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-056             | SB-56-05   | 5     | 5        | and -DRO                                          |  |
| 3D-030             | 3D-30-03   | J     | 3        | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-056             | SB-56-10   | 10    | 10       | and -DRO                                          |  |
| 3D-030             | 3D-30-10   | 10    | 10       | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-056             | SB-56-15   | 15    | 15       | and -DRO                                          |  |
| 3D-030             | 3D-30-13   | 13    | 13       | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-093             | SB-93-SS   | 0     | 1        | and -DRO                                          |  |
| SB 073             | 5D 73 55   | 0     | 1        | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-093             | SB-93-05   | 5     | 5        | and -DRO                                          |  |
| SB 073             | SD 73 03   |       | 3        | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-093             | SB-93-10   | 10    | 10       | and -DRO                                          |  |
| SB 073             | SB 73 10   | 10    | 10       | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-093             | SB-93-15   | 15    | 15       | and -DRO                                          |  |
| SB 073             | SB 73 13   | 13    | 13       | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-094             | SB-94-SS   | 0     | 1        | and -DRO                                          |  |
| SB 071             | 55 71 55   |       | 1        | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-094             | SB-94-05   | 5     | 5        | and -DRO                                          |  |
| 55 07.             | 52 7 . 60  |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-094             | SB-94-10   | 10    | 10       | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-094             | SB-94-15   | 15    | 15       | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-095             | SB-95-SS   | 0     | 1        | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-095             | SB-95-05   | 5     | 5        | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-095             | SB-95-10   | 10    | 10       | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-096             | SB-96-SS   | 0     | 1        | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-096             | SB-96-05   | 5     | 5        | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-096             | SB-96-10   | 10    | 10       | and -DRO                                          |  |
|                    |            |       |          | VOCs, SVOCs, pesticides/PCBs, metals, and TPH-GRO |  |
| SB-096             | SB-96-15   | 15    | 15       | and -DRO                                          |  |
| Phase II Soil Inve |            |       | 2005)    |                                                   |  |
| SB-236             | SB-236-SS  | 0     | 1        | Metals                                            |  |
| SB-236             | SB-236-01  | 1     | 2        | Metals                                            |  |
| SB-236             | SB-236-05  | 5     | 5        | Metals                                            |  |
| SB-237             | SB-237-SS  | 0     | 1        | Metals                                            |  |

#### Table 2-3

## Summary of 2003 to 2005 Soil Samples Block F Remedial Action Plan LMC Middle River Complex, Middle River, Maryland Page 3 of 3

| Location            | Sample      | Depth | (feet) |                                             |  |  |
|---------------------|-------------|-------|--------|---------------------------------------------|--|--|
| Identifier          | Identifier  | Тор   | Bottom | Soil Analyses                               |  |  |
| SB-237              | SB-237-01   | 1     | 2      | Metals                                      |  |  |
| SB-237              | SB-237-05   | 5     | 5      | Metals                                      |  |  |
| SB-238              | SB-238-SS   | 0     | 1      | Metals, TPH-DRO                             |  |  |
| SB-238              | SB-238-01   | 1     | 2      | Metals, TPH-DRO                             |  |  |
| SB-238              | SB-238-05   | 5     | 5      | Metals, TPH-DRO                             |  |  |
| SB-250              | SB-250-SS   | 0     | 1      | Metals                                      |  |  |
| SB-250              | SB-250-02   | 1     | 2      | Metals                                      |  |  |
| SB-251              | SB-251-SS   | 0     | 1      | Metals                                      |  |  |
| SB-251              | SB-251-02   | 1     | 2      | Metals                                      |  |  |
| SB-252              | SB-252-SS   | 0     | 1      | Metals                                      |  |  |
| SB-252              | SB-252-02   | 1     | 2      | Metals                                      |  |  |
| SB-253              | SB-253-SS   | 0     | 1      | Metals                                      |  |  |
| SB-253              | SB-253-02   | 1     | 2      | Metals                                      |  |  |
| SB-265              | SB-265-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-265              | SB-265-02   | 1     | 2      | SVOCs                                       |  |  |
| SB-266              | SB-266-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-266              | SB-266-02   | 1     | 2      | SVOCs                                       |  |  |
| SB-267              | SB-267-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-267              | SB-267-02   | 1     | 2      | SVOCs                                       |  |  |
| SB-268              | SB-268-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-268              | SB-268-02   | 1     | 2      | SVOCs                                       |  |  |
| SB-269              | SB-269-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-269              | SB-269-02   | 1     | 2      | SVOCs                                       |  |  |
| SB-270              | SB-270-SS   | 0     | 1      | SVOCs, PCBs, and metals                     |  |  |
| SB-270              | SB-270-02   | 1     | 2      | SVOCs                                       |  |  |
| Soils Investigation |             |       |        |                                             |  |  |
| SB-295              | SB-295-0405 | 4     | 5      | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-295              | SB-295-0910 | 9     | 10     | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-296              | SB-296-0405 | 4     | 5      | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-296              | SB-296-0910 | 9     | 10     | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-297              | SB-297-0405 | 4     | 5      | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-297              | SB-297-0910 | 9     | 10     | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-298              | SB-298-0405 | 4     | 5      | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-298              | SB-298-0910 | 9     | 10     | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-299              | SB-299-0405 | 4     | 5      | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |
| SB-299              | SB-299-0910 | 9     | 10     | VOCs, SVOCs, PCBs, metals, TPH-GRO and -DRO |  |  |

DRO - diesel-range organics

GRO - gasoline-renage organics

PCBs - polychlorinated biphenyls

SVOCs - semivolatile organic compounds

TPH - total petroleum hydrocarbons

VOCs - volatile organic compounds

Table 2-4

## 2007 Soil Characterization Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

| Sample<br>Identification | Location               | Depth Intervals (feet)                             | Number of Samples Collected |
|--------------------------|------------------------|----------------------------------------------------|-----------------------------|
| SB-382                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-383                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-384                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-385                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-386                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-387                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-388                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-389                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-390                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-391                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-392                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-393                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-394                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-395                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-396                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-397                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-398                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-399                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-400                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-401                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-402                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-403                   | REC #13 Grid           | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-404                   | Northeast of SB-238    | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-405                   | South of SB-238        | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-406                   | Co-located with SB-238 | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-407                   | North of SB-238        | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-408                   | North of SB-238        | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-409                   | North of SB-238        | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-489                   | Northwest of SB-238    | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |
| SB-490                   | Northwest of SB-238    | 1 to 2 feet; 2 to 3 feet; 4 to 5 feet; 7 to 8 feet | 4                           |

All samples were analyzed for benzo(a)pyrene by United States Environmental Protection Agency (USEPA) Method SW-846 8270 and for polychlorinated biphenyls by USEPA Method SW-846 8082.

Table 2-5

# 2009 Soil Delineation Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 1 of 4

| Sample<br>Identification | Locations               | Depth Intervals (feet)         | Analysis    | Analytical Method         | Number of<br>Samples<br>Collected |
|--------------------------|-------------------------|--------------------------------|-------------|---------------------------|-----------------------------------|
| SB-24A Resampl           | ing                     |                                |             |                           |                                   |
| SB-624                   | 15 feet north of SB-24A | 1 to 5 at one-foot intervals   | Mercury     | SW-846 7470A              | 3                                 |
| SB-625                   | 15 feet east of SB-24A  | 1 to 5 at one-foot intervals   | Mercury     | SW-846 7470A              | 4                                 |
| SB-626                   | 15 feet south of SB-24A | 1 to 5 at one-foot intervals   | Mercury     | SW-846 7470A              | 5                                 |
| SB-626B                  | Outer Tier east         | 1 to 4 at two-foot intervals   | Mercury     | SW-846 7470A              | 1                                 |
| SB-626C                  | Outer Tier south        | 1 to 4 at two-foot intervals   | Mercury     | SW-846 7470A              | 2                                 |
| SB-626D                  | Outer Tier west         | 1 to 4 at two-foot intervals   | Mercury     | SW-846 7470A              | 2                                 |
| SB-627                   | 15 feet west of SB-24A  | 1 to 5 at one-foot intervals   | Mercury     | SW-846 7470A              | 5                                 |
| SB-24ARE                 | Resample                | 1 to 5 at one-foot intervals   | Mercury     | SW-846 7470A              | 5                                 |
| SB-55 Resamplin          | ıg                      |                                |             |                           |                                   |
| SB-628                   | 15 feet north of SB-55  | 10 to 14 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-629                   | 15 feet east of SB-55   | 10 to 14 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-630                   | 15 feet south of SB-55  | 10 to 14 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-631                   | 15 feet west of SB-55   | 10 to 14 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-55RE                  | Resample                | 10 to 14 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-56 Resamplin          | ıg                      |                                |             |                           |                                   |
| SB-56RE                  | Resample                | 1 to 15 at one-foot intervals  | cPAHs       | SW-846 8270D              | 15                                |
| SB-93 Resamplin          | ıg                      |                                |             |                           |                                   |
| SB-93RE                  | Resample                | 1 to 15 at one-foot intervals  | cPAHs, PCBs | SW-846 8270D, SW-846 8081 | 15                                |
| SB-94 Resamplin          | ıg                      |                                |             |                           |                                   |
| SB-94RE                  | Resample                | 1 to 15 at one-foot intervals  | cPAHs, PCBs | SW-846 8270D, SW-846 8081 | 15                                |
| SB-95 Resamplin          | ng                      |                                |             |                           |                                   |
| SB-95RE                  | Resample                | 1 to 15 at one-foot intervals  | cPAHs       | SW-846 8270D              | 15                                |
| SB-96 Resamplin          | ng                      |                                |             |                           |                                   |
| SB-96RE                  | Resample                | 1 to 15 at one-foot intervals  | cPAHs       | SW-846 8270D              | 15                                |

Table 2-5

# 2009 Soil Delineation Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 2 of 4

| Sample<br>Identification | Locations | Depth Intervals (feet)        | Analysis    | Analytical Method         | Number of<br>Samples<br>Collected |
|--------------------------|-----------|-------------------------------|-------------|---------------------------|-----------------------------------|
| SB-265 Resampling        | g         |                               |             |                           |                                   |
| SB-265RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-266 Resampling        | g         |                               |             |                           |                                   |
| SB-266RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs, PCBs | SW-846 8270D, SW-846 8081 | 5                                 |
| SB-267 Resampling        | g         |                               |             |                           |                                   |
| SB-267RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-268 Resampling        | 9         |                               |             |                           |                                   |
| SB-268RE                 | Resample  | 3 to 15 at one-foot intervals | cPAHs       | SW-846 8270D              | 13                                |
| SB-269 Resampling        | g         |                               |             |                           |                                   |
| SB-269RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-270 Resampling        | g         |                               |             |                           |                                   |
| SB-270RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-383 Resampling        | g         |                               |             |                           |                                   |
| SB-383RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-388 Resampling        | g         |                               |             |                           |                                   |
| SB-388RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-389 Resampling        | g         |                               |             |                           |                                   |
| SB-389RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-390 Resampling        | g         |                               |             |                           |                                   |
| SB-390RE                 | Resample  | 6 to 10 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |
| SB-393 Resampling        | g         |                               |             |                           |                                   |
| SB-393RE                 | Resample  | 3 to 7 at one-foot intervals  | cPAHs       | SW-846 8270D              | 5                                 |
| SB-397 Resampling        | g         |                               |             |                           |                                   |
| SB-397RE                 | Resample  | 6 to 10 at one-foot intervals | cPAHs       | SW-846 8270D              | 5                                 |

Table 2-5

# 2009 Soil Delineation Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 3 of 4

| Sample<br>Identification | Locations               | Depth Intervals (feet)        | Analysis                   | Analytical Method         | Number of<br>Samples<br>Collected |
|--------------------------|-------------------------|-------------------------------|----------------------------|---------------------------|-----------------------------------|
| SB-405 Resampli          | ng                      |                               |                            |                           |                                   |
| SB-632                   | 15 feet north of SB-405 | 9 to 13 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| SB-633                   | 15 feet east of SB-405  | 9 to 13 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| SB-634                   | 15 feet south of SB-405 | 9 to 13 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| SB-635                   | 15 feet west of SB-405  | 9 to 13 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| SB-635C                  | Outer Tier south        | 1 to 11 at one-foot intervals | cPAHs                      | SW-846 8270D              | 6                                 |
| SB-635D                  | Outer Tier west         | 1 to 11 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| SB-405RE                 | Resample                | 9 to 13 at one-foot intervals | cPAHs                      | SW-846 8270D              | 5                                 |
| Outer Tier Samp          | ling                    |                               |                            |                           |                                   |
| SB-636                   | Outer Tier              | 1 to 9 at two-foot intervals  | cPAHs, PCBs <sup>(4)</sup> | SW-846 8270D, SW-846 8081 | 6                                 |
| SB-636A                  | Outer Tier              | 1 to 7 at two-foot intervals  | сРАН                       | SW-846 8270D              | 4                                 |
| SB-636B                  | Outer Tier              | 1 to 7 at two-foot intervals  | сРАН                       | SW-846 8270D              | 4                                 |
| SB-636C                  | Outer Tier              | 1 to 7 at two-foot intervals  | сРАН                       | SW-846 8270D              | 4                                 |
| SB-636D                  | Outer Tier              | 1 to 7 at two-foot intervals  | сРАН                       | SW-846 8270D              | 4                                 |
| SB-637                   | Outer Tier              | 1 to 5 at two-foot intervals  | cPAHs, PCBs                | SW-846 8270D, SW-846 8081 | 3                                 |
| SB-637B                  | Outer Tier              | 1 to 5 at two-foot intervals  | сРАН                       | SW-846 8270D              | 3                                 |
| SB-637C                  | Outer Tier              | 1 to 5 at two-foot intervals  | сРАН                       | SW-846 8270D              | 3                                 |
| SB-638                   | Outer Tier              | 1 to 5 at two-foot intervals  | cPAHs, PCBs                | SW-846 8270D, SW-846 8081 | 3                                 |
| SB-639                   | Outer Tier              | 1 to 5 at two-foot intervals  | cPAHs, PCBs                | SW-846 8270D, SW-846 8081 | 3                                 |
| SB-640                   | Outer Tier              | 1 to 5 at two-foot intervals  | cPAHs, PCBs                | SW-846 8270D, SW-846 8081 | 3                                 |
| SB-641                   | Outer Tier              | 1 to 3 at two-foot intervals  | cPAHs                      | SW-846 8270D              | 3                                 |
| SB-641A                  | Outer Tier              | 1 to 3 at two-foot intervals  | сРАН                       | SW-846 8270D              | 2                                 |
| SB-641B                  | Outer Tier              | 1 to 3 at two-foot intervals  | сРАН                       | SW-846 8270D              | 2                                 |
| SB-641C                  | Outer Tier              | 1 to 3 at two-foot intervals  | сРАН                       | SW-846 8270D              | 2                                 |
| SB-642                   | Outer Tier              | 1 to 15 at two-foot intervals | cPAHs                      | SW-846 8270D              | 0+                                |

Table 2-5

# 2009 Soil Delineation Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 4 of 4

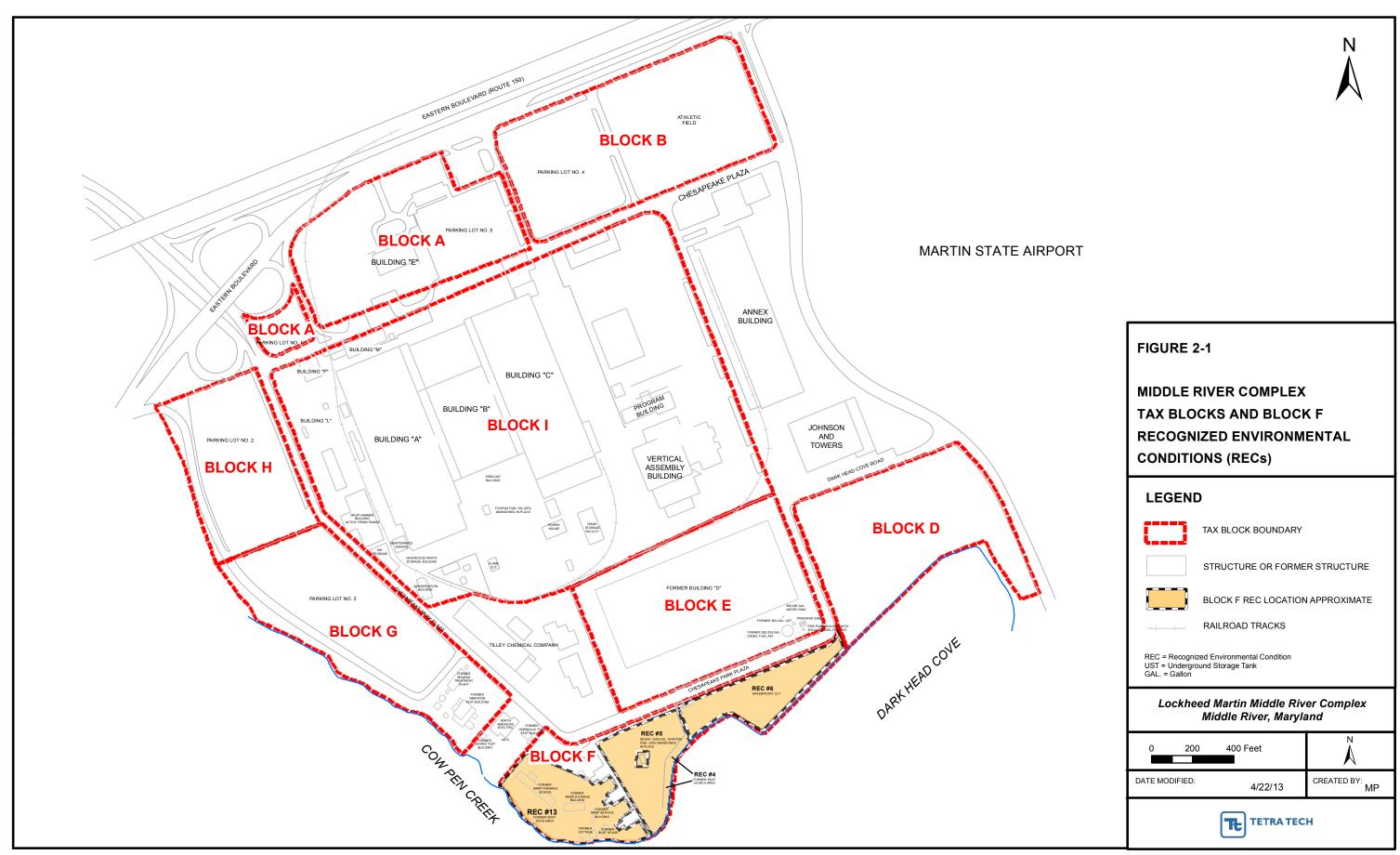
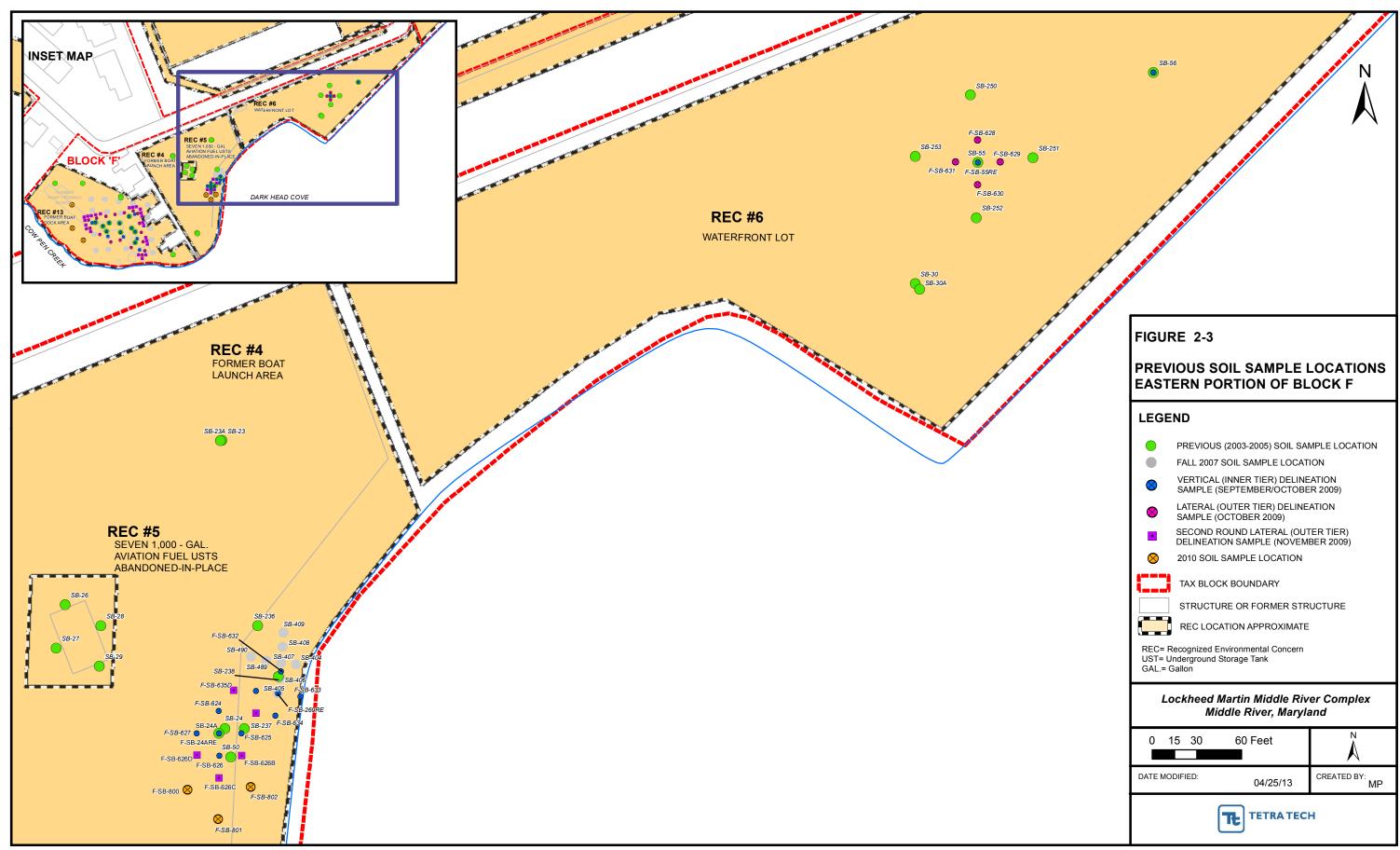
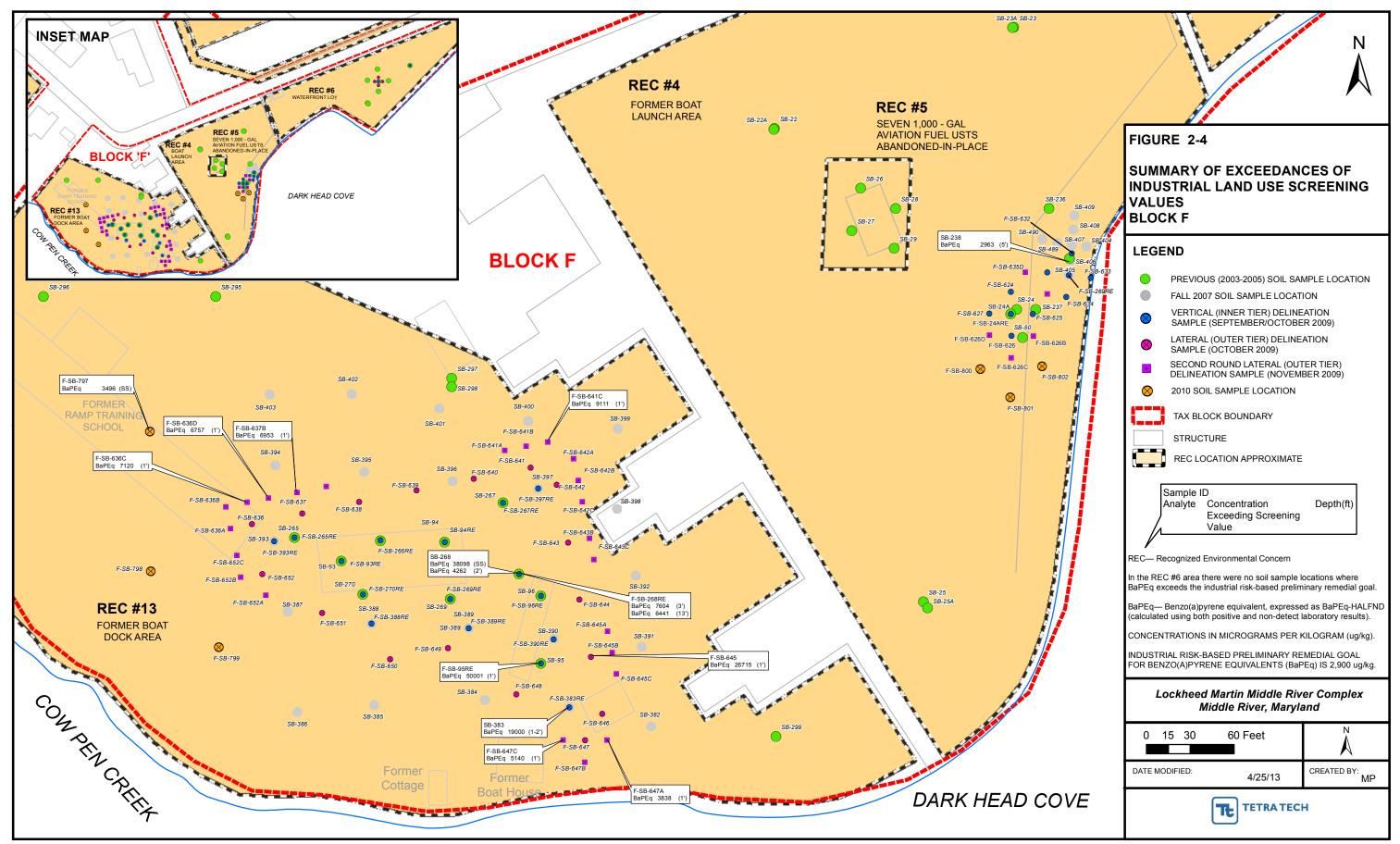

| Sample<br>Identification | Locations       | Depth Intervals (feet)        | Analysis    | Analytical Method         | Number of<br>Samples<br>Collected |
|--------------------------|-----------------|-------------------------------|-------------|---------------------------|-----------------------------------|
| Outer Tier Sampl         | ing (continued) | •                             |             |                           |                                   |
| SB-642A                  | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-642B                  | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-642C                  | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-643                   | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-643B                  | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-643C                  | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-644                   | Outer Tier      | 1 to 15 at two-foot intervals | cPAHs       | SW-846 8270D              | 8                                 |
| SB-645                   | Outer Tier      | 1 to 7 at two-foot intervals  | cPAHs       | SW-846 8270D              | 4                                 |
| SB-645A                  | Outer Tier      | 1 to 3 at two-foot intervals  | сРАН        | SW-846 8270D              | 2                                 |
| SB-645B                  | Outer Tier      | 1 to 3 at two-foot intervals  | сРАН        | SW-846 8270D              | 2                                 |
| SB-645C                  | Outer Tier      | 1 to 3 at two-foot intervals  | сРАН        | SW-846 8270D              | 2                                 |
| SB-646                   | Outer Tier      | 1 to 7 at two-foot intervals  | cPAHs       | SW-846 8270D              | 4                                 |
| SB-647                   | Outer Tier      | 1 to 7 at two-foot intervals  | cPAHs       | SW-846 8270D              | 4                                 |
| SB-647A                  | Outer Tier      | 1 to 3 at two-foot intervals  | сРАН        | SW-846 8270D              | 2                                 |
| SB-647B                  | Outer Tier      | 1 to 3 at two-foot intervals  | сРАН        | SW-846 8270D              | 2                                 |
| SB-647C                  | Outer Tier      | 1 to 3 at two-foot intervals  | cPAH        | SW-846 8270D              | 2                                 |
| SB-648                   | Outer Tier      | 1 to 7 at two-foot intervals  | cPAHs       | SW-846 8270D              | 4                                 |
| SB-649                   | Outer Tier      | 1 to 5 at two-foot intervals  | cPAHs       | SW-846 8270D              | 3                                 |
| SB-650                   | Outer Tier      | 1 to 5 at two-foot intervals  | cPAHs       | SW-846 8270D              | 3                                 |
| SB-651                   | Outer Tier      | 1 to 5 at two-foot intervals  | cPAHs, PCBs | SW-846 8270D, SW-846 8081 | 3                                 |
| SB-652                   | Outer Tier      | 1 to 9 at two-foot intervals  | cPAHs, PCBs | SW-846 8270D, SW-846 8081 | 6                                 |
| SB-652A                  | Outer Tier      | 1 to 7 at two-foot intervals  | сРАН        | SW-846 8270D              | 4                                 |
| SB-652B                  | Outer Tier      | 1 to 7 at two-foot intervals  | сРАН        | SW-846 8270D              | 4                                 |
| SB-652C                  | Outer Tier      | 1 to 7 at two-foot intervals  | сРАН        | SW-846 8270D              | 4                                 |


Table 2-6


## 2010 Data Gap Investigation Samples Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland


| Sample<br>Identification | Depth Intervals (feet)       | Analysis                   | Analytical<br>Method | Number of Samples Collected |  |
|--------------------------|------------------------------|----------------------------|----------------------|-----------------------------|--|
| F-SB-797                 | 1 to 5 at two-foot intervals | Total PAHs                 | SW-846 8270C         | 3                           |  |
| 1-3D-797                 | (1, 3, 5 feet)               | Alkyl PAHs (1- and 5-feet) | 3W-840 8270C         | 3                           |  |
| F-SB-798                 | 1 to 5 at two-foot intervals | Total PAHs                 | SW-846 8270C         | 3                           |  |
| Г-3D-790                 | (1, 3, 5 feet)               | Total PARS                 | SW-840 8270C         | 3                           |  |
| F-SB-799                 | 1 to 5 at two-foot intervals | Total PAHs                 | SW-846 8270C         | 3                           |  |
| Г-3D-799                 | (1, 3, 5 feet)               |                            | 3W-840 8270C         | 3                           |  |
| F-SB-800                 | 1 to 5 at two-foot intervals | Mercury                    | SW-846 7471A         | 3                           |  |
| 1-30-600                 | (1, 3, 5 feet)               | Mercury                    | 3W-840 /4/1A         | 3                           |  |
| F-SB-801                 | 1 to 5 at two-foot intervals | Mercury                    | SW-846 7471A         | 3                           |  |
| L-2D-001                 | (1, 3, 5 feet)               | Mercury                    | SW-840 /4/1A         | 3                           |  |
| F-SB-802                 | 1 to 5 at two-foot intervals | Maroury                    | SW-846 7471A         | 3                           |  |
| F-3D-802                 | (1, 3, 5 feet)               | Mercury                    | SW-040 /4/1A         | 3                           |  |

PAHs - polycyclic aromatic hydrocarbons









### **Section 3**

### **Exposure Assessment**

An exposure assessment for the Middle River Complex (MRC) was conducted to evaluate potentially exposed human populations to chemicals of concern (COC) based on current and future land use. The exposure assessment provides the basis for developing the remedial action objectives (RAOs) that must be met to achieve industrial closure for soils in Block F.

### 3.1 CURRENT AND FUTURE LAND USE

Possible exposure pathways to COC in areas of the site with exceedances are identified to determine soil preliminary remedial goals (PRGs) and appropriate remedial measures and land use controls. Possible complete exposure pathways include direct exposure (dermal contact, inhalation of particles, and incidental ingestion) to site soils for current and future industrial workers. The goal of the selected remedial action is to most effectively reduce unacceptable risk to the industrial worker exposure – the most likely scenario. Institutional controls are required to manage and, as necessary, mitigate the risk associated with future reuse plans, including residential, recreational, or commercial development. The following sections detail the potential exposure pathways of COC in Block F soils.

### 3.2 POTENTIAL CONTAMINANT-RELEASE MECHANISMS AND TRANSPORT PATHWAYS

COC in surface soil could migrate to air through wind erosion. Subsurface soil is not currently exposed; however, if future construction were to bring subsurface soil to the surface, contaminants could be transported into the air. Contaminants could migrate from both surface and subsurface soil to groundwater through leaching of chemicals in soil; however, leaching to groundwater is considered an incomplete exposure pathway for this site, given that the primary COC, are polycyclic aromatic hydrocarbons (PAHs). Surface water runoff from the concrete tarmac of recognized environmental condition (REC) #4 will most likely discharge directly to Dark Head Cove as overland sheet flow. Surface water runoff from the grassy areas of Block F

will generally infiltrate into the underlying soil or discharge to Dark Head Cove or Cow Pen Creek as overland sheet flow.

## 3.3 FATE AND TRANSPORT OF PRIMARY SITE CHEMICALS OF POTENTIAL CONCERN (COPC) IN SOIL

PAHs are fairly immobile chemicals composed of large molecules, with low solubilities, low vapor pressures, low Henry's Law constants, and high partitioning coefficients. PAHs in soil are much more likely to bind to soil and be transported via mass-transport mechanisms (e.g., gravity flow of PAH-containing product, etc.) rather than through dissolution; PAHs found in surface soil generally do not migrate vertically to a great extent. Instead, they are more likely to adhere to soil particles and be removed from the site via surface water runoff and erosion, especially in the absence of pavement or stabilizing vegetation, or if erosion controls are absent or not functioning properly. PAHs are not typically found in groundwater when only generally low concentrations are present in soils. Groundwater monitoring completed at the MRC provides evidence that PAHs are not mobile in groundwater; therefore, PAHs are not a groundwater COC.

### 3.4 POTENTIAL CURRENT AND FUTURE RECEPTORS OF CONCERN AND EXPOSURE PATHWAYS

Industrial workers could be exposed to chemicals in *surface soils* (0-2 feet below grade) through incidental ingestion and dermal contact, and through inhalation of airborne contaminants emanating from soil. Exposure to subsurface soil (two to 10 feet below ground surface) via incidental ingestion, dermal contact, and inhalation is considered a potential exposure pathway for the future construction worker only, as it is unlikely that the other receptors will come into contact with subsurface soils at these depths.

## Section 4 Remedial Goals

Section 4 identifies the chemical of concern (COC) for which further remedial action is necessary to reduce human health risk to future users of Block F. This section also presents the preliminary remedial goal (PRG) developed for Block F soils, and an overview of the residual-risk analysis (RRA) conducted to identify the soil locations requiring remediation to achieve soil remedial action objective (RAO) number 1 (No. 1) established for Block F. The complete RRA conducted for Block F, is in Appendix D. This section concludes with the identification of the applicable soil cleanup standards that will be employed to achieve attainment of RAO No. 2.

### 4.1 REMEDIAL ACTION OBJECTIVES

RAO No. 2—

RAOs are developed to mitigate potential exposure pathways (identified in the conceptual site model [CSM]) that could be complete under current or foreseeable future land use scenarios. Development of RAOs must consider applicable or relevant and appropriate requirements (ARARs). The following RAOs have been developed for Block F soils.

RAO No. 1— Reduce site-related COC in Block F soils to a  $1\times10^{-5}$  human health cancer-risk limit for industrial workers exposed to COC via ingestion, dermal contact, and inhalation.

Excavation and offsite recycling or disposal of seven abandoned-in-place former aviation fuel underground storage tanks (USTs) at recognized environmental concern (REC) #5 in accordance with Maryland Oil Control Program (OCP) Guidance and Code of Maryland Regulations (COMAR), Title 26.10 "Oil Pollution and Tank Management" to obtain a clean closure in REC #5 under a residential use scenario.

RAO No. 1 developed for Block F supports a range of treatment and containment alternatives which will be evaluated further for their ability to meet the ARARs and achieve the RAO. RAO No. 2 ensures compliance with current regulations and limits uncertainty associated with lack of proper closure documentation for the 1986-1987 in-place abandonment of these USTs. Appropriate notifications and reporting will be provided to the Maryland Department of the

Environment (MDE) in accordance with *Code of Maryland Regulations* (COMAR) 26.10 and the Maryland Oil Control Program (OCP). The RAO, by removing subsurface USTs and ancillary structures in REC #5, also will eliminate the need for UST-related land use controls (LUCs) that would prevent excavation in this area in the future.

Figure 4-1 represents the areas within Block F to be remediated to meet the PRG and RAOs.

### 4.2 CHEMICALS OF CONCERN

The human health risk assessment (HHRA) identified polycyclic aromatic hydrocarbons (PAHs), expressed as benzo(a)pyrene equivalents (BaPEq)<sup>1</sup>, as the COC for Block F soil, assuming a typical industrial worker is the receptor of concern.

### 4.3 PRELIMINARY REMEDIAL GOAL

The PRG established for the Block F soil COC (BaPEq) satisfies the requirements of the MDE controlled hazardous substances regulations, and is consistent with the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 *Code of Federal Regulations* [CFR] Part 400.430), promulgated under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

For PAH constituents represented by BaPEq, the selection of a risk-based PRG representing the  $1\times10^{-5}$  cancer-risk level is consistent with RAO No. 1 and the approach presented in previous documents published for MRC tax block soils (e.g., Final *Soil Response Action Plan, Block B, Lockheed Martin Middle River Complex* [Tetra Tech, 2009]). A PRG based on an incremental lifetime cancer-risk (ILCR) of  $1\times10^{-5}$  (versus a remedial goal based on an ILCR of  $1\times10^{-6}$ , i.e., a one-in-a-million risk) is used for the following reasons:

• BaPEq represents a *group* of chemicals (i.e., benzo(a)pyrene and related chemicals), not a single COC, and therefore risk analysis based on BaPEq accounts for cumulative risk

<sup>&</sup>lt;sup>1</sup> Per current United States Environmental Protection Agency (USEPA) guidance (USEPA, 1993b), concentrations of benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene can be combined in an adjusted risk-weighted concentration that is expressed in terms of benzo(a)pyrene toxicity. This calculated value, called a *benzo(a)pyrene equivalent concentration* (BaPEq), uses USEPA-recommended toxicity equivalency factors (TEFs) to estimate the potency of each of these polycyclic aromatic hydrocarbon (PAH) compounds relative to that of benzo(a)pyrene. The TEFs are then used to convert each individual PAH concentration into an equivalent concentration of benzo(a)pyrene; these values are summed to arrive at the calculated BaPEq concentration. Details outlining the BaPEq calculation can be found in Appendix E.

- non-site related anthropogenic sources of benzo(a)pyrene (and other BaPEq associated with "fill material") have contributed to study area soil concentrations
- PRGs set at the  $1\times10^{-6}$  level for the BaPEq constituents are often significantly less than typical anthropogenic background levels (particularly in highly developed areas).

The 1×10<sup>-5</sup> risk-based PRG for BaPEq is 2.9 milligrams per kilogram (mg/kg). This PRG was calculated using the methodology presented in the HHRA (Tetra Tech, 2012b) and verified using the United States Environmental Protection Agency (USEPA) regional screening level (RSL) calculator (<a href="http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search">http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search</a>). The associated check-calculation spreadsheets are in Appendix D (Residual-Risk Analysis), Attachment A.

Appendix D includes histograms showing BaPEq concentration distributions in Block F. The histograms demonstrate that risk estimates are strongly influenced by elevated concentrations detected at relatively few (of the many) sampling locations within Block F.

#### 4.4 RESIDUAL-RISK ANALYSIS

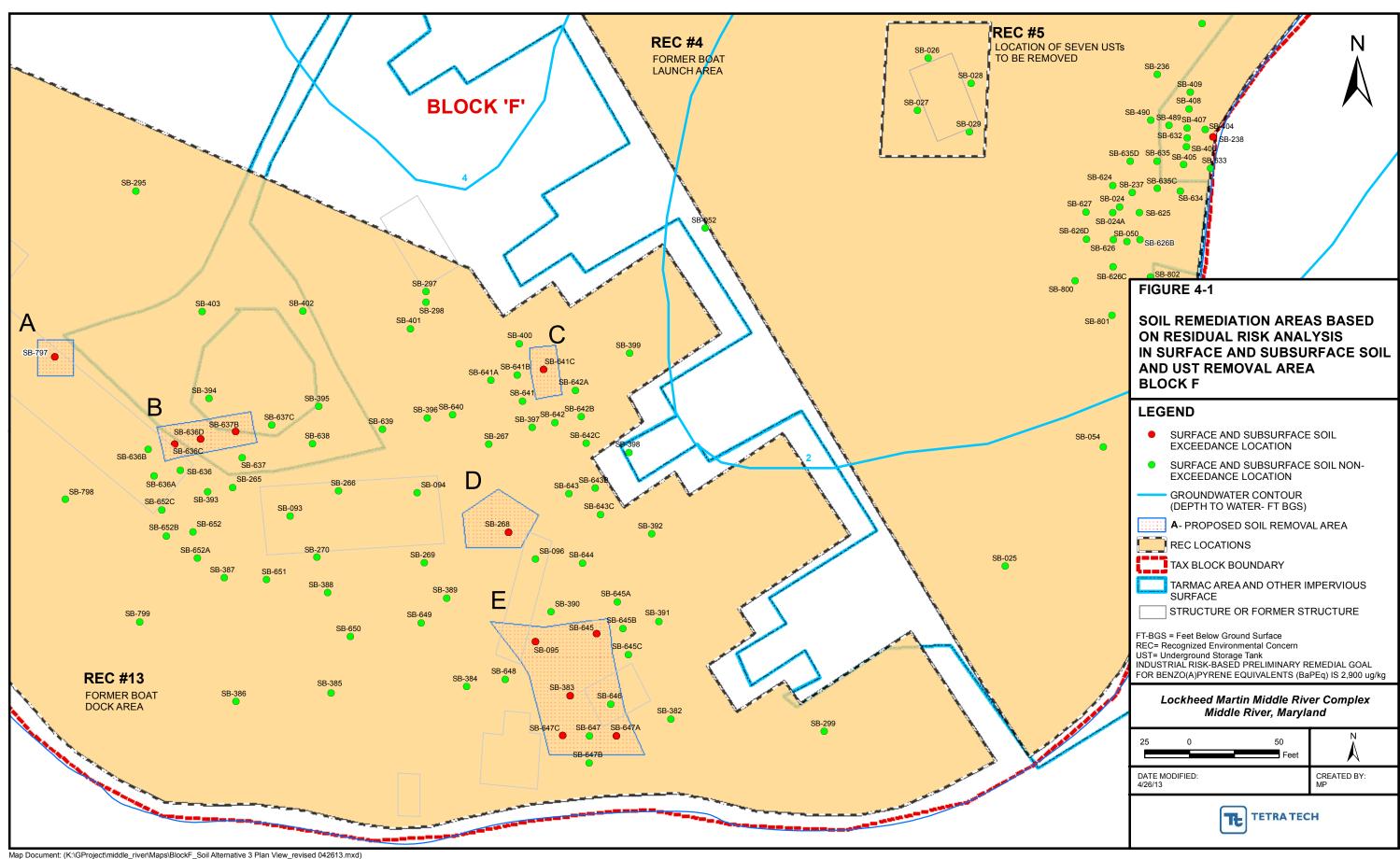
A residual-risk analysis (RRA) was conducted to identify those locations to be remediated to achieve "representative" soil concentrations that do not exceed the PRG established for the COC in the Block F soils. A "representative" soil concentration (also referred to as the exposure-point concentration) is defined as the 95% upper confidence limit (UCL) on the arithmetic mean (95% UCL) for a receptor in an exposure unit (in this case, an industrial worker within Block F). In overview, the RRA ranks locations from most contaminated to least contaminated, and then sequentially "removes" sample results/locations from the calculation (i.e., targets sampling locations for remediation) until the 95% UCL concentration for a COC does not exceed the PRG in the study area.

The RRA was performed for Block F soils from zero to two feet below ground surface [bgs] (i.e., surface soils), and for soils from two feet bgs to the water table (subsurface soils). Soils below the water table are not targeted for potential remediation and are addressed through LUCs. Depth to groundwater at Block F varies between two and five feet bgs, with an allowance of two feet for seasonal fluctuation (figures showing depth-to-groundwater contours are in Appendix F). The RRA was conducted as described in the following paragraphs:

- Step 1: Identification of COC for the RRA—As discussed earlier, BaPEq was identified as the only Block F COC.
- Step 2: Identification of PRGs—Risk-based preliminary remedial goals for the industrial worker were calculated for all COC and presented in the HHRA for Tax Block Soils (Tetra Tech, 2012b). The remedial goal selected for the evaluation of BaPEq constituents in the RRA (2.9 mg/kg) is the concentration representing the  $1 \times 10^{-5}$  cancer risk level.
- Step 3: Ranking of locations—Samples in Block F were ranked by BaPEq concentration and risk. Surface soil (i.e., soils from the ground surface to two feet in depth) locations were ranked separately from subsurface (vadose zone) soil (i.e., soil between two feet bgs and the typical depth to groundwater for Block F). If more than one soil sample was available for a given depth interval, the maximum concentration was used to rank the location.
- Step 4: Iteratively remove samples and recalculate exposure-point concentrations (EPC)—Ranked samples were reviewed to select an initial set of locations to undergo RRA. Locations with cancer risk estimates exceeding the  $1\times10^{-5}$  cancer risk level for the typical industrial worker were selected as a starting point, because that level is the MDE cumulative cancer-risk benchmark. These locations contribute significantly to the risk estimates presented in the HHRA, and were considered a reasonable starting point for the analysis. The selected data points (assuming removal via excavation) were replaced by an assumed (clean fill) concentration of 10 micrograms per kilogram ( $\mu$ g/kg); the 95% UCL for the BaPEq constituents was then recalculated using the substituted concentrations. The  $10-\mu$ g/kg concentration was selected as the replacement soil value instead of non-detect to be conservative. If the recalculated 95% UCL exceeded the PRG for the industrial worker, additional locations were iteratively removed from the data set and replaced with the proxy for non-detect concentration ( $10 \mu$ g/kg), and the recalculation process was then repeated until the resultant 95% UCL was equal to or less than the PRG. BaPEq concentrations in the soil samples targeted for removal ranged from 3,838  $\mu$ g/kg (3.8 mg/kg) to 50,001  $\mu$ g/kg (50 mg/kg).
- Step 5: Address cumulative risk issue—The RRA focused on the reduction of the BaPEq exposure point calculation (EPC) and, thus, reduction of the risk. Since BaPEq represents cumulative PAH compounds, excavation of soils such that the BaPEq EPC is less than the PRG

(2.9 mg/kg) will also result in a cumulative risk estimate for the worker that is equal to or less than the  $1\times10^{-5}$  cancer risk level.

Step 6: Margin of safety—Locations targeted for potential remediation based on the preceding steps were reviewed to determine if any additional locations should be targeted, so that the results of the residual-risk analysis clearly include a margin of safety (i.e., the cumulative health risk is less than 1 x 10<sup>-5</sup>). For example, if sampling location "X" was targeted for remediation and located near sampling location "Y," which was not targeted for remediation but had an elevated COC concentration, sampling location "Y" may have been added to the list of targeted locations. Professional judgment factors were used to select the "additional" sampling locations targeted for remediation. The most frequently considered factors were: (1) the concentrations at nontargeted locations near (horizontally or vertically) targeted locations, and (2) the spatial distribution of the data (e.g., the sample density, or lack thereof) in a particular area demonstrating exceedances.


### 4.5 ATTAINMENT OF PRELIMINARY REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES

This RAP provides an evaluation of remedial alternatives needed to achieve the established RAOs for soils at Block F. Following implementation of the remedial action, post-remedial attainment samples will be collected to ensure RAO No. 1 is achieved and that soils requiring removal (per the RRA) from the ground surface to two feet below ground surface, or down to the groundwater table (whichever is encountered first), have been addressed. The BaPEq concentrations in confirmatory sidewall samples from the excavation will be used to re-calculate the BaPEq residual risk for soils at Block F, and sampling will be considered finished when the required locations are removed and the residual risk complies with the requirements of the RAO. Section 8 provides further details on the sampling required to demonstrate attainment of the preliminary remedial goals.

Post-excavation sampling will also be required to achieve RAO No. 2 and to demonstrate the USTs were removed in compliance with COMAR 26.10 and the Maryland OCP. The OCP requires the collection of sidewall and base soil samples, analysis of samples for total petroleum hydrocarbons (TPH) diesel-range organics (DRO) and gasoline-range organics (GRO), and comparison of results to the MDE residential soil cleanup standard for TPH-DRO and -GRO

(230 mg/kg). An additional requirement, per the Baltimore County OCP inspector, will be the analysis of sidewall and base soil samples for volatile organic compounds (VOCs) by USEPA Method SW846 8260B. VOC results in soil samples will be compared to the MDE residential soil cleanup standards. RAO No. 2 is achieved when the post-removal, UST site assessment/closure report is approved by MDE, and residual TPH and VOC concentrations in base and sidewall soil samples are less than MDE soil cleanup standards, or LUCs are instituted to limit future access to soils left in place exceeding these screening criteria. Section 8 provides further details on the UST removal post-excavation confirmation sampling.

MDE will issue a No Further Action letter once the RAOs have been met. LUCs for groundwater and any remaining soil will be established as part of site closure.



# Remedial Action Alternative Evaluation and Selection

Selected technologies and land use controls (LUCs) for the proposed soil remedial action are presented in this section, as required by the Maryland Department of the Environment (MDE) Controlled Hazardous Substances (CHS) Enforcement Division. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 Code of Federal Regulations [CFR] Part 400.430), promulgated under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), guides the selection of remedial technologies. This section describes the identification, screening, and evaluation of potential technologies and process options, their preliminary screening and detailed evaluation, selection of representative process options, development and detailed analysis of alternatives, comparative analysis of alternatives, and identification of the proposed alternative.

Technology identification and screening is based on the following steps:

- identification of chemicals of concern (COC) (see Section 4)
- development of remedial action objectives (RAOs) (see Section 4)
- development of preliminary remedial goals (PRGs) (see Section 4)
- identification of applicable or relevant and appropriate requirements (ARARs)
- identification of general response actions (GRAs) (this section)

## 5.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS AND GENERAL RESPONSE ACTIONS

The ARARs in this remedial action plan (RAP) are state or federal statutes or regulations pertaining to the protection of human health and the environment that must be considered when addressing specific conditions or using a particular cleanup technology at a site. Other criteria that are non-promulgated, non-enforceable guidelines or criteria that may be useful in developing

a remedial action or may be necessary to determine what protects human health and/or the environment will be considered. Examples include United States Environmental Protection Agency (USEPA) industrial exposure risk-based concentrations and similar MDE standards.

One of the primary concerns in developing remedial action alternatives for contaminated sites is the degree of human health and environmental protection offered by a remedy. CERCLA Section 121 requires that primary consideration be given to remedial alternatives that attain or exceed ARARs. The purpose of this requirement is to make CERCLA remedial actions consistent with other pertinent federal and state environmental requirements. The NCP identifies the following three categories of ARARs [40 CFR Section 300.400 (g)]:

- Chemical-specific—Health-risk-based numerical values or methodologies that establish concentration or discharge limits for particular contaminants. Table 5-1 presents a list of federal and State of Maryland chemical-specific ARARs and to be considered (TBC) criteria. These ARARs and TBC criteria provide some medium-specific guidance on "acceptable" (by regulation) or "permissible" concentrations of contaminants.
- Location-specific—ARARs that restrict actions or contaminant concentrations in certain environmentally sensitive areas. Examples of areas regulated under various federal laws include floodplains, wetlands, and locations where endangered species or historically significant cultural resources are present. Table 5-2 presents a list of federal and Maryland location-specific ARARs and TBC criteria. These ARARs and TBC criteria place restrictions on contaminant concentrations or the conduct of activities solely based on the site's particular characteristics or location.
- Action-specific—Technology- or activity-based requirements, limitations on actions, or conditions involving special substances that control or restrict the remedial action. Examples of action-specific ARARs include wastewater discharge standards and performance or design standards, controls, or restrictions on particular types of activities. Table 5-3 lists federal and Maryland action-specific ARARs and TBCs.

GRAs are broadly defined response approaches that may attain RAOs. GRAs describe categories of actions that could be implemented to satisfy or address a component of the RAOs for the site. GRAs corresponding to the Block F RAOs are listed in Table 5-4 and below; response action alternatives have been developed using these GRAs individually or in combination:

no action

containment

• limited action: institutional controls

- soil removal
- in situ treatment

### 5.2 SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS

This section includes identification, screening, and evaluation of potential technologies and process options that may be applicable to remediating impacted Block F soil. The primary objective of this phase is to develop an appropriate range of remediation technologies and process options that will meet RAOs. The remediation technologies and process options are identified based on experience with similar projects, in addition to publicly available information from the Federal Remediation Technologies Roundtable (FRTR) technologies screening matrix tool (FRTR, 2012) and the Interstate Technology and Regulatory Council (ITRC) screening tool (ITRC, 2012). The identified technologies and process options were screened in accordance with USEPA guidance (USEPA, 1988) and Lockheed Martin Corporation (Lockheed Martin)-specific considerations for environmental impacts and total cost analysis. Table 5-5 presents the results of screening with respect to effectiveness, implementability, and relative cost. The following evaluation criteria were used in the screening:

- Effectiveness: This criterion screens out technologies as follows:
  - o Technologies and process options that were not effective in eliminating potential exposure pathways (in particular, for current industrial workers), or were not effective in meeting the RAOs, were screened out.
  - o Unreliable technologies and process options were screened out.
- *Implementability*: Technologies that cannot be implemented in the area were screened out.
- Relative cost: Technologies with costs significantly higher than others that achieve similar performance or goals were screened out. Relative costs such as high, medium, and low are provided, based on experience with similar projects and publicly available information from the FRTR and ITRC screening tools (FRTR, 2012 and ITRC, 2012).

Technologies and process options that passed initial screening and detailed evaluation (Table 5-6) were selected for the next step in remedial alternative selection—the development of soil remedial alternatives.

### 5.3 DEVELOPMENT AND DETAILED ANALYSES OF ALTERNATIVES

This section discusses the development of the soil remedial action alternatives from the retained process options, and describes the conceptual design for the selected short list of alternatives. Impacted soil, as defined in the following discussion, is the soil that the RRA identified for

remediation. A two-step process for identifying and evaluating alternatives was used for this RAP. First, an initial list of seven potential remedial action alternatives was developed from the process options retained during the preliminary screening of technologies. Advantages and disadvantages of each were identified, and the alternatives' capital and operating costs were estimated. After the initial list of seven options was screened, six remedial alternatives were retained for further evaluation.

#### 5.3.1 Development and Preliminary Screening of Alternatives

Seven alternatives were developed from the technologies and process options retained in Section 5.2. The following paragraphs describe each alternative in detail:

#### **Alternative 1: No action**

This alternative would not meet RAOs, and is presented only for comparison purposes.

#### **Alternative 2: Institutional controls**

This alternative would not mitigate impacted soils; institutional controls would be the sole means of managing and minimizing risks. This alternative involves no active remedy, but lowers risk when compared to the no-action alternative. This alternative would not meet all RAOs, because users of the site may come in contact with impacted soils and they may not comply with Oil Control Program (OCP) requirements.

## <u>Alternative 3</u>: Excavation and off-site disposal of impacted soils to a depth of two feet, underground storage tank (UST) removal, and institutional controls

This alternative incorporates excavation and disposal of the top two feet of soils based on the residual risk analysis (RRA), removal of seven USTs at recognized environmental condition (REC) #5 with the placement and compaction of clean soil post removal, followed by institutional controls. Soils below the groundwater table would remain in place. Seven USTs at REC #5 would be removed following excavation, and clean soil would be placed and compacted. Institutional controls would still be required for soils that remain onsite, for groundwater, and for soils below the groundwater table. This alternative includes post-excavation attainment sampling and sampling for disposal purposes. This alternative would meet all RAOs. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

## <u>Alternative 4</u>: Limited excavation and soil cover over impacted areas, UST removal, and institutional controls

This alternative incorporates removal of the top six inches of soil, with subsequent placement of a two-foot-thick soil cover over the impacted soil footprint. The soil cover would consist of six inches of topsoil and 1.5 feet of subgrade clean fill. The subgrade soils would be compacted to the required degree. The soil cover would raise surface grade by 1.5 feet within the 100-year floodplain. The 100-year flood plain elevation is nine feet above mean sea level (msl). Currently, most of Block F is within the 100-year flood plain elevation. This alternative would thus pose significant critical-area permitting considerations, as well as stormwater management issues. This alternative would involve the removal of seven USTs at REC #5 with the placement and compaction of clean soil post removal. This alternative would require institutional controls for soils that remain on-site, and for groundwater and soils beneath the groundwater table. This alternative would not require any attainment sampling. This alternative would meet all RAOs. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

## <u>Alternative 5</u>: Enhanced bioremediation of impacted surface soils, UST removal, and institutional controls.

This alternative would involve enhanced bioremediation of the top two feet of impacted soils, removal of seven USTs at REC #5 with the placement and compaction of clean soil post removal, followed by institutional controls. Soil beneath the groundwater table would be left in place. The *in situ* bioremediation method proposed would use a soil tilling technique to apply proprietary soil amendments and water that stimulate native organisms to biodegrade organic COC (e.g., polycyclic aromatic hydrocarbons [PAHs]). This alternative includes post-remedial-action attainment sampling. Bench-scale testing would be required to establish the viability of this technology and to determine if the RAOs will be achieved. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

### <u>Alternative 6</u>: *In situ* stabilization of impacted soils to the groundwater table, UST removal, and institutional controls

This alternative consists of *in situ* stabilization of soils using an auger and cement-like material, resulting in COC becoming less mobile and less bio-available. Stabilization techniques can be applied *in situ* or *ex situ*. The *in situ* techniques are more cost-effective because the soil matrix is

disturbed to a lesser degree. Therefore, only *in situ* techniques were considered. This alternative would involve the removal of seven USTs at REC #5 with the placement and compaction of clean soil post removal. This alternative would require institutional controls for soils that remain on-site, groundwater, and soils below the water table. Since stabilized materials may degrade over time, this alternative may still not meet the risk-based RAO. This alternative would also require bench-scale and pilot testing to ascertain its effectiveness in meeting the RAOs and to finalize mix ratios. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

### <u>Alternative 7</u>: Phytoremediation in the impacted areas, UST removal, and institutional controls

This alternative consists of planting mulberry trees at a density of 1,000 trees per acre in impacted areas to enhance the biodegradation of COC. This alternative would require annual sampling to monitor the decrease in soil COC concentrations. This alternative would also require bench-scale and pilot testing to ascertain its effectiveness in meeting the RAOs. This alternative would involve the removal of seven USTs at REC #5 with the placement and compaction of clean soil post removal. This alternative would require institutional controls for soils that remain on-site, groundwater, and soils below the water table. Phytoremediation is only effective when the rooting system is uniformly distributed throughout the soil matric being treated; should this distribution not be uniform, impacted soils could remain untreated. In addition, COC uptake by plants has to be monitored in order to prevent inadvertent human exposure (such as through the consumption of fruit). Therefore, this alternative may not meet RAO No. 1. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

Common aspects of institutional controls (Alternatives 2–7)—Institutional controls include, but are not limited to, restrictions on the use of groundwater, cover maintenance requirements (if Alternative 5 is implemented), excavation notification, soil reuse restrictions, and limitations on future property use. MDE requires that these institutional controls be included on property deeds. Any excavations must meet the requirements of a site-specific health and safety plan to ensure that worker protection measures are met.

The MDE will document LUCs and related environmental covenants applicable to the Block F property in the applicable No Further Action letter, which will be issued upon successful completion of soil remediation achieving the RAOs in Block F. The No Further Action letter will be filed in the local land use records and will be passed to subsequent property owners as part of the deed documentation (i.e., the covenant "travels with the land"). MDE regards all LUCs as existing in perpetuity unless the related environmental covenants are eliminated or modified by mutual consent of the stakeholders. MDE will present certain environmental covenants as part of the No Further Action letter documentation, and these covenants will provide stakeholders with legal standing for their enforcement. MDE will determine final disposition of any LUCs.

Common aspects of Alternatives 3–4—Impacted soils are defined as soils having COC concentrations associated with an incremental lifetime cancer risk (ILCR) greater than one in 100,000 (1×10<sup>-5</sup>) that were identified in the RRA. For cost estimation purposes, we have assumed that soil will be shipped to the licensed and approved Waste Management GROWS North landfill facility in Morrisville, Pennsylvania. This facility is currently on Lockheed Martin's approved facility list. Following excavation of impacted soils, clean backfill will be placed in six-inch lifts and compacted to 95% of their dry density.

The process of developing these alternatives is outlined in Table 5-7. Based on the analysis of the remedial goals, advantages, disadvantages, and costs, Alternatives 1 through 6 were retained. Alternative 7 (phytoremediation in the impacted areas, UST removal, and institutional controls), was eliminated because its implementation may not meet RAO No. 1. Because it is dependent upon growing mulberry trees and an associated root structure that will enhance COC degradation this technology is estimated to take approximately 15 years to meet RAO No. 1. This time period, coupled with the uncertainty in the alternative's effectiveness, does not provide for immediate use of the site. Table 5-8 provides a ranking of the alternatives following the preliminary screening.

#### 5.3.2 Evaluation Criteria

The six alternatives that passed preliminary screening were evaluated in more detail using the nine evaluation criteria presented in the NCP. The NCP evaluation criteria are intended to provide a framework for assessing the risks, costs, and benefits of each remedial alternative. The first two criteria, or *threshold criteria*, address overall protection of human health and the

environment and compliance with ARARs. All alternatives (excluding Alternative 1: No Action) meet these criteria, although several require bench-scale testing to determine if RAOs will be achieved. The next five criteria described in the NCP are primary balancing criteria. This RAP also adds a sixth balancing criterion: the environmental impacts of each alternative. Thus, the six primary *balancing criteria* considered are as follows:

- long-term effectiveness and permanence
- implementability
- reduction in toxicity, mobility, and volume through treatment
- environmental impacts

• short-term effectiveness

• cost

**Long-term effectiveness and permanence**—Alternatives must be assessed for the long-term effectiveness and permanence they offer, along with the degree of certainty that the alternative will succeed. Other considerations include, as appropriate, the magnitude of residual risk (e.g., risks posed by untreated waste or treatment residuals) and the adequacy and reliability of controls (e.g., controls needed to manage untreated waste or treatment residuals).

**Reduction of toxicity, mobility, or volume through treatment**—Alternatives must be assessed for the degree to which they employ recycling or treatment that reduces the toxicity, mobility, or volume of the waste being assessed, including how the treatment and associated reduction addresses principal site risks.

**Short-term effectiveness**—The short-term effects of the alternative must be assessed considering the following:

- short-term risks that might be posed to the community during implementation
- potential effects to workers during the remedial action and the effectiveness and reliability of protective measures
- potential environmental effects of the remedial action, and the effectiveness and reliability of mitigation measures employed during implementation
- time until protection is achieved

*Implementability*—The ease or difficulty of implementing the alternatives must be assessed by considering technical feasibility, administrative feasibility, and availability of services and materials.

*Environmental impacts*—The environmental impacts of the remedial alternatives were assessed using the SiteWise<sup>™</sup> software tool (Appendix G). SiteWise<sup>™</sup> is a spreadsheet-based tool developed by the United States Navy, United States Army Corps of Engineers, and Battelle Memorial Institute (United States Navy, 2011). It provides a model for assessing the environmental footprint of remedial alternatives in terms of a consistent set of metrics, including greenhouse gas emissions, particulate emissions, and energy usage. The components of Alternatives 3–6 were divided into four modules (representing the remedial phases of most remedial actions) and their environmental footprint was then calculated. These results are then combined to determine the total footprint of each alternative and enable comparison among the set of alternatives. SiteWise<sup>™</sup> can also be used to determine the primary footprint contributors of each alternative.

*Costs*—Total cost analysis (TCA) considers the costs associated with implementing a program, including direct costs associated with implementation, environmental and health costs, risks and liabilities, and costs borne by others. Five cost categories considered in the TCA for Block F soil remediation alternatives are as follows:

- **I—Direct costs** (recurring and non-recurring), including:
  - o remediation design
  - o remediation construction, including capital, labor, material, and waste disposal
  - o operating, maintenance, and monitoring for a 50-year time period
  - o decommissioning and disposal upon remedy completion
  - o worker safety measures
- **II—Indirect costs** (recurring and non-recurring) expended by Lockheed Martin to manage and support the remediation program
- III—Future and contingent liability costs, including:
  - o fines and penalties

- natural resource damage assessments under CERCLA
- o property damage
- o disposal or recycling facility failures
- o future development under LUCs
- o currently unknown issues, such as:
  - unknown contamination in the remediation area or under the operating manufacturing facilities
  - future releases to groundwater
  - effect that future modification or demolition of manufacturing facilities may have, including changes in groundwater flow and contaminant release
  - emerging contaminants of concern

#### • IV—Internal intangible costs, including:

- o community relations
- o regulatory relations
- o corporate and brand impacts
- o customer loyalty
- o worker wellness and morale
- V—External costs (borne by society), including:
  - o environmental deterioration
  - o resource depletion
  - o protection of future residents and workers

The TCA, as applied in this soil RAP, includes quantitative estimates of Category I and II costs and qualitative assessments of Category III, IV, and V costs. Qualitative assessments are generally included in the other CERCLA evaluation criteria. Total cost analysis results are in Appendix H.

The NCP also includes two *modifying criteria*, state and local acceptance, for consideration. Lockheed Martin has proactively interacted with both MDE and the local community to present

potential alternatives and discuss the potential ramifications of each alternative. MDE approval of the RAP will constitute state acceptance, and Lockheed Martin is committed through its community outreach and public engagement program to provide the public an opportunity to provide comments on the RAP before final approval and implementation. The two modifying criteria will not be scored during the evaluation of the remedial actions at this time, but will be incorporated after MDE reviews the document and community input on this RAP has been received.

#### 5.3.3 Detailed Analyses of Alternatives

The following sections describe the six alternatives retained based on the preliminary screening using the evaluation criteria presented in Section 5.3.2.

#### 5.3.3.1 Alternative 1: No Action

#### **Description of Alternative 1**—

This alternative would leave Block F in its current condition. This alternative is required to establish a basis for comparison with other alternatives.

#### Detailed analysis of Alternative 1—

Long-term effectiveness and permanence—Alternative 1 would not be effective in the long term for meeting RAOs because site COC in soils would remain above the 1 x 10<sup>-5</sup> human health cancer risk limit and the USTs would remain in-place. Concentrations of soil COC might gradually decrease to acceptable levels in accord with regulations over a long period because of natural processes; however, it will take a very long time to reach the risk-based Soil RAO No. 1 if no action is performed. The UST removal Soil RAO No. 2 would not be achieved.

**Reduction of toxicity, mobility, and volume through treatment**—Alternative 1 would not employ any treatment; therefore, there will be no reduction of toxicity, mobility, or volume for COC.

**Short-term** *effectiveness*—This alternative has no unmitigatable short-term adverse effects because no action would be implemented.

*Implementability*—Alternative 1 has no implementability concerns because no action will be implemented.

*Environmental impacts*—No change in air emissions or impacts to water resources would be caused by this alternative, because no action will be implemented.

*Cost*—No costs would be associated with Alternative 1.

#### 5.3.3.2 Alternative 2: Institutional Controls

#### **Description of Alternative 2**—

This alternative would leave contaminated soils at Block F in their current condition but would institute LUCs for soil and groundwater at the site.

#### **Detailed analysis of Alternative 2**—

Long-term effectiveness and permanence—Alternative 2 would not be compatible with the desired current and future land use of the site. Alternative 2 would not be effective in the long term for meeting RAOs because site COC in soils would remain above the 1 x 10<sup>-5</sup> human health cancer risk limit. This alternative would not alter risk should institutional controls fail, but is reliable to the extent that institutional controls are effective. Concentrations of soil COC might gradually decrease to acceptable levels in accord with regulations over a long period because of natural processes; however, it will take a very long time to reach the risk-based Soil RAO No. 1. The UST removal Soil RAO No. 2 would not be achieved.

**Reduction of toxicity, mobility, and volume through treatment**—Alternative 2 would not employ any treatment; therefore, toxicity, mobility, and volume of COC would not be reduced.

**Short-term** *effectiveness*—This alternative has no unmitigatable short-term adverse effects because no action would be implemented.

*Implementability*—Alternative 2 would be easily constructible; however, monitoring will likely need to be incorporated with institutional controls.

*Environmental impacts*—No air emissions or impacts to water resources would be caused by Alternative 2 because no treatment will be implemented.

*Cost*—The following costs for Alternative 2 were estimated via the TCA process:

• implementation: \$139,155

• operational, maintenance, and monitoring: \$162,000

• total cost: \$301,155

• net present value cost: \$187,000

## 5.3.3.3 Alternative 3: Excavation and Off-Site Disposal of Impacted Soils to a Depth of Two Feet, UST Removal, and Institutional Controls

#### **Description of Alternative 3—**

Alternative 3 consists of four major components: (1) soil excavation to allow industrial site use at acceptable health risk levels in accord with regulations, (2) removal of seven USTs, (3) off-site disposal of soil, and (4) implementation of institutional controls. Figure 4-1 illustrates the areas to be excavated for Alternative 3.

Components 1 and 2: soil excavation and UST removal—Figure 4-1 shows the areas in Block F that would be excavated to meet the industrial risk-based PRG, as well as the locations of the seven USTs to be removed. As part of site preparation, a material handling pad, decontamination zones, and haul routes would be constructed to allow equipment access; these areas would be investigated for the presence of underground utilities and structures, if required. The top two feet of soils would be excavated using a bulldozer, front-end loader, or similar equipment. All seven previously abandoned-in-place USTs, associated piping, and contaminated soil with concentrations of total petroleum hydrocarbons (TPH)-diesel-range organics (DRO), TPH-gasoline-range organics (TPH-GRO), or volatile organic compounds (VOCs) greater than MDE residential cleanup standards (if present) would be removed.

Post-removal confirmation samples in excavation areas A–E (see Figure 4-1) would be collected from the sidewalls (base also but only for informational purposes) of the excavations and analyzed for benzo(a)pyrene equivalent (BaPEq) PAHs. Post-removal confirmation samples in the previously abandoned-in-place aviation fuel UST excavations would be collected from the sidewalls and base of each excavation and analyzed for TPH-DRO, TPH-GRO, and VOCs. Following excavation, and after post-removal confirmation sampling results confirm that remaining soil concentrations are less than 230 milligrams per kilogram (mg/kg) for TPH-GRO and DRO, and less than MDE residential cleanup standards for VOCs in the UST removal area, and the overall site-wide exposure point concentration is less than 2.9 mg/kg for BaPEq including sampling results from the sidewall excavation areas A-E, the excavated areas would be backfilled with certified-clean material and graded to original contours. The final surface restoration has not been determined at this time, the specific restoration method will be described

in permitting and design documents that will follow this RAP. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

Component 3: off-site soil disposal—The expected actions for excavated soils are as follows:

- Excavated material characterized as Resource Conservation and Recovery Act (RCRA) nonhazardous waste would be transported to a permitted RCRA Subtitle D facility for direct landfilling or to a permitted, Lockheed Martin-approved recycling facility.
- Excavated soil that fails toxicity characteristic leaching procedure (TCLP) testing will be characterized as RCRA hazardous waste and will be transported to a permitted RCRA Subtitle C treatment, storage, and disposal facility (TSDF) for treatment to meet TCLP limits, followed by direct landfilling.

The volumes estimated for disposal at the various facilities will need to be verified based on sampling and analysis of stockpiled soil, followed by profiling (as necessary) for each facility. Estimated disposal volumes are presented in the TCA in Appendix H.

Component 4: institutional controls—Institutional controls include restrictions on the use of groundwater, excavation notification, soil reuse restrictions, and limitations on future use of property.

#### **Detailed analysis of Alternative 3**—

**Long-term effectiveness and permanence**—Alternative 3 would be very effective long-term in eliminating risk if impacted soils to the groundwater table are removed.

**Reduction of toxicity, mobility, and volume through treatment**—No reduction of toxicity, mobility, or volume through treatment would be achieved for Alternative 3 because no treatment would be implemented.

**Short-term** *effectiveness*—Alternative 3 would generate environmental impacts during construction. Some construction impacts associated with this alternative can be mitigated with dust control, air monitoring, sidewall protection, and possibly dewatering to reduce risk to the surrounding community and on-site workers.

*Implementability*—Personnel and equipment to design and implement the proposed actions are readily available, and time to coordinate with stakeholders and obtain the necessary permits can be built into the schedule. Identification and field location of utilities and other features that may

interfere with construction will also be required during the design process and before intrusive construction work begins. With these considerations, Alternative 3 is implementable.

*Environmental impacts*—The following environmental effects were estimated using SiteWise™ (Appendix G):

- greenhouse gas emissions—83 metric tons
- water impacts—3,560 gallons
- nitrogen oxides (NO<sub>x</sub>) emissions—0.146 metric tons
- sulfur oxides (SO<sub>x</sub>) emissions—0.0728 metric tons
- particulate matter (PM<sub>10</sub>) emissions—0.252 metric tons
- total energy used—3,747 million British thermal units (MMBTUs)

*Cost*—The following costs for Alternative 3 were estimated via the TCA process:

• implementation: \$857,229

• operational, maintenance, and monitoring: \$162,000

• closure cost: \$101,717

• total cost: \$1,120,946

• net present value cost: \$1,000,136

## 5.3.3.4 Alternative 4: Limited Excavation and Soil Cover over Impacted Areas, UST Removal, and Institutional Controls

#### **Description of Alternative 4**—

Alternative 4 consists of the following five major components: (1) removal of seven USTs, (2) excavation of the top six inches of soil in impacted areas, (3) off-site disposal of soil, (4) placement of soil cover, and (5) implementation of institutional controls. Figure 4-1 illustrates the areas to be remediated under Alternative 4.

Component 1: UST removal—Figure 4-1 shows the locations of the seven USTs to be removed. All seven USTs were previously abandoned-in-place; the USTs, associated piping, and contaminated soil containing TPH-DRO, TPH-GRO, and VOC concentrations greater than MDE residential cleanup standards would be removed as part of this alternative. As part of site

preparation, a material handling pad, decontamination zones, and haul routes would be constructed to allow equipment to access the areas to be excavated; these areas will be investigated for the presence of underground utilities and structures, if required. The USTs would be removed using a backhoe or similar equipment.

Post-removal confirmation samples in the previously abandoned-in-place aviation fuel UST excavations would be collected from the sidewalls and base of each excavation and analyzed for TPH-DRO and TPH-GRO. Following excavation, and after post-removal confirmation sampling results confirm that remaining soil concentrations are less than 230 mg/kg for TPH-GRO and TPH-DRO, and less than MDE residential VOC cleanup standards, the excavated areas would be backfilled with certified-clean material and graded to original contours. The final surface restoration has not been determined at this time and the specific restoration method will be described in permitting and design documents that will follow this RAP. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

Components 2 and 3: soil excavation and placement of soil cover—Figure 4-1 shows the areas of Block F that would be excavated to six inches bgs. As part of site preparation, a material handling pad, decontamination zones, and haul routes would be constructed to allow equipment to access the areas to be excavated; these areas would be investigated for the presence of underground utilities and structures, if required. Soil would be excavated using a bulldozer, front-end loader, or similar equipment.

The soil cover in the excavated areas would consist of six inches of topsoil over 1.5 feet of subgrade clean fill. The subgrade soils will be compacted to the required degree. The soil cover will raise the grade by 1.5 feet within the 100-year floodplain. Block F is located within the Chesapeake Bay Flood Plain Critical Area; therefore, the site elevation must stay within the 100 year flood plain elevation. The 100-year flood plain elevation is nine feet above msl, and most of Block F is currently within the 100-year flood plain elevation.

Component 4: off-site soil disposal—The expected actions for the excavated soil follow:

• Excavated material characterized as RCRA nonhazardous waste would be transported to a permitted RCRA Subtitle D facility for direct landfilling, or to a permitted, Lockheed Martin-approved recycling facility.

• Excavated soil that fails TCLP testing will be characterized as RCRA hazardous waste and will be transported to a permitted RCRA Subtitle C TSDF for treatment to meet TCLP limits, followed by direct landfilling.

The volumes estimated for disposal at the various facilities would need to be verified based on sampling and analysis of stockpiled soil, followed by profiling (as necessary) for each facility. Estimated disposal volumes are presented in the TCA in Appendix H.

Component 5: institutional controls—Institutional controls include, but are not limited to, restrictions on the use of groundwater, cover maintenance requirements, excavation notification, soil reuse restrictions, and limitations on future use of property.

#### **Detailed analysis of Alternative 4**—

**Long-term effectiveness and permanence**—Alternative 4 would lower risk to potential receptors provided that the soil cover is maintained during future site use.

**Reduction of toxicity, mobility, and volume through treatment**—No reduction of toxicity, mobility, or volume through treatment would be achieved under Alternative 4 because no treatment would be implemented.

**Short-term effectiveness**—Alternative 4 would generate environmental impacts for the duration of construction. Construction impacts associated with this alternative can be mitigated by dust control and grading during construction to reduce risk to the surrounding community and on-site workers.

Implementability—Personnel and equipment to design and implement the proposed actions are readily available, and time to coordinate with stakeholders and to obtain the necessary permits can be built into the schedule. This alternative would require placement of cover soils over disjointed, irregularly shapes areas, which will cause localized changes in elevation, making Alternative 4 undesirable for reasons including property use, stormwater management, and long-term maintenance. Identification and field location of utilities and other features that may interfere with construction will also be required during the design process and before intrusive construction work begins. With these considerations, Alternative 4 is implementable.

*Environmental impacts*—The following environmental effects were estimated using SiteWise<sup>TM</sup>:

• greenhouse gas emissions—26 metric tons

- water impacts—3,500 gallons
- NO<sub>x</sub> emissions—0.0289 metric tons
- SO<sub>x</sub> emissions—0.0162 metric tons
- PM<sub>10</sub> emissions—0.00145 metric tons
- total energy used—1,542 MMBTUs

*Cost*—The following costs for Alternative 4 were estimated via the TCA process:

• implementation: \$505,900

• operational, maintenance, and monitoring: \$324,000

• closure cost: \$90.044

• total cost: \$919,943

• net present value cost: \$685,741

## 5.3.3.5 Alternative 5: Enhanced Bioremediation of Impacted Surface Soils, UST Removal, and Institutional Controls

#### **Description of Alternative 5**—

The *in situ* bioremediation technique proposed involves the *in situ* application of soil amendments (e.g., DARAMEND<sup>®</sup> organic amendment) and water to stimulate native organisms to biodegrade organic material. Alternative 5 consists of four major components: (1) bench-scale testing (2) removal of seven USTs, (3) enhanced bioremediation, and (4) implementation of institutional controls. Figure 4-1 illustrates the areas to be remediated for Alternative 5.

Component 1: bench-scale testing—To determine the appropriate dosage of soil amendment that will adequately treat the contaminated soil, a bench-scale test would be performed. Soil amendment would be added at a ratio of 2.5% to 100 tons of soil. The soil would be tilled using a specialized tiller, and water will be added to increase the soil moisture to 60% of the water holding capacity, thus promoting COC degradation. After treatment, soil would be sampled for COC and analyzed by an off-site laboratory. A second application of 0.5% may subsequently be required, depending on laboratory results. Results of the bench-scale test will be used to modify the design requirements/dosing for the full-scale enhanced bioremediation.

Component 2: UST removal—Figure 4-1 shows the locations of the seven USTs that would be removed under this alternative. All seven abandoned-in-place USTs, and their associated piping, plus soil contaminated with TPH-DRO and TPH-GRO concentrations greater than 230 mg/kg or VOC concentrations greater than MDE residential cleanup standards, would be removed as part of this alternative. As part of site preparation, a material handling pad, decontamination zones, and haul routes would be constructed to allow equipment to access the areas that need excavation; these areas will also be investigated for the presence of underground utilities and structures, if required. The USTs would be removed using a backhoe or similar equipment. Postremoval confirmation samples in the previously abandoned-in-place aviation fuel UST excavations would be collected from the sidewalls and base of each excavation and analyzed for TPH-DRO, TPH-GRO, and VOCs. Following excavation, and after post-removal confirmation sampling results confirm that remaining soil concentrations are less than 230 mg/kg for TPH-GRO and TPH-DRO and less than MDE residential cleanup standards for VOCs, the excavated areas would be backfilled and graded to original contours. The final surface restoration has not been determined at this time and the specific restoration method will be described in permitting and design documents that will follow this RAP. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

Component 3: enhanced bioremediation—Soil amendments at the appropriate specific weight-percentage determined during the bench-scale testing would be added to soil in all treatment areas. Soil would be tilled using a specialized tiller, and water added to increase the soil moisture content to 60% of the water holding capacity. The soil would be mixed twice per week for the first three months, and once every week thereafter, to introduce oxygen into the soil to enhance the microbial process. Sampling would be conducted every 30 days to assess treatment progress and monitor pH. An estimated seven months would be required to treat soil in all treatment areas.

Adding an organic amendment would increase the total volume of soils treated by an estimated three percent. Some redistribution of treated soils would be necessary over areas larger than the original excavation areas. Pending MDE approval, some of the bioremediated soils could be used as backfill in the footprint of the UST removal area.

Component 4: institutional controls—Institutional controls include, but are not limited to, restrictions on the use of groundwater, cover maintenance requirements, excavation notification, soil reuse restrictions, and limitations on future use of property.

#### <u>Detailed analysis of Alternative 5</u>—

**Long-term effectiveness and permanence**—Alternative 5 would be effective, provided pilot testing verifies the viability of this method and identifies the appropriate dosage of additive needed to lower COC concentrations to the required concentrations. Significant uncertainty exists at this time regarding the success of this alternative.

Reduction of toxicity, mobility, and volume through treatment—Treatment implemented by Alternative 5 to reduce the mobility, toxicity, and volume of contaminants reduce COC concentrations through degradation; a soil sampling program would have to be implemented to monitor COC degradation. The volume of contaminated soil would be reduced in the areas addressed by bioremediation, even though the overall volume of material requiring handling would be increased by the addition of the organic treatment material. The treatment is not expected to affect the mobility of compounds remaining in soil.

**Short-Term Effectiveness**—Alternative 5 would require dust control and grading during construction to reduce risk of exposure to the surrounding community and on-site workers. The time to achieve risk-based RAO No. 1 cannot be estimated until the bench scale test is conducted.

Implementability—Personnel and equipment to design and implement the proposed actions are readily available and time to coordinate with stakeholders and to obtain the necessary permits can be built into the schedule. The viability of technology will have to be confirmed by a pilot study to identify the proper dosage of a soil amendment. Identification and field location of utilities and other features that may interfere with construction would also be required during the design process and before intrusive construction work begins. A soil sampling program would have to be implemented to monitor COC degradation. With these considerations, Alternative 5 is implementable.

*Environmental impacts*—The following environmental effects were estimated using SiteWise $^{TM}$ :

• greenhouse gas emissions—37 metric tons

- water impacts—39,189 gallons
- NO<sub>x</sub> emissions—0.0869 metric tons
- SO<sub>x</sub> emissions—0.0321 metric tons
- PM<sub>10</sub> emissions—0.00463 metric tons
- total energy used—1,409 MMBTUs

*Cost*—The following costs for Alternative 5 were estimated via the TCA process:

• implementation: \$712,509

• operational, maintenance, and monitoring: \$220,146

• closure cost: \$84,545

• total cost: \$1,017,200

net present value cost: \$895,612

## 5.3.3.6 Alternative 6: *In situ* Stabilization of Impacted Soils to the Groundwater Table, UST Removal, and Institutional Controls

#### **Description of Alternative 6**—

Alternative 6 consists of four major components: (1) bench-scale test, (2) *in situ* soil stabilization (3) removal of seven USTs, and (4) implementation of institutional controls. Figure 4-1 illustrates the areas that would be remediated under Alternative 6.

Component 1: bench-scale testing—To determine the appropriate dosage of lime, cement or fly ash that would adequately stabilize the contaminated soil, a bench-scale test would be performed. Cement or fly ash would be mixed with the soils at a soil to cement ratio of 1:7. Water would be added to the soil at 10% by weight. After stabilization, treated soil will be sampled and analyzed for COC by an off-site laboratory. Results of the bench-scale test will be used to modify the design requirements/dosing for the full-scale soil stabilization.

Component 2: in situ soil stabilization—Lime, cement, or fly ash would be added to at the appropriate soil-to-additives weight ratio determined during the bench-scale test. Soil would be mixed using augers, resulting in a mass that will reduce the leachability and mobility of soil contaminants. Stabilized soils would be left in place. However, adding lime, cement, or fly ash will increase the total volume of treated soils by an estimated 13%. Therefore, redistribution of

treated soils over areas larger than the original treatment areas would be necessary. Pending MDE approval, some of the stabilized soils could be used as backfill in the UST removal area footprint.

Component 3: UST removal—Figure 4-1 shows the locations of the seven USTs that would be removed. All seven USTs previously abandoned-in-place, and their associated piping, and contaminated soil with TPH-DRO, TPH-GRO, or VOCs concentrations greater than MDE residential cleanup standards, would be removed as part of this alternative. As part of site preparation, a material handling pad, decontamination zones, and haul routes would be constructed to allow equipment to access the excavation areas; these areas will be investigated for the presence of underground utilities and structures, if required. The USTs would be removed using a backhoe or similar equipment. UST removal will be conducted under the oversight of a Baltimore County OCP inspector and in compliance with COMAR Title 26.10.

Post-removal confirmation samples in the previously abandoned-in-place aviation fuel UST excavations would be collected from the sidewalls and base of each excavation and analyzed for TPH-DRO, TPH-GRO, and VOCs. Following excavation, and after post-removal confirmation sampling results confirm that remaining soil concentrations are less than 230 mg/kg for TPH-GRO and TPH-DRO, and less than MDE residential cleanup standards for VOCs, the excavated areas would be backfilled with certified-clean material and graded to original contours. The final surface restoration has not been determined at this time and the specific restoration method will be described in permitting and design documents that will follow this RAP.

Component 4: institutional controls—Institutional controls include restrictions on the use of groundwater, cover maintenance requirements, excavation notification, soil reuse restrictions, and limitations on future use of property.

#### Detailed analysis of Alternative 6—

**Long-term effectiveness and permanence**—Alternative 6 binds COC in cement-like material which makes the chemicals less mobile and less bioavailable, but COC concentrations would not be decreased. The stabilized material could eventually degrade over time and COC could be remobilized in soil.

**Reduction of toxicity, mobility, and volume through treatment**—Alternative 6 would reduce the mobility of contaminants by binding COC in cement-like material. The stabilized material could eventually degrade over time, enabling COC re-mobilization to some degree. The overall volume of material requiring handling would be increased by adding lime, cement or fly ash stabilizers.

Short-term effectiveness—Implementation of Alternative 6 would take two years to achieve risk-based Soil RAO No. 1 because of the large amount of soil that requires stabilization. Significant construction operations would be required for implementation, but negative effects can be mitigated with engineering controls.

*Implementability*—Personnel and equipment to design and implement the proposed actions are readily available, and time to coordinate with stakeholders and to obtain the necessary permits can be built into the schedule. The viability of technology would have to be ascertained by a bench-scale study to identify the proper dosage of soil amendment. Identification and field location of utilities and other features that may interfere with construction will also be required during the design process and before intrusive construction work begins. Soil sampling will be necessary to establish the level of soil stabilization. With these considerations, Alternative 6 is implementable.

*Environmental impacts*—The following environmental effects were estimated using SiteWise $^{\text{TM}}$ :

- greenhouse gas emissions—172 metric tons
- water impacts—8,415 gallons
- NO<sub>x</sub> emissions—0.0352 metric tons
- SO<sub>x</sub> emissions—0.0253 metric tons
- PM<sub>10</sub> emissions—0.00578 metric tons
- total energy used—4,597 MMBTUs

**Cost**—The following costs for Alternative 6 were estimated via the TCA process:

• implementation: \$819,577

• operational, maintenance, and monitoring: \$162,000

• closure cost: \$97,249

• total cost: \$1,078,826

• net present value cost: \$958,308

## 5.4 COMPARATIVE ANALYSIS OF ALTERNATIVES AND PROPOSED ALTERNATIVE

The six soil remedial-action alternatives to remedy soils in Block F were compared qualitatively and quantitatively. Both types of analysis use the same evaluation criteria described in previous sections. This evaluation does not directly consider state acceptance or community acceptance criteria; these will be evaluated through input from the community and MDE following submittal of this RAP.

A multi-criteria comparative decision-analysis tool was used to quantitatively screen the potential alternatives. This method is useful because criteria such as environmental benefits, impacts, risk, economics, and stakeholder participation cannot be easily condensed into simple evaluation matrices. Other benefits associated with using a multi-parameter analysis tool include having the decision criteria for remedy selection, the weighting of each criterion considered, and the score that is applied to each remedial alternative clearly defined and readily available for review. In addition sensitivity analysis to explore the robustness of alternative rankings and the criteria that are most important in the ranking determination is easily accomplished.

In this RAP, the multi-parameter analysis tool *Criterium® DecisionPlus®* (CDP) was used to evaluate and rank the remedial alternatives for Block F. CDP is a decision analysis tool that uses decision-making techniques such as the analytical hierarchy process, the Multi-Attribute Utility Theory, and the simple multi-attribute rating technique that is incorporated into the tool (InfoHarvest, 2001). To build the decision hierarchy and incorporate all the decision factors, each NCP evaluation criterion is represented by one or more individual metrics. To account for these metrics, up to three levels of evaluation criteria were established:

- Level 1 criteria are the major balancing and modifying criteria
- Level 2 criteria have factors considered in the evaluation of Level 1 criteria
- Level 3 has further subcomponents with which to evaluate the Level 2 criteria

The results of the CDP screening are in Appendix I. Table 5-9 summarizes the quantitative CDP analysis. Table 5-10 summarizes the weightings, rankings, and results of the CDP analysis. Higher scores indicate that the alternative is more highly ranked in that category.

All six alternatives evaluated meet the threshold criteria equally well; therefore, the six balancing criteria were used to differentiate between alternatives and determine the preferred alternative:

- Long-term effectiveness and permanence—Alternative 3 ranks highest in this category because the groundwater table at this site is approximately two feet below ground surface and Alternative 3 excavates soil to a depth of two feet. This alternative would be very effective in eliminating risk in soil above the groundwater table.
- Short-term effectiveness—Alternative 2 ranks highest in this category because this alternative would achieve RAO No. 1 in the shortest amount of time, but this alternative fails to meet RAO No. 2.
- Reduction of toxicity, mobility, or volume by treatment—Alternative 5 ranks highest in this category, because it is the only alternative that would both treat and degrade COC.
- Implementability—Alternative 2 ranks highest in this category, followed by Alternative 3.
- Environmental impacts—Alternatives with no corrective action (Alternatives 1 and 2) rank highest in this category because no corrective action would be taken; therefore, no impacts to the environment would occur.
- *Cost*—Alternatives with no corrective action (Alternatives 1 and 2) rank highest (i.e., had the lowest cost) in this category.

The overall CDP scoring of the various alternatives resulted in Alternative 3 achieving the highest ranking. The CDP scoring is as follows (higher scores indicate that the alternative is more highly ranked):

- Alternative 1—0.415
- Alternative 2—0.543
- Alternative 3—0.609
- Alternative 4—0.549
- Alternative 5—0.564
- Alternative 6—0.564

In the quantitative analysis, Alternative 3 ranked highest for several reasons. Most importantly, it ranked the highest for long-term effectiveness of reducing risk to human health and the environment. The relatively short period required for active remediation to meet project goals is another advantage. In the final comparison of the top three alternatives (Alternatives 3, 5, and 6), Alternative 3 ranked highest because it will reach RAO No. 1 two to three years sooner than would Alternative 5, and Alternative 3 is more adaptable and easier to modify than Alternative 6. Thus, Alternative 3 was selected as the proposed soil remedial action at Block F, based on both the qualitative and quantitative analyses.

Table 5-1

Chemical-Specific Applicable or Relevant and Appropriate Requirements and To Be Considered Guidance
Block F Soil Remedial Action Plan
Lockheed Martin Corporation Middle River Complex
Middle River, Maryland

| Requirement                                      | Citation                             | Status           | Synopsis                                                                                                                                                                                       | Evaluation/Action to be Taken                                                                                                                        |
|--------------------------------------------------|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| State                                            |                                      |                  |                                                                                                                                                                                                |                                                                                                                                                      |
| Cleanup Standards<br>for Soil and<br>Groundwater | Maryland<br>Annotated Code 7-<br>508 | To be considered | This guidance document presents the approach and supporting documentation used to develop numeric cleanup standards for hazardous substances in soil and groundwater in the State of Maryland. | These non-promulgated standards may be considered for use in determining cleanup goals for soil in the absence of site-specific risk-based criteria. |

Table 5-2

## Location-Specific Applicable and Relevant and Appropriate Requirements Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex, Middle River, Maryland

| Requirement                                              | Citation                                                                   | Status                    | Synopsis                                                                                                                                                                                                                                                         | Evaluation/Action to be Taken                                                                                                                                                                                         |
|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Federal                                                  |                                                                            |                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |
| Endangered<br>Species Act<br>Regulations                 | 50 CFR Parts 81, 225, and 402                                              | Potentially<br>Applicable | This act requires federal agencies to take action to avoid jeopardizing the continued existence of federally listed endangered or threatened species.                                                                                                            | If a site investigation or remediation could potentially affect an endangered species or their habitat, these regulations would apply (There have been no endangered species or their habitat identified at the MRC.) |
| Historic Sites Act<br>Regulations                        | 36 CFR Part 62                                                             | Potentially<br>Applicable | Requires federal agencies to consider to existence and location of landmarks on the National Registry of Natural Landmarks to avoid undesirable impacts on such landmarks.                                                                                       | The existence of national landmarks will be identified prior to remedial activities on site including remedial investigations (No national landmarks have been identified at the MRC.)                                |
| State                                                    |                                                                            |                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |
| Nongame and<br>Endangered<br>Species<br>Conservation Act | Annotated Code of<br>Maryland 10-2A-01;<br>COMAR 08.03.08<br>and 08.02.12. | Potentially<br>Applicable | Requires State agencies to use their authority to maintain and enhance nongame wildlife and endangered species populations.                                                                                                                                      | If a site investigation or remediation could potentially affect an endangered species or their habitat, these regulations would apply (No endangered species or habitats have been identified at the MRC.)            |
| Division of<br>Historical and<br>Cultural Programs       | Annotated Code of<br>Maryland 5A                                           | Potentially<br>Applicable | The Maryland Historic Trust formed in 1961 to preserve, protect, and enhance districts, sites, buildings, structures, and objects significant in the prehistory, history, upland and underwater archeology, architecture, engineering, and culture of the State. | The existence of Maryland historic sites would be identified prior to remedial activities on site including remedial investigations (No historic sites have been identified at the MRC.)                              |

COMAR Code of Maryland Regulations CFR Code of Federal Regulations MRC

Middle River Complex

Table 5-3

# Action-Specific Applicable or Relevant and Appropriate Requirements Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 1 of 3

| Requirement                                                               | Citation                       | Status                 | Synopsis                                                                                                                                                                                                                                                                                                                                                                                 | Evaluation/Action to be Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------|--------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Federal                                                                   |                                |                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RCRA Regulations,<br>Identification and<br>Listing of Hazardous<br>Wastes | 40 CFR Part 261                | Potentially applicable | Defines the listed and characteristic hazardous wastes subject to RCRA. Appendix II contains the TCLP.                                                                                                                                                                                                                                                                                   | These regulations would apply when determining whether or not a solid waste is hazardous, either by being listed or by exhibiting a hazardous characteristic, as described in the regulations.                                                                                                                                                                                                                                                                                         |
| CAA Regulations,<br>NAAQSs                                                | 40 CFR Part 50                 | Potentially applicable | Establishes primary (health-based) and secondary (welfare-based) air quality standards for carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone, and sulfur oxides emitted from a major source of air emissions. The NAAQSs form the basis for all regulations promulgated under the CAA. However, the NAAQSs themselves are non-enforceable and are not ARARs themselves. | Site remediation activities must comply with NAAQSs. The principal application of these standards is during response action activities resulting in exposures through dust and vapors. In general, emissions from CERCLA activities are not expected to qualify as a major source and are therefore not expected to be applicable requirements. However, the requirements may be determined to be relevant and appropriate for non-major sources with significantly similar emissions. |
| RCRA Regulations,<br>LDRs                                                 | 40 CFR Part 268                | Potentially applicable | This regulation prohibits the land disposal of untreated hazardous wastes and provides criteria for the treatment of hazardous waste prior to land disposal.                                                                                                                                                                                                                             | Response actions that involve excavating, treating, and redepositing hazardous soil would comply with LDRs. However, consolidation of contaminated soil within Block F for the purposes of reducing the size of the contaminated area may not constitute land disposal.                                                                                                                                                                                                                |
| OSHA Regulations,<br>General Industry<br>Standards                        | 29 CFR Part 1910               | Applicable             | Requires establishment of programs to assure worker health and safety at hazardous waste sites, including employee training requirements.                                                                                                                                                                                                                                                | These regulations would apply to all response activities.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OSHA Regulations,<br>Occupational Health and<br>Safety Regulations        | 29 CFR Part 1910,<br>Subpart Z | Potentially applicable | Establishes permissible exposure limits for workplace exposure to a specific listing of chemicals.                                                                                                                                                                                                                                                                                       | Standards are applicable for worker exposure to OSHA hazardous chemicals during response action activities.                                                                                                                                                                                                                                                                                                                                                                            |

Table 5-3

# Action-Specific Applicable or Relevant and Appropriate Requirements Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 2 of 3

| Requirement                                                                                | Citation                      | Status                               | Synopsis                                                                                                                                                                                                                                                                 | Evaluation/Action to be Taken                                                                                                                                                   |
|--------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Federal (continued)                                                                        |                               |                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                 |
| OSHA Regulations,<br>Recordkeeping,<br>Reporting, and Related<br>Regulations               | 29 CFR Part 1904              | Applicable                           | Provides recordkeeping and reporting requirements applicable to response action activities.                                                                                                                                                                              | These requirements apply to all site contractors and subcontractors and must be followed during all site work.                                                                  |
| OSHA Regulations,<br>Health and Safety<br>Standards                                        | 29 CFR Part 1926              | Applicable                           | Specifies the type of safety training, equipment, and procedures to be used during the site investigation and response action.                                                                                                                                           | All phases of the response action would be executed in compliance with this regulation.                                                                                         |
| RCRA Regulations,<br>Contingency Plan and<br>Emergency Procedures                          | 40 CFR 264,<br>Subpart D      | Potentially relevant and appropriate | Outlines requirements for emergency procedures to be followed in case of an emergency.                                                                                                                                                                                   | The administrative requirements established in this rule would be met for response actions involving the management of hazardous waste.                                         |
| RCRA Regulations,<br>Preparedness and<br>Prevention                                        | 40 CFR Part 264,<br>Subpart C | Potentially relevant and appropriate | Outlines requirements for safety equipment and spill control for hazardous waste facilities. Facilities must be designed, maintained, constructed, and operated to minimize the possibility of an unplanned release that could threaten human health or the environment. | Safety and communication equipment would be incorporated into all aspects of the response action process, and local authorities would be familiarized with site operations.     |
| RCRA Regulations,<br>Standards for Owners<br>and Operators of<br>Hazardous Waste<br>TSDFs. | 40 CFR Part 264               | Potentially relevant and appropriate | Establishes minimum national standards defining the acceptable management of hazardous wastes for owners and operators of facilities that treat, store, or dispose of hazardous wastes.                                                                                  | If response actions involving management of RCRA wastes at an off-site TSDF, or if RCRA wastes are managed on-site, the requirements of this rule would be followed.            |
| RCRA Regulations, Use<br>and Management of<br>Containers                                   | 40 CFR Part 264,<br>Subpart I | Potentially relevant and appropriate | Sets standards for the storage of containers of hazardous waste.                                                                                                                                                                                                         | This requirement would apply if a response action alternative involves the storage of a hazardous waste (i.e., contaminated soil) in containers prior to treatment or disposal. |
| Migratory Bird Treaty<br>Act                                                               | 16 USC 703-711                | Potentially applicable               | Protects migratory birds and their nests.                                                                                                                                                                                                                                | Proposed response action will not kill migratory birds or destroy their nests and eggs.                                                                                         |

# Action-Specific Applicable or Relevant and Appropriate Requirements Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 3 of 3

| Requirement                                                                    | Citation                           | Status                   | Synopsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evaluation/Action to be Taken                                                                                                                       |
|--------------------------------------------------------------------------------|------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| State                                                                          |                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| Maryland Hazardous<br>Waste Management<br>System                               | Title 26, Subtitle 13 of the COMAR | Potentially applicable   | Requires hazardous waste generators to ship their hazardous waste to a facility permitted to accept it or, with the appropriate permits, treat it themselves. Requires use of a certified hauler to ship hazardous waste off site, and shipment must be accompanied by a manifest. Requires compliance with regulations for the storage of the waste, and specifies procedures to prevent the occurrence of circumstances that would threaten human health or the environment. | These regulations would apply if waste on site was deemed hazardous and needed to be stored, transported, or disposed of properly.                  |
| Maryland Regulation of<br>Water Supply, Sewage<br>Disposal, and Solid<br>Waste | Title 26, Subtitle 4 of the COMAR  | Potentially applicable   | Sets the requirements for construction and operation for solid waste disposal facilities.                                                                                                                                                                                                                                                                                                                                                                                      | These requirements would apply if on-site waste was deemed non-hazardous solid waste and needed to be stored, transported, or disposed of properly. |
| Maryland General<br>Permit for Construction<br>Activity                        | Title 26, Subtitle 17 of the COMAR | Relevant and appropriate | Establishes requirements for stormwater management and erosion and sediment control at construction sites.                                                                                                                                                                                                                                                                                                                                                                     | Response actions involving excavation would require submittal of an erosion and sediment control plan and a stormwater management plan.             |

ARARs – applicable or relevant and appropriate requirements

CAA – Clean Air Act

CERCLA - Comprehensive Environmental Response Compensation, and Liability Act

CFR – Code of Federal Regulations

COMAR – Code of Maryland Regulations

LDRs – land disposal restrictions

MDE – Maryland Department of the Environment

NAAQS – National Ambient Air Quality Standards

OSHA - Occupational Safety and Health Act

RCRA – Resource Conservation and Recovery Act

TCLP – toxicity characteristic leaching procedure

TSDF – treatment, storage, and disposal facility

USC – United States Code

Table 5-4

## Remedial Action Objectives and General Response Actions Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

|                                                                                                                                                                                                                                                                                                              |           | General Response Actions  |             |                                |                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-------------|--------------------------------|---------------------------------------|--|--|--|--|--|
| Remedial Action Objectives                                                                                                                                                                                                                                                                                   | No Action | Institutional<br>Controls | Containment | Treatment – In situ or Ex situ | Removal and<br>Disposal<br>(off-site) |  |  |  |  |  |
| Reduce site related COC in Block F soils to 1 x 10 <sup>-5</sup> human health cancer risk limits for industrial workers exposed to COC via ingestion, dermal contact and inhalation.                                                                                                                         |           |                           | X           | X                              | X                                     |  |  |  |  |  |
| Excavation and offsite recycling or disposal of seven abandoned-in-<br>place former aviation fuel USTs at REC #5 in accordance with<br>Maryland Oil Control Program Guidance and COMAR 26.10. "Oil<br>Pollution and Tank Management" to obtain a clean closure in REC<br>#5 under a residential use scenario |           |                           |             |                                | Х                                     |  |  |  |  |  |

COC - chemical(s) of concern

COMAR - Code of Maryland Annotated Regulations

HI - hazard index

REC - recognized environmental concern

UST - underground storage tank

#### Results of Preliminary Technology Screening Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 1 of 4

|                     |                   |                                                                           |                                                                                                                   |                                                                                   | Quantitative Screening E                                                            | Based on Criteria Be                                                                                      | low                                                                                                                                                              |                                                                                                                           |                                                                                                                                                         |          |        |
|---------------------|-------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| General<br>Remedial | Remedial Action   | Process                                                                   | Description                                                                                                       |                                                                                   | tiveness (Primary)                                                                  |                                                                                                           |                                                                                                                                                                  | Dolotivo                                                                                                                  | Resu                                                                                                                                                    | ults     |        |
| Action              | Technology        | Option                                                                    | Description                                                                                                       | Effectiveness in Handling Volumes of Impacted Media                               | Impacts during Implementation                                                       | Reliability                                                                                               | Implementability                                                                                                                                                 | Relative<br>Cost                                                                                                          | Screening<br>Comment                                                                                                                                    | Retain   | Reject |
| No action           | None              | Not applicable                                                            | No activities conducted in the block to address contamination                                                     | Not applicable                                                                    | Not applicable                                                                      | Not reliable                                                                                              | Easy to implement                                                                                                                                                | Low cost                                                                                                                  | Required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); retained for baseline comparison to other technologies. | <b>✓</b> |        |
| Limited action      | Land use controls | Site use restrictions  Excavation restrictions                            | Administrative action using excavation permits and other land use prohibitions to restrict future site activities | Effective                                                                         | No impacts during implementation                                                    | Reliable provided land use restrictions and, excavation restrictions are well documented and implemented. | Easy to implement                                                                                                                                                | Low cost                                                                                                                  | This technology would leave soil contaminants in place but will lower risk, and will meet response action objectives (RAOs).                            | 1        |        |
| Containment         | Cover/<br>barrier | Soil cover/cap<br>that meets MDE<br>regulations<br>(COMAR<br>26.04.07.21) | Low permeability barriers used to minimize direct exposure to contaminants and prevents sediment runoff.          | Effective in containing and covering impacted soils                               | Large quantities of soil have to be transported to the block.                       | Reliable                                                                                                  | Easily implementable                                                                                                                                             | Moderate cost                                                                                                             | Cover/cap can be placed over the impacted soils.                                                                                                        | 1        |        |
| Removal             | Excavation        | Traditional excavation (with backhoe)                                     | Removal of contaminated soils by backhoe, bulldozer, loader, etc.                                                 | Very effective in eliminating future risk and eliminating future exposure pathway | Large quantities of impacted soils have to be transported to the disposal facility. | Reliable                                                                                                  | Easily implementable with traditional equipment. Depending on depth of excavation, may require dewatering of excavation and associated treatment of groundwater. | High. potential for large escalations in cost if area is not thoroughly characterized to ascertain impacted soil volumes. | Retained for removal of contaminated soil.                                                                                                              | <b>✓</b> |        |

#### Results of Preliminary Technology Screening Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 2 of 4

|                      |                   |                                                                |                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                 | Quantitative Screening E                                                                                                                                                           | Based on Criteria Be                                                                                                                                                     | low                                                                                    |                            | Results                                                                                                                                                                                                         |          |          |
|----------------------|-------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| General<br>Remedial  | Remedial Action   | Process                                                        | Description                                                                                                                                                                                                                                                                                                                                             | Effec                                                                                                             | tiveness (Primary)                                                                                                                                                                 |                                                                                                                                                                          |                                                                                        | Polotivo                   | Resu                                                                                                                                                                                                            | ilts     |          |
| Action               | Technology        | Option                                                         |                                                                                                                                                                                                                                                                                                                                                         | Effectiveness in Handling Volumes of Impacted Media                                                               | Impacts during Implementation                                                                                                                                                      | Reliability                                                                                                                                                              | Implementability                                                                       | Relative<br>Cost           | Screening<br>Comment                                                                                                                                                                                            | Retain   | Reject   |
|                      |                   | Stabilization/<br>solidification                               | Mixing of chemical agents in the soil to chemically bind, solidify, and reduce contaminant mobility                                                                                                                                                                                                                                                     | Well understood technology; can<br>be used in areas with target<br>inorganic concentrations and<br>PAHs           | Large quantities of soils have to be processed. Large quantities of stabilizing agents such as cement may have to be transported to the site.                                      | Reliable; will require bench-scale and possibly pilot testing to ascertain mix.                                                                                          | Implementable with traditional equipment                                               | Moderate cost              | Retained                                                                                                                                                                                                        | <b>√</b> |          |
| In situ<br>treatment |                   | Soil mixing with zero valent iron (ZVI) or emulsified nano ZVI | ZVI has been used in the permeable reactive barrier (PRB) to treat halogenated compounds and heavy metals. Nano-scale ZVI was developed to further enhance its effectiveness and the clean-up time. This technology involves mixing soil with nano-scale ZVI and an environmentally benign (food grade) surfactant or emulsifier such as vegetable oil. | This technology is potentially applicable to VOCs such as TCE; its applicability to PAHs unknown                  | Large quantities of soils have to be processed. Large quantities of ZVI may have to be transported to the site.                                                                    | Remediation with ZVI is an emerging technology.                                                                                                                          | Requires a bench-<br>scale and/or a pilot-<br>scale test prior to<br>implementation    | High cost                  | Rejected; has never<br>been used to treat<br>PAHs.                                                                                                                                                              |          | ~        |
|                      | Physical/chemical | Soil flushing                                                  | In situ flushing is accomplished by passing the extraction fluid (e.g., surfactants) through in-place soils using an injection or infiltration process. Extraction fluids must be recovered, treated, and possibly recycled.                                                                                                                            | This technology can be used to extract inorganics in soils; therefore it is ineffective for this remedial action. | Large quantities of soils have to be processed. A large quantity of surfactant may have to be transported to the site, and large volumes of extraction fluid have to be recovered. | There has been little commercial success with this technology. Not reliable since it mobilizes contaminants and the extraction fluid has to be recovered to recover COC. | Requires a bench-<br>scale and/or a pilot-<br>scale testing prior to<br>implementation | High cost                  | Rejected – This technology has had little commercial success; technology is not reliable because it mobilizes contaminants and the extraction fluid has to be recovered to recover COC, not effective for PAHs. |          | ~        |
|                      |                   | Soil vapor extraction (SVE)                                    | Vacuum is applied through vapor extraction wells to create a pressure gradient that induces gas-phase volatiles to diffuse through soil to extraction wells. This process must include a system for handling off-gases.                                                                                                                                 | This technology is typically applicable to VOCs and not PAHs because PAHs are not present in a vapor phase.       | No major impacts. Will require installation of SVE wells.                                                                                                                          | Not effective for PAHs                                                                                                                                                   | Can be easily implemented                                                              | Moderate cost              | Rejected; not effective for PAHs.                                                                                                                                                                               |          | <b>*</b> |
|                      | Biological        | Enhanced<br>bioremediation/<br>Landfarming                     | Nutrients and amendments are added to the soil to promote biodegradation of organic compounds.                                                                                                                                                                                                                                                          | Should land farming or similar technology be used, it will be effective in only the top 2 to 3 feet.              | Bioremediation will take a long time to implement.                                                                                                                                 | Reliable.                                                                                                                                                                | Easily implementable with standard construction techniques                             | Low to<br>moderate<br>cost | Retained                                                                                                                                                                                                        | 1        |          |

#### Results of Preliminary Technology Screening Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 3 of 4

|                               |                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    | Quantitative Screening E                                                                                 | Based on Criteria Be                                                                                   | low                                                                                                    |                       |                                                                                                                                                                                                      |        |          |
|-------------------------------|------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| General<br>Remedial           | Remedial<br>Action     | Process                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                    | tiveness (Primary)                                                                                       |                                                                                                        |                                                                                                        | Dolotivo              | Resu                                                                                                                                                                                                 | ults   |          |
| Action                        | Technology             | Option                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Effectiveness in Handling Volumes of Impacted Media                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                        | Implementability                                                                                       | Relative<br>Cost      | Screening<br>Comment                                                                                                                                                                                 | Retain | Reject   |
| In situ treatment (continued) | Biological (continued) | Bioventing                                       | Oxygen is delivered to contaminated unsaturated soils by forced aeration (either extraction or injection of air) to increase oxygen concentrations and stimulate biodegradation. In contrast to soil vapor extraction, bioventing uses low air flow so as to provide only enough oxygen to sustain microbial activity.                                                                                                                                                                                                                                                                   | Bioventing is an <i>in situ</i> technology that degrades compounds in soil by providing oxygen to existing soil microorganisms Soil grain size and moisture content significantly affect its performance. Site geology indicates presence of some clayey soils, which reduce bioventing performance significantly. | Bioremediation will take a long time to implement.                                                       | May not be effective due to site geology.                                                              | Easily implementable with standard construction techniques                                             | Low to moderate cost  | Rejected; site geology indicates the presense of some fine grain soils which would reduce bioventing performance.                                                                                    |        | ~        |
|                               |                        | Phytoremediation                                 | Use of selected plants cultivated in contaminated soil for uptake of metallic contaminants, or enhancement of organic contaminant biodegradation by indigenous microorganisms in the root zone                                                                                                                                                                                                                                                                                                                                                                                           | Is effective only on soils that are in the root zone of plants that are used for phytoremediation                                                                                                                                                                                                                  | Phytoremediation will take a long time to implement.                                                     | Will require plant<br>screening studies to<br>assess effectiveness                                     | Moderately implemetable; use of the block may have to be discontinued in the areas requiring treatment | Low to moderate cost  | Retained.                                                                                                                                                                                            | 1      |          |
|                               | Physical/<br>chemical  | Chemical Fixation/ Stabilization/ Solidification | Mixing of chemical agents to bind, solidify, and reduce contaminant mobility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Well understood technology; can<br>be utilized in areas with target<br>PAHs                                                                                                                                                                                                                                        | Large quantities of soils have to be processed and may require onsite relocation or transported offsite. | Reliable                                                                                               | Easily implementable with traditional construction techniques                                          | Moderate to high cost | Rejected – ex situ option is more expensive than in situ option.                                                                                                                                     |        | <b>✓</b> |
| Ex situ<br>treatment          | Biological             | Biopiles                                         | Excavated soils are mixed with soil amendments and placed on a lined treatment area that includes leachate collection and aeration. This technology is used to treat organic contaminants in excavated soils through biodegradation. Moisture, heat, nutrient, oxygen, and pH need to be controlled. The designated treatment area will be covered or contained with an impermeable liner to minimize runoff and leaching contaminants into groundwater or other uncontaminated areas. Soil piles can be up to 20 feet high with an air distribution system buried under the soil piles. | Biopile technology has been used for treatment of halogenated and non-halogenated VOCs, SVOCs, and pesticides. However, its performance varies significantly at sites. A bench-scale and a pilot-scale test should be conducted to determine the biodegradability of COC at the site.                              | Substantial space may be required. Bioremediation will take a long time to implement.                    | Reliability has to be assessed through bench-scale testing. PAHs are comparatively slow to biodegrade. | Easily implementable with standard construction techniques                                             | Moderate<br>cost      | Rejected; this process option would take a significantly large amount of time to reach remedial action objectives. Other process options would be as effective and require a shorter amount of time. |        | <b>✓</b> |

## Results of Preliminary Technology Screening Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 4 of 4

|                               |                           |                                                                                      | Description                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    | Quantitative Screening E                                                                                               | Based on Criteria Be                                                                                   | low                                                                                                                                               |                  | Results                                                                                                                                                                                                      |          |          |
|-------------------------------|---------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| General<br>Remedial           | Remedial Action           | Process                                                                              |                                                                                                                                                                                                                                                                                                 | Effec                                                                                                                                                                                                                                                              | tiveness (Primary)                                                                                                     |                                                                                                        |                                                                                                                                                   | Dolotivo         | Kesi                                                                                                                                                                                                         | uits     |          |
| Action                        | Technology                | Option                                                                               |                                                                                                                                                                                                                                                                                                 | Effectiveness in Handling Volumes of Impacted Media                                                                                                                                                                                                                | Impacts during Implementation                                                                                          | Reliability                                                                                            | Implementability                                                                                                                                  | Relative<br>Cost | Screening<br>Comment                                                                                                                                                                                         | Retain   | Reject   |
| Ex situ treatment (continued) | Biological<br>(continued) | Composting                                                                           | Composting is a biological process to convert organic contaminants to innocuous end products. Typically, thermophilic conditions (i.e., 54 to 65 degrees Celsius) must be maintained. Soils are excavated and mixed with bulking agents such as wood chips and mixed to promote biodegradation. | Composting results in a volumetric increase because of the addition of amendment materials. Composting has been demonstrated to degrade many organic contaminants in soils, including PAHs. All materials and equipment used for composting are readily available. | Similar to biopiles, windrow composting requires substantial space. Bioremediation will take a long time to implement. | Reliability has to be assessed through bench-scale testing. PAHs are comparatively slow to biodegrade. | Easily implementable with standard construction techniques                                                                                        | Moderate<br>cost | Retained, however this process option would take a significantly large amount of time to reach remedial action objectives. Other process options would be as effective and require a shorter amount of time. |          | ~        |
| Dignogal                      | Off-site                  | Hazardous waste<br>landfilling/ non-<br>hazardous waste<br>landfilling/<br>recycling | Disposal of excavated wastes and treatment residuals in a permitted RCRA Subtitle C or D facility, or at a permitted recycling facility                                                                                                                                                         | Very effective in eliminating future risk and eliminating future exposure pathways, provided all areas with impacted soils have been identified.                                                                                                                   | Large quantities of soil have to be transported.                                                                       | Reliable                                                                                               | Easily implementable with traditional technology – Has to be used in conjunction with excavation and removal                                      | High cost        | Retained landfilling<br>or recycling, to be<br>used in conjunction<br>with other response<br>action technologies                                                                                             | <b>✓</b> |          |
| Disposal                      | On-site                   | Consolidation                                                                        | Excavation and relocation of contaminated soil to minimize space and closure requirements                                                                                                                                                                                                       | Effective in eliminating future risk and eliminating future exposure pathways, provided all areas with impacted soils have been identified.                                                                                                                        | No area within MRC has been identified for relocation of impacted soils.                                               | Reliable                                                                                               | Technology can be implemented provided it is used in conjunction with ex situ stabilization and placement of a cover/cap over the impacted soils. | High cost        | Rejected; no area at<br>Middle River<br>Complex has been<br>identified for<br>consolidation.                                                                                                                 |          | <b>✓</b> |

#### Abbreviations:

COC – chemicals of concern COMAR – Code of Maryland Regulations MDE – Maryland Department of the Environment MRC – Middle River Complex

PAHs – polycyclic aromatic hydrocarbons PRB – permeable reactive barrier RCRA – Resource Conservation and Recovery Act SVE – soil vapor extraction

SVOCs – semivolatile organic compounds TCE – trichloroethene VOCs – volatile organic compounds

ZVI – zero valent iron

Table 5-6

## Technologies and Process Options for Soil Remedial Actions Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

| General Response Action | Remedial Action Technology | Process Option                                                         |  |  |  |
|-------------------------|----------------------------|------------------------------------------------------------------------|--|--|--|
| No Action               | None                       | Not applicable                                                         |  |  |  |
| Limited Action          | Land Use Controls          | Site use restrictions                                                  |  |  |  |
| Limited Action          | Land Use Controls          | Excavation restrictions                                                |  |  |  |
| Containment             | Cover/Barrier              | Soil cover/cap that meets MDE regulations (COMAR 26.04.07.21)          |  |  |  |
| Removal                 | Excavation                 | Traditional excavation (with backhoe)                                  |  |  |  |
| In situ Treatment       | Physical/Chemical          | Stabilization/solidification                                           |  |  |  |
| In situ Treatment       | Biological                 | Enhanced bioremediation/landfarming                                    |  |  |  |
| In situ Treatment       | Biological                 | Phytoremediation                                                       |  |  |  |
| Disposal                | Off-Site                   | Hazardous waste landfilling/non-hazardous waste landfilling /recycling |  |  |  |

COMAR - Code of Maryland Regulations

MDE - Maryland Department of the Environment

#### Development of Remedial Alternatives Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

|                                                                                                                                                                                                                                                                                                                      |                                                   | Alternatives   |                                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                      |                                                   | 1              | 2                                                                                                                                                                                                                | 3                                                                                                                                                                                                  | 4                                                                                                                         | 5                                                                                                                                                                                 | 6                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                      |  |  |  |
| Remedial Action C<br>Risk Pathw<br>Remedial Action<br>Objective                                                                                                                                                                                                                                                      | Risk Pathway/ Compliance with Oil Control Program |                | Institutional Controls                                                                                                                                                                                           | Excavation and off-site disposal of impacted to a depth of two and a half feet, underground storage tank (UST) removal, and institutional controls                                                 | Soil cover over impacted areas, UST removal, and institutional controls                                                   | Enhanced<br>bioremediation of<br>impacted surface soils,<br>UST removal, and<br>institutional controls                                                                            | In situ stabilization of impacted soils to the groundwater table, UST removal, and institutional controls                                                                                    | Phytoremediaiton in impacted areas, UST removal, and institutional controls                                                                                                                                                                                            |  |  |  |
| Reduce site-related COC in Block F soils to a 1×10 <sup>-5</sup> human health cancer-risk limit for industrial workers exposed to COC via ingestion, dermal contact, and inhalation                                                                                                                                  | Ingestion, inhalation, and dermal contact         | Not Applicable | Risk pathway is mitigated via:  I and use restrictions Excavation restrictions Excavation restrictions Access controls  Requires use of appropriate personal protective equipment and health and safety measures | Risk pathway is eliminated via excavation and disposal of soils to the water table.  Institutional controls will mitigate risk associated with saturated soils (see description in Alternative 2). | Risk pathway is mitigated via placement of a cover/ cap.  Institution controls are required for maintenance of cover/cap. | Risk pathway is mitigated via treatment of surface soils.  Institutional controls will mitigate risk associated with soils at depths > 2 feet (see description in Alternative 2). | Risk pathway is mitigated via stabilization of soils down to the water table.  Institutional controls will mitigate risk associated with saturated soils (see description in Alternative 2). | While the phytoremediation technology may be promising, inconsistences in the rooting system cannot guarantee the RAO will be met in the impacted areas; therefore, it is uncertain that the risk pathway will be mitigated in the implementation of this alternative. |  |  |  |
| Excavation and offsite recycling or disposal of abandoned-in-place former aviation fuel underground storage tanks (USTs) at REC #5 in accordance with Maryland Oil Control Program Guidance and COMAR 26.10 "Oil Pollution and Tank Management" to obtain a clean closure in REC #5 under a residential use scenario | Compliance<br>with OCP<br>Regulations             | Not Applicable | Not in compliance with OCP regulations                                                                                                                                                                           | In compliance with OCP regulations by removing USTs                                                                                                                                                | In compliance with OCP regulations by removing USTs                                                                       | In compliance with OCP regulations by removing USTs                                                                                                                               | In compliance with OCP regulations by removing USTs                                                                                                                                          | In compliance with OCP regulations by removing USTs                                                                                                                                                                                                                    |  |  |  |

# Ranking of Alternatives Based on Preliminary Screening Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland

| Ranking | Alternative                                                                                                                                                      | Retained?                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1       | Alternative 2: Institutional controls                                                                                                                            | yes                          |
| 2       | Alternative 3. Excavation and off-site disposal of impacted soilsto a depth of two feet, removal of underground storage tanks (USTs), and institutional controls | yes                          |
| 3       | Alternative 6. <i>In situ</i> stabilization of impacted soils to the groundwater table, UST removal, and institutional controls                                  | yes                          |
| 4       | Alternative 5. Enhanced bioremediation of impacted surface soils , UST removal, and institutional controls                                                       | yes                          |
| 5       | Alternative 4. Limited excavatioon and soil cover over impacted areas, UST removal, and institutional controls                                                   | yes                          |
| 6       | Alternative 7. Phytoremediaiton in impacted areas, UST removal, and institutional controls                                                                       | no                           |
| 7       | No action                                                                                                                                                        | yes, retained for comparison |

Table 5-9

# Comparative Analysis of Alternatives Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 1 of 4

| Evaluation<br>Criteria           | Evaluation<br>Sub-Criteria                                                                | Alternative 1       |                                                              |                                                                               |                                                                 |                                                                                                                                                    |                                                                                                                                     |
|----------------------------------|-------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Long-term effectiveness and      | Residual potential<br>long-term<br>effectiveness and<br>risk (assuming<br>remedy failure) | Does not alter risk | Does not alter risk<br>should institutional<br>controls fail | Very effective in eliminating risk                                            | Lowers risk provided cover is maintained during future site use | Alternative is effective<br>for top two feet<br>(surface) soils provided<br>landfarming can lower<br>COC concentrations to<br>the required degree. | Alternative does not lower concentrations. Stabilized material could eventually degrade.                                            |
| permanence                       | Technology<br>reliability                                                                 | Very unreliable     | Reliable to the extent institutional controls are effective  | Reliable technology                                                           | Reliable technology provided soil cover is maintained           | Reliability of<br>technology to be<br>ascertained by pilot<br>testing                                                                              | Reliable technology-<br>Stabilized material<br>could degrade over<br>time. Site reliability to<br>be determined by pilot<br>testing |
| Reduction of toxicity, mobility, | Destruction of hazardous constituents  No COC destruction                                 |                     | No COC destruction                                           | No COC destruction,<br>only removal and<br>relocation to off-site<br>landfill | No COC destruction                                              | Some destruction of constituents through degradation.                                                                                              | No COC destruction, only stabilization                                                                                              |
| and volume<br>through treatment  |                                                                                           |                     | No treatment                                                 | Treatment is completely irreversible since impacted soils are removed.        | Treatment can be reversed due to erosion or loss of soil cover. | Requires pilot testing                                                                                                                             | Stabilized soils could eventually degrade.                                                                                          |

Table 5-9

# Comparative Analysis of Alternatives Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 2 of 4

| Evaluation<br>Criteria | Evaluation<br>Sub-Criteria                                | Alternative 1                                                    | Alternative 2                     | Alternative 3                                                                                                                                                                                        | Alternative 4                                                                                                                             | Alternative 5                                                                                                       | Alternative 6                                                                                         |
|------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Short-term             | Time to achieve<br>RAOs                                   | Very long timeframe                                              | Very long timeframe               | Will require a long<br>duration since large<br>volumes of soil are to<br>be removed (2 years).                                                                                                       | Will require long duration for the installation of soil covers (1 year).                                                                  | To be ascertained with a pilot test (about 4 or 5 years)                                                            | Will likely take 2 years<br>to implement                                                              |
| effectiveness          | Un-mitigable adverse impacts during construction and OM&M |                                                                  | None                              | Will require dust<br>control, air monitoring,<br>sidewall protection, and<br>possibly dewatering.                                                                                                    | Grading and dust<br>control will be<br>required.                                                                                          | Will require dust control                                                                                           | Possible degradation of stabilized material over time                                                 |
| Implementability       | Obtaining other approvals                                 | It is unlikely this alternative will get the required approvals. | No additional approvals<br>needed | Will require: critical area permits, sediment erosion control permits, air monitoring during remedial action implementation, groundwater disposal permits, treatment/disposal facility requirements. | Will require critical area permits, sediment and erosion control (SEC) permits, and air monitoring during remedial action implementation. | Will require: critical<br>area permits, SEC<br>permits, air monitoring<br>during remedial action<br>implementation. | Will require: critical area permits SEC permits air monitoring during remedial action implementation. |

Table 5-9

# Comparative Analysis of Alternatives Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 3 of 4

| Evaluation<br>Criteria          | Evaluation<br>Sub-Criteria                     | Alternative 1                            | Alternative 2                             | Alternative 3                                                                                                                                          | Alternative 4                                                        | Alternative 5                                                                                      | Alternative 6                                                                |
|---------------------------------|------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                 | Constructability Easily constructed            |                                          | Easily constructed                        | Very involved; requires shoring, dewatering, treatment, and disposal of large soil volumes. Can be implemented using standard construction techniques. | Difficult to implement over large areas that are not contiguous.     | Can be constructed with standard equipment and machinery for tilling and application of amendments | Can be constructed with standard equipment and techniques.                   |
| Implementability<br>(continued) | Availability of experts and technology         | Does not require any expertise           | Expertise is available.                   | Expertise and technology are readily available.                                                                                                        | Expertise and technology are readily available.                      | Expertise and technology are available. Technology viability can be ascertained by pilot testing.  | Expertise and technology are readily available.                              |
|                                 | Adaptability to modify/ update as necessary    | Alternative can be modified as required. | Alternative can be modified as required.  | Alternative can be modified as required.                                                                                                               | Alternative can be modified as required.                             | Cannot be modified, since the limits of COC degradation will dictate the final concentration.      | Alternative can be modified as required.                                     |
|                                 |                                                |                                          | Monitoring must be incorporated with ICs. | Removal of impacted soils can be ascertained by sampling.                                                                                              | Monitoring of soil cover will ascertain removal of exposure pathway. | Degradation of COC in impacted soils can be ascertained by sampling.                               | Sampling will ascertain level of stabilization of soils.                     |
| Environmental                   | Environmental Energy use No energy usage No en |                                          | No energy usage                           | Largest amount of energy used compared to other alternatives                                                                                           | Less than half the<br>amount of energy used<br>for Alternative 3     | Less than half the<br>amount of energy used<br>for Alternative 3                                   | Second largest amount<br>of energy used<br>compared to other<br>alternatives |

#### Table 5-9

## Comparative Analysis of Alternatives Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 4 of 4

| Evaluation<br>Criteria       | Evaluation<br>Sub-Criteria<br>Alternative 1 |              | Alternative 2 | Alternative 3                                                                                                                                       | Alternative 4                                                                            | Alternative 5                                                                                                                                   | Alternative 6                                                                                                        |
|------------------------------|---------------------------------------------|--------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Environmental<br>(continued) | Air emissions                               | No emissions | No emissions  | Large quantities of emissions during excavation; transportation of impacted soils to disposal facilities; transportation of clean fill to the site. | Small quantities of<br>emissions during<br>transportation of soils<br>to site for cover. | Large quantity of emissions during the production of the bioamendment and during the use of equipment during implementation of this alternative | Small quantity of<br>emissions during the<br>use of equipment<br>during the<br>implementation of this<br>alternative |
|                              | Impacts on water resources                  | No impacts   | No impacts    | Requires water for dust control                                                                                                                     | Requires water for dust control                                                          | Requires water for dust control and to increase the soil moisture content to 60%                                                                | Requires water for mixing soils and stabilizing agents                                                               |
| Costs                        | Capital                                     | \$0          | \$139,155     | \$958,946                                                                                                                                           | \$595,944                                                                                | \$797,054                                                                                                                                       | \$916,826                                                                                                            |
| Costs                        | O&M                                         | \$0          | \$162,000     | \$162,000                                                                                                                                           | \$324,000                                                                                | \$220,146                                                                                                                                       | \$162,000                                                                                                            |

COC - chemicals of concern

O&M - operation and maintenance

ICs - institutional controls OM&M- operation, maintenance, and monitoring

RAOs - remedial action objectives

SEC - sediment and erosion control

Alternative 1:No Action

Alternative 2: Institutional Controls

Alternative 3: Excavation and off-site disposal of impacted soils to a depth of two feet, removal of underground storage tanks (USTs), and institutional controls

Alternative 4: Limted excavation and soil cover over impacted areas, UST removal, and institutional controls

Alternative 5: Enhanced bioremediation of impacted surface soils, UST removal, and institutional controls

Alternative 6: In situ stabilization of impacted soils to the groundwater table, UST removal, and institutional controls

**Table 5-10** 

## Criteria Weighting and Ranking Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 1 of 3

|        |                                 | W      | leighting                             |        |                                      |                                       |               | Ran           | king          |               |               |               |
|--------|---------------------------------|--------|---------------------------------------|--------|--------------------------------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Weight | Criteria                        | Weight | Sub-Criteria 1                        | Weight | Sub-Criteria 2                       | Criteria/<br>Sub-Criteria             | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | Alternative 6 |
| 100    | Long-term effectiveness and     | 50     | Residual potential risk               |        |                                      | Residual potential risk               | 0.00          | 3.00          | 9.00          | 5.00          | 6.00          | 6.00          |
| 100    | permanence                      | 100    | Technology reliability                |        |                                      | Technology reliability                | 0.00          | 7.00          | 10.00         | 9.00          | 6.00          | 6.00          |
| 50     | Reduction of toxicity, mobility | 50     | Destruction of hazardous constituents |        |                                      | Destruction of hazardous constituents | 0.00          | 0.00          | 0.00          | 0.00          | 7.00          | 7.00          |
|        | and volume<br>through treatment | 50     | Irreversibility of treatment          |        |                                      | Irreversibility of treatment          | 0.00          | 0.00          | 9.00          | 5.00          | 8.00          | 5.00          |
|        |                                 | 50     | Time to achieve<br>RAOs               |        |                                      | Time to achieve<br>RAOs               | 0.00          | 10.00         | 8.00          | 9.00          | 4.00          | 8.00          |
|        |                                 |        |                                       | 100    | Protect community                    | Protect community                     | 10.00         | 10.00         | 3.00          | 7.00          | 7.00          | 8.00          |
| 50     | Short-term effectiveness        | 75     | Un-mitigable adverse impacts          | 75     | Protect construction workers         | Protect construction workers          | 10.00         | 10.00         | 1.00          | 5.00          | 7.00          | 7.00          |
|        |                                 |        |                                       | 50     | Minimize<br>environmental<br>impacts | Minimize<br>environmental<br>impacts  | 10.00         | 10.00         | 1.00          | 5.00          | 7.00          | 7.00          |

**Table 5-10** 

## Criteria Weighting and Ranking Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 2 of 3

|        |                              | V      | leighting                              |        |                            |                                        |                          | Ranl          | king          |               |               |               |
|--------|------------------------------|--------|----------------------------------------|--------|----------------------------|----------------------------------------|--------------------------|---------------|---------------|---------------|---------------|---------------|
| Weight | Criteria                     | Weight | Sub-Criteria 1                         | Weight | Sub-Criteria 2             | Criteria/<br>Sub-Criteria              | Alternative 1            | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | Alternative 6 |
| 100    | Implementability             | 75     | Obtaining other approvals              |        |                            | Obtaining other approvals              | 10.00                    | 8.00          | 6.00          | 3.00          | 6.00          | 7.00          |
|        |                              | 50     | Constructability                       |        |                            | Constructability                       | 10.00                    | 10.00         | 5.00          | 3.00          | 7.00          | 7.00          |
|        | In also antaleilite          | 50     | Availability of experts and technology |        |                            | Availability of experts and technology | 10.00                    | 10.00         | 9.00          | 10.00         | 5.00          | 5.00          |
| 100    | Implementability (continued) | 25     | Adaptability to modify/update          |        |                            | Adaptability to modify/update          | 10.00                    | 10.00         | 8.00          | 4.00          | 7.00          | 7.00          |
|        |                              | 75     | Effectiveness of monitoring            |        |                            | Effectiveness of monitoring            | 0.00                     | 2.00          | 8.00          | 4.00          | 6.00          | 6.00          |
|        |                              | 75     | Energy use                             |        |                            | Energy use                             | 10.00                    | 10.00         | 1.96          | 6.74          | 6.96          | 0.00          |
|        |                              |        |                                        | 50     | GHG emissions              | GHG emissions                          | 10.00                    | 10.00         | 5.12          | 8.47          | 7.82          | 0.00          |
|        |                              | 50     | Air emissions                          | 25     | NO <sub>x</sub> emissions  | NO <sub>x</sub> emissions              | issions 10.00 10.00 0.00 | 0.00          | 8.00          | 4.20          | 7.70          |               |
| 50     | Environmental                | 30     | 7 III CIIII SSIOIIS                    | 75     | SO <sub>x</sub> emissions  | SO <sub>x</sub> emissions              | 10.00                    | 10.00         | 0.00          | 7.80          | 5.70          | 6.60          |
|        |                              |        |                                        | 50     | PM <sub>10</sub> emissions | PM <sub>10</sub> emissions             | 10.00                    | 10.00         | 0.00          | 10.00         | 10.00         | 10.00         |
|        |                              | 25     | Impacts on water resources             |        |                            | Impacts on water resources             | 10.00                    | 10.00         | 9.10          | 9.10          | 0.00          | 7.80          |

#### **Table 5-10**

## Criteria Weighting and Ranking Block F Soil Remedial Action Plan Lockheed Martin Corporation Middle River Complex Middle River, Maryland Page 3 of 3

|        |          | W                                     | eighting |                |                           |                |               | Ran           | king          |               |               |       |
|--------|----------|---------------------------------------|----------|----------------|---------------------------|----------------|---------------|---------------|---------------|---------------|---------------|-------|
| Weight | Criteria | Criteria Weight Sub-Criteria 1 Weight |          | Sub-Criteria 2 | Criteria/<br>Sub-Criteria | Alternative 1  | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | Alternative 6 |       |
| 75     | Costs    | 50                                    | Capital  |                |                           | Capital        | 10.00         | 8.61          | 0.00          | 3.21          | 1.61          | 0.42  |
| 73     | Costs    | 50                                    | O&M      |                |                           | O&M            | 10.00         | 5.40          | 5.52          | 0.64          | 0.00          | 5.40  |
|        |          |                                       |          |                |                           | TOTAL<br>SCORE | 0.415         | 0.543         | 0.609         | 0.549         | 0.564         | 0.564 |

#### Notes:

GHG - greenhouse gases  $PM_{10}$  - respirable particulate matter  $NO_x$  - nitrogen oxides O&M - operation and maintenance  $SO_x$  - sulfur oxides RAOs - remedial action objectives

Alternative 1:No Action

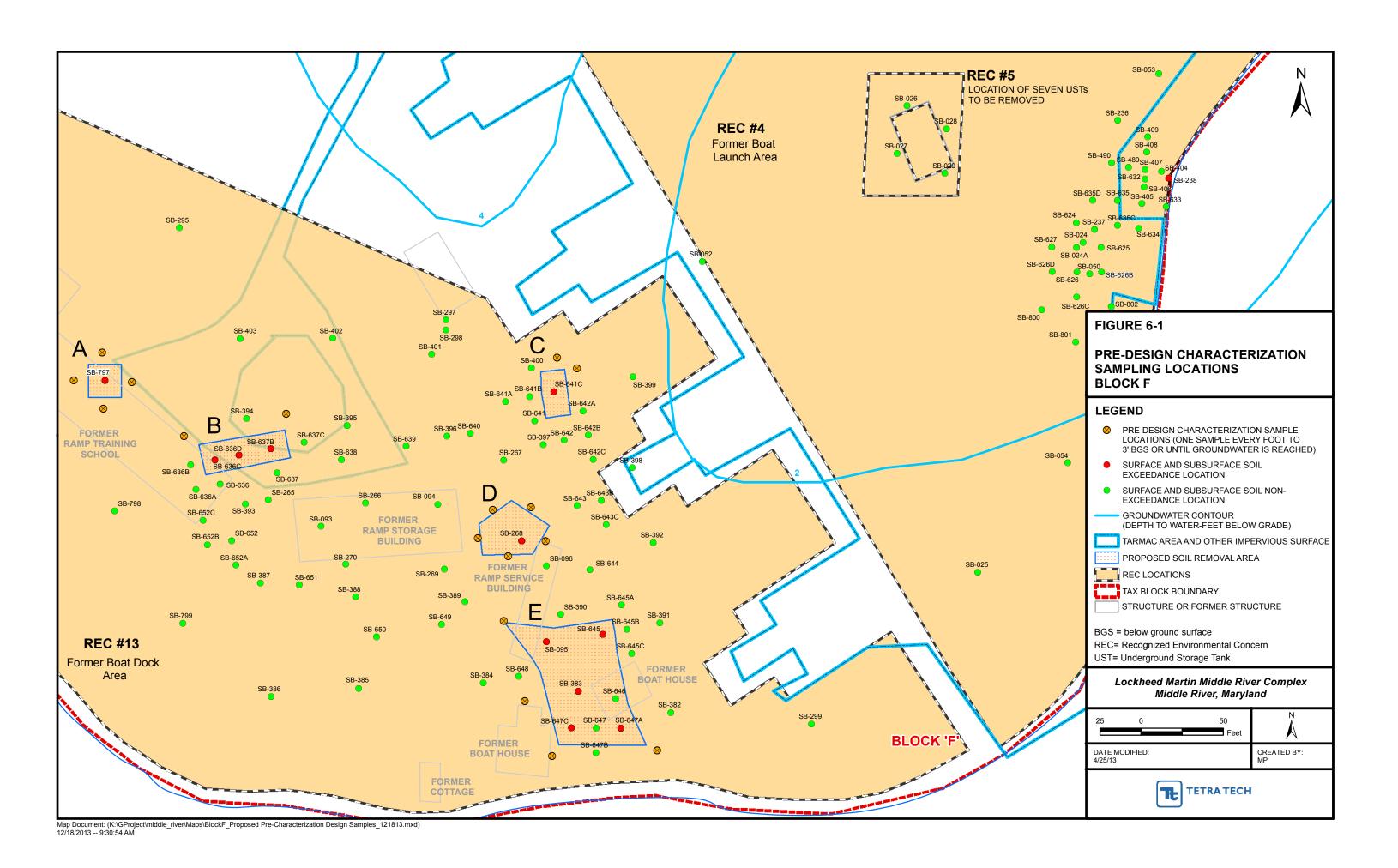
Alternative 2:Institutional Controls

Alternative 3: Excavation and off-site disposal of impacted soils to a depth of two feet, removal of underground storage tanks (USTs), and institutional controls

Alternative 4: Limited excavation and soil cover over impacted areas, UST removal, and institutional controls

Alternative 5: Enhanced bioremediation of impacted surface soils, UST removal, and institutional controls

Alternative 6: In situ stabilization of impacted soils to the groundwater table, UST removal, and institutional controls


# Section 6 Design Characterization Sampling

The residual risk analysis (RRA) performed on Block F soils (see Section 4) identified areas that must be remediated to achieve "representative" soil concentrations that do not exceed the preliminary remediation goal (PRG) established for benzo(a)pyrene equivalent (BaPEq), the chemical of concern (COC) in Block F soils. The RRA was conducted using sample location data from all previous investigations detailed in Section 2.3. The RRA process consists of ranking sample locations from most contaminated to least contaminated, and then sequentially "removing" sample results/locations from the upper confidence level (UCL) calculation until the 95% UCL concentration for the COC does not exceed the industrial risk-based PRG associated with the remedial action objective (RAO) target residual cancer risk (1 x 10<sup>-5</sup>). A detailed description of the RRA process can be found in Section 4.

The remedial areas are comprised of sample locations identified for elimination during the RRA "removal" process. Some additional elevated soil sample results (e.g., exceeding 2.9 milligrams per kilogram [mg/kg] for BaPEq) not requiring removal by calculation were also included in the remedial action area to provide a margin of safety in attaining the target residual risk. The limits of remediation are presented in Figure 4-1 in Section 4. The limits of the remediation areas were established along the midpoints between impacted soil samples and the nearest sample to remain in place.

Characterization sampling will be conducted during design around selected areas to better define the areas designated for remediation. Seventeen samples will be collected around areas A, B, C, D, and E (Figure 6-1). Soil samples will be collected in one-foot increments down to three feet or until groundwater is reached, whichever occurs first. Soils will be chemically analyzed for BaPEq. Figure 6-1 shows the proposed sample locations for design characterization sampling. A complete sampling and analysis plan will be prepared during the design phase of the remedial

action and submitted to the Maryland Department of the Environment as a RAP addendum. Sampling will be completed before remediation begins. The results of the sampling will be used to re-evaluate the residual risk calculation and using that analysis to determine if the current proposed excavation areas require adjustment. Any adjustments will be incorporated into the final remedial design documents.



#### Section 7

## Contingency Measures for the Selected Remedial Action

The proposed remedial action will remove and dispose of soil with chemicals of concern (COC) concentrations such that cumulative residual human health risk associated with an industrial worker's exposure to soils in Block F will be less than  $1\times10^{-5}$  risk level for benzo(a)pyrene equivalent (BaPEq). The proposed remedial action will also remove previously abandoned-in-place underground storage tanks (USTs) and associated piping; remove soil associated with the USTs with total petroleum hydrocarbons (TPH)-diesel-range organic (DRO) and TPH-gasoline-range organic (TPH-GRO) concentrations greater than Maryland Department of the Environment (MDE) Oil Control Program (OCP) soil cleanup standards; and implement institutional controls.

#### 7.1 EXCAVATION AREAS CONTINGENCY MEASURES

The proposed remedial alternative for Block F (Alternative 3) includes removal of soils to a depth of two feet in areas identified in the residual-risk analysis as impacted. Excavation dewatering will not be required for the actual remedy; however, contingencies must be included in the design to provide for excavation dewatering and handling of dewatering fluid in the event it is required (e.g., heavy rainfall, unanticipated groundwater intrusion, etc.). Dewatering procedures are described in Section 8.1.2.

Following removal activities in soil excavation areas A through E of Figure 6-1, the base and sidewalls of the soil removal areas will be sampled and analyzed for polycyclic aromatic hydrocarbons (PAHs). Confirmatory sampling results from side wall samples of the soil excavation areas will be used in the calculation of residual risk, as defined in Section 8, to confirm that remaining soil BaPEq concentrations satisfy remedial action objective (RAO) No. 1. Residual risk is calculated using the 95% upper confidence limit of residual COC concentrations. Once verification sampling has been performed, a new set of Block F chemical data will be

available to incorporate into the residual-risk calculation. If a verification sample causes the 95% upper confidence limit (UCL) to exceed the preliminary remediation goal (PRG) for the BaPEq (2.9 mg/kg), then an additional 2 feet of soil will be removed laterally and verification sampling will be repeated until acceptable results are obtained in the residual risk calculation.

#### 7.2 UNDERGROUND STORAGE TANK REMOVAL CONTINGENCY MEASURES

The proposed remedial alternative incorporates removal of seven USTs at recognized environmental condition (REC) #5. It is assumed that the USTs are empty and have not leaked to the surrounding soil. The following contingency measures must be built into the design and implementation of the chosen remedial alternative:

- As required by the MDE OCP, following UST removal and excavation, the soil will be sampled for TPH-DRO, TPH-GRO, and VOCs. If the analytical results show contamination above the MDE soil cleanup standards, then additional soil will be excavated and disposed of off-site.
- If the USTs are found to contain fuel, the tanks will be emptied and decommissioned before removal.
- If the USTs are found to contain sand or flowable fill, the material in the tanks would be removed and any oil-contaminated sand or fill should be characterized and properly disposed. The steel tanks would be cleaned and rendered suitable for recycling. The tanks would be cut, if necessary, to remove the sand or fill.

Confirmatory sampling will also be conducted in the UST removal area to verify removal of soils with TPH-DRO and TPH-GRO concentrations greater than the MDE OCP cleanup goal of 230 mg/kg, and/or VOCs concentrations greater than MDE residential cleanup standards. Details regarding confirmation soil sampling can be found in Section 8.1.4. Although TPH-DRO, TPH-GRO, and VOCs are not risk-driving COC in the soil remedial action at Block F, additional soil removal may be required in the UST area footprint until the base and sidewalls sample concentrations are confirmed to be below residential MDE cleanup standards. Alternatively, if residential standards cannot be practically achieved by completing additional excavation, then site closure will be pursued in conjunction with the Baltimore County OCP inspector approval to use land use controls to limit future access to soils left in place exceeding these screening criteria.

#### **Section 8**

#### **Proposed Remedial Actions**

This section presents the conceptual design for the proposed remedial action for soil at Block F. The selected remedial alternative, Alternative 3, involves excavation and disposal of impacted soils to a depth of two feet below ground surface (bgs) or to the groundwater table, whichever is encountered first; removal of seven underground storage tanks (USTs); and implementation of institutional controls. A site plan presenting the layout of the preliminary remedial design is in Figure 4-1. This proposed conceptual design may be altered during the design characterization sampling presented in Section 6, or during the full detailed-design and permitting process that will precede implementation.

A final soil remedial action design will be developed following approval of this remedial action plan (RAP). It will provide the final design-basis for the remedial action and describe the areas and volumes of soil to be excavated and the volume and type of fill material to be used. The remedial action implementation schedule is in Section 10. The soil remedial-action design will be submitted to the Maryland Department of the Environment (MDE) as a RAP addendum.

#### 8.1 SUMMARY OF MAJOR COMPONENTS

Major components of the remedial action necessary to achieve a No Further Action site closure from MDE include:

• Removing soil with chemical of concern (COC) concentrations greater than the preliminary remedial goal (PRGs) in designated excavation areas to satisfy remedial action objective (RAO) No. 1—This will involve removal of the top two feet of soils, which is the designated depth to achieve acceptable residual risk based on known soil concentrations of benzo(a)pyrene equivalent (BaPEq). Approximately 912 cubic yards of soil will be removed. The soil boring sampling and removal limits are indicated in Figure 4-1. The depth of removal will extend to two feet below ground surface or to groundwater, if encountered first. Based on depth-to groundwater data for Block F (Appendix F), the groundwater table is expected at a depth between two and four feet, and it is not anticipated that groundwater will be intercepted during excavation to two feet. Removal-depth performance criteria are described further in Section 8.1.1. Soil

removal actions, as determined by the residual-risk analysis (RRA) and associated margin of safety, are as follows:

- O Area A—remove soil associated with soil boring F-SB-797. This location was incorporated into the soil remedial areas as part of the final "margin of safety" step performed during the RRA. This sample location was added based on its BaPEq concentration exceeding the risk-based PRG and its location in proximity to an area with multiple risk-based remedial goal exceedances for BaPEq in soils (see Area B).
- O Area B—remove soil associated with soil borings F-SB-636C, F-SB-636D, F-SB-637B. These locations were incorporated into the remedial area during the final "margin of safety" step in the RRA. They were added due to the relative abundance of BaPEq concentrations exceeding the risk-based PRG throughout this cluster of proximal sample locations.
- Area C—remove soil associated with soil boring F-SB-641C. This location was incorporated into the remedial area during the final "margin of safety" step in the RRA. It was added due to the BaPEq concentration at this location exceeding the risk-based PRG and since it was in a location with very few surrounding samples.
- Area D—remove soil associated with soil boring F-SB-268. Soil removal at this location was recommended per the RRA to achieve a site-wide 95% upper confidence limit (UCL) less than the industrial PRG for BaPEq.
- O Area E—remove soil associated with soil borings F-SB-095, F-SB-383, F-SB-645, F-SB-646, F-SB-647, F-SB-647A, and F-SB-647C. Removal of soils at F-SB-095 and F-SB-645 were recommended in the RRA to achieve a site-wide 95% UCL less than the PRG for BaPEq. The other locations were added due to concentrations of BaPEq exceeding the PRG at locations in proximity to other samples recommended for removal per the RRA (i.e., near F-SB-645 and F-SB-095).
- Removing the seven previously abandoned-in-place former aviation fuel USTs comprising recognized environmental condition (REC #5 to achieve RAO No. 2—The previously abandoned-in-place USTs, and their associated piping (shown in Figure 6-1) will be removed, along with associated soil having total petroleum hydrocarbons (TPH)-diesel-range organic (DRO) and TPH-gasoline-range organic (GRO) concentrations greater than MDE soil-cleanup standards. The USTs were reportedly closed in place; however, no closure records are available. Additional details on the UST removal activities required to achieve RAO No. 2 are included below in Section 8.2.3.
- Post-removal confirmation sampling and analysis—To meet RAO No. 1, sampling and analysis of exposed soil on the sidewalls of removal areas will be performed to confirm that the residual risk 95% UCL of remaining soil COC concentrations is less than the PRG. Post-removal sampling and analysis of the exposed soil at the base of the removal areas will be performed to obtain data for informational purposes only. To meet RAO No. 2, samples collected from the base and sidewalls of UST excavation areas will be analyzed for TPH-DRO, TPH-GRO, and VOCs and compared to MDE soil cleanup standards to verify compliance.

- Characterization, transport, and off-site disposal of removed materials—Excavated soil will be direct-loaded in to trucks to be disposed of off-site, when feasible. Soil stockpiling will be avoided or minimized as much as possible. It is anticipate that all soil removed from Block F will be nonhazardous and can be disposed of at a Lockheed Martin Corporation (Lockheed Martin)-approved nonhazardous-waste disposal facility. Characterization sampling will be conducted to verify this assumption. Removed concrete, steel, and other construction/demolition materials will be characterized, as appropriate. A disposal quantity of approximately 1,368 tons is estimated, based on the removal limits indicated in Figure 6-1. Concrete, steel and other construction/demolition materials resulting from removal of the foundations of former structures, previously abandoned-in-place USTs, and piping will either be cleaned/decontaminated as appropriate and subsequently recycled or disposed of in an off-site facility permitted to accept such materials.
- Backfilling and regrading—The removal areas will be backfilled and the final surface will be graded to match existing grades. The fill material will be certified-clean material obtained from an off-site borrow source and similar in grain size to the removed soils.
- Restoration—All areas disturbed by remedial action activities will be permanently stabilized and graded to original contours. The final surface restoration has not been determined at this time, the specific restoration method will be described in permitting and design documents that will follow this RAP.
- *Implementation of institutional controls*—Institutional controls include restrictions on the use of groundwater, cover maintenance requirements, excavation notification, soil reuse restrictions, and limitations on future property use.

#### 8.1.1 Excavation

Before excavation activities can commence, erosion and sedimentation controls specified in the grading plan approved by Baltimore County Soil Conservation District must be installed and inspected by the County. If the County approves the installation, they will issue a "Grading Permit." Excavation can then proceed after all other permits associated with the project have been issued.

Block F soil in the areas designated for excavation in Figure 6-1 will be removed to the proposed depth. The removal limits presented in this RAP are based on review of the existing soil boring sampling results in Figure 2-4. The design and final limits of removal will be determined after pre-design characterization sampling data and post-removal confirmation sampling data acquisition activities are complete. Removal limits will in some cases extend to the water table. Sediments with COC concentrations greater than cleanup goals that accumulate in erosion and sediment control devices during remedial activities will be disposed of off-site, along with the

removed soils. Erosion and sediment control devices will be described in the separate Block F remedial action design that will be prepared prior to implementation.

#### 8.1.2 Dewatering

Dewatering of removal areas may be required to facilitate excavation and backfilling. Water from excavation dewatering will be characterized and managed in one of the following ways:

- contained, characterized as required, and disposed of at an off-site permitted treatment, storage, and disposal facility (TSDF)
- filtered using a sediment removal device, treated as necessary, and discharged to surface water through the Middle River Complex permitted storm-drain and outfall system which is regulated by MDE and the United States Environmental Protection Agency (USEPA)
- filtered using a sediment removal device, treated as necessary, and discharged to the local sanitary sewer system, which is regulated by Baltimore County

Solids trapped in the filter will be analyzed and, depending on the results, transported to an off-site nonhazardous waste disposal facility or, if necessary, to an off-site hazardous waste TSDF. Permits required for the proposed remedial action are described in Section 9.2.

#### 8.1.3 Underground Storage Tank Removal

Seven USTs in REC #5 will be excavated and transported off site for disposal and/or recycling. The Phase I environmental site assessment (ESA) identified seven, closed-in-place, 1,000-gallon USTs beneath the former boat launch area's (REC #4) concrete tarmac (Earth Tech, 2003). The tanks were reportedly last used in 1954 and closed in place in 1986-1987. During the Phase I ESA and subsequent investigations, appropriate closure documentation for the USTs was not identified in available records. Current Maryland Oil Control Program (OCP) regulations are specific regarding in-place closure procedures and requirements, including removal of all supply, fill and return lines, and filling of the tank(s) with an approved inert material. Under the *Code of Maryland Regulations* (COMAR) 26.10.10, for in-place closure of USTs to be approved, an engineering report must demonstrate that removal of the UST(s) would have an adverse effect on the site building foundation or other important structures or utilities within the immediate tank area. The REC #5 UST area is separate from any buildings and is located in an area not currently used. Although challenging (given tarmac cover, possible UST anchors, and tank fill material), removal of the REC #5 USTs is achievable and does not compromise the structural integrity of

any structures. Proper UST removal must be performed in accordance with COMAR 26.10 in order to achieve RAO No. 2, which includes compliance with the Maryland OCP.

The previously abandoned-in-place USTs, associated piping, soil with TPH-DRO, TPH-GRO, and/or VOC concentrations greater than MDE residential soil cleanup standards will be removed. A geophysical survey or an initial excavation will be required to confirm UST locations. USTs will be removed under the MDE OCP in accordance with the COMAR 26.10.10.02 and American Petroleum Institute (API) recommended practice 1604 (API, 1996), modified as necessary based on conditions encountered. The final removal limits will be determined after post-removal confirmation sampling. The UST removal procedure will include the following, as applicable:

- coordinate removal activities with MDE OCP personnel
- determine the location and contents of USTs
- remove any flammable, combustible, or other liquids from the UST storage systems
- empty and clean the USTs by removing all liquids and accumulated sludges or fill, which will then be characterized for disposal
- empty, disconnect, and remove associated piping, including fill lines, vents, dispensing lines, and return lines, if present
- if piping runs outside the excavation area, it will be necessary to remove the USTs and then abandon piping lines in place with cement grout
- purge UST storage systems of all explosive vapors and then monitor with an appropriate direct-reading instrument before and during removal
- remove USTs and any solid inert material
- puncture USTs to render them unfit for further use; alternatively, tanks may have to be cut to facilitate removal of sand or flowable fill, if present
- remove cathodic protection systems and anchorage if present
- remove regulated substances, soils saturated with regulated substances, and visibly contaminated soil from the excavation
- perform post-removal confirmation sampling and analysis for TPH-DRO, TPH-GRO, VOCs, and compare the results to the residential (per the OCP) MDE soil cleanup standards

- backfill the excavation and restore the ground surface
- amend the UST registration forms and submit to the MDE OCP within 30 days after the USTs have been removed

#### 8.1.4 Confirmation Soil Sampling

To satisfy RAO No. 1, post-removal confirmation samples will be collected from the excavation sidewalls of removal areas A through E and analyzed for PAHs before backfilling to confirm that the residual risk 95% UCL of remaining soil COC concentrations is less than the PRG discussed in Section 4. Sidewall samples will be collected as a composite sample. One composite sample will be collected and analyzed for every 100 foot segment of sidewall. A minimum of 10 soil samples of equal volume, collected at distances of approximately 15 feet per 100 foot of sidewall, will be composited manually in a stainless steel bowl. The single composite sample will then be submitted for laboratory analysis. The result of the composite sample for each segment of sidewall will be used in a recalculation to determine if RAO No. 1 has been achieved. If not, additional removal will be performed until the RAO No. 1 is met.

For either full depth removal or removal areas where the proposed removal depth cannot be achieved due to shallow groundwater, post-removal samples will also be collected from the exposed soil at the base of the removal areas, at a frequency of one sample per 625 square feet of excavated soil. This data will be obtained for informational purposes only and may be used in considering final land use controls (LUCs).

For RAO No. 2, side wall and base samples will be collected and analyzed for TPH-DRO, TPH-GRO, and VOCs following excavation and removal of the seven USTs. One sidewall sample will be collected at a minimum of every 25 linear feet along the UST excavation sidewall. Sidewall samples will be collected as grab samples at approximately the midpoint of the excavation height. The UST base confirmatory samples will be collected at a minimum frequency of one grab sample every 250 square feet (i.e., a 50 foot by 50 foot square) over the footprint of the excavation. The MDE OCP onsite inspector may require an increased sampling frequency in the UST excavation area if evidence of a release (e.g., staining, odor, elevated photoionization detector reading) is observed. If groundwater or saturated soils are encountered in the base of the excavation, then the base confirmatory soil samples may be replaced by a

groundwater sample. Sampling results will be compared to the residential (per the OCP) MDE soil cleanup standards.

#### 8.1.5 Waste Characterization and Disposal

Soil in the proposed excavation areas will be sampled and analyzed for waste disposal characterization before remedial activities. Soil will be sampled at a minimum frequency of one sample per 500 cubic yards. Sampling frequency may be increased depending on the volume of the removed soil and waste disposal facility requirements. Samples will be analyzed for toxicity characteristic leaching procedure (TCLP) and parameters required by the waste disposal facility. For all required analyses except volatile organic compounds (VOCs), composite samples consisting of three grab samples will be collected from each excavation area. Samples for VOC analysis will be collected as discrete samples from each excavation area prior to compositing.

Excavated soil and concrete from the tarmac will be transported for off-site disposal after waste characterization has been completed and the waste disposal and recycling facility has approved acceptance of the waste. It is anticipated that the removed soil will be disposed of at the GROWS North Landfill in Morrisville, Pennsylvania and the removed concrete will be sent to either GROWS or a recycling center in Baltimore, Maryland. Approximately 1,368 tons of soil direct-loaded at a rate of approximately 15 tons per truck, and transported to the appropriate facility during this remedial action. Approximately 92 truckloads (truck trips) of soil are estimated to remove contaminated soils during this remedial action. The number of trucks may vary depending on the availability, approximately 2 to 3 trucks per hour may be filled using direct load techniques. The trucks will access and leave Block F directly from Eastern Boulevard through the Middle River Complex and Chesapeake Park Plaza. Details concerning the trucking route will be finalized during the remedial design.

#### 8.1.6 Backfilling

Removal areas will be backfilled after post-removal confirmation sampling and excavation dewatering. Backfill soil will be certified-clean soil from an off-site borrow source and will be similar in grain size to the soils removed if appropriate. Backfill material acceptance-criteria are presented in Table 8-1. The off-site borrow-source material will be evaluated according to procedures described in the MDE document *Facts About (Voluntary Cleanup Program) VCP—Clean Imported Fill Material* (MDE, undated). The off-site borrow source will be identified and

environmental site assessment documentation obtained, if available. The documentation will be reviewed by an environmental professional to determine its suitability. If the borrow source is judged acceptable, soil samples will be obtained and analyzed for compounds of concern using the methods listed in Table 8-1.

The minimum sampling frequency will be as recommended in the MDE clean-fill document and based on the size (i.e., area and volume) of the borrow source. Constituents detected in the samples will be compared to MDE cleanup levels, to anticipated typical concentrations for eastern Maryland (MDE, 2008), or other MDE-approved risk-based concentrations. The off-site borrow source must be approved by the MDE before transporting any backfill material onto the site. Backfill material will be compacted to at least 90% of the maximum dry density as determined by the standard proctor test using the ASTM International, Inc. (ASTM) method D698-12 and/or American Association of State Highway and Transportation Officials (AASHTO) specification T-99.

#### 8.1.7 Restoration

The final surface restoration of the backfilled excavated areas has yet to be determined. The specific method will be presented in the Block F permitting and remedial design documents that will be prepared under separate cover prior to implementation.

#### 8.2 LAND USE CONTROLS

The MDE Controlled Hazardous Substances Enforcement Division will document LUCs applicable to Block F in the No Further Action letter, which will be issued once the two RAOs have been met. The No Further Action letter will be filed in local land use records and passed to subsequent property owners as part of the deed documentation. The MDE regards all LUCs as existing in perpetuity unless the related environmental covenants are eliminated or modified by mutual consent of the stakeholders. As part of the No Further Action letter and supporting documentation, MDE will present certain environmental covenants that will give stakeholders legal standing for covenants enforcement. The MDE will determine final disposition of any LUCs. Examples of LUCs include the following:

Prohibiting use of groundwater beneath the property for any purpose.

- Requiring implementation of sub-slab soil-vapor mitigation technology beneath all buildings where the potential for soil vapor intrusion into indoor air exists. For new-footprint buildings, a vapor mitigation system might, for example, consist of slotted polyvinyl chloride tubing arranged in such a manner as to passively exhaust soil vapors from beneath the building slab to the atmosphere. Any passive vent system will have to be readily convertible to an active remedial system, if necessary. Other regulatorily acceptable remedial alternatives exist. Regardless of remedial choice, indoor air will need to be tested before occupancy, and concentrations of any detected contaminant must not exceed the applicable indoor air standards.
- Restrictions on the future use of the property other than industrial use.

#### Table 8-1

#### **Backfill Material Acceptance Criteria** Block F Soil Remedial Action Plan **Lockheed Martin Middle River Complex,** Middle River, Maryland

| Parameter                                                  | Criteria                                                                                                  | Test method                       |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|
| Volatile organic compounds                                 | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8260B                |
| Semivolatile organic compounds                             | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8270C <sup>(2)</sup> |
| Polychlorinated biphenyls                                  | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8082                 |
| Metals                                                     | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 6020                 |
| Pesticides (organochlorine)                                | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8081A or 8080A       |
| Pesticides (organophosphorus)                              | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8141A                |
| Chlorinated herbicides                                     | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8151A                |
| Total petroleum hydrocarbons                               | MDE residential cleanup standards or ATCs <sup>(1)</sup> or associated approved risk-based concentrations | USEPA SW-846 8015                 |
| Unified Soil Classification System classification          | GW, GP, GM, SW, SP, and SM                                                                                | ASTM D 2487                       |
| Atterberg Limits                                           |                                                                                                           |                                   |
| —Liquid limit                                              | 35 maximum                                                                                                | ASTM D 4318                       |
| —Plasticity index                                          | 12 maximum                                                                                                |                                   |
| Amount finer than the No. 200 United States standard sieve | 25% maximum                                                                                               | ASTM D 1140                       |
| Maximum particle size                                      | 1 inch maximum                                                                                            | ASTM D 422                        |

<sup>&</sup>lt;sup>(1)</sup>Residential cleanup standards and ATCs provided in *Cleanup Standards for Soil and Groundwater* (MDE, June 2008). <sup>(2)</sup>PAHs using USEPA SW-846 8270C or D with SIM.

Maryland Department of the Environment ASTM ASTM International MDE RBC risk-based concentration

anticipated typical concentration ATC **PAHs** polycyclic aromatic hydrocarbons USEPA United States Environmental Protection Agency

<sup>(3)</sup> The off-site borrow source must be approved by the MDE Voluntary Cleanup Program before transporting any backfill material onto the sit

#### Section 9

#### **Permits and Notifications**

This section describes the permits that will be required for the proposed remedial action and the required notifications and contingencies if unexpected conditions are encountered during implementation of this remedial action plan (RAP).

#### 9.1 PERMITS

Lockheed Martin Corporation (Lockheed Martin) will meet federal, state, and local permitting requirements for the proposed soil remedial action described in Section 8. Permitting requirements for the proposed remedial action relating to soil excavation and off-site disposal will be subject to Maryland Department of the Environment (MDE), and Baltimore County Department of Environmental Protection and Natural Resources soil management requirements. A list of required permits, with contact information and review periods, is in Appendix J, and include the following:

- A Baltimore County grading permit for any land disturbance and grading that disturbs greater than 5,000 square feet, or utilizes more than 100 cubic yards of fill material, will be required. Grading plans will be submitted to Baltimore County for review and approval.
- As a condition of receiving a grading permit, a stormwater management plan will be submitted to Baltimore County Stormwater Engineering for review and approval. The stormwater management plan will be prepared in accordance with the *Maryland Storm Water Design Manual*, *Volumes I and II* (MDE, 2000), including the 2009 revisions and subsequent supplements. Since post-construction contours will match pre-construction conditions, a stormwater management variance may be granted by Baltimore County under Section 33-4-113 (a)(2) of Title 4 of the Baltimore County Code.
- An erosion and sediment control plan will be submitted to the Baltimore County Soil Conservation District. It will be prepared in accordance with the 1994 Maryland Standards and Specifications for Soil Erosion and Sediment Control (MDE, 1994), the 2011 Maryland Standards and Specifications for Soil Erosion and Sediment Control (MDE, 2011), and the Baltimore County Urban Policy and Guidelines Manual. The Soil Conservation District review of erosion and sediment control plans will be coordinated

with and incorporated into the Baltimore County review of the stormwater management and grading plans.

- Baltimore County Environmental Impact Review will also be consulted to determine if any conservation or mitigation measures will be required for work within the critical area, including compliance with the 10% rule for stormwater and to address impacts to the tidal buffer. The 10% rule for Baltimore County specifies that stormwater management practices must be capable of reducing stormwater pollutant loads from a construction site to a level at least 10% below the load generated by the same site prior to development.
- The MDE Oil Control Program (OCP) "Notification for Underground Storage Tanks" and "Tank Removal/Abandonment 30-Day Notification Form" will be submitted in accordance with Code of Maryland Regulations (COMAR) 26.10 "Oil Pollution and Tank Management".
- A United States Army Corps of Engineers and MDE "Joint Permit Application" will be required if any of the final ground disturbing activities take place within the boundaries of delineated tidal wetlands or below the mean high-water line of Dark Head Cove or Cow Pen Creek. Current plans and the size and nature of delineated wetlands within Block F suggest that expected impacts are relatively minor, and will meet criteria for coverage under the Maryland "Programmatic General Permit" (MDSPGP-4).
- If the final total ground disturbance exceeds one acre, an application for a "Notice of Intent for a Permit for Stormwater Associated with Construction Activity" will be submitted to MDE along with the erosion and sediment control plan approval from the Baltimore County Soil Conservation District.
- A Section 106 project review by the Maryland Heritage Trust will also be conducted as part of the federal/state MDSPGP-4 joint permit application.
- As part of the federal/state MDSPGP-4 joint permit application, the Maryland Department of Natural Resources, the United States Fish and Wildlife Services, and the National Oceanic and Atmospheric Administration will review the project for potential impacts to listed species and critical/essential fish habitat.
- Lockheed Martin Corporation Properties, Inc. (LMCPI) will be kept informed of work progress and schedule. Potable water must be obtained at locations, volumes, and rates approved by LMCPI.

#### 9.2 NOTIFICATIONS

Lockheed Martin will follow appropriate MDE and United States Environmental Protection Agency (USEPA) notification requirements regarding previously undiscovered contamination, changes in the RAP schedule, citations from regulators related to health and safety practices associated with implementation of the proposed remedial action, and discharges to the environment.

## Section 10 Implementation Schedule

The projected sequence of events for this project, including the expected completion schedule of various milestones, appears below. All dates below are estimated and subject to change:

- 1. Submit draft remedial action plan (RAP) to the Maryland Department of the Environment (MDE) (September 2013)
- 2. Submit final remedial action plan (July 2014)
- 3. Obtain required permits (December 2014)
- 4. Begin implementation of remedial action (January 2015)
- 5. Complete implementation of remedial action and meet the remedial action objectives (RAOs) (May 2015)
- 6. Request a No Further Action letter (August 2015)

This page intentionally left blank.

## Section 11 References

- 1. American Petroleum Institute (API), 1996. *Closure of Underground Petroleum Storage Tanks, Third Edition*. March.
- 2. Earth Tech, 2003. Phase I Environmental Site Assessment, Chesapeake Industrial Park, Middle River, Maryland, May.
- 3. FRTR (Federal Remediation Technologies Roundtable), 2012. FRTR technologies screening matrix tool: <a href="http://www.frtr.gov/matrix2/top\_page.html">http://www.frtr.gov/matrix2/top\_page.html</a>.
- 4. InfoHarvest, Inc., 2001. Criterium® Decision Plus®. The Complete Decision Formulation, Analysis, and Presentation for Windows Version 3.0, User's Guide Tutorial. Seattle, Wash.
- 5. ITRC (Interstate Technology and Regulatory Council), 2012. ITRC technology-screening tool: <a href="http://www.itrcweb.org/">http://www.itrcweb.org/</a>.
- 6. Maryland Department of the Environment (MDE), undated. Facts About (Voluntary Cleanup Program) VCP—Clean Imported Fill Material. Information pamphlet.
- 7. Maryland Department of the Environment (MDE), 1994. 1994 Maryland Standards and Specifications for Soil Erosion and Sediment Control. Maryland Department of the Environment, Water Management Administration, in association with the United States Department of Agriculture Natural Resources Conservation Service (formerly known as the Soil Conservation Service) and (Maryland) State Soil Conservation Committee. July.
- 8. Maryland Department of the Environment (MDE), 2000. 2000 Maryland Storm-Water Design Manual, Volumes I and II. Prepared by the Center for Watershed Protection and the Maryland Department of the Environment, Water Management Administration. Effective October 2000, revised May 2009.
- 9. Maryland Department of the Environment (MDE), 2006. *Voluntary Cleanup Program Guidance Document*. MDE Land Restoration Program, Maryland Department of the Environment, Baltimore, Maryland. March.
- 10. Maryland Department of the Environment (MDE), 2008. Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 2.1). June.

- 11. Maryland Department of the Environment (MDE), 2011. Maryland Standards and Specifications for Soil Erosion and Sediment Control. Maryland Department of the Environment, Water Management Administration, in association with United States Department of Agriculture Natural Resources Conservation Service (formerly known as the Soil Conservation Service) and Maryland Association of Soil Conservation Districts. December.
- 12. United States Navy, 2011. *SiteWise<sup>TM</sup> Version 2 User Guide*. Naval Facilities Engineering Command Engineering Service Center, Port Hueneme, California UG-2092-ENV. June.
- 13. Tetra Tech, Inc. (Tetra Tech), 2004a. *Phase II Environmental Site Investigation, Middle River Complex*. February.
- 14. Tetra Tech, Inc. (Tetra Tech), 2004b. *Historical Research Report, Lockheed Martin Middle River Complex*. August.
- 15. Tetra Tech, Inc. (Tetra Tech), 2005. Final Data Report, Site-Wide Phase II Investigation, Middle River Complex. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- 16. Tetra Tech, Inc. (Tetra Tech), 2006. *Site Characterization Report, Revision 1.0, Lockheed Martin Middle River Complex.* Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. May.
- 17. Tetra Tech, Inc. (Tetra Tech), 2009. *Final Soil Response Action Plan, Block B, Lockheed Martin Middle River Complex.* Report prepared by Tetra Tech Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 18. Tetra Tech (Tetra Tech, Inc.), 2011. *Final Block F Data Summary Report, Lockheed Martin Middle River Complex, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. January.
- 19. Tetra Tech (Tetra Tech Inc.), 2012a. Reconnaissance Report for Bulkhead/Shoreline Evaluation, Blocks D and F, Lockheed Martin Middle River Complex, Middle River, Maryland. Prepared for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 20. Tetra Tech (Tetra Tech, Inc.), 2012b. *Human Health Risk Assessment for Blocks D, E, F, G, and H Soils, Lockheed Martin Middle River Complex, Middle River, Maryland.* Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- 21. United States Environmental Protection Agency (USEPA), 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final EPA/540/G-89/004. Office of Emergency and Remedial Response, Washington, D.C. October.

| 22. | USEPA, 1993. Provisional<br>Aromatic Hydrocarbons.<br>EPA/600/R-93/089. July. | Guidance for Office of | Quantitative<br>Health and | Risk Assessment<br>Environmental | of Polycyclic<br>Assessment. |
|-----|-------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------------|------------------------------|
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |
|     |                                                                               |                        |                            |                                  |                              |

This page intentionally left blank.

| APPENDIX A—VOLUNTARY CLEANUP PROGRAM WITHDRAWAL LETTER |
|--------------------------------------------------------|
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |

Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone 301-548-2212



August 29, 2013

VIA E-MAIL AND PRIVATE CARRIER

VIA E-mail: James.carroll@maryland.gov Mr. James Carroll Program Administrator Land Restoration Program Maryland Department of the Environment 1800 Washington Boulevard, Suite 625 Baltimore, Maryland 21230

Subject:

Withdrawal of VCP Applications for Tax Parcel Blocks D, E, E (Lot 3), F, G (Lot 1), H and I

Chesapeake Park Plaza (Middle River Complex)

2323 Eastern Boulevard, Middle River, Baltimore County, Maryland

Dear Mr. Carroll:

The purpose of this letter is to notify the Maryland Department of the Environment ("MDE" or "Department") that Lockheed Martin Corporation is withdrawing the below referenced tax parcels and block numbers, generally referred to as the Chesapeake Park Plaza, from the Voluntary Cleanup Program ("VCP") pursuant to Md. Code Ann. Envir. § 7-512 (2007 Repl. Vol.).

The subject Chesapeake Park Plaza tax parcels were previously accepted into MDE's VCP. This notice of withdrawal will affect the following identified tax parcels:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tax Parcel Number                       | Acreage |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block D       | 12.775  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block E       | 15.433  |
| - Control of the Cont | Map 90 Grid 18 Parcel 964 Block E Lot 3 | 0.533   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block F       | 11.941  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block G Lot 1 | 13.461  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block H       | 7.877   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Map 90 Grid 18 Parcel 964 Block I       | 66.104  |

We understand this notice will take effect upon ten (10) days of MDE's receipt. Please be advised that the tax parcels subject to this notice are currently stable and secure, and that Lockheed Martin has agreed in principle to negotiate an administrative consent order with the Department to address environmental conditions at Tax Parcels D, E, F, G, and H, and I. Please acknowledge receipt of this notice in writing.

Please let me know if you have any questions. My office phone is (301) 548-2212.

Sincerely,

Carol B. Cala

Vice President, Energy, Environment, Safety & Health

Lockheed Martin Corporation

cc:

Brad Owens, Lockheed Martin Christine Kline, Lockheed Martin Glenda Smith, Lockheed Martin Norm Varney, Lockheed Martin Michael Martin, Tetra Tech Cannon Silver, CDM Smith

# APPENDIX B—BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA (TABLE)

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 1 of 60

|                        | , ,              |              | r               |                      | METALS (MG/KG) |                |           |            |              |          |            |                |                |                  |                |              |          |          |              |                                               |                |              |                     |            |
|------------------------|------------------|--------------|-----------------|----------------------|----------------|----------------|-----------|------------|--------------|----------|------------|----------------|----------------|------------------|----------------|--------------|----------|----------|--------------|-----------------------------------------------|----------------|--------------|---------------------|------------|
|                        |                  |              |                 |                      |                | 1              | 1         | 1          |              |          |            |                | METALS (MG     | s/KG)            | 1              |              |          |          |              | I                                             | MISC           | ELLANEOUS    | S PARAMETE          | RS         |
| SAMPLE ID              | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY       | ARSENIC        | BARIUM    | BERYLLIUM  | CADMIUM      | СНКОМІИМ | COBALT     | COPPER         | LEAD           | MERCURY          | MOLYBDENUM     | NICKEL       | SELENIUM | SILVER   | VANADIUM     | ZINC                                          | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | Hd         |
|                        |                  |              |                 | Units Target Cancer  | MG/KG          | MG/KG          | MG/KG     | MG/KG      | MG/KG        | MG/KG    | MG/KG      | MG/KG          | MG/KG          | MG/KG            | MG/KG          | MG/KG        | MG/KG    | MG/KG    | MG/KG        | MG/KG                                         | %              | %            | MG/KG               | S.U.       |
|                        |                  |              |                 | Risk Level           | NA             | NA             | NA        | NA         | NA           | NA       | NA         | NA             | NA             | NA               | NA             | NA           | NA       | NA       | NA           | NA                                            | NA             | NA           | NA                  | NA         |
| SB-22-05               | SB-022           | 5            | 5               | 20031117             |                | 2.9 L          | NA<br>NA  |            |              |          | NA<br>NA   | 10             | 10 L           |                  | NA<br>NA       | 8.9 L        |          |          | NA<br>NA     |                                               | 70             | NA           | NA<br>NA            | NA<br>NA   |
| SB-22-10<br>SB-24-05   | SB-022<br>SB-024 | 10<br>5      | 10<br>5         | 20031117<br>20031117 |                | 2.7 L<br>3.5 L | NA<br>NA  |            |              |          | NA<br>NA   | 13<br>28       | 6 L<br>46 L    | 0.94             | NA<br>NA       | 14 L<br>12 L |          |          | NA<br>NA     | 100 J                                         | 85<br>80       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-024           | 10           | 10              | 20031117             |                | 2.3 L          | NA        |            |              |          | NA         | 7.8            | 12 L           |                  | NA NA          | 6.7 L        |          | -        | NA           |                                               | 84             | NA           | NA<br>NA            | NA NA      |
| SB-25-05               | SB-025           | 5            | 5               | 20031117             |                | 0.92 L         | NA        |            |              |          | NA         | 8              | 6.6 L          | -                | NA             | 24 L         |          |          | NA           |                                               | 85             | NA           | NA                  | NA         |
| SB-25-10<br>SB-26-10   | SB-025<br>SB-026 | 10<br>10     | 10<br>10        | 20031117<br>20031117 | NA             | 1.7 L<br>NA    | NA<br>NA  | 4.6<br>NA  | NA           |          | NA<br>NA   | 19<br>NA       | 14 L<br>NA     | NA               | NA<br>NA       | 46 L<br>NA   | NA       | NA       | NA<br>NA     | 110 J<br>NA                                   | 84<br>77       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-27-10               | SB-027           | 10           | 10              | 20031117             | NA<br>NA       | NA<br>NA       | NA        | NA<br>NA   | NA NA        |          | NA         | NA<br>NA       | NA<br>NA       | NA<br>NA         | NA<br>NA       | NA<br>NA     | NA<br>NA | NA<br>NA | NA<br>NA     | NA<br>NA                                      | 75             | NA           | NA<br>NA            | NA<br>NA   |
| SB-28-10               | SB-028           | 10           | 10              | 20031117             | NA             | NA             | NA        | NA         | NA           |          | NA         | NA             | NA             | NA               | NA             | NA           | NA       | NA       | NA           | NA                                            | 77             | NA           | NA                  | NA         |
| SB-29-10               | SB-029           | 10           | 10              | 20031117             | NA             | NA<br>4.5.1    | NA<br>NA  | NA         | NA           |          | NA         | NA             | NA             | NA               | NA<br>NA       | NA<br>2.6.1  | NA       | NA       | NA<br>NA     | NA                                            | 76             | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-23-05<br>SB-23-10   | SB-023<br>SB-023 | 5<br>10      | 5<br>10         | 20031118<br>20031118 |                | 1.5 L<br>1 L   | NA<br>NA  |            |              | 5.3      | NA<br>NA   |                |                |                  | NA<br>NA       | 3.6 L<br>    |          |          | NA<br>NA     |                                               | 84<br>86       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-30-05               | SB-030           | 5            | 5               | 20031118             |                | 0.99 L         | NA        | 3.2        |              | 19       | NA         | 21             | 7.4 L          | -                | NA             | 33 L         | 4.4 L    | -        | NA           |                                               | 87             | NA           | NA                  | NA         |
| SB-56-05               | SB-056           | 5            | 5               | 20040913             |                |                | NA        |            |              |          | NA         | 10             | 3.2 J          |                  | NA             | 11           |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
|                        | SB-056<br>SB-056 | 10<br>15     | 10<br>15        | 20040913<br>20040913 |                |                | NA<br>NA  |            |              |          | NA<br>NA   | 4.7 K<br>3.9 K |                |                  | NA<br>NA       | 5.3 K<br>6   |          |          | NA<br>NA     |                                               | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-56-SS               | SB-056           | 0            | 1               | 20040913             |                | 2.9 L          | NA        |            |              |          | NA         | 11             | 6.3 J          | -                | NA<br>NA       | 5.1 K        |          |          | NA           |                                               | NA             | NA           | NA                  | NA NA      |
| SB-22A-SS              | SB-022           | 0            | 1               | 20040915             |                | 1.3            | NA        |            |              |          | NA         | 4.9 K          |                |                  | NA             | 4.6 K        |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
| SB-23A-SS<br>SB-24A-SS | SB-023<br>SB-024 | 0            | 1               | 20040915<br>20040915 |                | 2.2<br>3.4     | NA<br>NA  |            |              |          | NA<br>NA   | 5.3<br>36      | 5.4<br>67      | 1.4              | NA<br>NA       | 7.1<br>14    |          | 3.4      | NA<br>NA     | 120                                           | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-025           | 0            | 1               | 20040915             |                | 0.6            | NA<br>NA  | 5          |              |          | NA         | 15             | 5.9            |                  | NA<br>NA       | 27           |          |          | NA<br>NA     | 48 K                                          | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-030           | 0            | 1               | 20040915             |                | 2.3 L          | NA        |            |              | 8.7      | NA         | 4.4 K          | 4.5 J          |                  | NA             | 4.5 K        |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
| SB-50-05               | SB-050           | 5            | 5               | 20040915             |                | 0.96           | NA        |            |              |          | NA         | 8.7            | 6.7            |                  | NA<br>NA       | 18           |          |          | NA           | 43 K                                          | NA             | NA           | NA<br>NA            | NA<br>NA   |
| SB-50-10<br>SB-50-SS   | SB-050<br>SB-050 | 10<br>0      | 10              | 20040915<br>20040915 |                | 1.2<br>3.2     | NA<br>NA  |            |              |          | NA<br>NA   | 10<br>17       | 4.8            | 0.42             | NA<br>NA       | 28<br>8.5    |          |          | NA<br>NA     | 140<br>100                                    | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-55-05               | SB-055           | 5            | 5               | 20040915             |                | 1.9            | NA        | 6.2        |              |          | NA         | 56             | 8.4            | -                | NA             | 150          | 2.8      |          | NA           | 270                                           | NA             | NA           | NA                  | NA         |
| SB-55-10               | SB-055           | 10           | 10              | 20040915             |                | 0.58 L         | NA        |            |              |          | NA         | 12             | 5.2 J          | -                | NA             | 11           |          | -        | NA           | 62 J                                          | NA             | NA           | NA                  | NA         |
| SB-55-SS<br>SB-93-05   | SB-055<br>SB-093 | 0<br>5       | 5               | 20040915<br>20040916 |                | 1.5 L<br>      | NA<br>NA  |            |              |          | NA<br>NA   | 74<br>13 L     | 420 J<br>8.7 L |                  | NA<br>NA       | 13<br>17     | 4.3 L    |          | NA<br>NA     | 58 J<br>                                      | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-093           | 10           | 10              | 20040916             |                |                | NA        |            |              |          | NA         | 10 L           | 2.9 L          |                  | NA             | 4 K          |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
|                        | SB-093           | 15           | 15              | 20040916             |                |                | NA        |            |              |          | NA         | 12 L           | 4 L            |                  | NA             | 18           |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
|                        | SB-093<br>SB-094 | 0<br>        | 1<br>5          | 20040916<br>20040916 |                | 1.8 L<br>      | NA<br>NA  | 3.2 L      | 3.5 L<br>    |          | NA<br>NA   | 21 L<br>21 L   | 73 L<br>6.7 L  |                  | NA<br>NA       | 11<br>12     | 4.2 L    |          | NA<br>NA     | 100 K                                         | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-094           | 10           | 10              | 20040916             |                |                | NA        |            |              |          | NA         | 11 L           | 17 L           |                  | NA<br>NA       | 21           |          |          | NA           | 33 K                                          | NA             | NA           | NA NA               | NA NA      |
|                        | SB-094           | 15           | 15              | 20040916             |                |                | NA        |            |              |          | NA         | 7.4 L          | 3.3 L          |                  | NA             | 20           |          | -        | NA           |                                               | NA             | NA           | NA                  | NA         |
|                        | SB-094<br>SB-095 | 0<br>5       | 5               | 20040916<br>20040916 |                | 2.1 L<br>      | NA<br>NA  | 5.2 L      | 4.5 L<br>    |          | NA<br>NA   | 21 L<br>24 L   | 65 L<br>5.2 L  | 0.97             | NA<br>NA       | 11<br>21     |          |          | NA<br>NA     | 92 K                                          | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-095           | 10           | 10              | 20040916             |                |                | NA        | 5.2 L      |              |          | NA         | 5.5 L          | 3.2 L          |                  | NA<br>NA       | 8.4          |          |          | NA<br>NA     |                                               | NA             | NA           | NA<br>NA            | NA<br>NA   |
|                        | SB-095           | 0            | 1               | 20040916             |                | 2 L            | NA        |            |              |          | NA         | 34 L           | 100 L          | 0.15             | NA             | 8.1          |          |          | NA           | 81 K                                          | NA             | NA           | NA                  | NA         |
|                        | SB-096           | 5            | 5               | 20040916             |                |                | NA<br>NA  |            |              |          | NA         | 4.3 L          | 421            |                  | NA<br>NA       |              |          |          | NA<br>NA     |                                               | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-096<br>SB-096 | 10<br>15     | 10<br>15        | 20040916<br>20040916 |                |                | NA<br>NA  | 4.1 L      |              |          | NA<br>NA   | 13 L<br>3.3 L  | 4.3 L<br>      |                  | NA<br>NA       | 22           |          |          | NA<br>NA     |                                               | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| SB-96-SS               | SB-096           | 0            | 1               | 20040916             |                | 2 L            | NA        |            |              | 9.3      | NA         | 5.1 L          | 3.2 L          | -                | NA             | 5.4 K        |          |          | NA           |                                               | NA             | NA           | NA                  | NA         |
|                        | SB-236           | 1            | 2               | 20050509             | 2 L            |                | 83        | 0.7        | 0.4          |          | 5.8        | 22             | 51             | 0.92 L           | 0.6 B          | 12           |          | 0.9      | 31           | 82                                            | NA             | NA           | NA<br>NA            | 8.2        |
|                        | SB-236<br>SB-236 | 5<br>0       | 5<br>1          | 20050509<br>20050509 | 2 L<br>0.5 L   | 7 3            | 103<br>36 | 0.6<br>1.4 | 0.5<br>0.3   |          | 6.2<br>6.8 | 38<br>14       | 81<br>11       | 0.97 L<br>0.29 L | 0.6 B<br>0.4 B | 17<br>12     | 3 2      | 2.3      | 26.9<br>29.9 | 131<br>35                                     | NA<br>NA       | NA<br>NA     | NA<br>NA            | 7.7<br>8.1 |
|                        | SB-237           | 1            | 2               | 20050509             | 4 L            |                | 68        | 0.6        | 0.3          |          | 5.1        | 33             | 63             | 0.25 L           | 63             | 18           | 4        | 1.4      | 41.9         | 99                                            | NA             | NA           |                     | NA         |
|                        | SB-237           | 5            | 5               | 20050509             |                | 2 B            | 35        | 3.2        | 0.3          |          | 8          | 11             | 11             | 0.01             |                | 23           |          |          | 35.1         | 41                                            | NA             | NA           |                     | NA         |
|                        | SB-237<br>SB-250 | 0<br>1       | 1 2             | 20050509<br>20050509 | 0.4 L<br>0.6 L | 3 B<br>3 B     | 42<br>30  | 1.6        | 0.4<br>0.2 B |          | 5.6<br>2.8 | 12<br>10       | 8 B<br>5 B     |                  | 0.6 B<br>0.6 B | 12<br>6 B    | 2        |          | 31<br>27.2   | 28<br>25                                      | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        | SB-250           | 0            | 1               | 20050509             | 0.6 L          |                | 37        | 0.7        | 0.2 B        |          | 5.8        | 6              | 17             | 0.03             | 0.6 B          | 8            | 2        | 0.05 B   | 20.5         | 32                                            | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                        |                  |              |                 |                      | J.O L          |                | , ,,      | J.,        | V.L D        |          |            |                |                | 5.01             | 0.00           | ,            |          | J.JU D   |              | , <u>, , , , , , , , , , , , , , , , , , </u> |                |              | . 17.1              | 177        |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 2 of 60

|                            |                  |              | T               |                      | T            | METALS (MG/KG) |              |            |                |              |            |              |            |            |                |            |          |             |              |                          | MICCELLANICOLIS DADAMETEDS |              |                     |           |
|----------------------------|------------------|--------------|-----------------|----------------------|--------------|----------------|--------------|------------|----------------|--------------|------------|--------------|------------|------------|----------------|------------|----------|-------------|--------------|--------------------------|----------------------------|--------------|---------------------|-----------|
|                            |                  |              |                 |                      |              | METALS (MG/KG) |              |            |                |              |            |              |            |            |                |            |          |             |              | MISCELLANEOUS PARAMETERS |                            |              |                     |           |
| SAMPLE ID                  | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY     | ARSENIC        | BARIUM       | BERYLLIUM  | САБМІОМ        | CHROMIUM     | COBALT     | COPPER       | LEAD       | MERCURY    | MOLYBDENUM     | NICKEL     | SELENIUM | SILVER      | VANADIUM     | ZINC                     | PERCENT SOLIDS             | TOTAL SOLIDS | HEXAVALENT CHROMIUM | Hd        |
|                            |                  |              |                 | Units Target Cancer  | MG/KG        | MG/KG          | MG/KG        | MG/KG      | MG/KG          | MG/KG        | MG/KG      | MG/KG        | MG/KG      | MG/KG      | MG/KG          | MG/KG      | MG/KG    | MG/KG       | MG/KG        | MG/KG                    | %                          | %            | MG/KG               | S.U.      |
|                            |                  |              |                 | Risk Level           | NA           | NA             | NA           | NA         | NA             | NA           | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | NA                         | NA           | NA                  | NA        |
|                            | SB-251           | 1            | 2               | 20050509             | 0.9 L        | 5<br>3 B       | 40           | 1          | 0.1 B          |              | 7.1        | 10           | 7 B        |            | 0.5 B          | 9<br>0 B   | 3        |             | 35.6         | 34                       | NA<br>NA                   | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                            | SB-251<br>SB-252 | 0<br>1       | 2               | 20050509<br>20050509 | 1 L<br>0.8 L | 3 B<br>4       | 40<br>27     | 0.7<br>0.5 | 0.2 B<br>0.2 B |              | 5.9<br>3.5 | 6<br>7       | 7 B<br>6 B |            | 0.7 B          | 9 B<br>6 B |          |             | 24.8<br>27.9 | 29<br>24                 | NA<br>NA                   | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-252-SS                  | SB-252           | 0            | 1               | 20050509             | 0.7 L        | 2 B            | 31           | 0.6        | 0.1 B          | 11.8         | 3.6        | 4            | 10         | 0.04       |                | 6 B        |          |             | 20.3         | 25                       | NA                         | NA           | NA                  | NA        |
|                            | SB-253           | 1            | 2               | 20050509             | 0.9 L        | 3 B            | 36           | 0.7        | 0.09 B         | 14           |            | 5            | 5 B        |            | 0.5 B          | 5 B        | 3        | 0.2 B       | 25.5         | 20                       | NA                         | NA           | NA                  | NA        |
|                            | SB-253<br>SB-265 | 0<br>1       | 2               | 20050509<br>20050509 | 1 L<br>NA    | 3 B<br>NA      | 49<br>NA     | 0.6<br>NA  | 0.4<br>NA      |              | 4.9<br>NA  | 9<br>NA      | 31<br>NA   | 0.07<br>NA | NA             | 8 B<br>NA  | NA       | 0.2 B<br>NA | 29.5<br>NA   | 39<br>NA                 | NA<br>NA                   | NA<br>NA     | NA<br>NA            | NA<br>8.4 |
| SB-265-SS                  | SB-265           | 0            | 1               | 20050509             | 0.5          | 5              | 29           | 1.3        | 0.8            |              | 8.9        | 17           | 20         | 0.09       | 2 B            | 20         |          | 1.1         | 46.2         | 50                       | NA                         | NA           | 3.6                 | 8.3       |
|                            | SB-266           | 1            | 2               | 20050509             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | NA                         | NA           | NA                  | NA        |
|                            | SB-266<br>SB-267 | 1            | 2               | 20050509<br>20050509 | NA           | 3 B<br>NA      | 44<br>NA     | 0.8<br>NA  | 1.8<br>NA      |              | 8.5<br>NA  | 16<br>NA     | 43<br>NA   | 0.51<br>NA | 0.6 B<br>NA    | 14<br>NA   | 3<br>NA  | 1.1<br>NA   | 33.4<br>NA   | 85<br>NA                 | NA<br>NA                   | NA<br>NA     | 2<br>NA             | NA<br>NA  |
|                            | SB-267           | 0            | 1               | 20050509             | 1            | 3 B            | 79           | 0.8        | 0.7            | 16.4         |            | 16           | 91         | 0.07       |                | 9          | 3        | 0.06 B      | 21.6         | 287                      | NA                         | NA           | NA                  | NA        |
|                            | SB-268           | 1            | 2               | 20050509             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | NA                         | NA           | NA                  | NA        |
|                            | SB-268<br>SB-269 | 0<br>1       | 1 2             | 20050509<br>20050509 | 2 L<br>NA    | 5<br>NA        | 207<br>NA    | 1.4<br>NA  | 3<br>NA        |              | 12<br>NA   | 50<br>NA     | 447<br>NA  | 0.49<br>NA | 1 B<br>NA      | 14<br>NA   | NA       | 0.3 B<br>NA | 35.8<br>NA   | 289<br>NA                | NA<br>NA                   | NA<br>NA     | 3.6<br>NA           | NA<br>NA  |
|                            | SB-269           | 0            | 1               | 20050509             | 1 L          | 6              | 103          | 1.7        | 0.7            |              | 6.6        | 15           | 56         | 0.18       | 1 B            | 13         | 3        |             | 42.8         | 74                       | NA<br>NA                   | NA<br>NA     | 0.51                | NA<br>NA  |
| SB-270-02                  | SB-270           | 1            | 2               | 20050509             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | NA                         | NA           | NA                  | NA        |
|                            | SB-270           | 0            | 1               | 20050509             | 1 L          | 3 B            | 64           | 1.1        | 0.3 B          |              | 5.4        | 12           | 64         | 0.11       | 0.6 B          | 8 B        |          |             | 26.2         | 51                       | NA                         | NA<br>NA     | 0.64                | NA<br>NA  |
|                            | SB-238<br>SB-238 | 1<br>        | 5               | 20050517<br>20050517 | 0.3 L        | 3              | 41<br>24     | 1.8        | 0.6<br>0.5     |              | 8.4<br>15  | 16<br>14     | 30<br>14   | 0.08       | 0.8 B<br>0.7 B | 22<br>27   |          |             | 35.9<br>34.1 | 54<br>57                 | NA<br>NA                   | NA<br>NA     |                     | NA<br>NA  |
|                            | SB-238           | 0            | 1               | 20050517             | 1 L          | 3              | 86           | 1.3        | 2              |              | 6.4        | 23           | 148        | 0.24       | 1 B            | 21         |          |             | 49           | 167                      | NA                         | NA           | 0.49                | NA        |
|                            | SB-296           | 4            | 5               | 20051028             |              | 5.7            | 14.5         | 3.6        |                |              | 32         | 40.4         | 9.9        | 0.02       | 0.55 K         | 31.4       |          | 1.6         | 61.6         | 58                       | NA                         | 80           | NA                  | NA        |
| SB-296-0910<br>SB-297-0405 | SB-296<br>SB-297 | 9 4          | 10<br>5         | 20051028<br>20051028 |              | 2.4 K<br>3.3   | 13.7<br>16.3 | 3.6<br>3.1 |                | 21.1<br>26.1 |            | 21.9<br>21.9 | 7.6<br>8.3 | 0.01       | 0.43 K         | 21.3<br>24 |          | 1.2         | 32.8<br>35.3 | 26.8<br>24.1             | NA<br>NA                   | 84<br>88     | NA<br>NA            | NA<br>NA  |
|                            | SB-297           | 9            | 10              | 20051028             |              | 3 K            | 22.3         | 3.7        |                |              | 8.7 K      | 15.9         | 8.5        |            | 0.45 K         | 25.4       |          |             | 31.8         | 33.2                     | NA                         | 84           | NA                  | NA        |
|                            | SB-295           | 4            | 5               | 20051101             |              | 4.6            | 22.8         | 0.96       |                |              | 3.2 B      | 14.6         | 8          | 0.01       | 0.41 K         | 9.7        |          | 0.72        | 40.4         | 27.1                     | NA                         | 81           | NA                  | NA        |
| SB-295-0910<br>SB-298-0405 | SB-295<br>SB-298 | 9            | 10<br>5         | 20051101<br>20051101 |              | 2.9 K<br>3.5   | 15.1<br>17.7 | 3.2<br>4.3 |                | 16.3         | 8.5 K<br>8 | 17.5<br>18   | 8.7<br>8.4 |            | 0.44 K<br>0.32 | 24.3       |          | 0.99        | 32.5<br>28.4 | 32.2<br>34.7             | NA<br>NA                   | 84<br>84     | NA<br>NA            | NA<br>NA  |
|                            | SB-298           | 9            | 10              | 20051101             |              | 2 K            | 19.6         | 3.8        |                |              | 5.3        | 11.6         | 10.4       | -          | 0.35           | 17.8       |          |             | 46.4         | 30.8                     | NA                         | 83           | NA<br>NA            | NA        |
| SB-299-0405                |                  | 4            | 5               | 20051101             |              | 1.3 K          | 12.5         | 1.8        |                |              | 11         | 10.9         | 4          | -          |                | 13.7       |          |             | 27.2         | 40.9                     | NA                         | 86           | NA                  | NA        |
| SB-299-0910<br>SB-382-0102 |                  | 9            | 10              | 20051101             | <br>NIA      | 2.2 K          | 42.2         | 2.6        | <br>NIA        |              | 9.3        | 11.2         | 11.2       | 0.01 B     | <br>N/A        | 18.1       | <br>NA   | <br>NIA     | 20.7         | 42.7                     | NA<br>05.6                 | 85<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-382-0203                |                  | 1<br>2       | 3               | 20071015<br>20071015 | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 85.6<br>76.2               | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-382-0405                |                  | 4            | 5               | 20071015             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | 80.4                       | NA           | NA                  | NA        |
|                            | SB-382           | 7            | 8               | 20071015             | NA           | NA             | NA           | NA         | NA NA          |              | . NA       | NA           | NA         | NA         | NA             | NA NA      | NA<br>NA | NA          | NA NA        | NA                       | 79.2                       | NA           | NA                  | NA        |
| SB-383-0102<br>SB-383-0203 | SB-383<br>SB-383 | 1<br>2       | 3               | 20071015<br>20071015 | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 88<br>87.2                 | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-383-0405                |                  | 4            | 5               | 20071015             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA NA    | NA          | NA           | NA NA                    | 79.2                       | NA           | NA                  | NA        |
|                            | SB-383           | 7            | 8               | 20071015             | NA           | NA             | NA           | NA         | NA             |              | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | 83.1                       | NA           | NA                  | NA        |
| SB-384-0102<br>SB-384-0203 |                  | 1<br>2       | 3               | 20071015<br>20071015 | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 87<br>86                   | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-384-0405                |                  | 4            | 5               | 20071015             | NA           | NA             | NA NA        | NA         | NA             |              | NA NA      | NA           | NA         | NA         | NA             | NA         | NA NA    | NA          | NA           | NA NA                    | 84.6                       | NA           | NA                  | NA        |
|                            | SB-384           | 7            | 8               | 20071015             | NA           | NA             | NA           | NA         | NA             |              | . NA       | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | 76.6                       | NA           | NA                  | NA        |
| SB-385-0102<br>SB-385-0203 |                  | 1 2          | 3               | 20071015<br>20071015 | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 92<br>91                   | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-385-0405                |                  | 4            | 5               | 20071015             | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | . NA       | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 93                         | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-385-0708                | SB-385           | 7            | 8               | 20071015             | NA           | NA             | NA           | NA         | NA             | NA           | NA         | NA           | NA         | NA         | NA             | NA         | NA       | NA          | NA           | NA                       | 84.7                       | NA           | NA                  | NA        |
|                            | SB-386           | 1            | 3               | 20071015<br>20071015 | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 90<br>89.2                 | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-386-0203<br>SB-386-0405 |                  | 2<br>4       | 5               | 20071015             | NA<br>NA     | NA<br>NA       | NA<br>NA     | NA<br>NA   | NA<br>NA       |              | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA<br>NA   | NA<br>NA | NA<br>NA    | NA<br>NA     | NA<br>NA                 | 89.2<br>89.5               | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| SB-386-0708                |                  | 7            | 8               | 20071015             | NA<br>NA     | NA             | NA NA        | NA NA      | NA             |              | NA         | NA           | NA<br>NA   | NA<br>NA   | NA<br>NA       | NA         | NA NA    | NA          | NA           | NA NA                    | 84.1                       | NA           | NA                  | NA NA     |
|                            |                  |              |                 |                      |              |                |              |            |                | •            | •          |              |            |            |                |            |          |             |              |                          | I .                        |              |                     |           |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 3 of 60

|                            |                  |              | Т               | 1                    | Т        |          |          |           |          |          |          |          | NACTAL O (NAC | 2/1/(2)  |            |          |          |          |          |          | MICO           | NELL AND OUT | DADAMETE.           | <del></del> |
|----------------------------|------------------|--------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|---------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|-------------|
|                            |                  |              |                 |                      |          | 1        |          | ı         |          |          | 1        |          | METALS (MC    | 5/KG)    | 1          |          |          |          | <u> </u> |          | MISC           | ELLANEOUS    | S PARAMETE          | <u> </u>    |
| SAMPLE ID                  | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD          | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | PH          |
|                            |                  |              |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG         | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.        |
|                            |                  |              |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA          |
|                            | SB-387           | 1            | 2               | 20071015             | NA<br>NA | NA<br>NA | NA       | NA        | NA<br>NA |          | NA NA    | NA       | NA<br>NA      | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA       | 93.7           | NA           | NA                  | NA<br>NA    |
|                            | SB-387<br>SB-387 | 4            | 3<br>5          | 20071015<br>20071015 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 91.4<br>84.4   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-387-0708                | SB-387           | 7            | 8               | 20071015             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 88.8           | NA           | NA                  | NA          |
|                            | SB-388<br>SB-388 | 2            | 3               | 20071015<br>20071015 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 93.6<br>87.6   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-388           | 4            | 5               | 20071015             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 90.8           | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-388           | 7            | 8               | 20071015             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 90.3           | NA           | NA                  | NA          |
| SB-389-0102<br>SB-389-0203 | SB-389<br>SB-389 | 2            | 3               | 20071015<br>20071015 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 91.2<br>85     | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-389-0405                | SB-389           | 4            | 5               | 20071015             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 87.5           | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-389           | 7            | 8               | 20071015             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.4           | NA           | NA                  | NA          |
|                            | SB-390<br>SB-390 | 1 2          | 3               | 20071015<br>20071015 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 87<br>78.4     | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-390           | 4            | 5               | 20071015             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA       | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 82.8           | NA<br>NA     | NA<br>NA            | NA          |
|                            | SB-390           | 7            | 8               | 20071015             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 82.3           | NA           | NA                  | NA          |
|                            | SB-391<br>SB-391 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 83.6<br>65.8   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-391           | 4            | 5               | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA       |          | . NA     | NA       | NA            | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 87             | NA           | NA<br>NA            | NA          |
|                            | SB-391           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 85.3           | NA           | NA                  | NA          |
|                            | SB-392<br>SB-392 | 1 2          | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 90.3<br>89.3   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-392-0405                | SB-392           | 4            | 5               | 20071016             | NA<br>NA | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 84.9           | NA           | NA<br>NA            | NA          |
|                            | SB-392           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 84.4           | NA           | NA                  | NA          |
|                            | SB-393<br>SB-393 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 94.6<br>92.6   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-393           | 4            | 5               | 20071016             | NA<br>NA | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA NA    | NA       | NA NA    | NA       | NA<br>NA | 93.5           | NA           | NA NA               | NA          |
| SB-393-0708                | SB-393           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.9           | NA           | NA                  | NA          |
| SB-394-0102<br>SB-394-0203 | SB-394<br>SB-394 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 90<br>90.6     | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-394-0405                |                  | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.7           | NA           | NA                  | NA          |
| SB-394-0708                |                  | 7            | 8               | 20071016             | NA<br>NA | NA<br>NA | NA       | NA        | NA<br>NA |          | NA NA    | NA       | NA<br>NA      | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA       | 86.2           | NA           | NA                  | NA<br>NA    |
| SB-395-0102<br>SB-395-0203 |                  | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 83.2<br>95.9   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-395-0405                |                  | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.9           | NA           | NA                  | NA          |
| SB-395-0708                |                  | 7            | 8               | 20071016             | NA<br>NA | NA       | NA       | NA        | NA<br>NA |          | NA NA    | NA       | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA<br>NA | 87             | NA           | NA                  | NA<br>NA    |
|                            | SB-396<br>SB-396 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 85.5<br>86     | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-396-0405                |                  | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 84.8           | NA           | NA                  | NA          |
|                            | SB-396           | 7            | 8               | 20071016             | NA<br>NA | NA<br>NA | NA       | NA        | NA<br>NA |          | NA NA    | NA       | NA<br>NA      | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA       | 83.8           | NA           | NA                  | NA<br>NA    |
| SB-397-0102<br>SB-397-0203 | SB-397<br>SB-397 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 95.1<br>89.4   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-397-0405                | SB-397           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 95.1           | NA           | NA                  | NA          |
| SB-397-0708<br>SB-398-0102 |                  | 7            | 8 2             | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 85.2           | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-398-0102<br>SB-398-0203 |                  | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 90.9<br>86     | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-398-0405                | SB-398           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 89.4           | NA           | NA                  | NA          |
|                            | SB-398<br>SB-399 | 7            | 8 2             | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 86.3           | NA<br>NA     | NA<br>NA            | NA<br>NA    |
|                            | SB-399<br>SB-399 | 2            | 3               | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 90.8<br>89.9   | NA<br>NA     | NA<br>NA            | NA<br>NA    |
| SB-399-0405                | SB-399           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 84.5           | NA           | NA                  | NA          |
|                            | SB-399           | 7            | 8               | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 83.3           | NA           | NA<br>NA            | NA<br>NA    |
| SB-400-0102                | SD-400           | 1            | 2               | 20071016             | NA       | NA       | NA       | NA        | NA       | I NA     | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 91.6           | NA           | NA                  | NA          |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 4 of 60

|                             |                  |              |                 |                      | 1        |          |          |           |          |          |          |          | METALS (MO       | 2/KG)    |            |          |          |          |          |          | MISC           | ELLANEOUS    | S PARAMETEI         | DC       |
|-----------------------------|------------------|--------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|------------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|----------|
|                             |                  |              |                 |                      | -        |          |          |           |          |          |          |          | IVIE I ALO (IVIC | J/NG)    |            |          |          |          |          |          | IVIISC         | ELLANEOU     | O PARAME I EI       | 10       |
| SAMPLE ID                   | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD             | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | PH       |
|                             |                  |              |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG            | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.     |
|                             |                  |              |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-400           | 2            | 3               | 20071016             | NA<br>NA | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA               | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA<br>NA | 92.1           | NA<br>NA     | NA<br>NA            | NA       |
| SB-400-0405<br>SB-400-0708  | SB-400<br>SB-400 | 7            | 5<br>8          | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 84.1<br>80.3   | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-401-0102                 | SB-401           | 1            | 2               | 20071016             | NA<br>NA | NA       | NA       | NA<br>NA  | NA       |          | NA NA    | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 79.7           | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-401-0203                 | SB-401           | 2            | 3               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 88.3           | NA           | NA                  | NA       |
|                             | SB-401           | 4            | 5               | 20071016             | NA<br>NA | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA               | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA<br>NA | 83.1           | NA<br>NA     | NA<br>NA            | NA       |
| SB-401-0708<br>SB-402-0102  | SB-401<br>SB-402 | 7            | 8 2             | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 86<br>79.9     | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-402-0203                 | SB-402           | 2            | 3               | 20071016             | NA       | NA       | NA       | NA<br>NA  | NA<br>NA |          | NA NA    | NA       | NA               | NA NA    | NA<br>NA   | NA NA    | NA<br>NA | NA<br>NA | NA       | NA NA    | 84.7           | NA           | NA NA               | NA       |
| SB-402-0405                 | SB-402           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 83.6           | NA           | NA                  | NA       |
| SB-402-0708                 | SB-402           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 84.1           | NA           | NA                  | NA       |
| SB-403-0102<br>SB-403-0203  | SB-403<br>SB-403 | 2            | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 88.6<br>88.4   | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-403-0405                 | SB-403           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA<br>NA  | NA NA    |          | NA NA    | NA       | NA               | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA       | NA<br>NA | 84.7           | NA NA        | NA<br>NA            | NA       |
| SB-403-0708                 | SB-403           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 83.5           | NA           | NA                  | NA       |
| SB-404-0102                 | SB-404           | 1            | 2               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.6           | NA           | NA                  | NA       |
| SB-404-0203<br>SB-404-0405  | SB-404<br>SB-404 | 2<br>4       | <u>3</u><br>5   | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 81.2<br>78     | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-404-0708                 | SB-404           | 7            | 8               | 20071016             | NA<br>NA | NA       | NA       | NA<br>NA  | NA<br>NA |          | NA NA    | NA       | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 76.5           | NA<br>NA     | NA<br>NA            | NA       |
| SB-405-0102                 | SB-405           | 1            | 2               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 91.3           | NA           | NA                  | NA       |
| SB-405-0203                 | SB-405           | 2            | 3               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 90.3           | NA           | NA                  | NA       |
| SB-405-0405<br>SB-405-0708  | SB-405<br>SB-405 | 7            | 5<br>8          | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 83.3<br>77.4   | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-406-0102                 | SB-406           | 1            | 2               | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 87.2           | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-406-0203                 | SB-406           | 2            | 3               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 87.5           | NA           | NA                  | NA       |
| SB-406-0405                 | SB-406           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 79.9           | NA           | NA                  | NA       |
| SB-406-0708<br>SB-407-0102  | SB-406<br>SB-407 | 7            | 8 2             | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 78.3<br>78.6   | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-407-0102<br>SB-407-0203  | SB-407           | 2            | 3               | 20071016             | NA<br>NA | NA       | NA       | NA<br>NA  | NA<br>NA |          | NA NA    | NA       | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 78.1           | NA<br>NA     | NA<br>NA            | NA       |
| SB-407-0405                 | SB-407           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 73.7           | NA           | NA                  | NA       |
| SB-407-0708                 |                  | 7            | 8               | 20071016             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | 72.7           | NA<br>NA     | NA<br>NA            | NA       |
|                             | SB-408<br>SB-408 | 1 2          | 3               | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 81.8<br>83.8   | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-408           | 4            | 5               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA               | NA       | NA         | NA NA    | NA NA    | NA       | NA       | NA NA    | 86.1           | NA           | NA NA               | NA       |
|                             | SB-408           | 7            | 8               | 20071016             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 81.1           | NA           | NA                  | NA       |
|                             | SB-409           | 1            | 2               | 20071016             | NA<br>NA | NA       | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | 77.6           | NA<br>NA     | NA<br>NA            | NA       |
| SB-409-0203<br>SB-409-0405  | SB-409<br>SB-409 | 2<br>4       | 3<br>5          | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 81.6<br>78.5   | NA<br>NA     | NA<br>NA            | NA<br>NA |
| SB-409-0708                 |                  | 7            | 8               | 20071016             | NA       | NA       | NA       | NA<br>NA  | NA NA    |          | NA NA    | NA       | NA               | NA NA    | NA<br>NA   | NA<br>NA | NA<br>NA | NA NA    | NA       | NA NA    | 73.5           | NA           | NA NA               | NA       |
| SB-489-0102                 | SB-489           | 1            | 2               | 20071016             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 79.8           | NA           | NA                  | NA       |
| SB-489-0203                 |                  | 2            | 3               | 20071016             | NA<br>NA | NA<br>NA | NA       | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | 76.3           | NA<br>NA     | NA<br>NA            | NA       |
|                             | SB-489<br>SB-489 | 7            | 5<br>8          | 20071016<br>20071016 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | 79.3<br>73.3   | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-490           | 4            | 5               | 20071010             | NA       | NA       | NA       | NA<br>NA  | NA       |          | . NA     | NA       | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | 79.4           | NA<br>NA     | NA<br>NA            | NA       |
| SB-490-0708                 | SB-490           | 7            | 8               | 20071017             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | 86.6           | NA           | NA                  | NA       |
| F-SB-55RE-10                |                  | 10           | 10              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-55RE-11<br>F-SB-56RE-1 |                  | 11<br>1      | 11              | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-56RE-10                |                  | 10           | 10              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-56RE-11                |                  | 11           | 11              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA NA    | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-56RE-12                | SB-056           | 12           | 12              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-56RE-13                | SB-056           | 13           | 13              | 20090918             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |

#### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 5 of 60

|                               | _                |               |                 |                      | 1        |          |          |           |          |          |          |          | METALS (MO      | 2/KG)    |            |          |          |          |          |          | MISC           | ELLANEOUS    | S PARAMETEI         | De       |
|-------------------------------|------------------|---------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|----------|
|                               |                  |               |                 |                      |          |          |          |           |          |          |          |          | IVIL TALS (IVIC | J/RG)    |            |          |          |          |          |          | IVIISC         | ELLAINEOU    | S PARAIVIE I EI     | 10       |
| SAMPLE ID                     | LOCATION<br>ID   | TOP<br>DEPTH  | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | СНКОМІОМ | COBALT   | COPPER   | LEAD            | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | PH       |
|                               |                  |               |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG           | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.     |
|                               |                  |               |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-56RE-13-                 |                  | 13            | 13              | 20090918             | NA       | NA       | NA<br>NA | NA        | NA       |          | NA NA    | NA       | NA              | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA       | NA             | NA           | NA<br>NA            | NA       |
| F-SB-56RE-13-<br>F-SB-56RE-14 |                  | 13<br>14      | 13<br>14        | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-56RE-15                  |                  | 15            | 15              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-56RE-2                   | SB-056           | 2             | 2               | 20090918             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-056           | 3             | 3               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-056<br>SB-056 | <u>4</u><br>5 | 4<br>5          | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-056           | 6             | 6               | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-056           | 7             | 7               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-056           | 8             | 8               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-056<br>SB-095 | 9             | 9               | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-95RE-10                  |                  | 10            | 10              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-95RE-11                  |                  | 11            | 11              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-95RE-12                  |                  | 12            | 12              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-95RE-13<br>F-SB-95RE-13- |                  | 13<br>13      | 13<br>13        | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-95RE-13-                 |                  | 13            | 13              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-95RE-14                  |                  | 14            | 14              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-95RE-15                  |                  | 15            | 15              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-095<br>SB-095 | 3             | 3               | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-095           | 4             | 4               | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-95RE-5                   | SB-095           | 5             | 5               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-095           | 6             | 6               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-95RE-7<br>F-SB-95RE-8    | SB-095<br>SB-095 | 7<br>8        | 8               | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-095           | 9             | 9               | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-383RE-3                  |                  | 3             | 3               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-383RE-4                  |                  | 4             | 4               | 20090918             | NA<br>NA | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA              | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-389RE-3<br>F-SB-389RE-4  |                  | 3<br>4        | 3 4             | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-390RE-6                  |                  | 6             | 6               | 20090918             | NA       | NA       | NA       | NA NA     | NA       |          | . NA     | NA       | NA              | NA       | NA         | NA NA    | NA NA    | NA       | NA       | NA NA    | NA             | NA           | NA<br>NA            | NA       |
| F-SB-390RE-7                  |                  | 7             | 7               | 20090918             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-628           | 10            | 10              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA       | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-628<br>SB-629 | 11<br>10      | 11<br>10        | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-629           | 11            | 11              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA NA               | NA       |
|                               | SB-630           | 10            | 10              | 20090918             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                               | SB-630<br>SB-631 | 11<br>10      | 11<br>10        | 20090918<br>20090918 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                               | SB-631           | 11            | 11              | 20090918             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-93RE-1                   |                  | 1             | 1               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | . NA     | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-93RE-10                  |                  | 10            | 10              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-93RE-11                  |                  | 11            | 11              | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-93RE-12<br>F-SB-93RE-13  |                  | 12<br>13      | 12<br>13        | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-93RE-14                  |                  | 14            | 14              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA              | NA       | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA<br>NA | NA             | NA           | NA NA               | NA NA    |
| F-SB-93RE-2                   | SB-093           | 2             | 2               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-93RE-3                   |                  | 3             | 3               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-93RE-4                   | SB-083           | 4             | 4               | 20090921             | NA       | NA       | NA       | NA        | NA       | I NA     | NA       | NA       | NA              | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 6 of 60

|                                | Т Т              |               |                 | ,                    | T        |          |          |           |          |          |          |          | METALO (M  | 2/(40)   |            |          |          |          |          |          | 1,110,0        |              |                     |           |
|--------------------------------|------------------|---------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|-----------|
|                                |                  |               |                 |                      |          | 1        |          | I         |          | 1        |          |          | METALS (MC | 5/KG)    | 1          |          |          |          | 1        |          | MISC           | ELLANEOUS    | S PARAMETE          | <b>KS</b> |
| SAMPLE ID                      | LOCATION<br>ID   | TOP<br>DEPTH  | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD       | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | H         |
|                                |                  |               |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG      | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.      |
| 5.00.0005.5                    | 00.000           |               |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                                | SB-093<br>SB-093 | 5<br>6        | 5<br>6          | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                                | SB-093           | 7             | 7               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA NA    | NA       | NA       | NA             | NA           | NA NA               | NA        |
|                                | SB-093           | 8             | 8               | 20090921             | NA       | NA       | NA<br>NA | NA<br>NA  | NA       | _        | NA       | NA       | NA         | NA       | NA         | NA<br>NA | NA       | NA<br>NA | NA       | NA<br>NA | NA             | NA           | NA                  | NA        |
|                                | SB-093<br>SB-094 | 9             | 9               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | _        | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-94RE-10                   |                  | 10            | 10              | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-94RE-11                   | SB-094           | 11            | 11              | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-94RE-12                   |                  | 12            | 12              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-94RE-12-<br>F-SB-94RE-12- |                  | 12<br>12      | 12<br>12        | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | _        | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-94RE-13                   |                  | 13            | 13              | 20090921             | NA       | NA<br>NA | NA       | NA<br>NA  | NA       |          | NA       | NA       | NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA           | NA<br>NA            | NA NA     |
| F-SB-94RE-14                   |                  | 14            | 14              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-94RE-15                   |                  | 15            | 15              | 20090921             | NA       | NA       | NA       | NA        | NA<br>NA |          | NA       | NA       | NA         | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA       | NA             | NA           | NA                  | NA        |
|                                | SB-094<br>SB-094 | 3             | 3               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                                | SB-094           | 4             | 4               | 20090921             | NA       | NA       | NA       | NA        | NA       | _        | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                                | SB-094           | 5             | 5               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                                | SB-094<br>SB-094 | 6<br>7        | 6<br>7          | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | _        | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                                | SB-094           | 8             | 8               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                                | SB-094           | 9             | 9               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                                | SB-096           | 1             | 1               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-10<br>F-SB-96RE-11   |                  | 10<br>11      | 10<br>11        | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-96RE-11-                  |                  | 11            | 11              | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-96RE-11-                  |                  | 11            | 11              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-12                   |                  | 12            | 12              | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-13<br>F-SB-96RE-14   |                  | 13<br>14      | 13<br>14        | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-96RE-15                   |                  | 15            | 15              | 20090921             | NA       | NA       | NA       | NA<br>NA  | NA       | _        | NA       | NA       | NA         | NA       | NA NA      | NA NA    | NA<br>NA | NA<br>NA | NA NA    | NA<br>NA | NA             | NA           | NA NA               | NA NA     |
| F-SB-96RE-2                    |                  | 2             | 2               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-3<br>F-SB-96RE-4     |                  | 3             | 3<br>4          | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-96RE-5                    |                  | <u>4</u><br>5 | 5               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-96RE-6                    |                  | 6             | 6               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-7                    |                  | 7             | 7               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-96RE-8<br>F-SB-96RE-9     |                  | 8<br>9        | 8<br>9          | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-265RE-3                   |                  | 3             | 3               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-265RE-4                   | SB-265           | 4             | 4               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-266RE-3                   |                  | 3             | 3               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-266RE-4<br>F-SB-267RE-3   |                  | 3             | 3               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-267RE-4                   |                  | 4             | 4               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-268RE-3                   | SB-268           | 3             | 3               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-268RE-4                   |                  | 4             | 4               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-268RE-5<br>F-SB-268RE-6   |                  | 5<br>6        | 5<br>6          | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-268RE-7                   |                  | 7             | 7               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-268RE-7-                  |                  | 7             | 7               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA NA    | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-268RE-7-                  |                  | 7             | 7               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-269RE-3                   | SB-269           | 3             | 3               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 7 of 60

|                                |                   |              |                 | 1                    |          |          |          |           |          |          |          |          | METALO (MA | 2/1/0)       |            |          |          |          |          |          | MICO           | SELL AND OUT | DADAMETE            | 700        |
|--------------------------------|-------------------|--------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|------------|--------------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|------------|
|                                |                   |              |                 |                      |          | 1        |          | ı         |          |          | 1        |          | METALS (MC | 5/KG)        |            |          |          |          |          |          | MISC           | ELLANEOUS    | S PARAMETE          | <b>κ</b> δ |
| SAMPLE ID                      | LOCATION<br>ID    | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD       | MERCURY      | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | H          |
|                                |                   |              |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG      | MG/KG        | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.       |
| 5 0D 000D5 1                   | 00.000            |              |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-269RE-4<br>F-SB-270RE-3   |                   | 3            | 3               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-270RE-4                   |                   | 4            | 4               | 20090921             | NA       | NA       | NA<br>NA | NA<br>NA  | NA       |          | NA NA    | NA       | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA       | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA<br>NA            | NA NA      |
| F-SB-388RE-3                   |                   | 3            | 3               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-388RE-4<br>F-SB-388RE-5   |                   | 4<br>5       | <u>4</u><br>5   | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-393RE-3                   |                   | 3            | 3               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-393RE-4                   |                   | 4            | 4               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-393RE-5                   |                   | 5            | 5               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-393RE-5-<br>F-SB-393RE-5- |                   | 5<br>5       | 5<br>5          | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-393RE-6                   |                   | 6            | 6               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-393RE-7                   |                   | 7            | 7               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-397RE-6                   |                   | 6            | 6               | 20090921             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-397RE-7<br>F-SB-624-1     | SB-397<br>SB-624  | 7            | 7               | 20090921<br>20090921 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | 0.035        | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-624            | 2            | 2               | 20090921             | NA       | NA       | NA       | NA<br>NA  | NA       |          | NA NA    | NA       | NA         | 0.22         | NA<br>NA   | NA NA    | NA<br>NA | NA NA    | NA<br>NA | NA<br>NA | NA             | NA           | NA NA               | NA NA      |
|                                | SB-625            | 1            | 1               | 20090921             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         |              | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-625            | 2            | 2               | 20090921             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | 0.58         | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-24ARE-1<br>F-SB-24ARE-2   |                   | 2            | 2               | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | 1.5 L<br>1 L | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-24ARE-3                   |                   | 3            | 3               | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | 0.086        | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-24ARE-4                   |                   | 4            | 4               | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | 0.083        | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-24ARE-5<br>F-SB-405RE-    | SB-024A<br>SB-405 | 5<br>10      | 5               | 20090922             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA           | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-405            | 11           | 10<br>11        | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-405            | 12           | 12              | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-405RE-                    | SB-405            | 13           | 13              | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-405            | 13<br>13     | 13<br>13        | 20090922             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-405RE-<br>F-SB-405RE-9    |                   | 9            | 9               | 20090922             | NA<br>NA | NA       | NA       | NA<br>NA  | NA NA    |          | . NA     | NA       | NA         | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA NA    | NA<br>NA | NA<br>NA | NA NA          | NA           | NA<br>NA            | NA         |
| F-SB-626-1                     | SB-626            | 1            | 1               | 20090922             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | 2.2 L        | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-626            | 2            | 2               | 20090922             | NA<br>NA | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA         | 2.7 L        | NA         | NA NA    | NA       | NA NA    | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-626<br>SB-626  | 3            | 3<br>4          | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | 0.6<br>0.5   | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-626            | 5            | 5               | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA         |              | NA<br>NA   | NA NA    | NA NA    | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA                  | NA         |
|                                | SB-627            | 1            | 1               | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA         | 0.31 L       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-627            | 2            | 2               | 20090922             | NA<br>NA | NA       | NA       | NA<br>NA  | NA NA    |          | NA NA    | NA<br>NA | NA<br>NA   | 0.38 L       | NA         | NA NA    | NA<br>NA | NA NA    | NA       | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA         |
|                                | SB-632<br>SB-632  | 10<br>9      | 10<br>9         | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-633            | 10           | 10              | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-633            | 9            | 9               | 20090922             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-634            | 10           | 10              | 20090922             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-634<br>SB-635  | 9<br>10      | 9<br>10         | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
| F-SB-635-10-                   |                   | 10           | 10              | 20090922             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA<br>NA   | NA           | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA       | NA             | NA           | NA                  | NA         |
| F-SB-635-10-D                  | SB-635            | 10           | 10              | 20090922             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
|                                | SB-635            | 11           | 11              | 20090922             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-635<br>SB-635  | 12<br>13     | 12<br>13        | 20090922<br>20090922 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA   | NA<br>NA     | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA   |
|                                | SB-635            | 9            | 9               | 20090922             | NA       | NA       | NA       | NA NA     | NA       |          | NA NA    | NA       | NA         | NA<br>NA     | NA NA      | NA NA    | NA<br>NA | NA       | NA       | NA       | NA             | NA           | NA<br>NA            | NA         |
| F-SB-268RE-                    | SB-268            | 10           | 10              | 20091006             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |
| F-SB-268RE-                    | SB-268            | 11           | 11              | 20091006             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA         | NA           | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA         |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 8 of 60

|                             | T 1              |              | ı               |                             | ı        |          |          |           |          |          |          |          | METALS (MC       | 2/KC)    |            |          |          |          |          |          | MISC           | ELLANEOUS    | S PARAMETE          | De       |
|-----------------------------|------------------|--------------|-----------------|-----------------------------|----------|----------|----------|-----------|----------|----------|----------|----------|------------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|----------|
|                             |                  |              |                 |                             |          |          |          |           |          |          |          |          | IVIE I ALS (IVIC | 5/KG)    |            |          |          |          |          |          | IVIISC         | ELLANEOUS    | 5 PARAIVIE I E      | 10       |
| SAMPLE ID                   | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE                 | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD             | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | Hd       |
|                             |                  |              |                 | Units                       | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG            | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.     |
|                             |                  |              |                 | Target Cancer<br>Risk Level | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-268RE-8                |                  | 8            | 8               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-268RE-9                |                  | 9            | 9               | 20091006                    | NA<br>NA | NA       | NA<br>NA | NA<br>NA  | NA NA    |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA                  | NA       |
| F-SB-641-1                  | SB-641<br>SB-641 | 3            | 3               | 20091006<br>20091006        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-641-3<br>F-SB-641-5    | SB-641           | 5            | 5               | 20091006                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-645-1                  | SB-645           | 1            | 1               | 20091006                    | NA<br>NA | NA       | NA       | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA NA          | NA           | NA<br>NA            | NA       |
| F-SB-645-3                  | SB-645           | 3            | 3               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA NA    | NA             | NA           | NA                  | NA       |
| F-SB-645-5                  | SB-645           | 5            | 5               | 20091006                    | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-645-7                  | SB-645           | 7            | 7               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-646-1                  | SB-646           | 1            | 1               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-646-3                  | SB-646           | 3            | 3               | 20091006                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-646-3-<br>F-SB-646-3-D | SB-646<br>SB-646 | 3            | 3               | 20091006<br>20091006        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-646-5                  | SB-646           | 5            | 5               | 20091006                    | NA       | NA       | NA       | NA NA     | NA NA    |          | NA       | NA       | NA<br>NA         | NA NA    | NA<br>NA   | NA<br>NA | NA<br>NA | NA NA    | NA       | NA NA    | NA NA          | NA           | NA NA               | NA       |
| F-SB-646-7                  | SB-646           | 7            | 7               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-647-1                  | SB-647           | 1            | 1               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-647-3                  | SB-647           | 3            | 3               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-647-5                  | SB-647           | 5            | 5               | 20091006                    | NA       | NA       | NA       | NA        | NA<br>NA |          | NA       | NA       | NA<br>NA         | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA                  | NA<br>NA |
| F-SB-647-7<br>F-SB-648-1    | SB-647<br>SB-648 | 7<br>1       | 7               | 20091006<br>20091006        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-648-3                  | SB-648           | 3            | 3               | 20091006                    | NA<br>NA | NA       | NA<br>NA | NA<br>NA  | NA NA    |          | NA       | NA       | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA       |
| F-SB-648-5                  | SB-648           | 5            | 5               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA NA    | NA             | NA           | NA                  | NA       |
| F-SB-648-7                  | SB-648           | 7            | 7               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-649-1                  | SB-649           | 1            | 1               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-649-3                  | SB-649           | 3            | 3               | 20091006                    | NA       | NA       | NA       | NA        | NA NA    |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-649-5<br>F-SB-650-1    | SB-649<br>SB-650 | 5<br>1       | 5               | 20091006                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-650-3                  | SB-650           | 3            | 3               | 20091006<br>20091006        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-650-3-                 | SB-650           | 3            | 3               | 20091006                    | NA       | NA       | NA       | NA<br>NA  | NA NA    |          | NA       | NA       | NA               | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA NA          | NA           | NA<br>NA            | NA       |
| F-SB-650-3-D                |                  | 3            | 3               | 20091006                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-650-5                  | SB-650           | 5            | 5               | 20091006                    | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-636           | 1            | 1               | 20091007                    | NA<br>NA | NA       | NA       | NA<br>NA  | NA<br>NA |          | NA       | NA       | NA               | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA                  | NA       |
|                             | SB-636           | 3            | 3               | 20091007                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-636-3-<br>F-SB-636-3-D | SB-636<br>SB-636 | 3            | 3               | 20091007<br>20091007        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-636           | 5            | 5               | 20091007                    | NA       | NA       | NA       | NA        | NA NA    |          | NA       | NA<br>NA | NA               | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA           | NA<br>NA            | NA       |
|                             | SB-637           | 1            | 1               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-637           | 3            | 3               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-637           | 5            | 5               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA<br>NA | NA             | NA           | NA                  | NA       |
|                             | SB-638           | 1            | 1               | 20091007                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-638<br>SB-638 | 3            | 3               | 20091007<br>20091007        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-638           | 3            | 3               | 20091007                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-638           | 5            | 5               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA NA    | NA NA    | NA       | NA       | NA NA    | NA             | NA           | NA                  | NA       |
|                             | SB-639           | 1            | 1               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-639           | 3            | 3               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-639           | 5            | 5               | 20091007                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA               | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                             | SB-640           | 1            | 1               | 20091007                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-640-3<br>F-SB-640-5    | SB-640<br>SB-640 | 3<br>5       | 3<br>5          | 20091007<br>20091007        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                             | SB-651           | 1            | 1               | 20091007                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA       | NA<br>NA | NA<br>NA         | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| . 05 001 1                  | 22 001           | - '          | · '             | 20001007                    | 1 17/1   | 1 17/1   | 1 1/ 1   | 1 1/1     | 1 1/ 1   | 1 11/7   | 1 177 1  | 1 1/ 1   | 1 17/1           | 1 17/1   | 1 1//      | 14/1     | 14/1     | 14/1     | 14/1     | 1 17/1   | 1 4/ 1         | 1 1/ 1       | 1 1/ 1              | 1 1/ 1   |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 9 of 60

|                             |                    |                                         |                 | 1                                 |          |          |                 |                 |                 |       |          |               | METALS (MO | S/KG)    |                                |                 |                   |                 |          | <u> </u>      | MISC             | ELLANEOUS      | S PARAMETE                         | RS       |
|-----------------------------|--------------------|-----------------------------------------|-----------------|-----------------------------------|----------|----------|-----------------|-----------------|-----------------|-------|----------|---------------|------------|----------|--------------------------------|-----------------|-------------------|-----------------|----------|---------------|------------------|----------------|------------------------------------|----------|
| SAMPLE ID                   | LOCATION<br>ID     | TOP<br>DEPTH                            | BOTTOM<br>DEPTH | SAMPLE DATE  Units  Target Cancer | MG/KG    | MG/KG    | MG/KG<br>BARIUM | DA/DW BERYLLIUM | CADMIUM CABMIUM | MG/KG | MG/KG    | OOPPER COPPER | MG/KG      | MERCURY  | MOLYBDENUM<br>Sy<br>MOLYBDENUM | NICKEL<br>MG/KG | SELENIUM<br>W@/KG | SILVER<br>WG/KG | MG/KG    | ONIZ<br>MG/KG | % PERCENT SOLIDS | % TOTAL SOLIDS | S<br>S<br>HEXAVALENT CHROMIUM<br>S | Hd.      |
|                             |                    |                                         |                 | Risk Level                        | NA       | NA       | NA              | NA              | NA              | NA    | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-651             | 3                                       | 3               | 20091007                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-651<br>SB-652   | 5<br>1                                  | 5<br>1          | 20091007<br>20091007              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-652             | 3                                       | 3               | 20091007                          | NA<br>NA | NA<br>NA | NA              | NA<br>NA        | NA              |       | NA NA    | NA            | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA               | NA             | NA<br>NA                           | NA<br>NA |
|                             | SB-652             | 5                                       | 5               | 20091007                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-643             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1               | 20091016                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA              | NA<br>NA          | NA              | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-643<br>SB-643   | 11<br>13                                | 11<br>13        | 20091016<br>20091016              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
| F-SB-643-15                 | SB-643             | 15                                      | 15              | 20091016                          | NA       | NA       | NA              | NA              | NA              |       | NA NA    | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-643             | 3                                       | 3               | 20091016                          | NA       | NA       | NA              | NA              | NA              |       | . NA     | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-643             | 5 7                                     | 5               | 20091016                          | NA<br>NA | NA       | NA<br>NA        | NA              | NA NA           |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA                             | NA<br>NA        | NA<br>NA          | NA              | NA       | NA<br>NA      | NA               | NA             | NA                                 | NA<br>NA |
|                             | SB-643<br>SB-643   | 7<br>9                                  | 7<br>9          | 20091016<br>20091016              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-644             | 1                                       | 1               | 20091016                          | NA       | NA       | NA              | NA NA           | NA NA           |       | NA NA    | NA            | NA         | NA       | NA<br>NA                       | NA              | NA NA             | NA              | NA NA    | NA NA         | NA               | NA             | NA                                 | NA       |
| F-SB-644-11                 | SB-644             | 11                                      | 11              | 20091016                          | NA       | NA       | NA              | NA              | NA              | NA    | . NA     | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-644             | 13                                      | 13              | 20091016                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA NA      | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-644-15<br>F-SB-644-3   | SB-644<br>SB-644   | 15<br>3                                 | 15<br>3         | 20091016<br>20091016              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-644             | 3                                       | 3               | 20091016                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA               | NA<br>NA       | NA<br>NA                           | NA<br>NA |
| F-SB-644-3-D                | SB-644             | 3                                       | 3               | 20091016                          | NA       | NA       | NA              | NA              | NA              | NA    | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-644             | 5                                       | 5               | 20091016                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-644-7                  | SB-644<br>SB-644   | 7                                       | 7               | 20091016                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-044<br>SB-268   | 9<br>12                                 | 9<br>12         | 20091016<br>20091019              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-268             | 13                                      | 13              | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-268             | 14                                      | 14              | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-268             | 15                                      | 15              | 20091019                          | NA       | NA       | NA              | NA              | NA NA           |       | NA       | NA            | NA NA      | NA NA    | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-636-7<br>F-SB-636-9    | SB-636<br>SB-636   | 7<br>9                                  | 9               | 20091019<br>20091019              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-642             | 1                                       | 1               | 20091019                          | NA       | NA       | NA              | NA<br>NA        | NA NA           |       | NA NA    | NA            | NA         | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA               | NA             | NA<br>NA                           | NA<br>NA |
|                             | SB-642             | 11                                      | 11              | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-642             | 13                                      | 13              | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-642<br>SB-642   | 15<br>3                                 | 15<br>3         | 20091019<br>20091019              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-642             | 3                                       | 3               | 20091019                          | NA<br>NA | NA       | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA               | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-642             | 3                                       | 3               | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-642             | 5                                       | 5               | 20091019                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
|                             | SB-642             | 7                                       | 7               | 20091019                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-642<br>SB-652   | 9<br>7                                  | 9 7             | 20091019<br>20091019              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-652             | 9                                       | 9               | 20091019                          | NA<br>NA | NA       | NA              | NA              | NA              |       | NA NA    | NA            | NA<br>NA   | NA       | NA                             | NA              | NA NA             | NA              | NA       | NA NA         | NA               | NA             | NA<br>NA                           | NA NA    |
|                             | SB-635C            | 1                                       | 1               | 20091104                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-635C-11<br>F-SB-635C-3 |                    | 11                                      | 11              | 20091104                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-635C<br>SB-635C | <u>3</u><br>5                           | 3<br>5          | 20091104<br>20091104              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
|                             | SB-635C            | 7                                       | 7               | 20091104                          | NA       | NA       | NA              | NA NA           | NA              |       | NA NA    | NA            | NA         | NA       | NA NA                          | NA<br>NA        | NA<br>NA          | NA              | NA       | NA<br>NA      | NA               | NA             | NA<br>NA                           | NA NA    |
| F-SB-635C-7-                |                    | 7                                       | 7               | 20091104                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-635C-7-D               |                    | 7                                       | 7               | 20091104                          | NA       | NA       | NA              | NA              | NA              |       | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-641A-1                 |                    | 1 2                                     | 1               | 20091104                          | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA<br>NA | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
| F-SB-641A-3<br>F-SB-641B-1  | SB-641B            | <u>3</u>                                | <u>3</u>        | 20091104<br>20091104              | NA<br>NA | NA<br>NA | NA<br>NA        | NA<br>NA        | NA<br>NA        |       | NA NA    | NA<br>NA      | NA<br>NA   | NA<br>NA | NA<br>NA                       | NA<br>NA        | NA<br>NA          | NA<br>NA        | NA<br>NA | NA<br>NA      | NA<br>NA         | NA<br>NA       | NA<br>NA                           | NA<br>NA |
| F-SB-641B-3                 |                    | 3                                       | 3               | 20091104                          | NA       | NA       | NA              | NA              | NA              | NA    | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |
| F-SB-641C-1                 | SB-641C            | 1                                       | 1               | 20091104                          | NA       | NA       | NA              | NA              | NA              | NA    | NA       | NA            | NA         | NA       | NA                             | NA              | NA                | NA              | NA       | NA            | NA               | NA             | NA                                 | NA       |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 10 of 60

|                               |                    |              | Т               | 1                    |          |          |          |           |          |          |          |          | NACTAL O (NAC | 2/// (2) |            |          |          |          |          |          | MOG            | NELL AND OUT | DADAMETE.           | 700       |
|-------------------------------|--------------------|--------------|-----------------|----------------------|----------|----------|----------|-----------|----------|----------|----------|----------|---------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|-----------|
|                               |                    |              |                 |                      |          | 1        |          | ı         |          |          | 1        |          | METALS (MC    | 5/KG)    | 1          |          |          |          |          |          | MISC           | ELLANEOUS    | S PARAMETE          | <b>KS</b> |
| SAMPLE ID                     | LOCATION<br>ID     | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE          | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | CADMIUM  | CHROMIUM | COBALT   | COPPER   | LEAD          | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | HA        |
|                               |                    |              |                 | Units Target Cancer  | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG         | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.      |
|                               |                    |              |                 | Risk Level           | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-641C<br>SB-642A | <u>3</u>     | 3<br>1          | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642A            | 11           | 11              | 20091104             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | NA       | NA       | NA<br>NA | NA<br>NA      | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA           | NA<br>NA            | NA        |
| F-SB-642A-13                  |                    | 13           | 13              | 20091104             | NA       | NA       | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA            | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA<br>NA | NA             | NA           | NA<br>NA            | NA        |
| F-SB-642A-15<br>F-SB-642A-3   | SB-642A<br>SB-642A | 15<br>3      | 15<br>3         | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642A            | 5            | 5               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA NA    | NA<br>NA | NA       | NA       | NA       | NA             | NA           | NA NA               | NA        |
|                               | SB-642A            | 7            | 7               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-642A-9<br>F-SB-642B-1    | SB-642A<br>SB-642B | 9            | 9               | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642B            | 11           | 11              | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA NA    | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-642B            | 13           | 13              | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA<br>NA | NA<br>NA | NA       | NA       | NA       | NA             | NA           | NA                  | NA<br>NA  |
| F-SB-642B-15<br>F-SB-642B-3   | SB-642B<br>SB-642B | 15<br>3      | 15<br>3         | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642B            | 5            | 5               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA NA    | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-642B            | 7            | 7               | 20091104             | NA       | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA            | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-642B-9<br>F-SB-642C-1    | SB-642B<br>SB-642C | 9            | 9               | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642C            | 11           | 11              | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-642C-13                  |                    | 13           | 13              | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-642C-15<br>F-SB-642C-3   | SB-642C<br>SB-642C | 15<br>3      | 15<br>3         | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-642C-5                   | SB-642C            | 5            | 5               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA NA    | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-642C            | 7            | 7               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-642C-7-<br>F-SB-642C-7-D | SB-642C<br>SB-642C | 7            | 7               | 20091104<br>20091104 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-642C            | 9            | 9               | 20091104             | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-636A-1                   | SB-636A            | 1            | 1               | 20091105             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA         | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-636A-3<br>F-SB-636A-5    | SB-636A<br>SB-636A | 3<br>        | 3<br>5          | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-636A-7                   | SB-636A            | 7            | 7               | 20091105             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-636A-7-<br>F-SB-636A-7-D |                    | 7            | 7               | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-636B            | 1            | 1               | 20091105             | NA<br>NA | NA<br>NA | NA       | NA<br>NA  | NA<br>NA |          | . NA     | NA       | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-636B-3                   | SB-636B            | 3            | 3               | 20091105             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-636B<br>SB-636B | 5<br>7       | 5<br>7          | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-636C            | 1            | 1               | 20091105             | NA<br>NA | NA<br>NA | NA       | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-636C            | 3            | 3               | 20091105             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
|                               | SB-636C<br>SB-636C | 5<br>7       | 5<br>7          | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-636D            | 1            | 1               | 20091105             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-636D-3                   | SB-636D            | 3            | 3               | 20091105             | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-636D-5<br>F-SB-636D-7    |                    | 5<br>7       | 5<br>7          | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-643B            | 1            | 1               | 20091105             | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| F-SB-643B-11                  |                    | 11           | 11              | 20091105             | NA       | NA       | NA       | NA        | NA       |          | . NA     | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-643B-13<br>F-SB-643B-15  |                    | 13<br>15     | 13<br>15        | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-643B            | 3            | 3               | 20091105             | NA<br>NA | NA<br>NA | NA       | NA<br>NA  | NA       |          | NA NA    | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
|                               | SB-643B            | 5            | 5               | 20091105             | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA            | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA        |
| F-SB-643B-7<br>F-SB-643B-7-   | SB-643B<br>SB-643B | 7            | 7               | 20091105<br>20091105 | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA  |
| 1-00-0430-7-                  | OD-049D            |              | 1               | 20031103             | INA      | INA      | INA      | INA       | INA      | INA      | I INA    | INA      | INA           | INA      | INA        | INA      | INA      | INA      | INA      | INA      | INA            | INA          | INA                 | INA       |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 11 of 60

|                            | I                  | Π            | T               |                             | Τ        |          |          |           |          |          |          |          | METAL C (MC | 2/// ()  |            |          |          |          |          |          | MICO           | ELLANGOLI    | C DADAMETE          | 'DC      |
|----------------------------|--------------------|--------------|-----------------|-----------------------------|----------|----------|----------|-----------|----------|----------|----------|----------|-------------|----------|------------|----------|----------|----------|----------|----------|----------------|--------------|---------------------|----------|
|                            |                    |              |                 |                             |          |          |          |           |          |          |          |          | METALS (MC  | 5/NG)    |            |          |          |          |          |          | MISC           | ELLANEOU     | S PARAMETE<br>I     | KO       |
| SAMPLE ID                  | LOCATION<br>ID     | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE                 | ANTIMONY | ARSENIC  | BARIUM   | BERYLLIUM | САБМІИМ  | CHROMIUM | COBALT   | COPPER   | LEAD        | MERCURY  | MOLYBDENUM | NICKEL   | SELENIUM | SILVER   | VANADIUM | ZINC     | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | PH       |
|                            |                    |              |                 | Units<br>Target Capper      | MG/KG    | MG/KG    | MG/KG    | MG/KG     | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG       | MG/KG    | MG/KG      | MG/KG    | MG/KG    | MG/KG    | MG/KG    | MG/KG    | %              | %            | MG/KG               | S.U.     |
|                            |                    |              |                 | Target Cancer<br>Risk Level | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-643B-7-D              |                    | 7            | 7               | 20091105                    | NA       | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA NA        | NA                  | NA       |
|                            | SB-643B            | 9            | 9               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA NA        | NA<br>NA            | NA<br>NA |
|                            | SB-643C<br>SB-643C | 1<br>11      | 1 11            | 20091105<br>20091105        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-643C-13               |                    | 13           | 13              | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-643C-15               |                    | 15           | 15              | 20091105                    | NA<br>NA | NA       | NA NA    | NA<br>NA  | NA NA    |          | NA NA    | NA<br>NA | NA          | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA NA        | NA<br>NA            | NA NA    |
|                            | SB-643C            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-643C-5                | SB-643C            | 5            | 5               | 20091105                    | NA       | NA       | NA       | NA        | NA       | NA       | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-643C-7                | SB-643C            | 7            | 7               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-643C            | 9            | 9               | 20091105                    | NA       | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA NA        | NA                  | NA       |
|                            | SB-645A<br>SB-645A | 3            | 1               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-645B            | 1            | 3               | 20091105<br>20091105        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-645B            | 3            | 3               | 20091105                    | NA       | NA       | NA NA    | NA NA     | NA NA    |          | NA NA    | NA       | NA          | NA<br>NA | NA NA      | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA NA    | NA             | NA           | NA<br>NA            | NA NA    |
|                            | SB-645B            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-645B-3-D              | SB-645B            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-645C-1                | SB-645C            | 1            | 1               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-645C            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-647A            | 1            | 1               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA NA    |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA       | NA<br>NA | NA             | NA NA        | NA<br>NA            | NA<br>NA |
|                            | SB-647A<br>SB-647B | 3<br>1       | 3<br>1          | 20091105<br>20091105        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-647B            | 3            | 3               | 20091105                    | NA<br>NA | NA       | NA NA    | NA<br>NA  | NA NA    |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA NA          | NA NA        | NA<br>NA            | NA NA    |
|                            | SB-647C            | 1            | 1               | 20091105                    | NA       | NA       | NA       | NA NA     | NA       |          | NA NA    | NA       | NA          | NA NA    | NA NA      | NA<br>NA | NA NA    | NA<br>NA | NA NA    | NA NA    | NA NA          | NA           | NA<br>NA            | NA       |
| F-SB-647C-3                | SB-647C            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA       | NA       | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652A            | 1            | 1               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652A            | 3            | 3               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652A            | 5            | 5               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA NA    |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA         | NA<br>NA | NA       | NA<br>NA | NA       | NA<br>NA | NA             | NA NA        | NA<br>NA            | NA<br>NA |
| F-SB-652A-7<br>F-SB-652B-1 | SB-652A<br>SB-652B | 7            | 1               | 20091105<br>20091105        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-652B-3                |                    | 3            | 3               | 20091105                    | NA<br>NA | NA<br>NA | NA       | NA<br>NA  | NA NA    |          | NA NA    | NA       | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-652B            | 5            | 5               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652B            | 7            | 7               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652C            | 1            | 1               | 20091105                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
|                            | SB-652C            | 3            | 3               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-652C-5<br>F-SB-652C-7 | SB-652C<br>SB-652C | 5<br>7       | 5<br>7          | 20091105<br>20091105        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-637B            | 1            | 1               | 20091105                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA NA    | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-637B-3                |                    | 3            | 3               | 20091106                    | NA       | NA       | NA       | NA NA     | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA<br>NA | NA NA    | NA             | NA           | NA NA               | NA       |
| F-SB-637B-5                |                    | 5            | 5               | 20091106                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-637B-5-               |                    | 5            | 5               | 20091106                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-637B-5-D              |                    | 5            | 5               | 20091106                    | NA       | NA       | NA       | NA        | NA NA    |          | NA NA    | NA       | NA          | NA       | NA         | NA<br>NA | NA       | NA       | NA       | NA       | NA             | NA NA        | NA                  | NA       |
| F-SB-637C-1                |                    | 1            | 1               | 20091106                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-637C-3<br>F-SB-637C-5 |                    | 3<br>5       | 3<br>5          | 20091106<br>20091106        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA |          | NA<br>NA | NA<br>NA | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
|                            | SB-635D            | 1            | 1               | 20091100                    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA NA    |          | NA NA    | NA       | NA<br>NA    | NA<br>NA | NA<br>NA   | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-635D-11               |                    | 11           | 11              | 20091110                    | NA       | NA       | NA       | NA NA     | NA       |          | NA NA    | NA       | NA          | NA       | NA NA      | NA<br>NA | NA<br>NA | NA       | NA<br>NA | NA NA    | NA             | NA           | NA NA               | NA       |
| F-SB-635D-5                |                    | 5            | 5               | 20091110                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-635D-7                |                    | 7            | 7               | 20091110                    | NA       | NA       | NA       | NA        | NA       |          | NA       | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-635D-9                |                    | 9            | 9               | 20091110                    | NA       | NA       | NA       | NA        | NA       |          | NA NA    | NA       | NA          | NA       | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |
| F-SB-626B-(1-              | SB-626B            | 1            | 4               | 20091111                    | NA       | NA       | NA       | NA        | NA       | I NA     | NA       | NA       | NA          | 1.2      | NA         | NA       | NA       | NA       | NA       | NA       | NA             | NA           | NA                  | NA       |

#### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 12 of 60

|                               |                  |              |                 |                                |             |             |             |             |             |             |             |             | METALS (MG     | /KC)        |             |             |             |             |             | 1           | MICC           | ELL ANEOU    | S PARAMETE          | DC       |
|-------------------------------|------------------|--------------|-----------------|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|--------------|---------------------|----------|
|                               |                  |              |                 | -                              |             | 1           |             | I           |             |             |             |             | VIL TALS (IVIG | /NG)        |             |             |             |             |             |             | IVIISC         | ELLANEOU     | S FARAIVIE I E      | 10       |
| SAMPLE ID                     | LOCATION<br>ID   | TOP<br>DEPTH | BOTTOM<br>DEPTH | SAMPLE DATE                    | ANTIMONY    | ARSENIC     | BARIUM      | BERYLLIUM   | САБМІОМ     | CHROMIUM    | COBALT      | COPPER      | LEAD           | MERCURY     | MOLYBDENUM  | NICKEL      | SELENIUM    | SILVER      | VANADIUM    | ZINC        | PERCENT SOLIDS | TOTAL SOLIDS | HEXAVALENT CHROMIUM | HA       |
|                               |                  |              |                 | Units Target Cancer Risk Level | MG/KG<br>NA    | MG/KG<br>NA | MG/KG<br>NA | MG/KG<br>NA | MG/KG<br>NA | MG/KG<br>NA | MG/KG<br>NA | MG/KG<br>NA | %<br>NA        | %<br>NA      | MG/KG<br>NA         | S.U.     |
| F-SB-626C-1                   | SB-626C          | 1            | 1               | 20091111                       | NA          | NA<br>NA    | NA NA       | NA NA       | NA<br>NA    |             | NA          | NA NA       | NA NA          | 2.2         | NA NA       | NA<br>NA    | NA<br>NA    | NA          | NA<br>NA    | NA NA       | NA NA          | NA NA        | NA<br>NA            | NA       |
| F-SB-626C-3                   | SB-626C          | 3            | 3               | 20091111                       | NA          | NA<br>NA    | NA NA       | NA NA       | NA NA       |             | NA          | NA.         | NA NA          | 0.13        | NA NA       | NA<br>NA    | NA<br>NA    | NA NA       | NA<br>NA    | NA<br>NA    | NA NA          | NA NA        | NA<br>NA            | NA<br>NA |
| F-SB-626D-1                   | SB-626D          | 1            | 1               | 20091111                       | NA          | NA          | NA          | NA NA       | NA          |             | NA          | NA          | NA             | 0.36        | NA          | NA<br>NA    | NA.         | NA          | NA          | NA NA       | NA NA          | NA           | NA<br>NA            | NA       |
| F-SB-626D-3                   | SB-626D          | 3            | 3               | 20091111                       | NA          | NA          | NA.         | NA          | NA          |             | NA          | NA          | NA             | 1           | NA          | NA NA       | NA<br>NA    | NA          | NA          | NA<br>NA    | NA NA          | NA           | NA<br>NA            | NA<br>NA |
| F-SB-626D-3-                  | SB-626D          | 3            | 3               | 20091111                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | 0.86        | NA             | NA           | NA                  | NA       |
| F-SB-626D-3-D                 | SB-626D          | 3            | 3               | 20091111                       | NA             | 0.72        | NA             | NA           | NA                  | NA       |
| F-SB-797-03                   | SB-797           | 3            | 3               | 20100820                       | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-797-05                   | SB-797           | 5            | 5               | 20100820                       | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-797-SS                   | SB-797           | 1            | 1               | 20100820                       | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-798-03                   | SB-798           | 3            | 3               | 20100820                       | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-798-03-                  | SB-798           | 3            | 3               | 20100820                       | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-798-03-D                 | SB-798           | 3            | 3               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-798-05                   | SB-798           | 5            | 5               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-798-SS                   | SB-798           | 1            | 1               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-799-03                   | SB-799           | 3            | 3               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-799-05                   | SB-799           | 5            | 5               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-799-SS                   | SB-799           | 1            | 1               | 20100820                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             | NA          | NA          | NA          | NA          | NA          | NA          | NA          | NA             | NA           | NA                  | NA       |
| F-SB-800-03                   | SB-800           | 3            | 3               | 20100910                       | NA          | NA          | NA          | NA          | NA NA       |             | NA          | NA          | NA             | 1.8 L       | NA NA       | NA<br>NA    | NA          | NA          | NA NA       | NA          | NA             | NA NA        | NA                  | NA       |
| F-SB-800-05                   | SB-800           | 5            | 5               | 20100910                       | NA          | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    |             | NA          | NA          | NA<br>NA       |             | NA NA       | NA<br>NA    | NA          | NA          | NA<br>NA    | NA<br>NA    | NA             | NA NA        | NA<br>NA            | NA       |
| F-SB-800-05-<br>F-SB-800-05-D | SB-800<br>SB-800 | 5            | 5<br>5          | 20100910                       | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    |             | NA<br>NA    | NA<br>NA    | NA<br>NA       |             | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA             | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-800-05-D                 | SB-800           | 5<br>1       | 1               | 20100910                       | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    |             | NA<br>NA    | NA<br>NA    | NA<br>NA       | <br>1 L     | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-800-SS<br>F-SB-801-03    | SB-800<br>SB-801 | 3            | 3               | 20100910<br>20100910           | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    |             | NA<br>NA    | NA<br>NA    | NA<br>NA       | 0.68 L      | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-801-05                   | SB-801           | 5            | 5<br>5          | 20100910                       | NA          | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    |             | NA<br>NA    | NA<br>NA    | NA<br>NA       | 0.00 L      | NA<br>NA       | NA<br>NA     | NA<br>NA            | NA<br>NA |
| F-SB-801-SS                   | SB-801           | 1            | 1               | 20100910                       | NA<br>NA    | NA<br>NA    | NA NA       | NA<br>NA    | NA NA       |             | NA          | NA<br>NA    | NA NA          | 0.18 L      | NA NA       | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA NA          | NA NA        | NA<br>NA            | NA NA    |
| F-SB-802-03                   | SB-802           | 3            | 3               | 20100910                       | NA          | NA<br>NA    | NA          | NA<br>NA    | NA NA       |             | NA          | NA<br>NA    | NA NA          | 0.10 L      | NA NA       | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA<br>NA    | NA NA          | NA NA        | NA<br>NA            | NA       |
| F-SB-802-05                   | SB-802           | 5            | 5               | 20100910                       | NA          | NA          | NA          | NA NA       | NA NA       |             | NA          | NA          | NA             |             | NA          | NA<br>NA    | NA<br>NA    | NA NA       | NA          | NA NA       | NA             | NA           | NA<br>NA            | NA       |
| F-SB-802-SS                   | SB-802           | 1            | 1               | 20100910                       | NA          | NA          | NA          | NA          | NA          |             | NA          | NA          | NA             |             | NA             | NA           | NA                  | NA       |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 13 of 60

| FRITTCHEFFOR UNNO  FRITTCHEFFOR |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------------|---------------|---------|------------------|--------------|---------------------|---------------------|--------------|----------------|------------|------------|---------------|--------------------|----------------|-------------------|----------------------|
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | PESTIC       | CIDES/PCBS (UG/KG | )             | PETROLE | UM HYDROCARI     | BONS (UG/KG) |                     | 1                   | T            |                | 1          | ,          |               |                    |                |                   |                      |
| 156   1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | RANGE   | OLINE RANGE ORGA |              | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | EQUIVALENT | EQUIVALENT-PO | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | ENZO(B)FLUORANTHE | BENZO(G,H,I)PERYLENE |
| No.   | UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG   | UG/KG            | UG/KG        | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG      | UG/KG         | UG/KG              | UG/KG          | UG/KG             | UG/KG                |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 10000        |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| Section   Sect  |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | l          |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     | 1                   |              |                |            | ł          |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | NA                | NA            | NA      |                  |              | NA                  | NA                  | NA           | NA             | NA         |            |               | NA                 | NA             |                   | NA                   |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | NA<br>       |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | ł          |               |                    |                |                   |                      |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   | +             |         |                  |              |                     |                     |              |                |            | l          |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               | 1       |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   | ·                    |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               | 1       |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              | NA                  |                     |              |                |            |            |               |                    |                |                   |                      |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | +            |                   | +             |         |                  |              |                     | 1                   | +            |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | +            |                   |               | 1       |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              | NA                  |                     |              |                |            | 400.825    | 4.825         |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 1            |                   |               |         |                  |              |                     |                     |              |                |            | 1          |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              | NA                  |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     | 1            |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     | †                   | +            |                |            | <u> </u>   |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | +            |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | +          |               |                    |                |                   |                      |
| NA           NA         NA                                                                                                        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA               |              |                   |               |         |                  | NA           | NA                  | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA            NA         NA          160 J          380 J         2131.7         2131.7         1600         1600         1800         1000 J           NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                   |               |         |                  |              |                     | 1                   |              |                |            | 1          |               |                    |                |                   |                      |
| NA           NA         NA                                                                                                        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                   |               | 1       |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA           12000          NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |                   |               |         |                  |              |                     | 1                   |              |                |            |            |               |                    |                |                   |                      |
| NA             NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                   |               |         |                  |              | NA                  |                     |              |                |            |            |               |                    |                |                   | ·                    |
| 0.734 J         NA         NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ł</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | ł          |               |                    |                |                   |                      |
| 1.21 J         NA         NA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| 0.071 J         NA         NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | +          |               |                    |                |                   |                      |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.071 J          | NA           | NA                | NA            | NA      |                  | NA           | NA                  | NA                  | NA           | NA             | NA         | NA         | NA            | NA                 | NA             | NA                | NA                   |
| NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |                   |               |         |                  |              |                     |                     |              |                |            | +          |               |                    |                |                   |                      |
| NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |                   |               |         |                  |              |                     |                     |              |                |            |            |               |                    |                |                   |                      |
| NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | NA           | NA                |               |         |                  |              | NA                  |                     | NA           |                |            |            |               |                    |                |                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA               | NA           | NA                | NA            | NA      | NA               | NA           | NA                  | NA                  | NA           | NA             | NA         | NA         | NA            | NA                 | NA             | NA                | NA                   |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 14 of 60

|                  | DECTIO       |                   |               | DETROLE               | LIM LIVEROCA DI         |               | T                   |                     |              |                |            |                       |                    |                    |                |                      |                      |
|------------------|--------------|-------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
|                  | PESTIC       | CIDES/PCBS (UG/KG | )<br>         | PETROLE               | UM HYDROCARI            | SUNS (UG/KG)  |                     | 1                   |              |                | 1          |                       |                    |                    |                | 1                    |                      |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000             | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | INA<br>             | INA<br>             | INA<br>      | INA<br>        | 109        | 601.611               | 601.611            | 432                | 401            | 374                  | 260 J                |
| NA               |              | 119               | 119           | NA                    | NA                      | NA            |                     |                     | 174          | 135            | 870        | 2544.69               | 2544.69            | 1980               | 1800           | 2300                 | 450 J                |
| NA<br>0.00       | NA           | NA<br>750         | NA<br>750     | NA                    | NA<br>NA                | NA<br>NA      |                     |                     |              |                | 30 J       | 192.445               | 151.445            | 121                | 116            | 129                  | 85 J                 |
| 0.63<br>NA       | NA           | 756<br>NA         | 756<br>NA     | NA<br>NA              | NA<br>NA                | NA<br>NA      |                     |                     | 98           | 44 J<br>       | 291        | 1343.73<br>144.582    | 1343.73<br>103.582 | 947<br>81 J        | 977<br>80 J    | 1090<br>83           | 253 J<br>59 J        |
| NA               | 96           | 73 J              | 169           | NA NA                 | NA                      | NA NA         |                     |                     |              |                | 41 J       | 313.239               | 313.239            | 209                | 212            | 229                  | 113 J                |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | 36.5 J              | 32 J                | 350          | 49 J           | 1000       | 4262.03               | 4262.03            | 2980               | 3130           | 4000                 | 650 J                |
| NA<br>NA         | NA           | 63<br>NA          | 63<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      |                     |                     | 3620         |                | 9420       | 38098.4               | 38098.4            | 28700              | 25600          | 26700                | 13200 J              |
| NA<br>NA         |              | 95                | 95            | NA<br>NA              | NA<br>NA                | NA<br>NA      |                     |                     | 79 J         |                | 256 J      | 1883.35               | 1883.35            | 1260 J             | 1310 J         | 1520 J               | 662 J                |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            | 123.389               | 80.969             | 73 J               | 62 J           | 65 J                 | 48 J                 |
| NA<br>NA         |              | 29 J              | 29            | NA<br>55700           | NA<br>                  | NA<br>NA      |                     |                     |              |                | 66 J<br>   | 369.109<br>140.162    | 369.109<br>98.162  | 239<br>75 J        | 258<br>74 J    | 250<br>90            | 175 J<br>75 J        |
| NA<br>NA         |              | <br>              |               | 881000                | 21200                   | NA<br>NA      | <br>3420            | 6900                | 6960         | <br>69 J       | 2510       | 2962.9                | 2962.9             | 2700               | 1960           | 2080                 | 1240 J               |
| NA               |              | 154               | 154           | 271000                |                         | NA            |                     |                     |              |                | 54 J       | 424.437               | 424.437            | 241 J              | 245 J          | 254 J                | 344 J                |
| NA<br>NA         |              |                   |               | NA<br>NA              |                         | 4900 J        |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA<br>NA         |              | <br>              |               | NA<br>NA              |                         | <br>3500 J    |                     |                     | <br>         |                |            |                       |                    |                    | <br>           |                      |                      |
| NA               |              |                   |               | NA NA                 |                         | 3800 J        |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               |              |                   |               | NA                    |                         |               |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA<br>NA         |              |                   |               | NA<br>NA              |                         | <br>3600 B    |                     |                     | <br>         |                |            |                       |                    |                    | <del></del>    |                      |                      |
| NA<br>NA         |              |                   |               | NA<br>NA              |                         | 2800 B        |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               |              |                   |               | NA                    |                         | 2900 B        |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA<br>NA         |              |                   |               | NA<br>NA              | <br>NA                  | 2900 B<br>NA  | <br>NA              | <br>NA              | <br>NA       | <br>NA         | <br>NA     |                       |                    | NA                 |                | <br>NA               | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              | <br>34 J          | <br>34        | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 19000                 | 19000              | NA<br>NA           | <br>19000      | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | 34 J<br>          |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 19000                 | 19000<br>51        | NA<br>NA           | 19000<br>51 J  | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 38                    | 38                 | NA                 | 38 J           | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 10                    | 10                 | NA<br>NA           | 10 J           | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA               |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           | <br>           | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA<br>NA                | NA<br>NA      | NA                  | NA NA               | NA NA        | NA NA          | NA<br>NA   |                       |                    | NA NA              |                | NA NA                | NA NA                |
|                  |              | -                 | •             |                       | -                       | •             | -                   | •                   |              |                | -          | -                     |                    |                    |                |                      |                      |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 15 of 60

|                  | PESTIC       | CIDES/PCBS (UG/KG | )             | PETROLE               | UM HYDROCARE            | BONS (UG/KG)  |                     |                     |              |                |            | 1                     |                    |                    |                |                      |                      |
|------------------|--------------|-------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000             | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 12                    | 12                 | NA<br>NA           | 12 J           | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA                  | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 380                   | 380                | NA                 | 380            | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           | <br>           | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 220                   | 220                | NA                 | 220 J          | NA NA                | NA                   |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 33<br>9.7             | 9.7                | NA<br>NA           | 33 J<br>9.7 J  | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 9.7                   | 9.9                | NA<br>NA           | 9.7 J<br>9.9 J | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA                    | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 990                   | 990                | NA<br>NA           | 990            | NA<br>NA             | NA                   |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA                    | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           | <br>           | NA<br>NA             | NA<br>NA             |
| NA NA            |              |                   |               | NA<br>NA              | NA                      | NA NA         | NA<br>NA            | NA NA               | NA<br>NA     | NA<br>NA       | NA NA      | 20                    | 20                 | NA NA              | 20 J           | NA NA                | NA NA                |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              | 22 J              | 22            | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 450                   | 450                | NA<br>NA           | 450<br>        | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 7.5                   | 7.5                | NA<br>NA           | 7.5 J          | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 140                   | 140                | NA                 | 140 J          | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 25                    | 25<br>             | NA<br>NA           | 25 J<br>       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 80                    | 80                 | NA<br>NA           | 80 J           | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              | <del></del>       |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 80                    | 80                 | NA<br>NA           | 80 J           | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA<br>NA         |              | 19 J              | 19            | NA                    | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 850                   | 850                | NA<br>NA           | 850            | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 29                    | 29                 | NA<br>NA           | <br>29 J       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 33                    | 33                 | NA<br>NA           | 33 J           | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA                   | NA                   |
| NA               |              |                   |               | NA                    | NA                      | NA<br>NA      | NA                  | NA                  | NA           | NA             | NA         |                       |                    | NA                 |                | NA<br>NA             | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              | <br>              |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 22                    | 22                 | NA<br>NA           | <br>22 J       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    | NA<br>NA           |                | NA<br>NA             | NA<br>NA             |
| NA               |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 9.1                   | 9.1                | NA                 | 9.1 J          | NA                   | NA                   |
|                  |              |                   |               |                       |                         |               |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 16 of 60

| Color   Colo |                  | PESTIC       | CIDES/PCBS (UG/KG) | )<br> | PETROLE      | UM HYDROCARE     | BONS (UG/KG) |                     | T                   | <u> </u>     | T              | T          |                       |       | <del>                                     </del> |                |             | <del>                                     </del> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------------|-------|--------------|------------------|--------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|-------|--------------------------------------------------|----------------|-------------|--------------------------------------------------|
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260       |       | RANGE ORGANI | ASOLINE RANGE OR | J-60J)       | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | EQUIV | BENZO(A)ANTHRACENE                               | BENZO(A)PYRENE | FLUORANTHEN | BENZO(G,H,I)PERYLENE                             |
| No.       No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.          | UG/KG            | UG/KG        | UG/KG              | UG/KG | UG/KG        | UG/KG            | UG/KG        | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG | UG/KG                                            | UG/KG          | UG/KG       | UG/KG                                            |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              | NA                  |                     |              |                | NA         | 25                    | 25    |                                                  | 25 J           |             |                                                  |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              | NA               |              | NA                  |                     |              |                | NA         |                       |       |                                                  |                |             |                                                  |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | +                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | +                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    | +     |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    | +     |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              | 21 J               | 21    |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | +                     |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA               |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |                    | +     |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA               |              |                    |       | NA           |                  | NA           | NA                  | NA                  | NA           | NA             | NA         | 9.6                   | 9.6   | NA                                               | 9.6 J          | NA          | NA                                               |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                    | +     |              |                  |              |                     |                     |              |                |            | +                     |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA           NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
| NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |              |                    |       |              |                  |              |                     |                     |              |                |            | 1                     |       |                                                  |                |             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |                    |       |              |                  |              |                     |                     |              |                |            |                       |       |                                                  |                |             |                                                  |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 17 of 60

|                  | DECTIO       |                   |               | DETROLE               | LIMALIN/DDOOAD          | 2010 (10//0)  |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
|------------------|--------------|-------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
|                  | PESTIC       | CIDES/PCBS (UG/KG | )             | PETROLE               | UM HYDROCARE            | SUNS (UG/KG)  |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000             | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA NA            | NA NA        | NA NA             | NA            | NA                    | NA NA                   | NA NA         | NA NA               | NA NA               | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 50001                 | 49963              | 42000              | 38000          | 55000                | NA                   |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 29.08                 | 28.23              | 20                 | 21             | 28                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 3.13555               | 1.4                |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA NA        | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 61.365                | 60.515             | 54 J               | 47 J           | 56 J                 | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 309.5275              | 309.1025           | 242                | 218.5          | 278                  | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 557.69                | 557.69             | 430 J              | 390 J          | 500 J                | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 69.88                 | 68.98              | 62                 | 53             | 71                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 31.685                | 30.885             | 22                 | 24             | 31                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2.63105               | 0.85               | 8.5                |                |                      | NA<br>NA             |
| NA NA            | NA NA        | NA NA             | NA NA         | NA NA                 | NA<br>NA                | NA NA         | NA NA               | NA NA               | NA NA        | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 71.368                | 70.568             | 52                 | <br>54         | 67                   | NA<br>NA             |
| NA<br>NA         | NA NA        |                   | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 71.500                |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA NA        | NA NA             | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               |              | 120               | 120           | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 1189.76               | 1189.76            | 890                | 810            | 1200                 | NA                   |
| NA               |              |                   |               | NA                    | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         |              |                   | <br>          | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 23.6335               | 22.722             | 22                 | <br>16         | 24                   | NA<br>NA             |
| NA<br>NA         |              |                   |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 14.4225               | 13.612             | 14                 | 9.3            | 12                   | NA<br>NA             |
| NA               |              |                   |               | NA NA                 | NA NA                   | NA            | NA NA               | NA NA               | NA NA        | NA NA          | NA         | 150.16                | 150.16             | 100                | 89             | 140                  | NA NA                |
| NA               |              |                   | ==            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
|                  |              |                   |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               |              |                   |               |                       |                         | •             |                     |                     |              |                |            |                       |                    |                    |                |                      | •                    |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 18 of 60

|                  | DECTIO       |                    | <u> </u>      | DETROLE               | LIMILIVEDOCADE          | ONO (HO/KO)   | T                   |                     |              |                |            |                       |                    |                    |                |                       |                      |
|------------------|--------------|--------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|-----------------------|----------------------|
|                  | PESTIC       | CIDES/PCBS (UG/KG) | )             | PETROLE               | UM HYDROCARE            | SUNS (UG/KG)  |                     |                     |              | 1              |            |                       |                    | <u> </u>           |                |                       | 1                    |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260       | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B) FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG              | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                 | UG/KG                |
| NA               | 10000        | 10000              | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                    | NA                   |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA                      | NA NA         | NA                  | NA<br>NA            | NA<br>NA     | NA             | NA<br>NA   | 36.009                | 35.259             | 28                 | 26             | 40                    | NA                   |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               |              |                    |               | NA<br>NA              | NA NA                   | NA NA         | NA NA               | NA<br>NA            | NA<br>NA     | NA NA          | NA NA      | 184.16                | 184.16             | 110                | 130            | 150                   | NA NA                |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA NA         | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         |              | <br>               | <br>          | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               |              |                    |               | NA<br>NA              | NA NA                   | NA NA         | NA NA               | NA NA               | NA<br>NA     | NA NA          | NA NA      | 95.413                | 95.413             | 57                 | 55             | 58                    | NA NA                |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA NA         | NA                  | NA                  | NA           | NA             | NA<br>NA   | 24.603                | 24.603             | 12                 | 11             | 15                    | NA                   |
| NA<br>NA         |              |                    | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         |              |                    |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA NA            | NA           | NA                 | NA            | NA<br>NA              | NA<br>NA                | NA NA         | NA NA               | NA<br>NA            | NA<br>NA     | NA NA          | NA NA      | 601.84                | 601.84             | 390                | 410            | 580                   | NA NA                |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 20.57                 |                    | 27                 | 30             | 32                    | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 38.57<br>57.888       | 37.77<br>57.888    | 25                 | 27             | 42                    | NA<br>NA             |
| NA<br>NA         | NA NA        | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA NA         | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               | NA           | NA NA              | NA            | NA<br>NA              | NA NA                   | NA NA         | NA NA               | NA NA               | NA<br>NA     | NA             | NA NA      | 17.766                | 17.016             | 12                 | 13             | 18                    | NA NA                |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 36.368                | 35.568             | 24                 | 26             | 41                    | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               |              |                    |               | NA                    | NA                      | NA NA         | NA                  | NA                  | NA           | NA             | NA         | 2.52555               | 0.87               |                    |                | 8.7                   | NA                   |
| NA<br>NA         | <br>NA       | NA                 | <br>NIA       | NA<br>NA              | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 7604.4                | 7604.4             | 5700               | 5200           | 6500                  | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 744.98                | 744.98             | 550                | 520            | 580                   | NA<br>NA             |
| NA               | NA           | NA NA              | NA            | NA NA                 | NA NA                   | NA            | NA                  | NA NA               | NA<br>NA     | NA<br>NA       | NA NA      | 298.31                | 298.31             | 220                | 210            | 280                   | NA NA                |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 1375.85               | 1375.85            | 1000               | 980            | 1200                  | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 708.9                 | 708.9              | 490 J              | 510 J          | 590 J                 | NA                   |
| NA<br>NA         | NA           | NA NA              | NA<br>NA      | NA                    | NA                      | NA NA         | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA             | NA<br>NA   | 1875.95               | 1875.95            | 1395               | 1305           | 1595                  | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 3043                  | 3043               | 2300 J             | 2100 J         | 2600 J                | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 19 of 60

|                  | DESTI        | CIDES/PCBS (UG/KG) | 1             | DETD∩I ⊏              | UM HYDROCARE            | BONS (LIG/KG) |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
|------------------|--------------|--------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
|                  | restic       | SIDES/FODS (UG/NG) | )             | FEIRULE               | OWITTDROCARE            | SONS (UG/NG)  |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260       | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG              | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000              | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2890                  | 2890               | NA                 | NA             | NA                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 329.45                | 329.45             | 230                | 230            | 270                  | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 20.166                | 28.416             | <br>21 J           | <br>22 J       | <br>29 J             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 29.166<br>43.826      | 43.076             | 33                 | 33.5           | 40.5                 | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 58.486                | 57.736             | 45 J               | 45 J           | 52 J                 | NA                   |
| NA               | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 36.547                | 35.797             | 27                 | 28             | <br>34               | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 24.798                | 24.048             | 18                 | 19             | 21                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA                    | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA<br>NA     | NA                 | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>20 004          | NA<br>20 404       | NA<br>24           | NA<br>00       | NA<br>20             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 30.281<br>44.653      | 29.431<br>43.753   | 31<br>52           | 22<br>31       | 30<br>45             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 13.5255               | 12.514             | 12                 | 9.5            | 18                   | NA                   |
| NA               | NA<br>NA     | NA                 | NA<br>NA      | NA<br>NA              | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 52.706                | 51.406             | 35 J               | 37 J           | 59 J                 | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 26.953                | 26.303             | 17.925             | 19.1<br>       | 30.05                | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2581.5                | 2577.4             | 3000               | 1900           | 2900                 | NA                   |
| NA               | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA                    | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA              | NA<br>NA           | NA<br>NA           | NA<br>NA       | NA<br>NA             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 64.8                  | 64                 | 79                 | 40             | 120                  | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2.65555               | 1<br>              |                    |                | 10                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <br>           |                      | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2.9771                | 1.1                |                    |                | 11                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | <br>17.255            | 16.855             | <br>15.775         | 12.875         | <br>17.35            | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 33.76                 | 32.96              | 31 J               | 25 J           | 34 J                 | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | <br>2 65605           | <br>1 0E           | <br>0 E            |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 3.65605<br>27.619     | 1.95<br>26.819     | 8.5<br>21          | 20             | 11<br>23             | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA<br>NA              | NA<br>NA                | NA            | NA                  | NA<br>NA            | NA           | NA<br>NA       | NA         | 275.61                | 274.81             | 220                | 210            | 310                  | NA<br>NA             |
| NA               | NA           | NA<br>NA           | NA            | NA                    | NA                      | NA<br>NA      | NA                  | NA<br>NA            | NA           | NA<br>NA       | NA<br>NA   | 441.3315              | 441.29             | 340                | 280            | 450                  | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 94.266                | 94.258             | 67                 | 62             | 93                   | NA                   |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 20 of 60

|                  | PESTI        | CIDES/PCBS (UG/KG)  | 1             | PETROI E              | UM HYDROCARE            | BONS (LIG/KG) |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
|------------------|--------------|---------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
|                  | 1 2011       | 0.520/1 050 (00/NG) |               | I E INOLE             | CINTITION               | 55.10 (55/10) |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260        | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG               | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 4.8109                | 3.9529             | 3.4 J              | 3.1 J          | 3.2 J                | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 115.678<br>1363.848   | 115.67<br>1363.84  | 87<br>960          | 75<br>860      | 110<br>1300          | NA<br>NA             |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 7.4024                | 6.5444             | 4.9 J              | 4.7 J          | 8.1                  | NA                   |
| NA               | NA           | NA                  | NA NA         | NA<br>NA              | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA           | NA             | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 26715.05<br>6.9628    | 26715<br>6.0543    | 18000<br>4.9 J     | 17000<br>4.4 J | 28000<br>8.7         | NA<br>NA             |
| NA NA            | NA NA        | NA NA               | NA NA         | NA NA                 | NA NA                   | NA NA         | NA<br>NA            | NA NA               | NA NA        | NA NA          | NA<br>NA   | 2.2847                | 0.266              |                    |                | 1.7 J                | NA NA                |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2.2862                | 0.19               |                    |                | 1.9 J                | NA                   |
| NA               | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 22.721                | 22.713             | 13                 | 15             | 24                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA             |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       | -                  |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 284.2195              | 284.18             | 160                | 180            | 300                  | NA<br>NA             |
| NA               | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 204.2195              |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA             |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA                  | NA NA         | NA<br>NA              | NA                      | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA           | NA             | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA NA            | NA NA        | NA NA               | NA NA         | NA NA                 | NA NA                   | NA NA         | NA<br>NA            | NA NA               | NA NA        | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA NA                |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 4.1202                | 3.1                |                    | 3.1 J          |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA                  | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         |              |                     |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 163.09                | 163.09             | 130<br>65 J        | 110            | 140                  | NA<br>NA             |
| NA<br>NA         |              |                     | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 115.8<br>101.126      | 115.8<br>101.126   | 51.5               | 77<br>65       | 91<br>85             | NA<br>NA             |
| NA               |              |                     |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 86.452                | 86.452             | 38 J               | 53             | 79                   | NA                   |
| NA<br>NA         |              | 27 J                | 27            | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 315.41                | 315.41             | 230                | 220            | 290                  | NA<br>NA             |
| NA<br>NA         |              |                     | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1185.74<br>3.7015     | 1185.74<br>2.001   | 900<br>8.9         | 820<br>        | 1100<br>11           | NA<br>NA             |
| NA               |              |                     |               | NA NA                 | NA                      | NA NA         | NA                  | NA NA               | NA           | NA NA          | NA         | 68.15                 | 67.35              | 54                 | 51             | 79                   | NA<br>NA             |
| NA               |              |                     |               | NA                    | NA                      | NA            | NA                  | NA<br>NA            | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         |              |                     | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               |              |                     | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               |              |                     |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         |              |                     | <u></u>       | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 78.536                | 77.786             | 62                 | 59<br>         | 88                   | NA<br>NA             |
| NA<br>NA         |              |                     | <del></del>   | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2.43555               | 0.78               |                    | <del></del>    | 7.8                  | NA<br>NA             |
| NA               |              |                     |               | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 73.797                | 73.047             | 52                 | 55             | 88                   | NA                   |
| NA               |              |                     |               | NA                    | NA                      | NA            | NA                  | NA<br>NA            | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         |              |                     | <br>          | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 13.7284               | 12.9689            | 8.8                | 9.9            | 13                   | NA<br>NA             |
| INA              |              |                     |               | INA                   | IN/A                    | 1474          | 14/1                | 14/1                | I IN/A       | I INA          | INA        | 10.7204               | 12.3003            | 0.0                | 3.3            | 10                   | I W/A                |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 21 of 60

|                  | PESTIC       | IDES/PCBS (UG/KG | )             | PETROLE               | UM HYDROCARB            | ONS (UG/KG)   |                     |                     | ı            | I              | T          |                       |                    | , ,                |                |                      |                      |
|------------------|--------------|------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260     | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG            | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000            | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA<br>NA         |              |                  |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         |              |                  |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 342.45                | 342.45             | 260                | 230            | 330                  | NA<br>NA             |
| NA<br>NA         |              | <del></del>      |               | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 33.415                | 32.615             | 23                 | 25             | 35                   | NA<br>NA             |
| NA               |              |                  |               | NA NA                 | NA NA                   | NA NA         | NA NA               | NA NA               | NA<br>NA     | NA<br>NA       | NA<br>NA   | 390.77                | 390.77             | 300                | 260            | 330                  | NA NA                |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 708.4                 | 708.4              | 360                | 490            | 630                  | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 225.34                | 225.34             | 140                | 160            | 180                  | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA NA            | NA            | NA<br>NA              | NA                      | NA            | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <br>           |                      | NA<br>NA             |
| NA NA            | NA NA        | NA NA            | NA<br>NA      | NA<br>NA              | NA NA                   | NA NA         | NA NA               | NA NA               | NA NA        | NA<br>NA       | NA<br>NA   | 69.594                | 69.594             | 39                 | 47             | 58                   | NA NA                |
| NA               | NA NA        | NA NA            | NA<br>NA      | NA<br>NA              | NA NA                   | NA NA         | NA                  | NA NA               | NA           | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA NA                |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 16.963                | 16.113             | 14                 | 13             | 17                   | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA NA            | NA            | NA<br>NA              | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA NA        | NA NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA NA        | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 6440.9                | 6440.9             | 4500               | 4400           | 5600                 | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 14.264                | 13.414             | 11                 | 11             | 13                   | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 22.616                | 21.816             | 17                 | 17             | 20                   | NA                   |
| NA               | NA           | NA NA            | NA<br>NA      | NA<br>NA              | NA                      | NA NA         | NA                  | NA<br>NA            | NA           | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1405 19               | 1405 19            |                    | 1000           | 1200                 | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1495.18               | 1495.18            | 1100               | 1000           | 1200                 | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA NA         | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 191.16                | 191.16             | 110                | 130            | 170                  | NA<br>NA             |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 27.939                | 27.139             | 18                 | 21             | 28                   | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA<br>NA         | NA           | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA                      | NA NA         | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 27.59                 | 26.84              | 19                 | 21<br>         | 26                   | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 576.55                | 576.55             | 350                | 410            | 500                  | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 576.55                |                    |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA             |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 1266.69               | 1266.69            | 760                | 870            | 1200                 | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 26.21                 | 25.46              | 18                 | 20             | 21                   | NA                   |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 27.592                | 26.842             | 18                 | 21             | 26                   | NA                   |
| NA<br>NA         | NA           | NA NA            | NA<br>NA      | NA<br>NA              | NA                      | NA NA         | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 52.006                | 51.206             | 55 J               | 36 J           | 75 J                 | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 135.308               | 134.908            | 122.5              | 88             | 187.5<br>300 J       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 218.61<br>41.373      | 218.61<br>40.623   | 190 J<br>31        | 140 J<br>32    | 300 J<br>38          | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 41.373                | 40.623             |                    |                |                      | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 289.14                | 289.14             | 190                | 200            | 290                  | NA<br>NA             |
| NA               | NA NA        | NA               | NA<br>NA      | NA<br>NA              | NA NA                   | NA NA         | NA                  | NA NA               | NA           | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA NA                |
| NA               | NA           | NA               | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 9111.3                | 9111.3             | 7400               | 6300           | 8900                 | NA                   |
|                  |              |                  |               |                       |                         |               |                     |                     |              |                |            |                       |                    | l.                 |                |                      |                      |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 22 of 60

|                  | DEOT         |                    | <b>\</b>      | DETRO! E              |                         | ONE (HO/KO)   | <b>-</b>            |                     |              |                |            |                       |                    |                    |                |                       |                      |
|------------------|--------------|--------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|-----------------------|----------------------|
|                  | PESTI        | CIDES/PCBS (UG/KG) | )             | PETROLE               | UM HYDROCARE            | OUNO (UG/KG)  |                     |                     |              |                |            |                       |                    |                    |                |                       |                      |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260       | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B) FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG              | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                 | UG/KG                |
| NA               | 10000        | 10000              | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                    | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 56.598                | 55.848             | 42                 | 44             | 48                    | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 12.3183               | 11.4183            | 9.1                | 9.5            | 10                    | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 12.3103               |                    | 9.1                | 9.5            |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 201.22                | 201.22             | 130                | 140            | 180                   | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 9.80555               | 8.9                |                    | 7.8            | 11                    | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1.737                 | 0.012              |                    | <br>           |                       | NA<br>NA             |
| NA               | NA           | NA NA              | NA<br>NA      | NA NA                 | NA NA                   | NA            | NA                  | NA NA               | NA<br>NA     | NA NA          | NA NA      |                       |                    |                    |                |                       | NA NA                |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2.58555               | 0.83               |                    |                | 8.3                   | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA           | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 409.6                 | 409.6              | 290                | 270            | 400                   | NA<br>NA             |
| NA<br>NA         | NA NA        |                    | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA NA                |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA<br>NA         | NA           | NA<br>NA           | NA<br>NA      | NA                    | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1412.29               | 1412.29            | 790                | <br>950        | 1200                  | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 1412.29               | 1412.29            | 790                | 950            |                       | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA<br>NA           | NA            | NA                    | NA                      | NA<br>NA      | NA<br>NA            | NA                  | NA<br>NA     | NA             | NA         |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 7120.2<br>389.77      | 7120.2<br>389.77   | 5700<br>310        | 4800<br>260    | 7000<br>350           | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 38.412                | 37.662             | 24                 | 30             | 29                    | NA<br>NA             |
| NA               | NA           | NA NA              | NA NA         | NA NA                 | NA NA                   | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 6756.9                | 6756.9             | 4900               | 4700           | 6200                  | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 33.561                | 32.711             | 29                 | 25             | 35                    | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   | 118.119               | 118.119            | 77                 | 70             | 110                   | NA<br>NA             |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| NA               | NA           | NA                 | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 25.329                | 24.479             | 18                 | 18             | 36                    | NA                   |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA      | NA<br>NA            | NA<br>NA            | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                       | NA<br>NA             |
| NA               | NA           |                    | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         |                       |                    |                    |                |                       | NA                   |
| -                |              |                    |               |                       |                         |               |                     |                     |              |                |            |                       |                    |                    |                |                       |                      |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 23 of 60

|                  |              | 010 50 /5         |               |                       |                         | 010 4:5 ::5:                          |                                       |                                       |              |                |            |                       |                    |                    |                |                      |                                                  |
|------------------|--------------|-------------------|---------------|-----------------------|-------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|--------------------------------------------------|
|                  | PESTIC       | CIDES/PCBS (UG/KG | )<br>         | PETROLE               | UM HYDROCARE            | BONS (UG/KG)                          |                                       |                                       |              |                | 1          |                       |                    |                    |                |                      | <del>                                     </del> |
| MERCURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36)                         | 1-METHYLNAPHTHALENE                   | 2-METHYLNAPHTHALENE                   | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE                             |
| UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG                 | UG/KG                   | UG/KG                                 | UG/KG                                 | UG/KG                                 | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                                            |
| NA               | 10000        | 10000             | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA                                         |
| NA               | NA           | NA NA             | NA NA         | NA<br>NA              | NA                      | NA                                    | NA                                    | NA NA                                 | NA NA        | NA             | NA         |                       |                    |                    |                |                      | NA NA                                            |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 269.13                | 269.13             | 180                | 170            | 230                  | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA                    | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   | 4.06605               | 2.3                |                    |                | 23                   | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 89.406                | 89.406             | 48                 | 51             | 75                   | NA                                               |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 110.918               | 110.918            | 68                 | 66             | 96                   | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 112.462               | 112.462            | 79<br>             | 78<br>         | 110                  | NA<br>NA                                         |
| NA<br>NA         | NA NA        | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 369.44                | 369.44             | 260                | 240            | 330                  | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 3838.4                | 3838.4             | 2500               | 2600           | 3100                 | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 3030.4                |                    | 2500               |                |                      | NA<br>NA                                         |
| NA               | NA           | NA NA             | NA<br>NA      | NA<br>NA              | NA                      | NA                                    | NA                                    | NA NA                                 | NA NA        | NA             | NA NA      | 283.14                | 283.14             | 170                | 180            | 240                  | NA NA                                            |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   | 5140.3                | 5140.3             | 3400               | 3500           | 4500                 | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 58.981<br>228.02      | 58.981<br>228.02   | 26<br>150          | 30<br>150      | 54<br>200            | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 220.02                |                    |                    |                |                      | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   | 505.25                | 505.25             | 350                | 340            | 430                  | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA                                         |
| NA<br>NA         | NA NA        | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 18.534                | 17.699             | 16                 | 13             | 30                   | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <del></del>    |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 6953.3                | 6953.3             | 6200               | 4600           | 6500                 | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2075.2                | 2075.2             | 1700               | 1400           | 1900                 | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   | 2075.2                |                    |                    |                |                      | NA<br>NA                                         |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         |                       |                    |                    |                |                      | NA                                               |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA                                    | NA                                    | NA                                    | NA           | NA             | NA         | 20.2071               | 19.4981            | 11                 | 16             | 8.9                  | NA                                               |
| NA<br>NA         | NA           | NA<br>NA          | NA<br>NA      | NA                    | NA                      | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   | 24.49                 | 23.6               | 11                 | 21             | 14                   | NA                                               |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    |                |                      | NA<br>NA                                         |
| NA<br>NA         | NA<br>NA     | NA<br>NA          | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA<br>NA       | NA<br>NA   |                       |                    |                    | <br>           |                      | NA<br>NA                                         |
| NA<br>NA         | NA NA        |                   | NA<br>NA      | NA<br>NA              | NA<br>NA                | NA<br>NA                              | NA<br>NA                              | NA<br>NA                              | NA<br>NA     | NA NA          | NA<br>NA   | NA                    | NA                 | NA                 | NA             | NA                   | NA<br>NA                                         |
|                  |              | ·                 | •             |                       |                         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |              | ·              |            |                       | ***                |                    | ·              | •                    |                                                  |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 24 of 60

|                  | PESTIC       | CIDES/PCBS (UG/KG | 6)            | PETROLE               | UM HYDROCARE            | BONS (UG/KG)  |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
|------------------|--------------|-------------------|---------------|-----------------------|-------------------------|---------------|---------------------|---------------------|--------------|----------------|------------|-----------------------|--------------------|--------------------|----------------|----------------------|----------------------|
|                  |              |                   | ,             |                       |                         | (00,110)      |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| MERGURY (METHYL) | AROCLOR-1254 | AROCLOR-1260      | TOTAL AROCLOR | DIESEL RANGE ORGANICS | GASOLINE RANGE ORGANICS | TPH (C09-C36) | 1-METHYLNAPHTHALENE | 2-METHYLNAPHTHALENE | ACENAPHTHENE | ACENAPHTHYLENE | ANTHRACENE | BAP EQUIVALENT-HALFND | BAP EQUIVALENT-POS | BENZO(A)ANTHRACENE | BENZO(A)PYRENE | BENZO(B)FLUORANTHENE | BENZO(G,H,I)PERYLENE |
| UG/KG            | UG/KG        | UG/KG             | UG/KG         | UG/KG                 | UG/KG                   | UG/KG         | UG/KG               | UG/KG               | UG/KG        | UG/KG          | UG/KG      | UG/KG                 | UG/KG              | UG/KG              | UG/KG          | UG/KG                | UG/KG                |
| NA               | 10000        | 10000             | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | 2890                  | 2890               | NA                 | NA             | NA                   | NA                   |
| NA NA            | NA           | NA                | NA            | NA                    | NA NA                   | NA            | NA                  | NA NA               | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA NA          | NA NA                | NA NA                |
| NA               | NA           | NA                | NA            | NA<br>NA              | NA<br>NA                | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA NA                | NA                   |
| NA               | NA.          | NA                | NA            | NA<br>NA              | NA NA                   | NA            | NA NA               | NA NA               | NA NA        | NA NA          | NA NA      | NA<br>NA              | NA                 | NA                 | NA             | NA NA                | NA<br>NA             |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     | 15           |                | 47         | 258.37                | 258.37             | 170                | 180            | 200                  | 120                  |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | 55                  | 46                  | 340          |                | 680        | 3496.4                | 3496.4             | 2300               | 2400           | 2800                 | 1700                 |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            | 20.624                | 18.724             | 12                 | 15             | 16                   | 11                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            | 11.187                | 10.237             | 6.875              | 8.375          | 8.875                | 6.375                |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            |                       |                    |                    |                |                      |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            |                     |                     |              |                |            | 13.0855               | 10.921             | 8.1                | 9              | 11                   |                      |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA NA             | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA NA              | NA                 | NA             | NA<br>NA             | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |
| NA               | NA           | NA                | NA            | NA                    | NA                      | NA            | NA                  | NA                  | NA           | NA             | NA         | NA                    | NA                 | NA                 | NA             | NA                   | NA                   |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 25 of 60

|                      | DOI )/0\/0\ IO AI                    | DOMATIO LIVERDOO         | A DD ONO (110 110)           |                                      |                              |                                      |             |                        |              |           |                        |             |
|----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|-------------|------------------------|--------------|-----------|------------------------|-------------|
|                      |                                      | ROMATIC HYDROCA          |                              | (0                                   |                              | · · ·                                | T           | T                      | Ī            | 1         |                        |             |
| BENZO(K)FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE    | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE  | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                | UG/KG<br>NA                          | UG/KG<br>NA              | UG/KG<br>NA                  | UG/KG                                | UG/KG<br>NA                  | UG/KG                                | UG/KG<br>NA | UG/KG                  | UG/KG        | UG/KG     | UG/KG                  | UG/KG       |
| NA<br>               | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             | NA<br>                 | NA<br>       | NA<br>    | NA<br>                 | NA<br>      |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        | <br>        |
| NA                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA          | NA                     | NA           | NA        | NA                     | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        | <del></del> |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | <br>57 J     |           |                        | <del></del> |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
| 57 J                 | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 77 J        |                        | 170 J        |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
| 37 J                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 55 J        |                        | 84 J         |           |                        |             |
| NA<br>NA             | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA    | NA<br>NA               | NA<br>NA     | NA<br>NA  | NA                     | NA NA       |
| NA<br>NA             | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA    | NA<br>NA               | NA<br>NA     | NA<br>NA  | NA<br>NA               | NA<br>NA    |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | INA<br>     | INA<br>                | INA<br>      | INA<br>   | INA<br>                |             |
| 160 J                | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 250 J       |                        | 490          |           | 110 J                  |             |
| 110 J                | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 130 J       |                        | 270 J        |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
| 1500 J               | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 2300 J      |                        | <br>3400 J   |           | <br>820 J              | <del></del> |
| 450                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 660         |                        | 1500         | 110 J     | 270 J                  |             |
| 940                  | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 1200        |                        | 2700         | 200 J     | 590                    | 58 J        |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
| 1000 J               | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 1100 J      |                        | 2000 J       |           | 360 J                  |             |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        |              |           |                        |             |
| 1600                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 1700        | 75 J                   | 3300         | <br>130 J | 990                    | <br>        |
|                      | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                |             |                        |              |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        |              |           |                        |             |
| <br>NA               | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>N/A     | <br>N/A                | <br>N/A      | <br>N/A   | <br>N/A                | <br>NIA     |
| NA<br>NA             | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA    | NA<br>NA               | NA<br>NA     | NA<br>NA  | NA<br>NA               | NA<br>NA    |
| NA<br>NA             | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA    | NA<br>NA               | NA<br>NA     | NA<br>NA  | NA<br>NA               | NA<br>NA    |
| NA<br>NA             | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA    | NA<br>NA               | NA<br>NA     | NA<br>NA  | NA<br>NA               | NA<br>NA    |
| NA                   | NA NA                                | NA                       | NA                           | NA                                   | NA NA                        | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA        | NA                     | NA          |

#### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 26 of 60

|                       | POLYCYCLIC A                  | ROMATIC HYDROCA          | ARBONS (UG/KG)                      |                                      |                              |                                      |               |                        |              |          |                        |             |
|-----------------------|-------------------------------|--------------------------|-------------------------------------|--------------------------------------|------------------------------|--------------------------------------|---------------|------------------------|--------------|----------|------------------------|-------------|
| BENZO(K) FLUORANTHENE | CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES (SIZE) | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE      | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                 | UG/KG                         | ng\kg                    | ng\kg<br>Ω                          | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG         | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| 405                   | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 461           | 86                     | 802          | 32 J     | NA<br>295              | NA<br>      |
| 1910                  | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 2090          | 232                    | 4020         | 213      | 635                    | 36 J        |
| 111                   | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 135           |                        | 245          |          | 92 J                   |             |
| 1100<br>90            | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 1030<br>82 J  | 117                    | 1940<br>173  | 94       | 340<br>62 J            | <br>        |
| 241                   | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 229           | 41 J                   | 395          |          | 138 J                  |             |
| 2930                  | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 2930          | 307                    | 8780         | 331      | 948                    | 57 J        |
| 23000                 | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 28400         | 5250                   | 63200        | 3580     | 14500                  |             |
| 1360 J                | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>1250 J    | <br>206 J              | <br>2720 J   | <br>68 J | <br>745 J              | <u></u>     |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 69 J          |                        | 163          |          | 51 J                   |             |
| 244                   | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 269           | 46 J                   | 600          |          | 135 J                  |             |
| 87                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | 92            |                        | 142          |          | 67 J                   |             |
| 2010<br>225 J         | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 1800<br>287 J | 392 J<br>100 J         | 10000<br>546 | 6330     | 1110 J<br>274 J        | 31000       |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |               |                        |              |          |                        |             |
|                       | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   |               |                        |              |          |                        |             |
|                       | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   |               |                        |              |          |                        |             |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>          |                        | <br>         |          |                        |             |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |               |                        |              |          |                        |             |
|                       | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   |               |                        |              |          |                        |             |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |               |                        |              |          |                        |             |
|                       | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |               |                        |              |          |                        |             |
| NA                    | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA                     | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                            | NA                       | NA                                  | NA                                   | NA                           | NA                                   | NA            | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                      | NA<br>NA                 | NA<br>NA                            | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA      | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 27 of 60

|                       | POLYCYCLIC AI                        | ROMATIC HYDROCA         | ARBONS (UG/KG)               |                                      |                              |                                      |          |                        |               |          |                        |             |
|-----------------------|--------------------------------------|-------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------|------------------------|---------------|----------|------------------------|-------------|
|                       | 1                                    |                         | ` ,                          | S                                    | ·Ω.                          | S                                    |          |                        |               |          |                        |             |
|                       | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | S                       | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES |          |                        |               |          |                        |             |
| Ш<br>Z                | , AC                                 | Ë                       | ACI                          | (AC                                  | ACI                          | (AC                                  |          | l                      |               |          | 빌                      |             |
| 뿓                     | 出                                    | Σ̈́                     | ΉR                           | <b>光</b>                             | ΉR                           | <b>光</b>                             |          | ACE                    | ш             |          | RE                     |             |
| N N                   | AN-                                  | S/S                     | TN                           | A<br>N                               | TN                           | A<br>N                               | Щ        | Ä.                     | Ξ<br><u>U</u> | ш        | λd(                    | N.          |
| BENZO(K) FLUORANTHENE | - (A)                                | C1-FLUORANTHENES/PYRENE | //S                          | 7 <u>(</u>                           | //S                          | 7 <u>8</u>                           | CHRYSENE | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE  | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| ,<br>ק                | CZ<br>ZC                             | 뿓                       | Z                            | 2 S                                  | Z Z                          | ္မွ်င္မ                              | RYS      | H $\delta$             | ZAN Z         | POL      | 2,3-                   | Ē           |
| <u>\S</u>             | BEN                                  | Ā                       | H                            | BE                                   | HRI                          | BE                                   | 동        | ( <del>)</del>         | l lon         | FLL      | )(1,                   | APF         |
| ZO                    | ES/                                  | S.                      | Ř                            | ls.                                  | ķ                            | ls.                                  |          | NZ                     | 급             |          | N                      | ż           |
| Z<br>W                | Z                                    | 길                       | Ž                            | Z                                    | Ž                            | Z                                    |          | BE                     |               |          | ND                     |             |
| <u> </u>              | i X                                  | 2                       | 품                            | s 🖈                                  | 풀                            | s 🖈                                  |          | □                      |               |          | _                      |             |
|                       | 光                                    | Ü                       | 2                            | 上<br>                                | C2-I                         | 上<br>                                |          |                        |               |          |                        |             |
| UG/KG                 | UG/KG                                | UG/KG                   | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG    | UG/KG                  | UG/KG         | UG/KG    | UG/KG                  | UG/KG       |
|                       |                                      |                         |                              |                                      |                              |                                      | 0.00     |                        |               | 0 0.110  | 0 0/110                |             |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA                      | NA                           | NA                                   | NA<br>NA                     | NA                                   | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA                      | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA<br>NA                     | NA                                   | NA       | NA<br>NA               | NA            | NA<br>NA | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA                    | NA<br>NA                             | NA                      | NA                           | NA                                   | NA<br>NA                     | NA                                   | NA       | NA<br>NA               | NA            | NA<br>NA | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA NA                   | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA                     | NA<br>NA    |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA NA                                | NA NA                   | NA                           | NA                                   | NA                           | NA                                   | NA NA    | NA NA                  | NA NA         | NA NA    | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA NA                 | NA NA                                | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA NA                  | NA NA         | NA NA    | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA NA                 | NA NA                                | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA NA                  | NA NA         | NA NA    | NA                     | NA          |
| NA                    | NA                                   | NA                      | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA            | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA | NA<br>NA               | NA<br>NA      | NA<br>NA | NA<br>NA               | NA<br>NA    |
| AN                    | INA                                  | NA                      | INA                          | INA                                  | I NA                         | INA                                  | IN/A     | INA                    | I INA         | ı NA     | NA                     | INA         |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 28 of 60

|                       | POLYCYCLIC A                         | ROMATIC HYDROCA          | ARBONS (UG/KG)               |                                      |                              |                                      |                |                        |              |          |                        |                |
|-----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------------|------------------------|--------------|----------|------------------------|----------------|
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE       | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE    |
| UG/KG                 | UG/KG                                | UG/KG                    | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG          | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA<br>NA           | NA<br>NA                     | NA<br>NA<br>NA                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA<br>NA | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA<br>NA |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA NA                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA NA                 | NA NA                                | NA<br>NA                 | NA NA                        | NA NA                                | NA NA                        | NA NA                                | NA NA          | NA NA                  | NA NA        | NA NA    | NA NA                  | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA NA                                | NA                       | NA                           | NA NA                                | NA                           | NA NA                                | NA             | NA NA                  | NA NA        | NA NA    | NA                     | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA NA    | NA                     | NA             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA       | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA             | NA                     | NA           | NA       | NA                     | NA             |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |                |                        | NA           | NA       |                        | NA             |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |                |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA       |
| 12                    | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 19<br>         |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA       |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |                |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA       |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |                |                        | NA           | NA       |                        | NA             |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |                |                        | NA           | NA       |                        | NA             |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 29 of 60

|                       | POLYCYCLIC A                         | ROMATIC HYDROC           | ARBONS (UG/KG)               |                                      |                              |                                      |          |                        |              |          |                        |             |
|-----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------|------------------------|--------------|----------|------------------------|-------------|
|                       | ,                                    |                          | · /                          | ES                                   | S                            | S                                    |          |                        |              |          |                        |             |
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| DG/K) FI              | O<br>SX CHRYSENES/BEN:               | DA/ORANTI                | DO C1-PHENANTHRE             | C<br>ଜୁ CHRYSENES/BEN.               | G<br>S<br>S<br>C2-PHENANTHRE | O<br>SA CHRYSENES/BEN:               | ng/kg    | DIBENZO(A,F            | PA/POR.      | UG/KG    | DOWN'S INDENO(1,2      | UG/KG       |
| NA NA                 | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | NA NA    | NA NA                  | NA NA        | NA NA    | NA                     | NA NA       |
|                       | NA<br>NA                             | NA<br>NA                 | NA NA                        | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA<br>NA                 | NA<br>NA                     | NA                                   | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 23000                 | NA NA                                | NA NA                    | NA NA                        | NA                                   | NA NA                        | NA NA                                | 33000    |                        | NA NA        | NA<br>NA | 20000                  | NA          |
| 11                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 20       |                        | NA           | NA       | 23                     | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA | 14                     | NA<br>NA    |
| 36 J                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 55 J     |                        | NA<br>NA     | NA<br>NA | 21 J                   | NA<br>NA    |
| 133                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 222.5    | 25.925                 | NA           | NA       | 115.5                  | NA          |
| 230 J                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 390 J    | 51 J                   | NA<br>NA     | NA<br>NA | 210 J                  | NA<br>NA    |
| 32<br>16              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 60<br>25 |                        | NA<br>NA     | NA<br>NA | 23<br>14               | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA NA                                | NA<br>NA                 | NA NA                        | NA                                   | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 32                    | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>48   |                        | NA<br>NA     | NA<br>NA | 43                     | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA<br>NA                 | NA                           | NA                                   | NA                           | NA<br>NA                             |          |                        | NA<br>NA     | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA                                   |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 390                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 860      | 120                    | NA           | NA       | 460                    | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 22       |                        | NA NA        | NA<br>NA | 21                     | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 12       |                        | NA           | NA       | 17                     | NA          |
| 46<br>                | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 100      | 30                     | NA<br>NA     | NA<br>NA | 66                     | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 30 of 60

|                       | POLYCYCLIC A                         | ROMATIC HYDROCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARBONS (UG/KG)               |                                      |                              |                                      |            |                        |              |          |                        |             |
|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|------------|------------------------|--------------|----------|------------------------|-------------|
|                       |                                      | THE TENTE OF THE T | ·                            | S                                    | Ø                            | S                                    |            |                        |              |          |                        |             |
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | -FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE   | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| DA//SG                | OS/OCHRYSENES/BEN                    | G<br>SS C1-FLUORANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OCI-PHENANTHRE               | G<br>ଜୁ CHRYSENES/BEN                | G<br>S C2-PHENANTHRE<br>S    | OS CHRYSENES/BEN                     | UG/KG      | DIBENZO(A,             | UG/KG        | UG/KG    | DX/OC                  | NG/KG       |
|                       |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                      |                              |                                      |            |                        |              |          |                        |             |
| NA<br>13              | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>29   | NA<br>                 | NA<br>NA     | NA<br>NA | NA<br>23               | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA                                   |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 91                    | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>150    | <br>19                 | NA<br>NA     | NA<br>NA | <br>81                 | NA<br>NA    |
|                       | NA NA                                | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA NA                        | NA NA                                | NA NA                        | NA NA                                |            |                        | NA NA        | NA<br>NA |                        | NA NA       |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
| 24                    | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   | 73         | 25                     | NA           | NA       | 36                     | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA<br>NA     | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 9.2                   | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 11         | 9.8                    | NA<br>NA     | NA<br>NA | 10                     | NA<br>NA    |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
| 250                   | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 340        | 67                     | NA<br>NA     | NA<br>NA | 250                    | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA NA       |
|                       | NA<br>NA                             | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA<br>NA                             |            |                        | NA NA        | NA<br>NA |                        | NA NA       |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
| 24<br>16              | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 30<br>28   |                        | NA<br>NA     | NA<br>NA | 16<br>30               | NA<br>NA    |
| 16                    | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            | 21                     | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA NA       |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA<br>NA     | NA<br>NA |                        | NA NA       |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA NA                                | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA NA                        | NA                                   | NA NA                        | NA NA                                |            |                        | NA NA        | NA NA    |                        | NA NA       |
| 9.2                   | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   | 14         |                        | NA           | NA       | 9.1                    | NA          |
| 14                    | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 28         |                        | NA<br>NA     | NA<br>NA | 29                     | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA NA                                | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA NA                        | NA                                   | NA                           | NA NA                                |            |                        | NA NA        | NA NA    |                        | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
| 2900                  | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   | 5400       | 860                    | NA           | NA       | 2900                   | NA          |
| 350                   | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 480        | 79<br>26               | NA<br>NA     | NA<br>NA | 290                    | NA<br>NA    |
| 110<br>600            | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 210<br>850 | 120                    | NA<br>NA     | NA<br>NA | 110<br>490             | NA<br>NA    |
| 340 J                 | NA<br>NA                             | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 500 J      | 61 J                   | NA<br>NA     | NA<br>NA | 260 J                  | NA<br>NA    |
| 720                   | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   | 1250       | 190.5                  | NA           | NA       | 730                    | NA          |
| 1100 J                | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   | 2000 J     | 320 J                  | NA           | NA       | 1200 J                 | NA          |
|                       | NA                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 31 of 60

|                       | DOLVEYOLIC AL                        | ROMATIC HYDROC           | APPONS (LIC/VC)              |                                      |                              |                                      |            |                        |              |          |                        |             |
|-----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|------------|------------------------|--------------|----------|------------------------|-------------|
|                       |                                      | NOWATIO FITANOLI         |                              | σ                                    | (0                           | σ                                    |            |                        |              |          |                        |             |
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE   | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                 | UG/KG                                | ng\kg                    | Η<br>Ο<br>UG/KG              | ⊗<br>∀<br>H<br>UG/KG                 | ザ<br>d-<br>VG/KG             | ⊗<br>∀<br>H<br>UG/KG                 | UG/KG      | □<br>UG/KG             | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
|                       | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                |            |                        | NA NA        | NA NA    |                        | NA NA       |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 120                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 250        | 36                     | NA<br>NA     | NA<br>NA | 120                    | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
| 9.5 J                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 21 J       |                        | NA           | NA       | 13 J                   | NA          |
| 19.25                 | NA                                   | NA                       | NA                           | NA                                   | NA<br>NA                     | NA                                   | 33.5       |                        | NA           | NA       | 20                     | NA          |
| 29 J<br>              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 46 J<br>   |                        | NA<br>NA     | NA<br>NA | 27 J<br>               | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 17                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 27         |                        | NA           | NA       | 15                     | NA          |
| 13                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 18         |                        | NA           | NA       | 10                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA   | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA   | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA NA                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA NA                                | NA<br>NA                     | NA NA                                | NA<br>NA   | NA<br>NA               | NA<br>NA     | NA<br>NA | NA NA                  | NA<br>NA    |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>20              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>31   | NA<br>                 | NA<br>NA     | NA<br>NA | NA<br>11               | NA<br>NA    |
| 20                    | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 53         |                        | NA<br>NA     | NA<br>NA | 28                     | NA<br>NA    |
|                       | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 14         |                        | NA NA        | NA NA    |                        | NA          |
| 17                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 36 J       |                        | NA           | NA       | 48 J                   | NA          |
| 9.275                 | NA<br>NA                             | NA                       | NA<br>NA                     | NA                                   | NA<br>NA                     | NA<br>NA                             | 18.4       |                        | NA<br>NA     | NA<br>NA | 24.675                 | NA          |
| 1200                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA | 700                    | NA<br>NA    |
| 1300<br>NA            | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 4400<br>NA | <br>NA                 | NA<br>NA     | NA<br>NA | NA                     | NA<br>NA    |
| NA NA                 | NA<br>NA                             | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | NA NA      | NA NA                  | NA NA        | NA<br>NA | NA NA                  | NA NA       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA<br>NA                     | NA                                   | NA         | NA                     | NA           | NA       | NA                     | NA          |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA   | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| NA<br>NA              | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>NA   | NA<br>NA               | NA<br>NA     | NA<br>NA | NA<br>NA               | NA<br>NA    |
| 59                    | NA<br>NA                             | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 110        |                        | NA NA        | NA<br>NA | 34                     | NA NA       |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA<br>NA                     | NA                                   |            |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 7                     | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA                           | NA                                   | 15.275     |                        | NA NA        | NA NA    | 6.95                   | NA          |
| 13 J                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 30 J       |                        | NA           | NA       | 13 J                   | NA          |
|                       | NA<br>NA                             | NA                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |            |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 10<br>150             | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 19<br>310  |                        | NA<br>NA     | NA<br>NA | 23<br>100              | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 290        | 62                     | NA<br>NA     | NA<br>NA | 200                    | NA<br>NA    |
|                       | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                                | 58         | 12                     | NA NA        | NA NA    | 42                     | NA          |
|                       |                                      |                          |                              |                                      |                              |                                      |            |                        |              |          |                        |             |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 32 of 60

|                       |                                        | ROMATIC HYDROCA          |                              | Ø                                    | <b>10</b>                    | Ø                                    |             | 1                      |              | <u> </u> | <u> </u>               |             |
|-----------------------|----------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|-------------|------------------------|--------------|----------|------------------------|-------------|
| BENZO(K) FLUORANTHENE | ୍ର<br>ନୁ CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE    | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                 |                                        | UG/KG                    | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG       | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA<br>                | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>2.9 J | NA<br>                 | NA<br>NA     | NA<br>NA | NA<br>1.9 J            | NA<br>NA    |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 70          | 16                     | NA           | NA       | 49                     | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 840         | 210                    | NA           | NA       | 670                    | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 4.4 J       |                        | NA<br>NA     | NA<br>NA | 5.4 J                  | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>15000   | 4000                   | NA<br>NA     | NA<br>NA | 11000                  | NA<br>NA    |
|                       | NA NA                                  | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA<br>NA                             | 4.3 J       |                        | NA NA        | NA<br>NA | 2.9 J                  | NA NA       |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       | 0.96 J                 | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 13<br>      | 2.8 J                  | NA<br>NA     | NA<br>NA | 12                     | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA NA                    | NA                           | NA                                   | NA NA                        | NA NA                                |             |                        | NA NA        | NA NA    |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA<br>NA                             | NA<br>NA                     | NA                                   | 180         | 44                     | NA<br>NA     | NA<br>NA | 140                    | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA NA                                | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA NA                    | NA                           | NA                                   | NA NA                        | NA NA                                |             |                        | NA NA        | NA NA    |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 58                    | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA NA                                | NA<br>NA                     | NA<br>NA                             | 110         | 19                     | NA<br>NA     | NA<br>NA | 64                     | NA NA       |
| 40 J                  | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 100 J       | 17                     | NA           | NA       | 57                     | NA          |
| 30                    | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 76          | 17                     | NA           | NA       | 51                     | NA          |
| 20 J                  | NA<br>NA                               | NA                       | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 52 J        | 17                     | NA<br>NA     | NA<br>NA | 45                     | NA          |
| 120<br>390            | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 210<br>840  | 29<br>120              | NA<br>NA     | NA<br>NA | 130<br>410             | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 11          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 28                    | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 70          |                        | NA           | NA       | 27                     | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 32                    | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   | 66          |                        | NA           | NA       | 34                     | NA          |
|                       | NA                                     | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 29<br>                | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 57<br>      |                        | NA<br>NA     | NA<br>NA | 37                     | NA<br>NA    |
|                       | NA<br>NA                               | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       |                                        | *                        |                              | NA                                   | NA NA                        | NA NA                                | 8.9         |                        | NA NA        | NA NA    | 8.8                    | NA          |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 33 of 60

|                      | POLYCYCLIC A                         | ROMATIC HYDROC           | APRONS (LIG/KG)              |                                      |                              |                                      |             |                        |              |          |                        |             |
|----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|-------------|------------------------|--------------|----------|------------------------|-------------|
|                      |                                      | ROWATIO TITOROGA         |                              | Ø                                    | Ø                            | ω                                    |             |                        |              |          |                        |             |
| BENZO(K)FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE    | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                | UG/KG                                | UG/KG                    | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG       | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA          | NA                     | NA           | NA       | NA                     | NA          |
|                      | NA                                   | NA<br>NA                 | NA<br>NA                     | NA                                   | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA       |                        | NA          |
| 120                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>250     | 38                     | NA<br>NA     | NA<br>NA | 140                    | NA<br>NA    |
| 9                    | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 250         |                        | NA<br>NA     | NA<br>NA | 17                     | NA<br>NA    |
| 150                  | NA                                   | NA NA                    | NA                           | NA                                   | NA                           | NA                                   | 270         | 51                     | NA NA        | NA       | 150                    | NA          |
| 300                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 400         | 87                     | NA           | NA       | 290                    | NA          |
| 110                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 140         | 23                     | NA           | NA       | 91                     | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                      | NA NA                                | NA NA                    | NA<br>NA                     | NA NA                                | NA NA                        | NA NA                                |             |                        | NA NA        | NA NA    |                        | NA NA       |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
| 25                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 44          | 9.4                    | NA           | NA       | 32                     | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>13      |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                      | NA                                   | NA NA                    | NA NA                        | NA                                   | NA NA                        | NA NA                                |             |                        | NA NA        | NA NA    |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA                           | NA                                   | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA       |                        | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 2700                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 3900        | 720                    | NA           | NA       | 2800                   | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 14          |                        | NA           | NA       |                        | NA          |
| 11                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 16          |                        | NA           | NA       | 9.9                    | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 620                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 980         | 200                    | NA<br>NA     | NA<br>NA | 580                    | NA<br>NA    |
|                      | NA NA                                | NA NA                    | NA<br>NA                     | NA                                   | NA NA                        | NA NA                                |             |                        | NA NA        | NA<br>NA |                        | NA NA       |
| 73                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 130         | 24                     | NA           | NA       | 83                     | NA          |
| 12                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 19          |                        | NA           | NA       | 14                     | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| <br>                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 12                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 20          |                        | NA<br>NA     | NA<br>NA | 12                     | NA<br>NA    |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
| 220                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 350         | 54                     | NA           | NA       | 250                    | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 390                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 790         | 150                    | NA<br>NA     | NA<br>NA | 460                    | NA<br>NA    |
| 390                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 790<br>     | 150                    | NA<br>NA     | NA<br>NA | 460                    | NA<br>NA    |
| 14                   | NA                                   | NA NA                    | NA<br>NA                     | NA                                   | NA NA                        | NA NA                                | 20          |                        | NA NA        | NA<br>NA | 14                     | NA          |
| 12                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 22          |                        | NA           | NA       | 13                     | NA          |
| 24 J                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 66 J        |                        | NA           | NA       | 19 J                   | NA          |
| 59                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 168         | 11.4                   | NA<br>NA     | NA<br>NA | 41.5                   | NA<br>NA    |
| 94 J<br>19           | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 270 J<br>33 | 22                     | NA<br>NA     | NA<br>NA | 64 J<br>15             | NA<br>NA    |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |             |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 95                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 190         | 30                     | NA<br>NA     | NA<br>NA | 100                    | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |             |                        | NA           | NA       |                        | NA          |
| 3500                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 6300        | 840                    | NA           | NA       | 3000                   | NA          |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 34 of 60

|                       | POLYCYCLIC A                         | ROMATIC HYDROCA          | APRONS (LIG/KG)              |                                      |                              |                                      |          |                        |              |          |                        |             |
|-----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------|------------------------|--------------|----------|------------------------|-------------|
|                       |                                      | NOWATIO TITOROGE         | ` '                          | Ø                                    | Ø                            | Ø                                    |          |                        |              |          |                        |             |
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                 | さ<br>UG/KG                           | UG/KG                    | UG/KG                        | さ<br>UG/KG                           | შ<br>UG/KG                   | さ<br>UG/KG                           | UG/KG    | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA           | NA       | NA                     | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA NA                                | NA NA                    | NA                           | NA                                   | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| ==                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA          |
| 40                    | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 48       |                        | NA<br>NA     | NA<br>NA | 24                     | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 8.3      |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 89                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 130      | 21                     | NA           | NA       | 82                     | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | <br>12   |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                       | NA<br>NA                             | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA<br>NA     | NA<br>NA |                        | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA NA                                | NA NA                        | NA<br>NA                             |          |                        | NA NA        | NA<br>NA |                        | NA NA       |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 130                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 300      | 53                     | NA           | NA       | 160                    | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 540                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 890      | 200                    | NA           | NA       | 570                    | NA          |
|                       | NA<br>NA                             | NA<br>NA                 | NA                           | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| <br>                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 2500                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 5200     | 750                    | NA<br>NA     | NA<br>NA | 2700                   | NA<br>NA    |
| 150                   | NA NA                                | NA NA                    | NA                           | NA                                   | NA                           | NA NA                                | 270      | 48                     | NA NA        | NA NA    | 140                    | NA          |
| 14                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 22       |                        | NA           | NA       | 22                     | NA          |
|                       | NA<br>NA                             | NA                       | NA                           | NA                                   | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 2200                  | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 4900     | 660                    | NA<br>NA     | NA<br>NA | 2600                   | NA<br>NA    |
| 8.6                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | 25<br>   |                        | NA<br>NA     | NA<br>NA | 12                     | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA NA                                |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 32                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 99       | 25                     | NA           | NA       | 40                     | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 12                    | NA<br>NA                             | NA                       | NA                           | NA                                   | NA<br>NA                     | NA<br>NA                             | 19       |                        | NA<br>NA     | NA<br>NA | 9.4                    | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 35 of 60

|                      | POLYCYCLIC A                         | ROMATIC HYDROCA          | ARBONS (UG/KG)               |                                      |                              |                                      |          |                        |              |          |                        |             |
|----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------|------------------------|--------------|----------|------------------------|-------------|
| BENZO(K)FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-<br>CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                | UG/KG                                | UG/KG                    | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                                | UG/KG    | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA<br>               | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             | NA<br>   | NA<br>                 | NA<br>NA     | NA<br>NA | NA<br>                 | NA<br>NA    |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA NA    |                        | NA          |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA NA       |
|                      | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                             |          |                        | NA<br>NA     | NA<br>NA |                        | NA<br>NA    |
| 97                   | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA<br>NA                             | 160      | 47                     | NA<br>NA     | NA<br>NA | 100                    | NA NA       |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA NA                        | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 26                   | NA                                   | NA                       | NA                           | NA                                   | NA NA                        | NA                                   | 46       | 23                     | NA           | NA       | 28                     | NA          |
| 45                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 68       | 24                     | NA           | NA       | 40                     | NA          |
|                      | NA NA                                | NA NA                    | NA                           | NA<br>NA                             | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA          |
| 47                   | NA NA                                | NA NA                    | NA<br>NA                     | NA NA                                | NA NA                        | NA NA                                | 92       | 11                     | NA NA        | NA NA    | 40                     | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA NA                        | NA                                   |          |                        | NA           | NA NA    |                        | NA          |
|                      | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA NA       |
|                      | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA NA       |
| 120                  | NA NA                                | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                | 240      | 55                     | NA NA        | NA NA    | 140                    | NA NA       |
|                      | NA<br>NA                             | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA NA       |
| 1600                 | NA NA                                | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                | 2400     | 500                    | NA NA        | NA NA    | 1600                   | NA          |
|                      | NA NA                                | NA NA                    | NA<br>NA                     | NA NA                                | NA NA                        | NA NA                                |          |                        | NA NA        | NA NA    |                        | NA          |
| 97                   | NA NA                                | NA NA                    | NA<br>NA                     | NA<br>NA                             | NA NA                        | NA NA                                | 170      | 49                     | NA NA        | NA NA    | 120                    | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA NA                        | NA                                   |          |                        | NA           | NA NA    |                        | NA          |
| 1700                 | NA                                   | NA                       | NA                           | NA                                   | NA NA                        | NA                                   | 3300     | 620                    | NA           | NA       | 2100                   | NA          |
| 15                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 31       | 19                     | NA           | NA NA    | 18                     | NA          |
| 96                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 160      | 33                     | NA           | NA       | 89                     | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 190                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 350      | 65                     | NA           | NA       | 200                    | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 8.4                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 15       |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 2800                 | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 5300     | 790                    | NA           | NA       | 2600                   | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| 870                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 1500     | 230                    | NA           | NA<br>NA | 750                    | NA NA       |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA<br>NA |                        | NA NA       |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 8.1      |                        | NA           | NA       | 15                     | NA          |
| 8.8                  | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | 12       |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA<br>NA |                        | NA NA       |
|                      | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   |          |                        | NA           | NA       |                        | NA          |
| NA                   | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                                   | NA       | NA                     | NA           | NA       | NA                     | NA          |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 36 of 60

| -                     |                                      |                          |                              |                                      |                              |                                  |          |                        |              |          |                        |             |
|-----------------------|--------------------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------------|----------|------------------------|--------------|----------|------------------------|-------------|
|                       | POLYCYCLIC A                         | ROMATIC HYDROC           | ARBONS (UG/KG)               |                                      |                              |                                  |          |                        |              |          |                        |             |
| BENZO(K) FLUORANTHENE | C1-<br>CHRYSENES/BENZO(A)ANTHRACENES | C1-FLUORANTHENES/PYRENES | C1-PHENANTHRENES/ANTHRACENES | C2-<br>CHRYSENES/BENZO(A)ANTHRACENES | C2-PHENANTHRENES/ANTHRACENES | C3-CHRYSENES/BENZO(A)ANTHRACENES | CHRYSENE | DIBENZO(A,H)ANTHRACENE | FLUORANTHENE | FLUORENE | INDENO(1,2,3-CD)PYRENE | NAPHTHALENE |
| UG/KG                 | UG/KG                                | UG/KG                    | UG/KG                        | UG/KG                                | UG/KG                        | UG/KG                            | UG/KG    | UG/KG                  | UG/KG        | UG/KG    | UG/KG                  | UG/KG       |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               |          |                        | 11           |          |                        |             |
| 120                   |                                      |                          |                              |                                      |                              |                                  | 170      | 30                     | 400          | 26       | 100                    |             |
| 1400<br>10            | 3700 J<br>NA                         | 5800 J<br>NA             | 1600 J<br>NA                 | 1300 J<br>NA                         | 950 J<br>NA                  | 470 J<br>NA                      | 2400     | 430                    | 4900         | 370      | 1400                   | 140         |
| 5.875                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                         | 14       |                        | 19<br>10.375 |          | 8.1<br>4.925           |             |
| 5.875                 | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                         | 7.3      |                        | 10.375       |          | 4.925                  |             |
|                       | NA<br>NA                             | NA<br>NA                 | NA<br>NA                     | NA<br>NA                             | NA<br>NA                     | NA<br>NA                         |          |                        |              |          |                        |             |
|                       | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                            |          |                        | 11           |          |                        |             |
|                       | NA NA                                | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                            |          |                        |              |          |                        |             |
|                       | NA<br>NA                             | NA NA                    | NA NA                        | NA NA                                | NA NA                        | NA NA                            |          |                        | 9.8          |          |                        |             |
|                       | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | 11       |                        | 17           |          |                        |             |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |
| NA                    | NA                                   | NA                       | NA                           | NA                                   | NA                           | NA                               | NA       | NA                     | NA           | NA       | NA                     | NA          |

NA

NA

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 37 of 60

|              |          |            | ı                  |              |                |                            |                        | CEMIVOLATILE | S (IIIC/IVC) |                    |                      |                      |                        |          |
|--------------|----------|------------|--------------------|--------------|----------------|----------------------------|------------------------|--------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |            |                    |              | 1              |                            |                        | SEMIVOLATILE | 3 (UG/NG)    |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE    | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG        | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      | <br>                 |                        |          |
|              |          |            |                    | NA<br>NA     | NA NA          |                            |                        |              |              | <del></del>        |                      |                      |                        |          |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA           | NA<br>NA       |                            | <br>NA                 |              |              | <br>NA             |                      |                      |                        |          |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      | -                      |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        | 910      |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        | 730      |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        | 770      |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        |          |
| 44 J<br>     | <br>     | 101        |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              | <br>60 J           |                      | <br>                 |                        | 420      |
| 92 J         | 110 J    | 709        |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      | -                      |          |
| 74 J         | 110 J    | 404        |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        |          |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
|              |          |            |                    | NA           | NA NA          |                            |                        |              |              |                    |                      |                      |                        | 480      |
| 190 J        | 370 J    | 2320       |                    | NA           | NA             |                            |                        |              |              | 310 J              |                      |                      |                        |          |
| 160 J        | 160 J    | 1203       |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              | <u></u>            |                      |                      |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
| 1600 J       | 4000 J   | 19520      |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      |                        |          |
| 1200         | 1100     | 7690       |                    | NA           | NA<br>NA       |                            |                        | 200 J        | 73           |                    |                      |                      |                        |          |
| 2200         | 1900     | 14158      |                    | NA<br>NA     | NA<br>NA       |                            |                        | 380 J        | 130          |                    |                      | <br>                 |                        |          |
| 1100 J       | 1400 J   | 9580       |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA           | NA NA          |                            |                        |              |              |                    |                      |                      |                        | 140 J    |
|              |          |            |                    | NA           | NA             |                            |                        |              |              | 77 J               |                      |                      |                        |          |
| 1600         | 2500     | 18435      |                    | NA<br>NA     | NA<br>NA       |                            |                        | 190 J        | 54           |                    |                      | 53 J                 |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA<br>NA     | NA<br>NA       |                            |                        |              |              |                    |                      |                      |                        |          |
|              |          |            |                    | NA           | NA             |                            |                        |              |              |                    |                      |                      | -                      |          |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA NA    | NA NA      | NA NA              | NA           | NA NA          | NA NA                      | NA                     | NA NA        | NA           | NA                 | NA NA                | NA NA                | NA                     | NA NA    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 38 of 60

|              |             |               |                    |              |                |                            |                        | SEMIVOLATILE | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|-------------|---------------|--------------------|--------------|----------------|----------------------------|------------------------|--------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE      | TOTAL PAHS    | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ETHYLHEXYL)PHTHALATE | BUTYL BENZYL PHTHALATE | CARBAZOLE    | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG       | UG/KG         | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG        | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA          | NA            | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA          | NA<br>NA      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA                         | NA<br>NA               | NA           | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA    | NA<br>NA      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    | NA<br>NA      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA          | NA            | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>447    | NA<br>007   | NA<br>4744    | NA                 | NA           | NA             | NA                         | NA                     | NA<br>40. I  | NA           | NA                 | NA<br>22 I           | NA                   | NA                     | NA       |
| 417<br>2740  | 637<br>2570 | 4711<br>22155 |                    | <br>152 J    |                | <br>40 J                   | <br>25 J               | 43 J<br>242  | 86           | <del></del>        | 32 J<br>37 J         |                      |                        |          |
| 127          | 178         | 1369          |                    | 132 3        |                |                            |                        |              |              |                    |                      |                      |                        |          |
| 1090         | 1380        | 10791         |                    | 157 J        |                |                            |                        | 158 J        | 43           |                    | 38 J                 |                      |                        |          |
| 47 J         | 110         | 867           |                    | 333 J        |                |                            |                        |              |              |                    |                      |                      |                        |          |
| 163<br>3450  | 286<br>4530 | 2297<br>36454 |                    | 925<br>180 J |                |                            |                        | 448          | 140          | <del></del>        | <br>37 J             |                      |                        |          |
| 3450         | 45200       | 326470        |                    |              |                |                            |                        | 448          | 1650         | <br>               |                      |                      |                        |          |
|              | 28 J        | 28            |                    |              | 47.5 J         |                            |                        |              |              |                    |                      |                      |                        |          |
| 987 J        | 1740 J      | 14163         |                    |              |                |                            |                        | 123 J        | 27           |                    |                      |                      |                        |          |
| 81 J         | 113         | 725           |                    | 217 J        |                |                            |                        |              |              |                    |                      |                      |                        |          |
| 265<br>58 J  | 371<br>120  | 2918<br>880   |                    | 189 J<br>    |                |                            |                        | 32 J         |              | <br>               |                      |                      |                        |          |
| 18600        | 7570        | 103231        | 68 J               |              |                |                            |                        | 5690         | 3980         |                    |                      |                      | 81 J                   |          |
| 249          | 685 J       | 3504          |                    |              |                |                            |                        | 40 J         |              |                    |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
|              |             |               |                    |              |                | 190 J<br>                  |                        |              |              | <br>               |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              | <del></del>        |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
|              | -           |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
|              |             |               |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
| NA           | NA          |               | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    | 19000         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA          | 51            | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA          | 38            | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA    | 10            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA NA       |               | NA NA              | NA           | NA NA          | NA<br>NA                   | NA NA                  | NA NA        | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA          |               | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA          |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA    |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA          |               | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA          |               | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA          |               | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 39 of 60

|              |          |            |                    |              |                |                            |                        | SEMIVOLATILE    | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|------------|--------------------|--------------|----------------|----------------------------|------------------------|-----------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |            |                    |              |                |                            |                        | SEIMI OE, (TIEE |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ETHYLHEXYL)PHTHALATE | BUTYL BENZYL PHTHALATE | CARBAZOLE       | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG           | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 12<br>     | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 380        | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 220        | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 33<br>9.7  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 9.9        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 990        | NA                 | NA           | NA<br>NA       | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | <br>       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA                         | NA<br>NA               | NA<br>NA        | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 20         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA NA           | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 450        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA                         | NA<br>NA               | NA<br>NA        | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | <br>7.5    | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |            | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA           | NA NA        | NA NA              | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 140        | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 25         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 80         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>80     | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 850        | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 29<br>33   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA<br>NA       | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | <br>22     | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA        | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 9.1        | NA                 | NA           | NA             | NA                         | NA                     | NA              | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
|              |          |            |                    |              |                |                            |                        |                 |              |                    |                      |                      |                        |          |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 40 of 60

|              |          |             | T                  |              |                |                            |                        | CEMINOLATILE  | C (LIC/IVC)  |                    |                      |                      |                        |          |
|--------------|----------|-------------|--------------------|--------------|----------------|----------------------------|------------------------|---------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |             |                    |              |                |                            |                        | SEMIVOLATILES | 3 (UG/KG)    |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS  | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLНЕХҮL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE     | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG       | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG         | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 25          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA NA    |             | NA NA              | NA           | NA NA          | NA NA                      | NA NA                  | NA            | NA NA        | NA                 | NA NA                | NA NA                | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       | 37          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <del></del> | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 18          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 72          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 36          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 330         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 230<br>510  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA | 320         | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA         | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 62          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 85          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 130         | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 190         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 110<br>30   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA | 87          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA NA         | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 50          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 12          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 39<br>      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 67          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | -           | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 9.6         | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 260         | NA                 | NA           | NA             | NA<br>NA                   | NA                     | NA            | NA           | NA                 | NA<br>NA             | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 9.8         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 21<br>110   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 31          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |             | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 97          | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| 1473         | 1473     | i           | 1771               | 1 1773       | 1.77.          | 1 17 1                     | 1                      | 1             | 1 17/1       |                    | 1473                 | 1.00                 | 17/1                   | 14/1     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 41 of 60

|              |          |            | ı                  |              |                |                            |                        | SEMIVOLATILE: | C (LIC/KC)   |                    |                      |                      |                        |          |
|--------------|----------|------------|--------------------|--------------|----------------|----------------------------|------------------------|---------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |            |                    |              |                |                            |                        | SEMIVOLATILES | S (UG/KG)    |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE     | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG         | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA            | NA           | NA                 | NA NA                | NA NA                | NA                     | NA NA    |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 211000     | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 123        | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 14         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>269    | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 1235       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 2201       | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 301        | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 132        | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 8.5        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA NA    |            | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA         | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA<br>NA                   | NA                     | NA            | NA           | NA                 | NA NA                | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 296        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA            | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA NA         | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 4730       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA NA    |            | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA         | NA NA        | NA                 | NA NA                | NA NA                | NA<br>NA               | NA NA    |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 105        | NA                 | NA           | NA             | NA                         | NA                     | NA            | NA           | NA                 | NA NA                | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 64.3       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 571<br>    | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA      | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
|              | •        |            |                    |              |                |                            |                        | 1 1997        |              | * ** *             |                      |                      |                        |          |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 42 of 60

|              |          |                 |                    |              |                |                            |                        | SEMIVOLATILE   | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|-----------------|--------------------|--------------|----------------|----------------------------|------------------------|----------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |                 |                    |              |                |                            |                        | CENTIVOE (TIEE |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS      | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE      | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG           | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG          | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA              | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 159             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA NA          | NA<br>NA                   | NA NA                  | NA NA          | NA NA        | NA                 | NA NA                | NA NA                | NA<br>NA               | NA<br>NA |
| NA           | NA       | 731             | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |                 | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA          | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA<br>NA |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 328             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA       |                 | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA             | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA<br>NA |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 78              | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 2287            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA | 159             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 189             | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |                 | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                 | NA                 | NA<br>NA     | NA             | NA<br>NA                   | NA                     | NA             | NA           | NA                 | NA<br>NA             | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | <br>75.3        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 162             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA NA    |                 | NA NA              | NA NA        | NA NA          | NA                         | NA NA                  | NA NA          | NA           | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 8.7             | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>29460       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA       | 2849            | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA             | NA NA        | NA                 | NA NA                | NA NA                | NA<br>NA               | NA<br>NA |
| NA           | NA       | 1166            | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 5240            | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 2751            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA             | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA                     | NA<br>NA |
| NA<br>NA     | NA<br>NA | 7185.5<br>11620 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| 14/1         | 191      | l               | 1 1 1 1            | 19/1         | 17/1           | 19/1                       | 1 100                  | 1 100          | 14/1         | 1 17/1             | 1 1/1                | 17/1                 | 14/1                   | 10/1     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 43 of 60

|              |          |                  |                    |              |                |                            |                        | SEMIVOLATILE   | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|------------------|--------------------|--------------|----------------|----------------------------|------------------------|----------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |                  |                    |              |                |                            |                        | JEINIT JE TILL |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS       | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE      | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG            | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG          | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA               | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |                  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 1256             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>115.5        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 179.75           | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 244              | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 148<br>99        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA | NA NA            | NA NA              | NA<br>NA     | NA NA          | NA NA                      | NA NA                  | NA NA          | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | NA               | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA               | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA NA          | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | NA               | NA                 | NA NA        | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       | 145              | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 229              | NA                 | NA           | NA NA          | NA                         | NA                     | NA             | NA           | NA                 | NA<br>NA             | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 53.5<br>232      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 116              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |                  | NA                 | NA NA        | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       | 14200            | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | NA               | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA               | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | NA<br>442        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 10               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |                  | NA<br>NA           | NA<br>NA     | NA NA          | NA<br>NA                   | NA<br>NA               | NA NA          | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA NA    |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |                  | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 11               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 73               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 146              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |                  | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA          | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 19.5             | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 116              | NA                 | NA           | NA             | NA                         | NA                     | NA             | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 1300             | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 1622<br>334      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA       | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| INA          | IN/A     | JJ- <del>1</del> | IN/A               | IN/A         | INA            | 11/1                       | I IVA                  | I IVA          | INA          | INA                | 11//1                | 11/7                 | 14/1                   | INA      |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 44 of 60

|              |          |              |                    |              |                |                            |                        | SEMIVOLATILE | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|--------------|--------------------|--------------|----------------|----------------------------|------------------------|--------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |              |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS   | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ETHYLHEXYL)PHTHALATE | BUTYL BENZYL PHTHALATE | CARBAZOLE    | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG        | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG        | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA           | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 14.5<br>407  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 4840         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 27.5         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 93000        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 25.2         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 2.66         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 1.9<br>79.8  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |              | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 1004         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |              | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |              | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA NA                  | NA       |
| NA<br>NA     | NA       |              | NA                 | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | 3.1          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |              | NA                 | NA           | NA             | NA                         | NA                     | NA NA        | NA           | NA                 | NA                   | NA                   | NA NA                  | NA       |
| NA<br>NA     | NA       |              | NA                 | NA<br>NA     | NA<br>NA       | NA                         | NA                     | NA           | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 631          | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA NA                  | NA NA    |
| NA<br>NA     | NA<br>NA | 447          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 375.5<br>304 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA NA    | 1229         | NA NA              | NA           | NA NA          | NA<br>NA                   | NA NA                  | NA           | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA<br>NA     | NA<br>NA | 4580         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 30.9<br>309  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA<br>NA |              | NA                 | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA                     | NA           | NA NA        | NA<br>NA           | NA                   | NA                   | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA       |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA           | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |              | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA NA                  | NA           | NA           | NA<br>NA           | NA                   | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 341          | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 7.8          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 318          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |              | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | <br>49.4     | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| INA          | INA      | 49.4         | INA                | INA          | INA            | NA                         | INA                    | INA          | NA           | INA                | INA                  | INA                  | NA                     | INA      |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 45 of 60

|              |          |            |                    |              |                |                            |                        | SEMIVOLATILE     | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|------------|--------------------|--------------|----------------|----------------------------|------------------------|------------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |            |                    |              |                |                            |                        | SEIVIT SEI (TIEE |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE | BUTYL BENZYL PHTHALATE | CARBAZOLE        | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG            | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>1368   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 134        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 1511       | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 2557       | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 844        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA NA        | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 254.4      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>57     | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |            | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA               | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA NA        | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       | 24620      | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 49         | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 90.9       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 5680       | NA                 | NA NA        | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 720        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 112        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | 110        | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 2134       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | 4620       | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 107        | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 112<br>275 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 677.5      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA | 1080       | NA<br>NA           | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA            | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA<br>NA |
| NA           | NA       | 168        | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 1095       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>36240  | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| INA          | IN/A     | 30270      | IN/A               | IN/A         | IN/A           | 1 11/1                     | I ING                  | I IVA            | INA          | INU                | 11//1                | IN/A                 | INA                    | IN/A     |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 46 of 60

|              |          |               | I                  |              |                |                            |                        | SEMIVOLATILE     | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|---------------|--------------------|--------------|----------------|----------------------------|------------------------|------------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |               |                    |              |                |                            |                        | SEIVIT SEI (TIEE |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS    | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ETHYLHEXYL)PHTHALATE | BUTYL BENZYL PHTHALATE | CARBAZOLE        | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG         | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG            | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 246           | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       | 36.9          | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 772           | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 18.8          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |               | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA               | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 12            | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       | 8.3           | NA                 | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | <br>          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA NA                | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |               | NA                 | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA                     | NA               | NA           | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | 1603          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>5140      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA NA        | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA NA    |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |               | NA                 | NA<br>NA     | NA             | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA                 | NA                   | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | 28650<br>1528 | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | 141           | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA       |               | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA            | NA           | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 26160         | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA<br>NA | 134.6         | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | <br>453       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA NA        | NA<br>NA |               | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA            | NA NA        | NA                 | NA NA                | NA NA                | NA NA                  | NA NA    |
| NA           | NA       | 112.4         | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       |               | NA                 | NA           | NA             | NA                         | NA                     | NA               | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA<br>NA     | NA       |               | NA                 | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA               | NA           | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA<br>NA     | NA<br>NA | <br>          | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA |               | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA         | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| 14/1         | 1971     | <u>I</u>      | 101                | 14/1         | 17/1           | 19/1                       | 1973                   | 1 177            | 14/1         | 1 17/1             | 1 1// 1              | 1 1 1 1 1            | 14/1                   | 101      |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 47 of 60

| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |        |            |                    |              |                |                            |       | SEMIVOLATILE | S (UG/KG)    |        |                      |         |                        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|------------|--------------------|--------------|----------------|----------------------------|-------|--------------|--------------|--------|----------------------|---------|------------------------|--------|
| USANG   USAN |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| No.   No.  | PHENANTHRENE | PYRENE | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ЕТНҮLHEXYL)РНТНАLATE |       | CARBAZOLE    | DIBENZOFURAN | ₽<br>¥ | DI-N-BUTYL PHTHALATE | РНТНАСА | N-NITROSODIPHENYLAMINE | PHENOL |
| MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/KG        | UG/KG  | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG | UG/KG        | UG/KG        | UG/KG  | UG/KG                | UG/KG   | UG/KG                  | UG/KG  |
| No.   No.  |              |        | NA         |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        | •          |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        | +          |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | NA     | 984        | NA                 |              |                |                            |       | NA           | NA           |        | NA                   | NA      |                        | NA     |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        | •          |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | NA     | 407        |                    | NA           | NA             | NA                         | NA    |              |              | NA     |                      | NA      | NA                     | NA     |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | NA     | 1385       |                    |              |                |                            |       |              |              | NA     |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA           | NA     | 82.4       | NA                 | NA           | NA             | NA                         | NA    | NA           | NA           | NA     | NA                   | NA      | NA                     | NA     |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA         28790         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA           | NA     |            |                    |              |                |                            |       | NA           | NA           |        | NA                   |         |                        |        |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA         8350         NA         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA          NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA         66.8         NA         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA           | NA     |            | NA                 | NA           |                | NA                         |       | NA           | NA           |        | NA                   | NA      |                        |        |
| NA         NA          NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA         NA          NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA         NA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |        |            |                    |              |                |                            |       |              |              |        |                      |         |                        |        |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 48 of 60

|              |          |            | 1                  |              |                |                            |                        | SEMIVOLATILE | S (UG/KG)    |                    |                      |                      |                        |          |
|--------------|----------|------------|--------------------|--------------|----------------|----------------------------|------------------------|--------------|--------------|--------------------|----------------------|----------------------|------------------------|----------|
|              |          |            |                    |              |                |                            |                        |              |              |                    |                      |                      |                        |          |
| PHENANTHRENE | PYRENE   | TOTAL PAHS | 2,4-DIMETHYLPHENOL | BENZOIC ACID | BENZYL ALCOHOL | BIS(2-ETHYLHEXYL)PHTHALATE | BUTYL BENZYL PHTHALATE | CARBAZOLE    | DIBENZOFURAN | DIMETHYL PHTHALATE | DI-N-BUTYL PHTHALATE | DI-N-OCTYL PHTHALATE | N-NITROSODIPHENYLAMINE | PHENOL   |
| UG/KG        | UG/KG    | UG/KG      | UG/KG              | UG/KG        | UG/KG          | UG/KG                      | UG/KG                  | UG/KG        | UG/KG        | UG/KG              | UG/KG                | UG/KG                | UG/KG                  | UG/KG    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA NA        | NA NA    | NA NA      | NA NA              | NA NA        | NA NA          | NA NA                      | NA NA                  | NA NA        | NA NA        | NA NA              | NA NA                | NA NA                | NA<br>NA               | NA NA    |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA NA        | NA           | NA                 | NA NA                | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
|              | 9.1      | 20.1       | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| 210          | 310      | 2098       | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| 2600         | 4200     | 28106      | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| 9.4          | 19       | 133.5      | NA                 | NA           | NA<br>NA       | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA<br>NA             | NA<br>NA               | NA       |
| 5.575        | 10.375   | 66.75      | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| <del></del>  |          |            | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
|              | 9.1      | 20.1       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA NA              | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
|              | 9.1      | 20.1       | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
|              |          | 9.8        | NA NA              | NA<br>NA     | NA NA          | NA<br>NA                   | NA NA                  | NA NA        | NA NA        | NA NA              | NA NA                | NA NA                | NA NA                  | NA<br>NA |
| 8            | 17       | 81.1       | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |
| NA NA        | NA       | NA<br>NA   | NA<br>NA           | NA           | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA NA        | NA<br>NA           | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA       |
| NA NA        | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA           | NA NA        | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA<br>NA     | NA<br>NA | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA       | NA<br>NA                   | NA<br>NA               | NA<br>NA     | NA<br>NA     | NA                 | NA<br>NA             | NA<br>NA             | NA<br>NA               | NA<br>NA |
| NA           | NA       | NA         | NA                 | NA           | NA             | NA                         | NA                     | NA           | NA           | NA                 | NA                   | NA                   | NA                     | NA       |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 49 of 60

|                        |                        |            |                    |              |          |                  |              | VOLATILES        | (110/1/0)   |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|--------------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    |              |          | 1                |              | VOLATILES        | (UG/KG)     |                    |             |                |          |          | T             |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE      | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG        | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA<br>                 | NA<br>                 | NA<br>     | NA<br>             | NA<br>40 J   | NA<br>   | NA<br>           | NA<br>       | NA<br>           | NA<br>      | NA<br>             | NA<br>      | NA<br>         | NA<br>   | NA<br>   | NA NA         | NA<br>                 |
|                        |                        |            |                    | 11 J         |          |                  |              |                  |             | 5 J                |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    | 28 J         |          |                  |              |                  |             |                    |             |                |          |          | NA NA         |                        |
|                        |                        |            |                    | 27 J         |          |                  |              |                  |             | -                  |             |                |          | -        | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  | -           | 5 J                |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             | 6 J                |             |                |          |          | NA            |                        |
|                        |                        | 6 J<br>    |                    | 48 J<br>29 J |          |                  |              |                  |             | <br>7 J            |             |                |          | <br>     | NA<br>NA      | <br>                   |
|                        |                        |            |                    | 29 J<br>14 J |          |                  |              |                  |             | 6 J                |             |                |          |          | NA<br>NA      |                        |
|                        |                        | 9 J        |                    | 45 J         |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    | 16 J         |          |                  |              |                  |             | 6 J                |             |                |          |          | NA            |                        |
|                        |                        |            |                    | 9 J          |          |                  |              | -                |             | 5 J                |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             | 6 J                |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    | -            |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          | <br>     | NA<br>NA      |                        |
|                        |                        |            |                    | 89 J         |          |                  |              |                  |             | 11 B               |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              | -                |             | -                  |             |                |          | ==       | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
| NA                     | NA                     | NA         | NA                 | NA           | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA           | NA       | NA               | NA           | NA               | NA<br>NA    | NA                 | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA<br>                 | NA<br>                 | NA<br>     | NA<br>             | NA<br>       | NA<br>   | NA<br>           | NA<br>       | NA<br>           | NA<br>      | NA<br>7 B          | NA<br>      | NA<br>         | NA<br>   | NA<br>   | NA<br>NA      | NA<br>                 |
|                        |                        |            |                    |              |          |                  |              |                  |             | 7 B                |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             | 8 J                |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      | <br>                   |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA NA         |                        |
|                        |                        |            |                    |              |          |                  |              | -                |             |                    |             |                |          | -        | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA            |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             |                    |             |                |          |          | NA<br>NA      |                        |
|                        |                        |            |                    |              |          |                  |              |                  |             | 8 J                |             |                |          |          | NA<br>NA      |                        |
| NA                     | NA                     | NA         | NA                 | NA           | NA       | NA               | NA           | NA               | NA          | NA NA              | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA           | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA           | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA           | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA           | NA<br>NA | NA               | NA           | NA               | NA          | NA<br>NA           | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| 1.4/-/                 | I INA                  | INA        | INA                | INA          | INA      | I INA            | INA          | 111/7            | INA         | 11/7               | IN/A        | 11/7           | INA      | INC      | INA           | IN/A                   |

## APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 50 of 60

| _                      |                        |              |                    |              |          |                  |              | \(\(\alpha\) \(\alpha\) \(\alpha\ | (110 (140)  |                    |             |                |           |             |               |                        |
|------------------------|------------------------|--------------|--------------------|--------------|----------|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------|----------------|-----------|-------------|---------------|------------------------|
|                        | 1                      |              |                    | Ţ            |          |                  |              | VOLATILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (UG/KG)     |                    | 1           | 1              |           |             |               |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE   | 4-ISOPROPYLTOLUENE | ACETONE      | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE  | TOLUENE     | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG        | UG/KG              | UG/KG        | UG/KG    | UG/KG            | UG/KG        | UG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG     | UG/KG       | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA           | NA NA    | NA               | NA           | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA    | NA<br>NA           | NA          | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA           | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA NA        | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA       | NA                 | NA NA       | NA             | NA        | NA          | NA            | NA NA                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA NA                  | NA                     | NA           | NA                 | NA           | NA NA    | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA NA              | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA        | NA                 | NA           | NA NA    | NA<br>NA         | NA NA        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA       | NA NA              | NA<br>NA    | NA             | NA        | NA          | NA NA         | NA NA                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA NA    | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA NA              | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA<br>                 | NA<br>                 | NA<br>2.87 J | NA<br>             | NA<br>27.2 J | NA<br>   | NA<br>0.72 J     | NA<br>       | NA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA<br>      | 3.3 J              | NA<br>      | NA<br>         | NA        | NA<br>1.9 J | NA            | NA                     |
| 658                    | 139 J                  | 2.07 J       | 165 J              | 21.2 J<br>   |          | 0.72 3           | 394          | 83.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 270 J       | 147 J              | 159000      | 125 J          | <br>186 J | 1.9 J       | 456           |                        |
|                        |                        | 3.14 J       |                    | 31 J         |          | 7.1              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |                |           | 1.2 J       |               |                        |
|                        | NA                     |              |                    | 29 J         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 8 B                |             |                |           |             |               |                        |
|                        | NA                     |              |                    | 14 J         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 6 B                |             |                |           |             |               |                        |
|                        | NA                     |              |                    | 37 L         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 7 B                |             |                |           |             |               |                        |
|                        | NA<br>NA               |              |                    | 36 L<br>21 J |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 8 B<br>11 B        |             |                |           |             |               | <br>2 J                |
|                        | NA<br>NA               |              |                    | 14 J         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 8 B                |             |                |           | <br>        |               |                        |
|                        | NA NA                  |              |                    | 29 B         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |                |           |             |               |                        |
|                        | NA                     |              |                    | 16 B         |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |                |           |             |               |                        |
|                        | NA                     |              |                    |              |          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |                |           |             |               |                        |
| NA                     | NA<br>NA               | <br>NA       | NIA                | 16 B         | NA       | NA               | NA           | NIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>NA      | 7 B                | NA          | <br>N/A        | NA        | <br>NA      | <br>NA        | <br>NA                 |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA                 | NA           | NA<br>NA | NA<br>NA         | NA<br>NA     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA       | NA NA              | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA NA                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA           | NA                 | NA           | NA NA    | NA<br>NA         | NA<br>NA     | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA    | NA<br>NA           | NA          | NA             | NA<br>NA  | NA          | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA                 | NA           | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA  | NA<br>NA    | NA NA         | NA NA                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA NA                  | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA<br>NA           | NA<br>NA     | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA  | NA<br>NA    | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA     | NA                 | NA           | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA  | NA<br>NA    | NA NA         | NA NA                  |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |
| NA                     | NA                     | NA           | NA                 | NA           | NA       | NA               | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA          | NA                 | NA          | NA             | NA        | NA          | NA            | NA                     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 51 of 60

|                        |                        |            |                    |          |          |                  |              | VOLATILEO        | (110/140)   |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    |          |          |                  |              | VOLATILES        | (UG/KG)     |                    |             |                |          |          |               |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA NA              | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 52 of 60

| Г                      |                        |            |                    |          |          |                  |              | 1/0/ 47/ 50      | (110 (1/0)  |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        | <u> </u>               |            |                    | <u> </u> |          |                  |              | VOLATILES        | (UG/KG)     |                    |             | 1              |          |          | 1             |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA NA    | NA<br>NA         | NA           | NA NA            | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA NA    | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA          | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA         | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA               | NA          | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA         | NA<br>NA           | NA       | NA       | NA<br>NA         | NA           | NA               | NA          | NA<br>NA           | NA          | NA             | NA       | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| INA                    | INA                    | INA        | INA                | INA      | INA      | INA              | INA          | NA               | INA         | INA                | INA         | INA            | INA      | INA      | INA           | INA                    |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 53 of 60

| Γ                      |                        |            |                    |          |          |                  |              | 1/0/ 47/ 50      | (110 (1/0)  |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        | <u> </u>               |            |                    | <u> </u> |          |                  |              | VOLATILES        | (UG/KG)     |                    |             | 1              |          |          | 1             |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA NA    | NA<br>NA         | NA           | NA NA            | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA NA    | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA          | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA         | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA               | NA          | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA         | NA<br>NA           | NA       | NA       | NA<br>NA         | NA           | NA               | NA          | NA<br>NA           | NA          | NA             | NA       | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| INA                    | INA                    | INA        | INA                | INA      | INA      | INA              | INA          | NA               | INA         | INA                | INA         | INA            | INA      | INA      | INA           | INA                    |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 54 of 60

|                        |                        |            |                    |          |          |                  |              | VOLATILEO        | (110/140)   |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    |          |          |                  |              | VOLATILES        | (UG/KG)     |                    |             |                |          |          |               |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA NA              | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 55 of 60

|                        |                        |            |                    |          |          |                  |              | VOLATILEO        | (110 (140)  |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    | I        |          |                  |              | VOLATILES        | (UG/KG)     |                    |             |                |          |          | T             |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA                 | NA<br>NA | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA NA       | NA NA              | NA<br>NA    | NA NA          | NA       | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA NA      | NA                 | NA       | NA NA    | NA NA            | NA           | NA               | NA NA       | NA                 | NA          | NA             | NA       | NA       | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA NA    | NA               | NA           | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA       | NA       | NA NA         | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA<br>NA | NA<br>NA | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA NA              | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA NA       | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA NA       | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA           | NA               | NA NA       | NA NA              | NA NA       | NA             | NA       | NA NA    | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA<br>NA | NA<br>NA | NA               | NA           | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA         | NA                 | NA NA    | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA NA       | NA             | NA       | NA       | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA NA    | NA<br>NA         | NA           | NA               | NA<br>NA    | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA NA         | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| 14/1                   | 19/1                   | 14/7       | INA                | 14/7     | 1 1/1    | 14/3             | I N/-N       | 11/1             | 14/7        | 11// 1             | 14/7        | 1 17/1         | 14/7     | 14/1     | INA           | 1 1/ 1                 |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 56 of 60

|                        |                        |            |                    |          |          |                  |              | 1/0/ 47/ 50      | (110 11/0)  |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        | 1                      |            | <u> </u>           |          |          |                  | <u> </u>     | VOLATILES        | (UG/KG)     |                    |             |                |          |          |               |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA          | NA             | NA<br>NA | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA NA              | NA          | NA             | NA<br>NA | NA       | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA           | NA               | NA<br>NA    | NA<br>NA           | NA          | NA             | NA<br>NA | NA       | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NΑ               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NΑ             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA NA      | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA                 | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA NA    | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA NA    | NA NA    | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA<br>NA           | NA<br>NA    | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA NA      | NA NA              | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA NA    | NA<br>NA         | NA           | NA               | NA<br>NA    | NA NA              | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 57 of 60

|                        |                        |            |                    |          |          |                  |              | VOLATILEO        | (110/140)   |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    |          |          |                  |              | VOLATILES        | (UG/KG)     |                    |             |                |          |          |               |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA       | NA            | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA NA              | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA                     | NA         | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA                 | NA          | NA             | NA<br>NA | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA NA                  | NA<br>NA   | NA<br>NA           | NA       | NA NA    | NA<br>NA         | NA NA        | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA<br>NA     | NA NA            | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA<br>NA   | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |

# APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 58 of 60

| Г                      |                        |            |                    |          |          |                  |              | VOLATILES        | (HG/KG)     |                    |             |                |          |          |               |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
|                        |                        |            |                    |          |          |                  |              | VOLATILES        |             |                    |             |                |          |          | T             |                        |
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA<br>NA           | NA       | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA                 | NA          | NA             | NA       | NA<br>NA | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA NA    | NA NA            | NA           | NA NA            | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA NA    | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA NA    | NA<br>NA         | NA           | NA NA            | NA          | NA<br>NA           | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA       | NA<br>NA         | NA NA        | NA               | NA<br>NA    | NA<br>NA           | NA NA       | NA             | NA<br>NA | NA<br>NA | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA NA              | NA       | NA NA    | NA NA            | NA           | NA NA            | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA NA    | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA<br>NA | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA NA      | NA                 | NA       | NA NA    | NA NA            | NA NA        | NA NA            | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA NA    | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA NA    | NA               | NA           | NA NA            | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA       | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA            | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA       | NA NA            | NA NA        | NA               | NA          | NA<br>NA           | NA          | NA             | NA       | NA NA    | NA NA         | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA NA                  | NA NA                  | NA         | NA                 | NA       | NA       | NA NA            | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA<br>NA               | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA       | NA<br>NA         | NA<br>NA     | NA               | NA          | NA<br>NA           | NA<br>NA    | NA             | NA       | NA<br>NA | NA<br>NA      | NA NA                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA NA      | NA NA              | NA       | NA NA    | NA NA            | NA           | NA NA            | NA NA       | NA NA              | NA<br>NA    | NA             | NA       | NA NA    | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 59 of 60

|                        |                        | 1          | 1                  |          |          |                  | <u> </u>     | VOLATILES        | (UG/KG)     |                    |             | 1              |          |          | T             |                        |
|------------------------|------------------------|------------|--------------------|----------|----------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|----------|---------------|------------------------|
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE  | BENZENE  | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE  | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG    | UG/KG    | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG    | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA<br>NA | NA<br>NA         | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA          | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA NA                  | NA         | NA NA              | NA       | NA       | NA NA            | NA           | NA               | NA NA       | NA                 | NA          | NA             | NA       | NA       | NA NA         | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA NA                  |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA                 | NA       | NA<br>NA | NA<br>NA         | NA NA        | NA               | NA NA       | NA NA              | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA       | NA<br>NA | NA<br>NA         | NA NA        | NA               | NA<br>NA    | NA NA              | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA                 | NA<br>NA    | NA             | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA               | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA NA         | NA<br>NA               |
| NA                     | NA                     | NA         | NA                 | NA       | NA       | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA       | NA            | NA                     |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| NA<br>NA               | NA<br>NA               | NA<br>NA   | NA<br>NA           | NA<br>NA | NA<br>NA | NA<br>NA         | NA<br>NA     | NA<br>NA         | NA<br>NA    | NA<br>NA           | NA<br>NA    | NA<br>NA       | NA<br>NA | NA<br>NA | NA<br>NA      | NA<br>NA               |
| 13/1                   | 13/1                   | 1 11/7     | 111/7              | 11/      | 1 1/7    | 11/7             | INA          | 1 1/ 1           | 14/7        | 1 1/ 1             | 14/7        | 1 17/1         | 11/7     | 11/1     | IN/A          | 1373                   |

### APPENDIX B BLOCK F INDUSTRIAL EXCEEDANCES OF RISK-BASED SCREENING CRITERIA ALL BLOCK F SOIL SAMPLES MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND Page 60 of 60

|                        | ı                      | 1          | Т                  | 1       |         |                  | , ,          | VOLATILES (      | (UG/KG)     |                    |             | 1              | -        |         | 1             |                        |
|------------------------|------------------------|------------|--------------------|---------|---------|------------------|--------------|------------------|-------------|--------------------|-------------|----------------|----------|---------|---------------|------------------------|
| 1,2,4-TRIMETHYLBENZENE | 1,3,5-TRIMETHYLBENZENE | 2-BUTANONE | 4-ISOPROPYLTOLUENE | ACETONE | BENZENE | CARBON DISULFIDE | ETHYLBENZENE | ISOPROPYLBENZENE | M+P-XYLENES | METHYLENE CHLORIDE | NAPHTHALENE | N-BUTYLBENZENE | O-XYLENE | TOLUENE | TOTAL XYLENES | TRICHLOROFLUOROMETHANE |
| UG/KG                  | UG/KG                  | UG/KG      | UG/KG              | UG/KG   | UG/KG   | UG/KG            | UG/KG        | UG/KG            | UG/KG       | UG/KG              | UG/KG       | UG/KG          | UG/KG    | UG/KG   | UG/KG         | UG/KG                  |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |
| NA                     | NA                     | NA         | NA                 | NA      | NA      | NA               | NA           | NA               | NA          | NA                 | NA          | NA             | NA       | NA      | NA            | NA                     |

#### Qualifier Description

- -- non-detect result
  J Positive result is estimated due to quality control noncompliance; bias is indeterminant
  L Positive result is biased low due to quality control noncompliance
- NA Not analyzed/ not applicable
  U Nondetected result

- UJ Nondetected result is estimated due to quality control noncompliance; bias is indeterminant
  UR Nondetected result is rejected due to extreme quality control noncompliance; data are unusable

| APPENDIX C—PREVIOUS INVESTIGATIONS' SOIL DATA (TABLE) |  |
|-------------------------------------------------------|--|
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |

| LOCATION                     | MRC-MW46A      | MRC-MW95D        | SB-022     |
|------------------------------|----------------|------------------|------------|
| SAMPLE ID                    | MRC-MW46[0910] | MRC-MW95D-SO-214 | SB-22-05   |
| SAMPLE DATE                  | 5/24/2005      | 5/13/2010        | 11/17/2003 |
| METALS (MG/KG)               | ·              | ·                |            |
| ANTIMONY                     |                |                  | 3 UL []    |
| ARSENIC                      |                |                  | 2.9 L []   |
| BARIUM                       |                |                  |            |
| BERYLLIUM                    |                |                  | 3 U[]      |
| CADMIUM                      |                |                  | 3 U []     |
| CHROMIUM                     |                |                  | 13 L []    |
| COBALT                       |                |                  |            |
| COPPER                       |                |                  | 10 []      |
| LEAD                         |                |                  | 10 L []    |
| MERCURY                      |                |                  | 0.12 U []  |
| MOLYBDENUM                   |                |                  |            |
| NICKEL                       |                |                  | 8.9 L []   |
| SELENIUM                     |                |                  | 3 UR []    |
| SILVER                       |                |                  | 3 U []     |
| THALLIUM                     |                |                  | 2.4 UL []  |
| VANADIUM                     |                |                  |            |
| ZINC                         |                |                  | 60 UJ []   |
| MISCELLANEOUS PARAMETERS     | •              | -                |            |
| PERCENT SOLIDS (%)           |                |                  | 70 []      |
| TOTAL SOLIDS (%)             |                |                  |            |
| HEXAVALENT CHROMIUM (MG/KG)  |                |                  |            |
| TOTAL ORGANIC CARBON (MG/KG) | 238 U [MDL=30] |                  |            |
| PH (S.U.)                    |                |                  |            |
| MERCURY (METHYL) (UG/KG)     |                |                  |            |
| SEMIVOLATILES (UG/KG)        |                |                  |            |
| 1,1-BIPHENYL                 |                |                  | 400 U []   |
| 1,2,4-TRICHLOROBENZENE       |                |                  |            |
| 1,2-DICHLOROBENZENE          |                |                  |            |
| 1,3-DICHLOROBENZENE          |                |                  |            |
| 1,4-DICHLOROBENZENE          |                |                  |            |
| 1,4-DIOXANE                  |                |                  |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                |                  | 400 U []   |
| 2,4,5-TRICHLOROPHENOL        |                |                  | 1000 U []  |
| 2,4,6-TRICHLOROPHENOL        |                |                  | 400 U []   |
| 2,4-DICHLOROPHENOL           |                |                  | 400 U []   |
| 2,4-DIMETHYLPHENOL           |                |                  | 400 U []   |
| 2,4-DINITROPHENOL            |                |                  | 1000 U []  |

| LOCATION                    | MRC-MW46A      | MRC-MW95D        | SB-022     |
|-----------------------------|----------------|------------------|------------|
| SAMPLE ID                   | MRC-MW46[0910] | MRC-MW95D-SO-214 | SB-22-05   |
| SAMPLE DATE                 | 5/24/2005      | 5/13/2010        | 11/17/2003 |
| 2,4-DINITROTOLUENE          |                |                  | 400 U []   |
| 2,6-DINITROTOLUENE          |                |                  | 400 U []   |
| 2-CHLORONAPHTHALENE         |                |                  | 400 U []   |
| 2-CHLOROPHENOL              |                |                  | 400 U []   |
| 2-METHYLPHENOL              |                |                  | 400 U []   |
| 2-NITROANILINE              |                |                  | 1000 U []  |
| 2-NITROPHENOL               |                |                  | 400 U []   |
| 3&4-METHYLPHENOL            |                |                  | 400 U []   |
| 3,3'-DICHLOROBENZIDINE      |                |                  | 400 U []   |
| 3-NITROANILINE              |                |                  | 1000 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  |                |                  | 920 U[]    |
| 4-BROMOPHENYL PHENYL ETHER  |                |                  | 400 U []   |
| 4-CHLORO-3-METHYLPHENOL     |                |                  | 400 U []   |
| 4-CHLOROANILINE             |                |                  | 400 U []   |
| 4-CHLOROPHENYL PHENYL ETHER |                |                  | 400 U []   |
| 4-NITROANILINE              |                |                  | 1000 U []  |
| 4-NITROPHENOL               |                |                  | 1000 U []  |
| ACETOPHENONE                |                |                  | 400 U []   |
| ANILINE                     |                |                  |            |
| ATRAZINE                    |                |                  | 400 U []   |
| AZOBENZENE                  |                |                  |            |
| BENZIDINE                   |                |                  |            |
| BENZOIC ACID                |                |                  |            |
| BENZYL ALCOHOL              |                |                  |            |
| BIS(2-CHLOROETHOXY)METHANE  |                |                  | 400 U []   |
| BIS(2-CHLOROETHYL)ETHER     |                |                  | 400 U []   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |                |                  | 400 U []   |
| BUTYL BENZYL PHTHALATE      |                |                  | 400 U []   |
| CAPROLACTAM                 |                |                  | 400 U []   |
| CARBAZOLE                   |                |                  | 400 U []   |
| DIBENZOFURAN                |                |                  | 400 U []   |
| DIETHYL PHTHALATE           |                |                  | 400 U []   |
| DIMETHYL PHTHALATE          |                |                  | 400 U []   |
| DI-N-BUTYL PHTHALATE        |                |                  | 400 U []   |
| DI-N-OCTYL PHTHALATE        |                |                  | 400 U []   |
| HEXACHLOROBENZENE           |                |                  | 400 U []   |
| HEXACHLOROBUTADIENE         |                |                  | 400 U []   |
| HEXACHLOROCYCLOPENTADIENE   |                |                  | 400 U []   |

| LOCATION                       | MRC-MW46A      | MRC-MW95D         | SB-022     |
|--------------------------------|----------------|-------------------|------------|
| SAMPLE ID                      | MRC-MW46[0910] | MRC-MW95D-SO-214  | SB-22-05   |
| SAMPLE DATE                    | 5/24/2005      | 5/13/2010         | 11/17/2003 |
| HEXACHLOROETHANE               |                |                   | 400 U []   |
| ISOPHORONE                     |                |                   | 400 U []   |
| NITROBENZENE                   |                |                   | 400 U []   |
| N-NITROSODIMETHYLAMINE         |                |                   |            |
| N-NITROSO-DI-N-PROPYLAMINE     |                |                   | 400 U []   |
| N-NITROSODIPHENYLAMINE         |                |                   | 400 U []   |
| PENTACHLOROPHENOL              |                |                   | 1000 U []  |
| PHENOL                         |                |                   | 400 U []   |
| PYRIDINE                       |                |                   |            |
| VOLATILES (UG/KG)              | <u>.</u>       | •                 |            |
| 1,1,1,2-TETRACHLOROETHANE      |                | 0.72 U [MDL=0.72] | 6 U []     |
| 1,1,1-TRICHLOROETHANE          |                | 0.65 U [MDL=0.65] | 6 U []     |
| 1,1,2,2-TETRACHLOROETHANE      |                | 0.39 U [MDL=0.39] | 6 U []     |
| 1,1,2-TRICHLOROETHANE          |                |                   | 6 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                | 1.5 U [MDL=1.5]   |            |
| 1,1-DICHLOROETHANE             |                | 0.42 U [MDL=0.42] | 6 U []     |
| 1,1-DICHLOROETHENE             |                | 0.6 U [MDL=0.6]   | 6 U []     |
| 1,1-DICHLOROPROPENE            |                | 0.35 U [MDL=0.35] | 6 U []     |
| 1,2,3-TRICHLOROBENZENE         |                | 0.44 U [MDL=0.44] | 6 U []     |
| 1,2,3-TRICHLOROPROPANE         |                | 1 U [MDL=1]       | 6 U[]      |
| 1,2,3-TRIMETHYLBENZENE         |                | 0.2 U [MDL=0.2]   |            |
| 1,2,4-TRICHLOROBENZENE         |                | 0.31 U [MDL=0.31] | 6 U[]      |
| 1,2,4-TRIMETHYLBENZENE         |                | 0.75 U [MDL=0.75] | 6 U[]      |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                | 1.5 U [MDL=1.5]   | 6 U[]      |
| 1,2-DIBROMOETHANE              |                | 0.58 U [MDL=0.58] | 6 U[]      |
| 1,2-DICHLOROBENZENE            |                | 0.42 U [MDL=0.42] | 6 U[]      |
| 1,2-DICHLOROETHANE             |                | 0.39 U [MDL=0.39] | 6 U[]      |
| 1,2-DICHLOROPROPANE            |                | 0.8 U [MDL=0.8]   | 6 U[]      |
| 1,3,5-TRIMETHYLBENZENE         |                |                   | 6 U[]      |
| 1,3-DICHLOROBENZENE            |                | 0.41 U [MDL=0.41] | 6 U[]      |
| 1,3-DICHLOROPROPANE            |                | 0.39 U [MDL=0.39] | 6 U[]      |
| 1,3-DICHLOROPROPENE            |                |                   |            |
| 1,4-DICHLOROBENZENE            |                | 0.77 U [MDL=0.77] | 6 U[]      |
| 1,4-DIOXANE                    |                |                   |            |
| 2,2-DICHLOROPROPANE            |                | 1.1 U [MDL=1.1]   | 6 U[]      |
| 2-BUTANONE                     |                | 27 [MDL=1.6]      | 60 U []    |
| 2-CHLOROETHYL VINYL ETHER      |                | 1.6 U [MDL=1.6]   | 6 U[]      |
| 2-CHLOROTOLUENE                |                | 0.46 U [MDL=0.46] | 6 U []     |

| LOCATION                | MRC-MW46A      | MRC-MW95D         | SB-022     |
|-------------------------|----------------|-------------------|------------|
| SAMPLE ID               | MRC-MW46[0910] | MRC-MW95D-SO-214  | SB-22-05   |
| SAMPLE DATE             | 5/24/2005      | 5/13/2010         | 11/17/2003 |
| 2-HEXANONE              |                | 7.7 B [MDL=0.73]  | 60 U []    |
| 4-CHLOROTOLUENE         |                | 0.48 U [MDL=0.48] | 6 U []     |
| 4-ISOPROPYLTOLUENE      |                | 0.24 U [MDL=0.24] | 6 U []     |
| 4-METHYL-2-PENTANONE    |                | 0.63 U [MDL=0.63] | 60 U []    |
| ACETONE                 |                | 64 B [MDL=7.3]    | 40 J []    |
| BENZENE                 |                | 0.52 J [MDL=0.27] | 6 U[]      |
| BROMOBENZENE            |                | 0.82 U [MDL=0.82] | 6 U[]      |
| BROMOCHLOROMETHANE      |                | 0.82 U [MDL=0.82] | 6 U[]      |
| BROMODICHLOROMETHANE    |                | 0.33 U [MDL=0.33] | 6 U[]      |
| BROMOFORM               |                | 0.38 U [MDL=0.38] | 6 U[]      |
| BROMOMETHANE            |                | 0.63 U [MDL=0.63] | 6 U[]      |
| CARBON DISULFIDE        |                | 0.51 U [MDL=0.51] | 6 U[]      |
| CARBON TETRACHLORIDE    |                | 0.43 U [MDL=0.43] | 6 U []     |
| CHLOROBENZENE           |                | 0.38 U [MDL=0.38] | 6 U []     |
| CHLORODIBROMOMETHANE    |                | 0.64 U [MDL=0.64] | 6 U[]      |
| CHLOROETHANE            |                | 1 U [MDL=1]       | 6 U[]      |
| CHLOROFORM              |                | 0.34 U [MDL=0.34] | 6 U[]      |
| CHLOROMETHANE           |                | 0.48 U [MDL=0.48] | 6 U[]      |
| CIS-1,2-DICHLOROETHENE  |                | 0.42 U [MDL=0.42] | 6 U[]      |
| CIS-1,3-DICHLOROPROPENE |                | 0.39 U [MDL=0.39] | 6 U[]      |
| DIBROMOMETHANE          |                | 0.73 U [MDL=0.73] | 6 U[]      |
| DICHLORODIFLUOROMETHANE |                | 0.58 U [MDL=0.58] | 6 U[]      |
| DIISOPROPYL ETHER       |                | 1.7 U [MDL=1.7]   |            |
| ETHYL TERT-BUTYL ETHER  |                | 0.26 U [MDL=0.26] |            |
| ETHYLBENZENE            |                | 0.41 J [MDL=0.3]  | 6 U[]      |
| FLUORODICHLOROMETHANE   |                |                   |            |
| HEXACHLOROBUTADIENE     |                | 1.4 U [MDL=1.4]   | 6 U[]      |
| ISOPROPYLBENZENE        |                | 0.19 U [MDL=0.19] | 6 U[]      |
| M+P-XYLENES             |                | 1.4 U [MDL=1.4]   | 18 U []    |
| METHYL TERT-BUTYL ETHER |                | 0.5 U [MDL=0.5]   | 6 U[]      |
| METHYLENE CHLORIDE      |                | 0.99 B [MDL=0.78] | 6 U[]      |
| NAPHTHALENE             |                | 0.37 B [MDL=0.22] | 6 U[]      |
| N-BUTYLBENZENE          |                | 0.35 J [MDL=0.27] | 6 U[]      |
| N-PROPYLBENZENE         |                | 0.46 U [MDL=0.46] | 6 U[]      |
| O-XYLENE                |                | 0.59 J [MDL=0.41] | 18 U[]     |
| SEC-BUTYLBENZENE        |                | 0.21 U [MDL=0.21] | 6 U[]      |
| STYRENE                 |                | 0.17 U [MDL=0.17] | 6 U[]      |
| TERT-AMYL METHYL ETHER  |                | 0.43 U [MDL=0.43] |            |

C3-PHENANTHRENES/ANTHRACENES

| LOCATION                                 | BADO BANAZACA  | MDC MWOED         | CD 000       |
|------------------------------------------|----------------|-------------------|--------------|
| LOCATION                                 | MRC-MW46A      | MRC-MW95D         | SB-022       |
| SAMPLE ID                                | MRC-MW46[0910] | MRC-MW95D-SO-214  | SB-22-05     |
| SAMPLE DATE                              | 5/24/2005      | 5/13/2010         | 11/17/2003   |
| TERT-BUTYLBENZENE                        |                | 0.34 U [MDL=0.34] | 6 U []       |
| TERTIARY-BUTYL ALCOHOL                   |                | 8.8 UR [MDL=8.8]  |              |
| TETRACHLOROETHENE                        |                | 0.6 U [MDL=0.6]   | 6 U []       |
| TOLUENE                                  |                | 1.6 B [MDL=0.31]  | 6 U []       |
| TOTAL 1,2-DICHLOROETHENE                 |                |                   |              |
| TOTAL XYLENES                            |                | 1.5 J [MDL=0.78]  |              |
| TRANS-1,2-DICHLOROETHENE                 | <del></del>    | 0.48 U [MDL=0.48] | 6 U []       |
| TRANS-1,3-DICHLOROPROPENE                | <del></del>    | 0.63 U [MDL=0.63] | 6 U []       |
| TRICHLOROETHENE                          |                | 0.49 U [MDL=0.49] | 6 U[]        |
| TRICHLOROFLUOROMETHANE                   |                | 0.39 U [MDL=0.39] | 6 U[]        |
| VINYL ACETATE                            |                | 0.29 U [MDL=0.29] | 6 U[]        |
| VINYL CHLORIDE                           |                | 0.45 U [MDL=0.45] | 6 U []       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                |                   |              |
| 1-METHYLNAPHTHALENE                      |                |                   |              |
| 2-METHYLNAPHTHALENE                      |                |                   | 400 U []     |
| ACENAPHTHENE                             |                |                   | 400 U []     |
| ACENAPHTHYLENE                           |                |                   | 400 U []     |
| ANTHRACENE                               |                |                   | 400 U []     |
| BAP EQUIVALENT-HALFND                    |                |                   | 400 U []     |
| BAP EQUIVALENT-POS                       |                |                   | 400 U []     |
| BAP EQUIVALENT-UCL                       |                |                   | 9.355014 []  |
| BENZO(A)ANTHRACENE                       |                |                   | 400 U []     |
| BENZO(A)PYRENE                           |                |                   | 400 U []     |
| BENZO(B)FLUORANTHENE                     |                |                   | 400 U []     |
| BENZO(G,H,I)PERYLENE                     |                |                   | 400 U []     |
| BENZO(K)FLUORANTHENE                     |                |                   | 400 U []     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                |                   | '            |
| C1-FLUORANTHENES/PYRENES                 |                |                   |              |
| C1-FLUORENES                             |                |                   |              |
| C1-PHENANTHRENES/ANTHRACENES             |                |                   |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                |                   |              |
| C2-FLUORENES                             |                |                   |              |
| C2-NAPHTHALENES                          |                |                   |              |
| C2-PHENANTHRENES/ANTHRACENES             |                |                   | <del> </del> |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                |                   |              |
| C3-FLUORENES                             |                |                   | <del>-</del> |
| C3-NAPHTHALENES                          |                |                   |              |
| OSTIVAL HITTALLINES                      |                | <del></del>       |              |

February 2013 Page A-5

--

--

--

HEPTACHLOR

| JOIL                             |                |                  | 1          |
|----------------------------------|----------------|------------------|------------|
| LOCATION                         | MRC-MW46A      | MRC-MW95D        | SB-022     |
| SAMPLE ID                        | MRC-MW46[0910] | MRC-MW95D-SO-214 | SB-22-05   |
| SAMPLE DATE                      | 5/24/2005      | 5/13/2010        | 11/17/2003 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                  |            |
| C4-NAPHTHALENES                  |                |                  |            |
| C4-PHENANTHRENES/ANTHRACENES     |                |                  |            |
| CHRYSENE                         |                |                  | 400 U []   |
| DIBENZO(A,H)ANTHRACENE           |                | <del></del>      | 400 U []   |
| FLUORANTHENE                     |                |                  | 400 U []   |
| FLUORENE                         |                |                  | 400 U []   |
| INDENO(1,2,3-CD)PYRENE           |                |                  | 400 U []   |
| NAPHTHALENE                      |                |                  | 400 U []   |
| PHENANTHRENE                     |                |                  | 400 U []   |
| PYRENE                           |                |                  | 400 U []   |
| TOTAL PAHS                       |                |                  | 0 U []     |
| PESTICIDES/PCBS (UG/KG)          | •              |                  |            |
| 4,4'-DDD                         |                |                  |            |
| 4,4'-DDE                         |                |                  |            |
| 4,4'-DDT                         |                |                  |            |
| ALDRIN                           |                |                  |            |
| ALPHA-BHC                        |                |                  |            |
| ALPHA-CHLORDANE                  |                |                  |            |
| AROCLOR-1016                     |                |                  | 60 U[]     |
| AROCLOR-1221                     |                |                  | 60 U[]     |
| AROCLOR-1232                     |                |                  | 60 U[]     |
| AROCLOR-1242                     |                |                  | 60 U[]     |
| AROCLOR-1248                     |                |                  | 60 U[]     |
| AROCLOR-1254                     |                |                  | 60 U []    |
| AROCLOR-1260                     |                |                  | 60 U[]     |
| BETA-BHC                         |                |                  |            |
| DELTA-BHC                        |                |                  |            |
| DIELDRIN                         |                |                  |            |
| ENDOSULFAN I                     |                |                  |            |
| ENDOSULFAN II                    |                |                  |            |
| ENDOSULFAN SULFATE               |                |                  |            |
| ENDRIN                           |                |                  |            |
| ENDRIN ALDEHYDE                  |                |                  |            |
| ENDRIN KETONE                    |                |                  |            |
| GAMMA-BHC (LINDANE)              |                |                  |            |
| GAMMA-CHLORDANE                  |                |                  |            |
|                                  |                | 1                |            |

February 2013 Page A-6

--

--

--

| LOCATION           | MRC-MW46A      | MRC-MW95D        | SB-022     |
|--------------------|----------------|------------------|------------|
| SAMPLE ID          | MRC-MW46[0910] | MRC-MW95D-SO-214 | SB-22-05   |
| SAMPLE DATE        | 5/24/2005      | 5/13/2010        | 11/17/2003 |
| HEPTACHLOR EPOXIDE |                |                  |            |
| METHOXYCHLOR       | 1              | 1                |            |
| TOTAL AROCLOR      | 1              | 1                | 0 U[]      |
| TOTAL DDT POS      |                |                  |            |
| TOXAPHENE          |                |                  |            |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br>24000 U [] |
|-------------------------|---|----------------|
| GASOLINE RANGE ORGANICS | 1 | <br>120 U []   |
| TPH (C09-C36)           |   | <br>           |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |           |            |
|------------------------------|------------|-----------|------------|
| LOCATION                     | SB-022     | SB-022    | SB-023     |
| SAMPLE ID                    | SB-22-10   | SB-22A-SS | SB-23-05   |
| SAMPLE DATE                  | 11/17/2003 | 9/15/2004 | 11/18/2003 |
| METALS (MG/KG)               |            |           |            |
| ANTIMONY                     | 2.9 UL []  | 3.0 U []  | 3 UL []    |
| ARSENIC                      | 2.7 L []   | 1.3 []    | 1.5 L []   |
| BARIUM                       |            |           |            |
| BERYLLIUM                    | 2.9 U[]    | 3.0 U []  | 3 U []     |
| CADMIUM                      | 2.9 U[]    | 3.0 U []  | 3 U []     |
| CHROMIUM                     | 16 L []    | 8.1 []    | 5.3 L []   |
| COBALT                       |            |           |            |
| COPPER                       | 13 []      | 4.9 K []  | 3 U []     |
| LEAD                         | 6 L[]      | 3.0 U []  | 3 UL []    |
| MERCURY                      | 0.12 U[]   | 0.12 U [] | 0.12 U []  |
| MOLYBDENUM                   |            |           |            |
| NICKEL                       | 14 L []    | 4.6 K []  | 3.6 L []   |
| SELENIUM                     | 2.9 UR []  | 3.0 U []  | 3 UR []    |
| SILVER                       | 2.9 U[]    | 3.2 U []  | 3 U []     |
| THALLIUM                     | 2.3 UL []  | 2.4 UL [] | 2.4 UL []  |
| VANADIUM                     |            |           |            |
| ZINC                         | 59 UJ []   | 30.0 U [] | 59 UJ []   |
| MISCELLANEOUS PARAMETERS     | •          |           | •          |
| PERCENT SOLIDS (%)           | 85 []      |           | 84 []      |
| TOTAL SOLIDS (%)             |            |           |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |           |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |           |            |
| PH (S.U.)                    |            |           |            |
| MERCURY (METHYL) (UG/KG)     |            |           |            |
| SEMIVOLATILES (UG/KG)        | •          |           | •          |
| 1,1-BIPHENYL                 | 390 U []   | 430 U []  | 390 U []   |
| 1,2,4-TRICHLOROBENZENE       |            |           |            |
| 1,2-DICHLOROBENZENE          |            |           |            |
| 1,3-DICHLOROBENZENE          |            |           |            |
| 1,4-DICHLOROBENZENE          |            |           |            |
| 1,4-DIOXANE                  |            |           |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U []   | 430 U []  | 390 U []   |
| 2,4,5-TRICHLOROPHENOL        | 980 U []   | 1100 U [] | 990 U []   |
| 2,4,6-TRICHLOROPHENOL        | 390 U []   | 430 U []  | 390 U []   |
| 2,4-DICHLOROPHENOL           | 390 U []   | 430 U []  | 390 U []   |
| 2,4-DIMETHYLPHENOL           | 390 U []   | 430 U []  | 390 U []   |
| 2,4-DINITROPHENOL            | 980 U []   | 1100 U [] | 990 U []   |
|                              | <u> </u>   |           | -          |

| LOCATION                    | SB-022     | SB-022    | SB-023     |
|-----------------------------|------------|-----------|------------|
| SAMPLE ID                   | SB-22-10   | SB-22A-SS | SB-23-05   |
| SAMPLE DATE                 | 11/17/2003 | 9/15/2004 | 11/18/2003 |
| 2,4-DINITROTOLUENE          | 390 U[]    | 430 U []  | 390 U []   |
| 2,6-DINITROTOLUENE          | 390 U[]    | 430 U []  | 390 U []   |
| 2-CHLORONAPHTHALENE         | 390 U[]    | 430 U []  | 390 U []   |
| 2-CHLOROPHENOL              | 390 ∪ []   | 430 U []  | 390 U []   |
| 2-METHYLPHENOL              | 390 ∪ []   | 430 U []  | 390 U []   |
| 2-NITROANILINE              | 980 ∪[]    | 1100 U [] | 990 U []   |
| 2-NITROPHENOL               | 390 U []   | 430 U []  | 390 U []   |
| 3&4-METHYLPHENOL            | 390 ∪ []   | 430 U []  | 390 U []   |
| 3,3'-DICHLOROBENZIDINE      | 390 U[]    | 430 U []  | 390 U []   |
| 3-NITROANILINE              | 980 U[]    | 1100 U [] | 980 U []   |
| 4,6-DINITRO-2-METHYLPHENOL  | 900 U []   | 1000 U [] | 910 U []   |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U []   | 430 U []  | 390 U []   |
| 4-CHLORO-3-METHYLPHENOL     | 390 U []   | 430 U []  | 390 U []   |
| 4-CHLOROANILINE             | 390 U[]    | 430 U []  | 390 U []   |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U []   | 430 U []  | 390 U []   |
| 4-NITROANILINE              | 980 U[]    | 1100 U [] | 990 U []   |
| 4-NITROPHENOL               | 980 U[]    | 1100 U [] | 990 U []   |
| ACETOPHENONE                | 390 U []   | 430 U []  | 390 U []   |
| ANILINE                     |            |           |            |
| ATRAZINE                    | 390 U[]    | 430 U []  | 390 U []   |
| AZOBENZENE                  |            |           |            |
| BENZIDINE                   |            |           |            |
| BENZOIC ACID                |            |           |            |
| BENZYL ALCOHOL              |            |           |            |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U []   | 430 U []  | 390 U []   |
| BIS(2-CHLOROETHYL)ETHER     | 390 U []   | 430 U []  | 390 U []   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U []   | 430 U []  | 390 U []   |
| BUTYL BENZYL PHTHALATE      | 390 U []   | 430 U []  | 390 U []   |
| CAPROLACTAM                 | 390 U []   | 430 U []  | 390 U []   |
| CARBAZOLE                   | 390 U[]    | 430 U []  | 390 U []   |
| DIBENZOFURAN                | 390 U []   | 430 U []  | 390 U []   |
| DIETHYL PHTHALATE           | 390 U[]    | 430 U []  | 390 U []   |
| DIMETHYL PHTHALATE          | 390 U []   | 430 U []  | 390 U []   |
| DI-N-BUTYL PHTHALATE        | 390 U []   | 430 U []  | 390 U []   |
| DI-N-OCTYL PHTHALATE        | 390 U[]    | 430 U []  | 390 U []   |
| HEXACHLOROBENZENE           | 390 U []   | 430 U []  | 390 U []   |
| HEXACHLOROBUTADIENE         | 390 U[]    | 430 U []  | 390 U []   |
| HEXACHLOROCYCLOPENTADIENE   | 390 U []   | 430 U []  | 390 U []   |

2-CHLOROTOLUENE

| SOIL                           |                                         |           |                                       |
|--------------------------------|-----------------------------------------|-----------|---------------------------------------|
| LOCATION                       | SB-022                                  | SB-022    | SB-023                                |
| SAMPLE ID                      | SB-22-10                                | SB-22A-SS | SB-23-05                              |
| SAMPLE DATE                    | 11/17/2003                              | 9/15/2004 | 11/18/2003                            |
| HEXACHLOROETHANE               | 390 U []                                | 430 U []  | 390 U []                              |
| ISOPHORONE                     | 390 U []                                | 430 U []  | 390 U []                              |
| NITROBENZENE                   | 390 U []                                | 430 U []  | 390 U []                              |
| N-NITROSODIMETHYLAMINE         |                                         |           |                                       |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U []                                | 430 U []  | 390 U []                              |
| N-NITROSODIPHENYLAMINE         | 390 U []                                | 430 U []  | 390 U []                              |
| PENTACHLOROPHENOL              | 980 U []                                | 1100 U [] | 990 U []                              |
| PHENOL                         | 390 U []                                | 430 U []  | 390 U []                              |
| PYRIDINE                       |                                         |           |                                       |
| VOLATILES (UG/KG)              |                                         |           | •                                     |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U []                                  | 7 U[]     | 6 U []                                |
| 1,1,1-TRICHLOROETHANE          | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U []                                  | 7 U[]     | 6 U []                                |
| 1,1,2-TRICHLOROETHANE          | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                                         | 7 U[]     |                                       |
| 1,1-DICHLOROETHANE             | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,1-DICHLOROETHENE             | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,1-DICHLOROPROPENE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2,3-TRIMETHYLBENZENE         |                                         |           |                                       |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2-DIBROMOETHANE              | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2-DICHLOROBENZENE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2-DICHLOROETHANE             | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,2-DICHLOROPROPANE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,3-DICHLOROBENZENE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,3-DICHLOROPROPANE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,3-DICHLOROPROPENE            |                                         |           |                                       |
| 1,4-DICHLOROBENZENE            | 6 U[]                                   | 7 U[]     | 6 U []                                |
| 1,4-DIOXANE                    |                                         |           |                                       |
| 2,2-DICHLOROPROPANE            | 6 U []                                  | 7 U[]     | 6 U []                                |
| 2-BUTANONE                     | 60 U []                                 | 66 U[]    | 59 U[]                                |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]                                   | 7 U[]     | 6 U []                                |
|                                | • • • • • • • • • • • • • • • • • • • • | • • •     | · · · · · · · · · · · · · · · · · · · |

February 2013 Page A-10

6 U [--]

7 U [--]

6 U [--]

| LOCATION                | SB-022     | SB-022    | SB-023     |
|-------------------------|------------|-----------|------------|
| SAMPLE ID               | SB-22-10   | SB-22A-SS | SB-23-05   |
| SAMPLE DATE             | 11/17/2003 | 9/15/2004 | 11/18/2003 |
| 2-HEXANONE              | 60 U []    | 66 U[]    | 59 U []    |
| 4-CHLOROTOLUENE         | 6 U[]      | 7 U[]     | 6 U []     |
| 4-ISOPROPYLTOLUENE      | 6 U[]      | 7 U[]     | 6 U []     |
| 4-METHYL-2-PENTANONE    | 60 U []    | 66 U[]    | 59 U []    |
| ACETONE                 | 11 J[]     | 89 J []   | 16 J []    |
| BENZENE                 | 6 U []     | 7 U[]     | 6 U []     |
| BROMOBENZENE            | 6 U []     | 7 U[]     | 6 U []     |
| BROMOCHLOROMETHANE      | 6 U []     | 7 U[]     | 6 U []     |
| BROMODICHLOROMETHANE    | 6 U []     | 7 U[]     | 6 U []     |
| BROMOFORM               | 6 U []     | 7 U[]     | 6 U []     |
| BROMOMETHANE            | 6 U []     | 7 U[]     | 6 U []     |
| CARBON DISULFIDE        | 6 U []     | 7 U[]     | 6 U []     |
| CARBON TETRACHLORIDE    | 6 U []     | 7 U[]     | 6 U []     |
| CHLOROBENZENE           | 6 U []     | 7 U[]     | 6 U []     |
| CHLORODIBROMOMETHANE    | 6 U[]      | 7 U[]     | 6 U []     |
| CHLOROETHANE            | 6 U[]      | 7 U[]     | 6 U []     |
| CHLOROFORM              | 6 U[]      | 7 U []    | 6 U []     |
| CHLOROMETHANE           | 6 U[]      | 7 U[]     | 6 U []     |
| CIS-1,2-DICHLOROETHENE  | 6 U[]      | 7 U[]     | 6 U []     |
| CIS-1,3-DICHLOROPROPENE | 6 U[]      | 7 U[]     | 6 U []     |
| DIBROMOMETHANE          | 6 U[]      | 7 U []    | 6 U []     |
| DICHLORODIFLUOROMETHANE | 6 U[]      | 7 U[]     | 6 U[]      |
| DIISOPROPYL ETHER       |            |           |            |
| ETHYL TERT-BUTYL ETHER  |            |           |            |
| ETHYLBENZENE            | 6 U[]      | 7 U[]     | 6 U[]      |
| FLUORODICHLOROMETHANE   |            |           |            |
| HEXACHLOROBUTADIENE     | 6 U[]      |           | 6 U[]      |
| ISOPROPYLBENZENE        | 6 U[]      | 7 U[]     | 6 U[]      |
| M+P-XYLENES             | 18 U []    | 13 U []   | 18 U[]     |
| METHYL TERT-BUTYL ETHER | 6 U[]      | 7 U []    | 6 U []     |
| METHYLENE CHLORIDE      | 5 J[]      | 11 B []   | 6 J []     |
| NAPHTHALENE             | 6 U[]      | 7 U[]     | 6 U []     |
| N-BUTYLBENZENE          | 6 ∪[]      | 7 U []    | 6 U []     |
| N-PROPYLBENZENE         | 6 ∪[]      | 7 U []    | 6 U []     |
| O-XYLENE                | 18 U []    | 7 U []    | 18 U []    |
| SEC-BUTYLBENZENE        | 6 U[]      | 7 U []    | 6 U []     |
| STYRENE                 | 6 U[]      | 7 U []    | 6 U []     |
| TERT-AMYL METHYL ETHER  |            |           |            |

| LOCATION                                 | SB-022      | SB-022       | SB-023      |
|------------------------------------------|-------------|--------------|-------------|
| SAMPLE ID                                | SB-22-10    | SB-22A-SS    | SB-23-05    |
| SAMPLE DATE                              | 11/17/2003  | 9/15/2004    | 11/18/2003  |
| TERT-BUTYLBENZENE                        | 6 U[]       | 7 U[]        | 6 U []      |
| TERTIARY-BUTYL ALCOHOL                   |             |              |             |
| TETRACHLOROETHENE                        | 6 U[]       | 7 U[]        | 6 U []      |
| TOLUENE                                  | 6 U[]       | 7 U[]        | 6 U []      |
| TOTAL 1,2-DICHLOROETHENE                 |             |              |             |
| TOTAL XYLENES                            |             |              |             |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]       | 7 U[]        | 6 U []      |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]       | 7 U[]        | 6 U []      |
| TRICHLOROETHENE                          | 6 U[]       | 7 U[]        | 6 U []      |
| TRICHLOROFLUOROMETHANE                   | 6 U[]       | 7 U[]        | 6 U []      |
| VINYL ACETATE                            | 6 U[]       | 7 U[]        | 6 U []      |
| VINYL CHLORIDE                           | 6 U[]       | 7 U[]        | 6 U []      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •           |              | •           |
| 1-METHYLNAPHTHALENE                      |             |              |             |
| 2-METHYLNAPHTHALENE                      | 390 U []    | 430 U []     | 390 U []    |
| ACENAPHTHENE                             | 390 U []    | 430 U []     | 390 U []    |
| ACENAPHTHYLENE                           | 390 U []    | 430 U []     | 390 U []    |
| ANTHRACENE                               | 390 U []    | 430 U []     | 390 U []    |
| BAP EQUIVALENT-HALFND                    | 390 U []    | 430 U []     | 390 U []    |
| BAP EQUIVALENT-POS                       | 390 U []    | 430 U []     | 390 U []    |
| BAP EQUIVALENT-UCL                       | 5.870496 [] | 24.002035 [] | 8.584733 [] |
| BENZO(A)ANTHRACENE                       | 390 U []    | 430 U []     | 390 U []    |
| BENZO(A)PYRENE                           | 390 U []    | 430 U []     | 390 U []    |
| BENZO(B)FLUORANTHENE                     | 390 U []    | 430 U []     | 390 U []    |
| BENZO(G,H,I)PERYLENE                     | 390 U []    | 430 U []     | 390 U []    |
| BENZO(K)FLUORANTHENE                     | 390 U []    | 430 U []     | 390 U []    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |             |              |             |
| C1-FLUORANTHENES/PYRENES                 |             |              |             |
| C1-FLUORENES                             |             |              |             |
| C1-PHENANTHRENES/ANTHRACENES             |             |              |             |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |             |              |             |
| C2-FLUORENES                             |             |              |             |
| C2-NAPHTHALENES                          |             |              |             |
| C2-PHENANTHRENES/ANTHRACENES             |             |              |             |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |             |              |             |
| C3-FLUORENES                             |             |              |             |
| C3-NAPHTHALENES                          |             |              |             |
| C3-PHENANTHRENES/ANTHRACENES             |             |              |             |

February 2013 Page A-12

HEPTACHLOR

| SOIL                             |            |           |            |
|----------------------------------|------------|-----------|------------|
| LOCATION                         | SB-022     | SB-022    | SB-023     |
| SAMPLE ID                        | SB-22-10   | SB-22A-SS | SB-23-05   |
| SAMPLE DATE                      | 11/17/2003 | 9/15/2004 | 11/18/2003 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |            |           |            |
| C4-NAPHTHALENES                  |            |           |            |
| C4-PHENANTHRENES/ANTHRACENES     |            |           |            |
| CHRYSENE                         | 390 ∪ []   | 430 U []  | 390 U []   |
| DIBENZO(A,H)ANTHRACENE           | 390 U[]    | 430 U []  | 390 U []   |
| FLUORANTHENE                     | 390 U []   | 57 J []   | 390 U []   |
| FLUORENE                         | 390 U[]    | 430 U []  | 390 U []   |
| INDENO(1,2,3-CD)PYRENE           | 390 U[]    | 430 U []  | 390 U []   |
| NAPHTHALENE                      | 390 U[]    | 430 U []  | 390 U []   |
| PHENANTHRENE                     | 390 U []   | 44 J []   | 390 U []   |
| PYRENE                           | 390 U[]    | 430 U []  | 390 U []   |
| TOTAL PAHS                       | 0 U[]      | 101 []    | 0 U []     |
| PESTICIDES/PCBS (UG/KG)          |            |           |            |
| 4,4'-DDD                         |            |           |            |
| 4,4'-DDE                         |            |           |            |
| 4,4'-DDT                         |            |           |            |
| ALDRIN                           |            |           |            |
| ALPHA-BHC                        |            |           |            |
| ALPHA-CHLORDANE                  |            |           |            |
| AROCLOR-1016                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1221                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1232                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1242                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1248                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1254                     | 59 U []    | 320 U []  | 59 U []    |
| AROCLOR-1260                     | 59 U []    | 320 U []  | 59 U []    |
| BETA-BHC                         |            |           |            |
| DELTA-BHC                        |            |           |            |
| DIELDRIN                         |            |           |            |
| ENDOSULFAN I                     |            |           |            |
| ENDOSULFAN II                    |            |           |            |
| ENDOSULFAN SULFATE               |            |           |            |
| ENDRIN                           |            |           |            |
| ENDRIN ALDEHYDE                  |            |           |            |
| ENDRIN KETONE                    |            |           |            |
| GAMMA-BHC (LINDANE)              |            |           |            |
| GAMMA-CHLORDANE                  |            |           |            |
|                                  |            |           |            |

February 2013 Page A-13

--

---

--

| LOCATION           | SB-022     | SB-022    | SB-023     |
|--------------------|------------|-----------|------------|
| SAMPLE ID          | SB-22-10   | SB-22A-SS | SB-23-05   |
| SAMPLE DATE        | 11/17/2003 | 9/15/2004 | 11/18/2003 |
| HEPTACHLOR EPOXIDE |            |           |            |
| METHOXYCHLOR       | 1          | 1         |            |
| TOTAL AROCLOR      | 0 U[]      | 0 U []    | 0 U []     |
| TOTAL DDT POS      | 1          | 1         |            |
| TOXAPHENE          | -          | 1         |            |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 23000 U [] | 13000 U [] | 24000 U [] |
|-------------------------|------------|------------|------------|
| GASOLINE RANGE ORGANICS | 120 U []   | 130 U []   | 120 U []   |
| TPH (C09-C36)           |            |            |            |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |           |            |
|------------------------------|------------|-----------|------------|
| LOCATION                     | SB-023     | SB-023    | SB-024     |
| SAMPLE ID                    | SB-23-10   | SB-23A-SS | SB-24-05   |
| SAMPLE DATE                  | 11/18/2003 | 9/15/2004 | 11/17/2003 |
| METALS (MG/KG)               | •          |           | •          |
| ANTIMONY                     | 2.9 UL []  | 2.6 U []  | 3.1 UL []  |
| ARSENIC                      | 1 L[]      | 2.2 []    | 3.5 L []   |
| BARIUM                       |            |           |            |
| BERYLLIUM                    | 2.9 U[]    | 2.6 U []  | 3.1 U []   |
| CADMIUM                      | 2.9 U[]    | 2.6 U []  | 3.1 U []   |
| CHROMIUM                     | 2.9 UR []  | 13.0 []   | 13 L []    |
| COBALT                       |            |           |            |
| COPPER                       | 2.9 U[]    | 5.3 []    | 28 []      |
| LEAD                         | 2.9 UL []  | 5.4 []    | 46 L []    |
| MERCURY                      | 0.12 U []  | 0.10 U [] | 0.94 []    |
| MOLYBDENUM                   |            |           |            |
| NICKEL                       | 2.9 UL []  | 7.1 []    | 12 L []    |
| SELENIUM                     | 2.9 UR []  | 2.6 U []  | 3.1 UR []  |
| SILVER                       | 2.9 U[]    | 3.4 []    | 3.1 U []   |
| THALLIUM                     | 2.3 UL []  | 2.0 U []  | 2.5 UL []  |
| VANADIUM                     |            |           |            |
| ZINC                         | 58 UJ []   | 26.0 U [] | 100 J []   |
| MISCELLANEOUS PARAMETERS     |            |           |            |
| PERCENT SOLIDS (%)           | 86 []      |           | 80 []      |
| TOTAL SOLIDS (%)             |            |           |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |           |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |           |            |
| PH (S.U.)                    |            |           |            |
| MERCURY (METHYL) (UG/KG)     |            |           |            |
| SEMIVOLATILES (UG/KG)        | •          |           |            |
| 1,1-BIPHENYL                 | 390 U []   | 380 U []  | 390 U []   |
| 1,2,4-TRICHLOROBENZENE       |            |           |            |
| 1,2-DICHLOROBENZENE          |            |           |            |
| 1,3-DICHLOROBENZENE          |            |           |            |
| 1,4-DICHLOROBENZENE          |            |           |            |
| 1,4-DIOXANE                  |            |           |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U []   | 380 U []  | 390 U []   |
| 2,4,5-TRICHLOROPHENOL        | 970 U[]    | 950 U []  | 1000 U []  |
| 2,4,6-TRICHLOROPHENOL        | 390 U[]    | 380 U []  | 390 U []   |
| 2,4-DICHLOROPHENOL           | 390 U[]    | 380 U []  | 390 U []   |
| 2,4-DIMETHYLPHENOL           | 390 U[]    | 380 U[]   | 390 U []   |
| 2,4-DINITROPHENOL            | 970 U []   | 950 U []  | 1000 U []  |

| LOCATION                    | SB-023     | SB-023    | SB-024     |
|-----------------------------|------------|-----------|------------|
| SAMPLE ID                   | SB-23-10   | SB-23A-SS | SB-24-05   |
| SAMPLE DATE                 | 11/18/2003 | 9/15/2004 | 11/17/2003 |
| 2,4-DINITROTOLUENE          | 390 U []   | 380 U []  | 390 U []   |
| 2,6-DINITROTOLUENE          | 390 U []   | 380 U []  | 390 U []   |
| 2-CHLORONAPHTHALENE         | 390 U []   | 380 U []  | 390 U []   |
| 2-CHLOROPHENOL              | 390 U []   | 380 U []  | 390 U []   |
| 2-METHYLPHENOL              | 390 U []   | 380 U []  | 390 U []   |
| 2-NITROANILINE              | 970 U []   | 950 U []  | 1000 U []  |
| 2-NITROPHENOL               | 390 U []   | 380 U []  | 390 U []   |
| 3&4-METHYLPHENOL            | 390 U []   | 380 U []  | 390 U []   |
| 3,3'-DICHLOROBENZIDINE      | 390 U []   | 380 U []  | 390 U []   |
| 3-NITROANILINE              | 970 U []   | 950 U []  | 1000 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  | 890 U []   | 870 U []  | 960 U []   |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U []   | 380 U []  | 390 U []   |
| 4-CHLORO-3-METHYLPHENOL     | 390 U []   | 380 U []  | 390 U []   |
| 4-CHLOROANILINE             | 390 U []   | 380 U []  | 390 U []   |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U []   | 380 U []  | 390 U []   |
| 4-NITROANILINE              | 970 U []   | 950 U []  | 1000 U []  |
| 4-NITROPHENOL               | 970 U []   | 950 U []  | 1000 U []  |
| ACETOPHENONE                | 390 U []   | 380 U []  | 390 U []   |
| ANILINE                     |            |           |            |
| ATRAZINE                    | 390 U []   | 380 U []  | 390 U []   |
| AZOBENZENE                  | -          |           |            |
| BENZIDINE                   |            |           |            |
| BENZOIC ACID                | -          |           |            |
| BENZYL ALCOHOL              |            |           |            |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U []   | 380 U []  | 390 U []   |
| BIS(2-CHLOROETHYL)ETHER     | 390 U[]    | 380 U []  | 390 U []   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U []   | 380 U []  | 390 U []   |
| BUTYL BENZYL PHTHALATE      | 390 U []   | 380 U []  | 390 U []   |
| CAPROLACTAM                 | 390 U []   | 380 U []  | 390 U []   |
| CARBAZOLE                   | 390 U []   | 380 U []  | 390 U []   |
| DIBENZOFURAN                | 390 U []   | 380 U []  | 390 U []   |
| DIETHYL PHTHALATE           | 390 U []   | 380 U []  | 390 U []   |
| DIMETHYL PHTHALATE          | 390 U []   | 60 J[]    | 390 U []   |
| DI-N-BUTYL PHTHALATE        | 390 U []   | 380 U []  | 390 U []   |
| DI-N-OCTYL PHTHALATE        | 390 U []   | 380 U []  | 390 U []   |
| HEXACHLOROBENZENE           | 390 U []   | 380 U []  | 390 U []   |
| HEXACHLOROBUTADIENE         | 390 U []   | 380 U []  | 390 U []   |
| HEXACHLOROCYCLOPENTADIENE   | 390 U []   | 380 U []  | 390 U []   |

2-CHLOROTOLUENE

| LOCATION                       | SB-023     | SB-023    | SB-024     |
|--------------------------------|------------|-----------|------------|
| SAMPLE ID                      | SB-23-10   | SB-23A-SS | SB-24-05   |
| SAMPLE DATE                    | 11/18/2003 | 9/15/2004 | 11/17/2003 |
| HEXACHLOROETHANE               | 390 U []   | 380 U []  | 390 U []   |
| ISOPHORONE                     | 390 U []   | 380 U []  | 390 U []   |
| NITROBENZENE                   | 390 U []   | 380 U []  | 390 U []   |
| N-NITROSODIMETHYLAMINE         |            |           |            |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U []   | 380 U []  | 390 U []   |
| N-NITROSODIPHENYLAMINE         | 390 U []   | 380 U []  | 390 U []   |
| PENTACHLOROPHENOL              | 970 U []   | 950 U []  | 1000 U []  |
| PHENOL                         | 390 U []   | 420 []    | 420 U []   |
| PYRIDINE                       |            |           |            |
| VOLATILES (UG/KG)              | •          | •         |            |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]      | 6 U []    | 6 U []     |
| 1,1,1-TRICHLOROETHANE          | 6 U[]      | 6 U[]     | 6 U []     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]      | 6 U[]     | 6 U []     |
| 1,1,2-TRICHLOROETHANE          | 6 U[]      | 6 U[]     | 6 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            | 6 U []    |            |
| 1,1-DICHLOROETHANE             | 6 U[]      | 6 U[]     | 6 U []     |
| 1,1-DICHLOROETHENE             | 6 U[]      | 6 U[]     | 6 U []     |
| 1,1-DICHLOROPROPENE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]      | 6 U []    | 6 U []     |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2,3-TRIMETHYLBENZENE         |            |           |            |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2-DIBROMOETHANE              | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2-DICHLOROBENZENE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2-DICHLOROETHANE             | 6 U[]      | 6 U[]     | 6 U []     |
| 1,2-DICHLOROPROPANE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]      | 6 U[]     | 6 U []     |
| 1,3-DICHLOROBENZENE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,3-DICHLOROPROPANE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,3-DICHLOROPROPENE            |            |           |            |
| 1,4-DICHLOROBENZENE            | 6 U[]      | 6 U[]     | 6 U []     |
| 1,4-DIOXANE                    |            |           |            |
| 2,2-DICHLOROPROPANE            | 6 U[]      | 6 U[]     | 6 U []     |
| 2-BUTANONE                     | 58 U []    | 55 U []   | 62 U []    |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]      | 6 U[]     | 6 U []     |
| <del></del>                    |            |           |            |

February 2013 Page A-17

6 U [--]

6 U [--]

6 U [--]

| LOCATION                | SB-023     | SB-023    | SB-024     |
|-------------------------|------------|-----------|------------|
| SAMPLE ID               | SB-23-10   | SB-23A-SS | SB-24-05   |
| SAMPLE DATE             | 11/18/2003 | 9/15/2004 | 11/17/2003 |
| 2-HEXANONE              | 58 U []    | 55 U[]    | 62 U []    |
| 4-CHLOROTOLUENE         | 6 U[]      | 6 U []    | 6 U []     |
| 4-ISOPROPYLTOLUENE      | 6 U[]      | 6 U []    | 6 U []     |
| 4-METHYL-2-PENTANONE    | 58 U []    | 55 U[]    | 62 U []    |
| ACETONE                 | 9 J []     | 55 UJ []  | 28 J []    |
| BENZENE                 | 6 U[]      | 6 U []    | 6 U []     |
| BROMOBENZENE            | 6 U[]      | 6 U[]     | 6 U []     |
| BROMOCHLOROMETHANE      | 6 U[]      | 6 U []    | 6 U []     |
| BROMODICHLOROMETHANE    | 6 U[]      | 6 U []    | 6 U []     |
| BROMOFORM               | 6 U[]      | 6 U []    | 6 U []     |
| BROMOMETHANE            | 6 U[]      | 6 U[]     | 6 U []     |
| CARBON DISULFIDE        | 6 U[]      | 6 U[]     | 6 U []     |
| CARBON TETRACHLORIDE    | 6 U[]      | 6 U[]     | 6 U []     |
| CHLOROBENZENE           | 6 U[]      | 6 U []    | 6 U []     |
| CHLORODIBROMOMETHANE    | 6 U[]      | 6 U []    | 6 U []     |
| CHLOROETHANE            | 6 U[]      | 6 U[]     | 6 U []     |
| CHLOROFORM              | 6 U[]      | 6 U[]     | 6 U []     |
| CHLOROMETHANE           | 6 U[]      | 6 U[]     | 6 U []     |
| CIS-1,2-DICHLOROETHENE  | 6 U[]      | 6 U[]     | 6 U []     |
| CIS-1,3-DICHLOROPROPENE | 6 U[]      | 6 U[]     | 6 U []     |
| DIBROMOMETHANE          | 6 U[]      | 6 U[]     | 6 U []     |
| DICHLORODIFLUOROMETHANE | 6 U[]      | 6 U[]     | 6 U []     |
| DIISOPROPYL ETHER       |            |           |            |
| ETHYL TERT-BUTYL ETHER  |            |           |            |
| ETHYLBENZENE            | 6 U[]      | 6 U[]     | 6 U []     |
| FLUORODICHLOROMETHANE   |            |           |            |
| HEXACHLOROBUTADIENE     | 6 U[]      |           | 6 U []     |
| ISOPROPYLBENZENE        | 6 U[]      | 6 U[]     | 6 U []     |
| M+P-XYLENES             | 17 U[]     | 11 U []   | 19 U[]     |
| METHYL TERT-BUTYL ETHER | 6 U[]      | 6 U[]     | 6 U []     |
| METHYLENE CHLORIDE      | 5 J[]      | 6 U[]     | 6 U []     |
| NAPHTHALENE             | 6 U[]      | 6 U[]     | 6 U []     |
| N-BUTYLBENZENE          | 6 U[]      | 6 U[]     | 6 U []     |
| N-PROPYLBENZENE         | 6 U[]      | 6 U[]     | 6 U []     |
| O-XYLENE                | 17 U[]     | 6 U[]     | 19 U[]     |
| SEC-BUTYLBENZENE        | 6 U[]      | 6 U[]     | 6 U []     |
| STYRENE                 | 6 U[]      | 6 U []    | 6 U []     |
| TERT-AMYL METHYL ETHER  |            |           |            |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| LOCATION                                 | SB-023       | SB-023       | SB-024       |
|------------------------------------------|--------------|--------------|--------------|
| SAMPLE ID                                | SB-23-10     | SB-23A-SS    | SB-24-05     |
| SAMPLE DATE                              | 11/18/2003   | 9/15/2004    | 11/17/2003   |
| TERT-BUTYLBENZENE                        | 6 U[]        | 6 U[]        | 6 U []       |
| TERTIARY-BUTYL ALCOHOL                   |              |              |              |
| TETRACHLOROETHENE                        | 6 U[]        | 6 U[]        | 6 U []       |
| TOLUENE                                  | 6 U[]        | 6 U[]        | 6 U []       |
| TOTAL 1,2-DICHLOROETHENE                 |              |              |              |
| TOTAL XYLENES                            |              |              |              |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]        | 6 U[]        | 6 U []       |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]        | 6 U[]        | 6 U []       |
| TRICHLOROETHENE                          | 6 U[]        | 6 U[]        | 6 U []       |
| TRICHLOROFLUOROMETHANE                   | 6 U[]        | 6 U[]        | 6 U []       |
| VINYL ACETATE                            | 6 U[]        | 6 U[]        | 6 U []       |
| VINYL CHLORIDE                           | 6 U[]        | 6 U[]        | 6 U []       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | ·            |              |              |
| 1-METHYLNAPHTHALENE                      |              |              |              |
| 2-METHYLNAPHTHALENE                      | 390 U[]      | 380 U []     | 390 U []     |
| ACENAPHTHENE                             | 390 U[]      | 380 U []     | 390 U []     |
| ACENAPHTHYLENE                           | 390 U[]      | 380 U []     | 390 U []     |
| ANTHRACENE                               | 390 U[]      | 380 U []     | 390 U []     |
| BAP EQUIVALENT-HALFND                    | 390 U[]      | 380 U []     | 390 U []     |
| BAP EQUIVALENT-POS                       | 390 U[]      | 380 U []     | 390 U []     |
| BAP EQUIVALENT-UCL                       | 10.987605 [] | 10.754279 [] | 13.276723 [] |
| BENZO(A)ANTHRACENE                       | 390 U[]      | 380 U []     | 390 U []     |
| BENZO(A)PYRENE                           | 390 U[]      | 380 U []     | 390 U []     |
| BENZO(B)FLUORANTHENE                     | 390 U[]      | 380 U []     | 390 U []     |
| BENZO(G,H,I)PERYLENE                     | 390 U[]      | 380 U []     | 390 U []     |
| BENZO(K)FLUORANTHENE                     | 390 U[]      | 380 U []     | 390 U []     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C1-FLUORANTHENES/PYRENES                 |              |              |              |
| C1-FLUORENES                             |              |              |              |
| C1-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C2-FLUORENES                             |              |              |              |
| C2-NAPHTHALENES                          |              |              |              |
| C2-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C3-FLUORENES                             |              |              |              |
| C3-NAPHTHALENES                          |              |              |              |
|                                          |              |              | I            |

February 2013 Page A-19

--

---

| LOCATION                         | CD 002             | CD 022              | CD 004             |
|----------------------------------|--------------------|---------------------|--------------------|
| LOCATION SAMPLE ID               | SB-023<br>SB-23-10 | SB-023<br>SB-23A-SS | SB-024<br>SB-24-05 |
|                                  |                    |                     |                    |
| SAMPLE DATE                      | 11/18/2003         | 9/15/2004           | 11/17/2003         |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                    |                     |                    |
| C4-NAPHTHALENES                  |                    |                     |                    |
| C4-PHENANTHRENES/ANTHRACENES     |                    |                     |                    |
| CHRYSENE                         | 390 U []           | 380 U []            | 390 U []           |
| DIBENZO(A,H)ANTHRACENE           | 390 U []           | 380 U []            | 390 U []           |
| FLUORANTHENE                     | 390 U []           | 380 U []            | 390 U []           |
| FLUORENE                         | 390 U[]            | 380 U []            | 390 U []           |
| INDENO(1,2,3-CD)PYRENE           | 390 U[]            | 380 U []            | 390 U []           |
| NAPHTHALENE                      | 390 U []           | 380 U []            | 390 U []           |
| PHENANTHRENE                     | 390 U []           | 380 ∪ []            | 390 U[]            |
| PYRENE                           | 390 U []           | 380 U []            | 390 U []           |
| TOTAL PAHS                       | 0 U[]              | 0 U []              | 0 U []             |
| PESTICIDES/PCBS (UG/KG)          |                    |                     |                    |
| 4,4'-DDD                         |                    |                     |                    |
| 4,4'-DDE                         |                    |                     |                    |
| 4,4'-DDT                         |                    |                     |                    |
| ALDRIN                           |                    |                     |                    |
| ALPHA-BHC                        |                    |                     |                    |
| ALPHA-CHLORDANE                  |                    |                     |                    |
| AROCLOR-1016                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1221                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1232                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1242                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1248                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1254                     | 58 U []            | 280 U []            | 62 U []            |
| AROCLOR-1260                     | 58 U []            | 280 U[]             | 62 U []            |
| BETA-BHC                         |                    |                     |                    |
| DELTA-BHC                        |                    |                     |                    |
| DIELDRIN                         |                    |                     |                    |
| ENDOSULFAN I                     |                    |                     |                    |
| ENDOSULFAN II                    |                    |                     |                    |
| ENDOSULFAN SULFATE               |                    |                     |                    |
| ENDRIN                           |                    |                     |                    |
| ENDRIN ALDEHYDE                  |                    |                     |                    |
| ENDRIN KETONE                    |                    |                     |                    |
| GAMMA-BHC (LINDANE)              |                    |                     |                    |
| GAMMA-CHLORDANE                  |                    |                     |                    |
| HEPTACHLOR                       |                    |                     |                    |

February 2013 Page A-20

| LOCATION           | SB-023     | SB-023    | SB-024     |
|--------------------|------------|-----------|------------|
| SAMPLE ID          | SB-23-10   | SB-23A-SS | SB-24-05   |
| SAMPLE DATE        | 11/18/2003 | 9/15/2004 | 11/17/2003 |
| HEPTACHLOR EPOXIDE |            |           |            |
| METHOXYCHLOR       |            |           |            |
| TOTAL AROCLOR      | 0 U[]      | 0 U[]     | 0 U []     |
| TOTAL DDT POS      | 1          | -         |            |
| TOXAPHENE          |            |           |            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 23000 U [] | 11000 U [] | 25000 U [] |
|-------------------------|------------|------------|------------|
| GASOLINE RANGE ORGANICS | 120 U []   | 110 U[]    | 120 U []   |
| TPH (C09-C36)           |            |            |            |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $\ensuremath{\mathsf{K}}$  = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |           |                   |
|------------------------------|------------|-----------|-------------------|
| LOCATION                     | SB-024     | SB-024    | SB-024A           |
| SAMPLE ID                    | SB-24-10   | SB-24A-SS | F-SB-24ARE-1      |
| SAMPLE DATE                  | 11/17/2003 | 9/15/2004 | 9/22/2009         |
| METALS (MG/KG)               |            |           |                   |
| ANTIMONY                     | 3 UL []    | 2.8 U []  |                   |
| ARSENIC                      | 2.3 L[]    | 3.4 []    |                   |
| BARIUM                       |            |           |                   |
| BERYLLIUM                    | 3 U[]      | 2.8 U []  |                   |
| CADMIUM                      | 3 U[]      | 2.8 U []  |                   |
| CHROMIUM                     | 12 L[]     | 18.0 []   |                   |
| COBALT                       |            |           |                   |
| COPPER                       | 7.8 []     | 36.0 []   |                   |
| LEAD                         | 12 L []    | 67.0 []   |                   |
| MERCURY                      | 0.17 []    | 1.4 []    | 1.5 L [MDL=0.021] |
| MOLYBDENUM                   |            |           |                   |
| NICKEL                       | 6.7 L[]    | 14.0 []   |                   |
| SELENIUM                     | 3 UR []    | 2.8 U []  |                   |
| SILVER                       | 3 U[]      | 2.9 U []  |                   |
| THALLIUM                     | 2.4 UL []  | 2.2 U []  |                   |
| VANADIUM                     |            |           |                   |
| ZINC                         | 59 UJ []   | 120 []    |                   |
| MISCELLANEOUS PARAMETERS     | <u>.</u>   |           |                   |
| PERCENT SOLIDS (%)           | 84 []      |           |                   |
| TOTAL SOLIDS (%)             |            |           |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |            |           |                   |
| TOTAL ORGANIC CARBON (MG/KG) |            |           |                   |
| PH (S.U.)                    |            |           |                   |
| MERCURY (METHYL) (UG/KG)     |            |           |                   |
| SEMIVOLATILES (UG/KG)        | <u>.</u>   |           | •                 |
| 1,1-BIPHENYL                 | 400 U []   | 400 U []  |                   |
| 1,2,4-TRICHLOROBENZENE       |            |           |                   |
| 1,2-DICHLOROBENZENE          |            |           |                   |
| 1,3-DICHLOROBENZENE          |            |           |                   |
| 1,4-DICHLOROBENZENE          |            |           |                   |
| 1,4-DIOXANE                  |            |           |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 400 U []   | 400 U []  |                   |
| 2,4,5-TRICHLOROPHENOL        | 990 U[]    | 1000 U [] |                   |
| 2,4,6-TRICHLOROPHENOL        | 400 U []   | 400 U []  |                   |
| 2,4-DICHLOROPHENOL           | 400 U []   | 400 U []  |                   |
| 2,4-DIMETHYLPHENOL           | 400 U []   | 400 U []  |                   |
| 2,4-DINITROPHENOL            | 990 U []   | 1000 U [] |                   |

| LOCATION                    | SB-024     | SB-024    | SB-024A      |
|-----------------------------|------------|-----------|--------------|
| SAMPLE ID                   | SB-24-10   | SB-24A-SS | F-SB-24ARE-1 |
| SAMPLE DATE                 | 11/17/2003 | 9/15/2004 | 9/22/2009    |
| 2,4-DINITROTOLUENE          | 400 U []   | 400 U []  |              |
| 2,6-DINITROTOLUENE          | 400 U []   | 400 U []  |              |
| 2-CHLORONAPHTHALENE         | 400 U []   | 400 U []  |              |
| 2-CHLOROPHENOL              | 400 U []   | 400 U []  |              |
| 2-METHYLPHENOL              | 400 U[]    | 400 U []  |              |
| 2-NITROANILINE              | 990 U []   | 1000 U [] |              |
| 2-NITROPHENOL               | 400 U[]    | 400 U []  |              |
| 3&4-METHYLPHENOL            | 400 U []   | 400 U []  |              |
| 3,3'-DICHLOROBENZIDINE      | 400 U []   | 400 U []  |              |
| 3-NITROANILINE              | 990 U []   | 1000 U [] |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 910 U []   | 930 U []  |              |
| 4-BROMOPHENYL PHENYL ETHER  | 400 U []   | 400 U []  |              |
| 4-CHLORO-3-METHYLPHENOL     | 400 U []   | 400 U []  |              |
| 4-CHLOROANILINE             | 400 U []   | 400 U []  |              |
| 4-CHLOROPHENYL PHENYL ETHER | 400 U []   | 400 U []  |              |
| 4-NITROANILINE              | 990 U []   | 1000 U [] |              |
| 4-NITROPHENOL               | 990 U []   | 1000 U [] |              |
| ACETOPHENONE                | 400 U []   | 400 U []  |              |
| ANILINE                     |            |           |              |
| ATRAZINE                    | 400 U []   | 400 U []  |              |
| AZOBENZENE                  |            |           |              |
| BENZIDINE                   |            |           |              |
| BENZOIC ACID                |            |           |              |
| BENZYL ALCOHOL              |            |           |              |
| BIS(2-CHLOROETHOXY)METHANE  | 400 U []   | 400 U []  |              |
| BIS(2-CHLOROETHYL)ETHER     | 400 U []   | 400 U []  |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 400 U []   | 400 U []  |              |
| BUTYL BENZYL PHTHALATE      | 400 U []   | 400 U []  |              |
| CAPROLACTAM                 | 400 U []   | 400 U []  |              |
| CARBAZOLE                   | 400 U []   | 400 U []  |              |
| DIBENZOFURAN                | 400 U []   | 400 U []  |              |
| DIETHYL PHTHALATE           | 400 U []   | 400 U []  |              |
| DIMETHYL PHTHALATE          | 400 U []   | 400 U []  |              |
| DI-N-BUTYL PHTHALATE        | 400 U[]    | 400 U []  |              |
| DI-N-OCTYL PHTHALATE        | 400 U[]    | 400 U []  |              |
| HEXACHLOROBENZENE           | 400 U []   | 400 U []  |              |
| HEXACHLOROBUTADIENE         | 400 U []   | 400 U []  |              |
| HEXACHLOROCYCLOPENTADIENE   | 400 U[]    | 400 U []  |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-024     | SB-024    | SB-024A      |
|--------------------------------|------------|-----------|--------------|
| SAMPLE ID                      | SB-24-10   | SB-24A-SS | F-SB-24ARE-1 |
| SAMPLE DATE                    | 11/17/2003 | 9/15/2004 | 9/22/2009    |
| HEXACHLOROETHANE               | 400 U []   | 400 U []  |              |
| ISOPHORONE                     | 400 U []   | 400 U []  |              |
| NITROBENZENE                   | 400 U []   | 400 U []  |              |
| N-NITROSODIMETHYLAMINE         |            |           |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 400 U []   | 400 U []  |              |
| N-NITROSODIPHENYLAMINE         | 400 U []   | 400 U []  |              |
| PENTACHLOROPHENOL              | 990 U []   | 1000 U [] |              |
| PHENOL                         | 400 U []   | 400 U []  |              |
| PYRIDINE                       |            |           |              |
| VOLATILES (UG/KG)              | •          |           | •            |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]      | 6 U []    |              |
| 1,1,1-TRICHLOROETHANE          | 6 U[]      | 6 U[]     |              |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]      | 6 U[]     |              |
| 1,1,2-TRICHLOROETHANE          | 6 U[]      | 6 U[]     |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            | 6 U[]     |              |
| 1,1-DICHLOROETHANE             | 6 U[]      | 6 U[]     |              |
| 1,1-DICHLOROETHENE             | 6 U[]      | 6 U[]     |              |
| 1,1-DICHLOROPROPENE            | 6 U[]      | 6 U []    |              |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]      | 6 U[]     |              |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]      | 6 U []    |              |
| 1,2,3-TRIMETHYLBENZENE         |            |           |              |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]      | 6 U []    |              |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]      | 6 U []    |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]      | 6 U []    |              |
| 1,2-DIBROMOETHANE              | 6 U[]      | 6 U []    |              |
| 1,2-DICHLOROBENZENE            | 6 U[]      | 6 U[]     |              |
| 1,2-DICHLOROETHANE             | 6 U[]      | 6 U []    |              |
| 1,2-DICHLOROPROPANE            | 6 U[]      | 6 U []    |              |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]      | 6 U []    |              |
| 1,3-DICHLOROBENZENE            | 6 U[]      | 6 U []    |              |
| 1,3-DICHLOROPROPANE            | 6 U[]      | 6 U []    |              |
| 1,3-DICHLOROPROPENE            |            |           |              |
| 1,4-DICHLOROBENZENE            | 6 U[]      | 6 U []    |              |
| 1,4-DIOXANE                    |            |           |              |
| 2,2-DICHLOROPROPANE            | 6 U[]      | 6 U []    |              |
| 2-BUTANONE                     | 60 U[]     | 61 U[]    |              |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]      | 6 U []    |              |
|                                |            |           |              |

February 2013 Page A-24

6 U [--]

6 U [--]

| LOCATION                | SB-024     | SB-024    | SB-024A      |
|-------------------------|------------|-----------|--------------|
| SAMPLE ID               | SB-24-10   | SB-24A-SS | F-SB-24ARE-1 |
| SAMPLE DATE             | 11/17/2003 | 9/15/2004 | 9/22/2009    |
| 2-HEXANONE              | 60 U []    | 61 U []   |              |
| 4-CHLOROTOLUENE         | 6 U[]      | 6 U []    |              |
| 4-ISOPROPYLTOLUENE      | 6 U[]      | 6 U []    |              |
| 4-METHYL-2-PENTANONE    | 60 U []    | 61 U []   |              |
| ACETONE                 | 27 J[]     | 61 UJ []  |              |
| BENZENE                 | 6 U[]      | 6 U []    |              |
| BROMOBENZENE            | 6 U[]      | 6 U []    |              |
| BROMOCHLOROMETHANE      | 6 U[]      | 6 U []    |              |
| BROMODICHLOROMETHANE    | 6 U[]      | 6 U []    |              |
| BROMOFORM               | 6 U[]      | 6 U []    |              |
| BROMOMETHANE            | 6 U[]      | 6 U []    |              |
| CARBON DISULFIDE        | 6 U[]      | 6 U []    |              |
| CARBON TETRACHLORIDE    | 6 U[]      | 6 U []    |              |
| CHLOROBENZENE           | 6 U[]      | 6 U []    |              |
| CHLORODIBROMOMETHANE    | 6 U[]      | 6 U []    |              |
| CHLOROETHANE            | 6 U[]      | 6 U []    |              |
| CHLOROFORM              | 6 U[]      | 6 U []    |              |
| CHLOROMETHANE           | 6 U[]      | 6 U []    |              |
| CIS-1,2-DICHLOROETHENE  | 6 U[]      | 6 U []    |              |
| CIS-1,3-DICHLOROPROPENE | 6 U[]      | 6 U []    |              |
| DIBROMOMETHANE          | 6 U[]      | 6 U []    |              |
| DICHLORODIFLUOROMETHANE | 6 U[]      | 6 U []    |              |
| DIISOPROPYL ETHER       |            |           |              |
| ETHYL TERT-BUTYL ETHER  |            |           |              |
| ETHYLBENZENE            | 6 U[]      | 6 U[]     |              |
| FLUORODICHLOROMETHANE   |            |           |              |
| HEXACHLOROBUTADIENE     | 6 U[]      |           |              |
| ISOPROPYLBENZENE        | 6 U[]      | 6 U[]     |              |
| M+P-XYLENES             | 18 U[]     | 12 U []   |              |
| METHYL TERT-BUTYL ETHER | 6 U[]      | 6 U[]     |              |
| METHYLENE CHLORIDE      | 6 U[]      | 6 U[]     |              |
| NAPHTHALENE             | 6 U[]      | 6 U[]     |              |
| N-BUTYLBENZENE          | 6 U[]      | 6 U[]     |              |
| N-PROPYLBENZENE         | 6 U[]      | 6 U[]     |              |
| O-XYLENE                | 18 U[]     | 6 U[]     |              |
| SEC-BUTYLBENZENE        | 6 U[]      | 6 U[]     |              |
| STYRENE                 | 6 U[]      | 6 U[]     |              |
| TERT-AMYL METHYL ETHER  |            |           |              |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| SOIL                                     |              | T            |              |
|------------------------------------------|--------------|--------------|--------------|
| LOCATION                                 | SB-024       | SB-024       | SB-024A      |
| SAMPLE ID                                | SB-24-10     | SB-24A-SS    | F-SB-24ARE-1 |
| SAMPLE DATE                              | 11/17/2003   | 9/15/2004    | 9/22/2009    |
| TERT-BUTYLBENZENE                        | 6 U[]        | 6 U[]        |              |
| TERTIARY-BUTYL ALCOHOL                   |              |              |              |
| TETRACHLOROETHENE                        | 6 U[]        | 6 U[]        |              |
| TOLUENE                                  | 6 U []       | 6 U []       |              |
| TOTAL 1,2-DICHLOROETHENE                 |              |              |              |
| TOTAL XYLENES                            |              |              |              |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]        | 6 U []       |              |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]        | 6 U []       |              |
| TRICHLOROETHENE                          | 6 U[]        | 6 U []       |              |
| TRICHLOROFLUOROMETHANE                   | 6 U[]        | 6 U []       |              |
| VINYL ACETATE                            | 6 U[]        | 6 U []       |              |
| VINYL CHLORIDE                           | 6 U[]        | 6 U []       |              |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •            |              |              |
| 1-METHYLNAPHTHALENE                      |              |              |              |
| 2-METHYLNAPHTHALENE                      | 400 U []     | 400 U []     |              |
| ACENAPHTHENE                             | 400 U []     | 400 U []     |              |
| ACENAPHTHYLENE                           | 400 U []     | 400 U []     |              |
| ANTHRACENE                               | 400 U []     | 400 U []     |              |
| BAP EQUIVALENT-HALFND                    | 400 U []     | 297.647 []   |              |
| BAP EQUIVALENT-POS                       | 400 U []     | 77.647 []    |              |
| BAP EQUIVALENT-UCL                       | 12.201692 [] | 90.084507 [] |              |
| BENZO(A)ANTHRACENE                       | 400 U []     | 74 J []      |              |
| BENZO(A)PYRENE                           | 400 U []     | 63 J []      |              |
| BENZO(B)FLUORANTHENE                     | 400 U []     | 66 J []      |              |
| BENZO(G,H,I)PERYLENE                     | 400 U []     | 400 U []     |              |
| BENZO(K)FLUORANTHENE                     | 400 U []     | 57 J[]       |              |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C1-FLUORANTHENES/PYRENES                 |              |              |              |
| C1-FLUORENES                             |              |              |              |
| C1-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C2-FLUORENES                             |              |              |              |
| C2-NAPHTHALENES                          |              |              |              |
| C2-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C3-FLUORENES                             |              |              | <del></del>  |
| C3-NAPHTHALENES                          |              |              |              |
|                                          |              |              |              |

February 2013 Page A-26

--

---

HEPTACHLOR

| JOIL                             |            | _         | _            |
|----------------------------------|------------|-----------|--------------|
| LOCATION                         | SB-024     | SB-024    | SB-024A      |
| SAMPLE ID                        | SB-24-10   | SB-24A-SS | F-SB-24ARE-1 |
| SAMPLE DATE                      | 11/17/2003 | 9/15/2004 | 9/22/2009    |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |            |           |              |
| C4-NAPHTHALENES                  |            |           |              |
| C4-PHENANTHRENES/ANTHRACENES     |            |           |              |
| CHRYSENE                         | 400 U []   | 77 J[]    |              |
| DIBENZO(A,H)ANTHRACENE           | 400 U []   | 400 U []  |              |
| FLUORANTHENE                     | 400 U []   | 170 J []  |              |
| FLUORENE                         | 400 U []   | 400 U []  |              |
| INDENO(1,2,3-CD)PYRENE           | 400 U []   | 400 U []  |              |
| NAPHTHALENE                      | 400 U []   | 400 U []  |              |
| PHENANTHRENE                     | 400 U []   | 92 J []   |              |
| PYRENE                           | 400 U []   | 110 J []  |              |
| TOTAL PAHS                       | 0 U[]      | 709 []    |              |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>   |           |              |
| 4,4'-DDD                         |            |           |              |
| 4,4'-DDE                         |            |           |              |
| 4,4'-DDT                         |            |           |              |
| ALDRIN                           |            |           |              |
| ALPHA-BHC                        |            |           |              |
| ALPHA-CHLORDANE                  |            |           |              |
| AROCLOR-1016                     | 59 U []    | 300 U []  |              |
| AROCLOR-1221                     | 59 U []    | 300 U []  |              |
| AROCLOR-1232                     | 59 U []    | 300 U []  |              |
| AROCLOR-1242                     | 59 U []    | 300 U []  |              |
| AROCLOR-1248                     | 59 U []    | 300 U []  |              |
| AROCLOR-1254                     | 59 U []    | 300 U []  |              |
| AROCLOR-1260                     | 59 U []    | 300 U []  |              |
| BETA-BHC                         |            |           |              |
| DELTA-BHC                        |            |           |              |
| DIELDRIN                         |            |           |              |
| ENDOSULFAN I                     |            |           |              |
| ENDOSULFAN II                    |            |           |              |
| ENDOSULFAN SULFATE               |            |           |              |
| ENDRIN                           |            |           |              |
| ENDRIN ALDEHYDE                  |            |           |              |
| ENDRIN KETONE                    |            |           |              |
| GAMMA-BHC (LINDANE)              |            |           |              |
| GAMMA-CHLORDANE                  |            |           |              |
|                                  |            |           |              |

February 2013 Page A-27

--

---

| LOCATION           | SB-024     | SB-024    | SB-024A      |
|--------------------|------------|-----------|--------------|
| SAMPLE ID          | SB-24-10   | SB-24A-SS | F-SB-24ARE-1 |
| SAMPLE DATE        | 11/17/2003 | 9/15/2004 | 9/22/2009    |
| HEPTACHLOR EPOXIDE |            |           |              |
| METHOXYCHLOR       |            |           |              |
| TOTAL AROCLOR      | 0 U[]      | 0 U[]     |              |
| TOTAL DDT POS      |            | 1         |              |
| TOXAPHENE          |            |           | <del></del>  |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 24000 U [] | 12000 U [] |  |
|-------------------------|------------|------------|--|
| GASOLINE RANGE ORGANICS | 120 U []   | 120 U []   |  |
| TPH (C09-C36)           |            |            |  |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| S | 0 | ı |   |
|---|---|---|---|
| J | v |   | _ |

| SOIL                         |                   |                   |                   |
|------------------------------|-------------------|-------------------|-------------------|
| LOCATION                     | SB-024A           | SB-024A           | SB-024A           |
| SAMPLE ID                    | F-SB-24ARE-2      | F-SB-24ARE-3      | F-SB-24ARE-4      |
| SAMPLE DATE                  | 9/22/2009         | 9/22/2009         | 9/22/2009         |
| METALS (MG/KG)               |                   |                   |                   |
| ANTIMONY                     |                   |                   |                   |
| ARSENIC                      |                   |                   |                   |
| BARIUM                       |                   |                   |                   |
| BERYLLIUM                    |                   |                   |                   |
| CADMIUM                      |                   |                   |                   |
| CHROMIUM                     |                   |                   |                   |
| COBALT                       |                   |                   |                   |
| COPPER                       |                   |                   |                   |
| LEAD                         |                   |                   |                   |
| MERCURY                      | 1.0 L [MDL=0.021] | 0.086 [MDL=0.021] | 0.083 [MDL=0.021] |
| MOLYBDENUM                   |                   |                   |                   |
| NICKEL                       |                   |                   |                   |
| SELENIUM                     |                   |                   |                   |
| SILVER                       |                   |                   |                   |
| THALLIUM                     |                   |                   |                   |
| VANADIUM                     |                   |                   |                   |
| ZINC                         |                   |                   |                   |
| MISCELLANEOUS PARAMETERS     | •                 |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             |                   |                   |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |                   |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        | •                 | •                 |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       |                   |                   |                   |
| 1,2-DICHLOROBENZENE          |                   |                   |                   |
| 1,3-DICHLOROBENZENE          |                   |                   |                   |
| 1,4-DICHLOROBENZENE          |                   |                   |                   |
| 1,4-DIOXANE                  |                   |                   |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                   |                   |                   |
| 2,4,5-TRICHLOROPHENOL        |                   |                   |                   |
| 2,4,6-TRICHLOROPHENOL        |                   |                   |                   |
| 2,4-DICHLOROPHENOL           |                   |                   |                   |
| 2,4-DIMETHYLPHENOL           |                   |                   |                   |
| 2,4-DINITROPHENOL            |                   |                   |                   |

| LOCATION                    | SB-024A      | SB-024A      | SB-024A      |
|-----------------------------|--------------|--------------|--------------|
| SAMPLE ID                   | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE                 | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| 2,4-DINITROTOLUENE          |              |              |              |
| 2,6-DINITROTOLUENE          |              |              |              |
| 2-CHLORONAPHTHALENE         |              |              |              |
| 2-CHLOROPHENOL              |              |              |              |
| 2-METHYLPHENOL              |              |              |              |
| 2-NITROANILINE              |              |              |              |
| 2-NITROPHENOL               |              |              |              |
| 3&4-METHYLPHENOL            |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |
| 3-NITROANILINE              |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |
| 4-CHLOROANILINE             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |
| 4-NITROANILINE              |              |              |              |
| 4-NITROPHENOL               |              |              |              |
| ACETOPHENONE                |              |              |              |
| ANILINE                     |              |              |              |
| ATRAZINE                    |              |              |              |
| AZOBENZENE                  |              |              |              |
| BENZIDINE                   |              |              |              |
| BENZOIC ACID                |              |              |              |
| BENZYL ALCOHOL              |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |              |
| CAPROLACTAM                 |              |              |              |
| CARBAZOLE                   |              |              |              |
| DIBENZOFURAN                |              |              |              |
| DIETHYL PHTHALATE           |              |              |              |
| DIMETHYL PHTHALATE          |              |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |              |
| HEXACHLOROBENZENE           |              |              |              |
| HEXACHLOROBUTADIENE         |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-024A      | SB-024A      | SB-024A      |
|--------------------------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE                    | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| HEXACHLOROETHANE               |              |              |              |
| ISOPHORONE                     |              |              |              |
| NITROBENZENE                   |              |              |              |
| N-NITROSODIMETHYLAMINE         |              |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |
| N-NITROSODIPHENYLAMINE         |              |              |              |
| PENTACHLOROPHENOL              |              |              |              |
| PHENOL                         |              |              |              |
| PYRIDINE                       |              |              |              |
| VOLATILES (UG/KG)              |              |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,1-TRICHLOROETHANE          | 1            | -1           |              |
| 1,1,2,2-TETRACHLOROETHANE      | 1            | -1           |              |
| 1,1,2-TRICHLOROETHANE          | 1            | 1            |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 1            | 1            |              |
| 1,1-DICHLOROETHANE             | 1            | -1           |              |
| 1,1-DICHLOROETHENE             | 1            | 1            |              |
| 1,1-DICHLOROPROPENE            | 1            | -1           |              |
| 1,2,3-TRICHLOROBENZENE         | 1            | 1            |              |
| 1,2,3-TRICHLOROPROPANE         | 1            | 1            |              |
| 1,2,3-TRIMETHYLBENZENE         | 1            | 1            |              |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |
| 1,2,4-TRIMETHYLBENZENE         |              | -            |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              | -            |              |
| 1,2-DIBROMOETHANE              |              | -            |              |
| 1,2-DICHLOROBENZENE            |              | -            |              |
| 1,2-DICHLOROETHANE             |              | -            |              |
| 1,2-DICHLOROPROPANE            |              | -            |              |
| 1,3,5-TRIMETHYLBENZENE         |              | -            |              |
| 1,3-DICHLOROBENZENE            |              | -            |              |
| 1,3-DICHLOROPROPANE            |              |              |              |
| 1,3-DICHLOROPROPENE            |              |              |              |
| 1,4-DICHLOROBENZENE            |              |              |              |
| 1,4-DIOXANE                    |              |              |              |
| 2,2-DICHLOROPROPANE            |              |              |              |
| 2-BUTANONE                     |              |              |              |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |

February 2013 Page A-31

---

---

| LOCATION                | SB-024A      | SB-024A      | SB-024A      |
|-------------------------|--------------|--------------|--------------|
| SAMPLE ID               | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE             | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| 2-HEXANONE              |              |              |              |
| 4-CHLOROTOLUENE         |              |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |              |
| 4-METHYL-2-PENTANONE    |              |              |              |
| ACETONE                 |              |              |              |
| BENZENE                 |              |              |              |
| BROMOBENZENE            |              |              |              |
| BROMOCHLOROMETHANE      |              |              |              |
| BROMODICHLOROMETHANE    |              |              |              |
| BROMOFORM               |              |              |              |
| BROMOMETHANE            |              |              |              |
| CARBON DISULFIDE        |              |              |              |
| CARBON TETRACHLORIDE    |              |              |              |
| CHLOROBENZENE           |              |              |              |
| CHLORODIBROMOMETHANE    |              |              |              |
| CHLOROETHANE            |              |              |              |
| CHLOROFORM              |              |              |              |
| CHLOROMETHANE           |              |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |              |
| DIBROMOMETHANE          | -            |              |              |
| DICHLORODIFLUOROMETHANE |              |              |              |
| DIISOPROPYL ETHER       |              |              |              |
| ETHYL TERT-BUTYL ETHER  | -            |              |              |
| ETHYLBENZENE            |              |              |              |
| FLUORODICHLOROMETHANE   | -            |              |              |
| HEXACHLOROBUTADIENE     | -            |              |              |
| ISOPROPYLBENZENE        | -            |              |              |
| M+P-XYLENES             | -            |              |              |
| METHYL TERT-BUTYL ETHER | -            |              |              |
| METHYLENE CHLORIDE      |              |              |              |
| NAPHTHALENE             |              |              |              |
| N-BUTYLBENZENE          |              |              |              |
| N-PROPYLBENZENE         |              |              |              |
| O-XYLENE                |              |              |              |
| SEC-BUTYLBENZENE        |              |              |              |
| STYRENE                 |              |              |              |
| TERT-AMYL METHYL ETHER  |              |              |              |

| LOCATION                                 | SB-024A      | SB-024A      | SB-024A      |
|------------------------------------------|--------------|--------------|--------------|
| SAMPLE ID                                | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE                              | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| TERT-BUTYLBENZENE                        |              |              |              |
| TERTIARY-BUTYL ALCOHOL                   |              |              |              |
| TETRACHLOROETHENE                        |              |              |              |
| TOLUENE                                  |              |              |              |
| TOTAL 1,2-DICHLOROETHENE                 |              |              |              |
| TOTAL XYLENES                            |              |              |              |
| TRANS-1,2-DICHLOROETHENE                 |              |              |              |
| TRANS-1,3-DICHLOROPROPENE                |              |              |              |
| TRICHLOROETHENE                          |              |              |              |
| TRICHLOROFLUOROMETHANE                   |              |              |              |
| VINYL ACETATE                            |              |              |              |
| VINYL CHLORIDE                           |              |              |              |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |              |              |              |
| 1-METHYLNAPHTHALENE                      |              |              |              |
| 2-METHYLNAPHTHALENE                      |              |              |              |
| ACENAPHTHENE                             |              |              |              |
| ACENAPHTHYLENE                           |              |              |              |
| ANTHRACENE                               |              |              |              |
| BAP EQUIVALENT-HALFND                    |              |              |              |
| BAP EQUIVALENT-POS                       |              |              |              |
| BAP EQUIVALENT-UCL                       |              |              |              |
| BENZO(A)ANTHRACENE                       |              |              |              |
| BENZO(A)PYRENE                           |              |              |              |
| BENZO(B)FLUORANTHENE                     |              |              |              |
| BENZO(G,H,I)PERYLENE                     |              |              |              |
| BENZO(K)FLUORANTHENE                     |              |              |              |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C1-FLUORANTHENES/PYRENES                 |              |              |              |
| C1-FLUORENES                             |              |              |              |
| C1-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C2-FLUORENES                             |              |              |              |
| C2-NAPHTHALENES                          |              |              |              |
| C2-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C3-FLUORENES                             |              |              |              |
| C3-NAPHTHALENES                          |              |              |              |
| C3-PHENANTHRENES/ANTHRACENES             |              |              |              |

| OOL                              |              |              |              |
|----------------------------------|--------------|--------------|--------------|
| LOCATION                         | SB-024A      | SB-024A      | SB-024A      |
| SAMPLE ID                        | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE                      | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |              |              |              |
| C4-NAPHTHALENES                  |              |              |              |
| C4-PHENANTHRENES/ANTHRACENES     |              |              |              |
| CHRYSENE                         |              |              |              |
| DIBENZO(A,H)ANTHRACENE           |              |              |              |
| FLUORANTHENE                     |              |              |              |
| FLUORENE                         |              |              |              |
| INDENO(1,2,3-CD)PYRENE           |              |              |              |
| NAPHTHALENE                      |              |              |              |
| PHENANTHRENE                     |              |              |              |
| PYRENE                           |              |              |              |
| TOTAL PAHS                       |              |              |              |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>     |              | •            |
| 4,4'-DDD                         |              |              |              |
| 4,4'-DDE                         |              |              |              |
| 4,4'-DDT                         |              |              |              |
| ALDRIN                           |              |              |              |
| ALPHA-BHC                        |              |              |              |
| ALPHA-CHLORDANE                  |              |              |              |
| AROCLOR-1016                     |              |              |              |
| AROCLOR-1221                     |              |              |              |
| AROCLOR-1232                     |              |              |              |
| AROCLOR-1242                     |              |              |              |
| AROCLOR-1248                     |              |              |              |
| AROCLOR-1254                     |              |              |              |
| AROCLOR-1260                     |              |              |              |
| BETA-BHC                         |              |              |              |
| DELTA-BHC                        |              |              |              |
| DIELDRIN                         |              |              |              |
| ENDOSULFAN I                     |              |              |              |
| ENDOSULFAN II                    |              |              |              |
| ENDOSULFAN SULFATE               |              |              |              |
| ENDRIN                           |              |              |              |
| ENDRIN ALDEHYDE                  |              |              |              |
| ENDRIN KETONE                    |              |              |              |
| GAMMA-BHC (LINDANE)              |              |              |              |
| GAMMA-CHLORDANE                  |              |              |              |
| HEPTACHLOR                       |              |              |              |

February 2013 Page A-34

| LOCATION           | SB-024A      | SB-024A      | SB-024A      |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-24ARE-2 | F-SB-24ARE-3 | F-SB-24ARE-4 |
| SAMPLE DATE        | 9/22/2009    | 9/22/2009    | 9/22/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      |              |              |              |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |
|                    |              |              | -            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-024A             | SB-025     | SB-025     |
|------------------------------|---------------------|------------|------------|
| SAMPLE ID                    | F-SB-24ARE-5        | SB-25-05   | SB-25-10   |
| SAMPLE DATE                  | 9/22/2009           | 11/17/2003 | 11/17/2003 |
| METALS (MG/KG)               |                     |            |            |
| ANTIMONY                     |                     | 2.9 UL []  | 3 UL []    |
| ARSENIC                      |                     | 0.92 L []  | 1.7 L []   |
| BARIUM                       |                     |            |            |
| BERYLLIUM                    |                     | 2.9 U []   | 4.6 []     |
| CADMIUM                      |                     | 2.9 U []   | 3 U []     |
| CHROMIUM                     |                     | 11 L []    | 16 L []    |
| COBALT                       |                     |            |            |
| COPPER                       |                     | 8 []       | 19 []      |
| LEAD                         |                     | 6.6 L []   | 14 L[]     |
| MERCURY                      | 0.021 U [MDL=0.021] | 0.12 U []  | 0.12 U []  |
| MOLYBDENUM                   |                     |            |            |
| NICKEL                       |                     | 24 L []    | 46 L[]     |
| SELENIUM                     |                     | 2.9 UR []  | 3 UR []    |
| SILVER                       |                     | 2.9 U []   | 3 U []     |
| THALLIUM                     |                     | 2.4 UL []  | 2.4 UL []  |
| VANADIUM                     |                     |            |            |
| ZINC                         |                     | 59 UJ []   | 110 J []   |
| MISCELLANEOUS PARAMETERS     |                     |            |            |
| PERCENT SOLIDS (%)           |                     | 85 []      | 84 []      |
| TOTAL SOLIDS (%)             |                     |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |                     |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |                     |            |            |
| PH (S.U.)                    |                     |            |            |
| MERCURY (METHYL) (UG/KG)     |                     |            |            |
| SEMIVOLATILES (UG/KG)        |                     |            |            |
| 1,1-BIPHENYL                 |                     | 390 U []   | 400 U []   |
| 1,2,4-TRICHLOROBENZENE       |                     |            |            |
| 1,2-DICHLOROBENZENE          |                     |            |            |
| 1,3-DICHLOROBENZENE          |                     |            |            |
| 1,4-DICHLOROBENZENE          |                     |            |            |
| 1,4-DIOXANE                  |                     |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                     | 390 U []   | 400 U []   |
| 2,4,5-TRICHLOROPHENOL        |                     | 980 U []   | 990 U []   |
| 2,4,6-TRICHLOROPHENOL        |                     | 390 U []   | 400 U []   |
| 2,4-DICHLOROPHENOL           |                     | 390 U []   | 400 U []   |
| 2,4-DIMETHYLPHENOL           |                     | 390 U []   | 400 U []   |
| 2,4-DINITROPHENOL            |                     | 980 U []   | 990 U []   |

| LOCATION                    | SB-024A      | SB-025     | SB-025     |
|-----------------------------|--------------|------------|------------|
| SAMPLE ID                   | F-SB-24ARE-5 | SB-25-05   | SB-25-10   |
| SAMPLE DATE                 | 9/22/2009    | 11/17/2003 | 11/17/2003 |
| 2,4-DINITROTOLUENE          |              | 390 U []   | 400 U []   |
| 2,6-DINITROTOLUENE          |              | 390 U []   | 400 U []   |
| 2-CHLORONAPHTHALENE         |              | 390 U []   | 400 U []   |
| 2-CHLOROPHENOL              |              | 390 U []   | 400 U []   |
| 2-METHYLPHENOL              |              | 390 U []   | 400 U []   |
| 2-NITROANILINE              |              | 980 U []   | 990 U []   |
| 2-NITROPHENOL               |              | 390 U []   | 400 U []   |
| 3&4-METHYLPHENOL            |              | 390 U []   | 400 U []   |
| 3,3'-DICHLOROBENZIDINE      | 1            | 390 U []   | 400 U []   |
| 3-NITROANILINE              | 1            | 980 U []   | 990 U []   |
| 4,6-DINITRO-2-METHYLPHENOL  | 1            | 900 U []   | 910 U []   |
| 4-BROMOPHENYL PHENYL ETHER  | 1            | 390 U []   | 400 U []   |
| 4-CHLORO-3-METHYLPHENOL     | 1            | 390 U []   | 400 U []   |
| 4-CHLOROANILINE             | 1            | 390 U []   | 400 U []   |
| 4-CHLOROPHENYL PHENYL ETHER | 1            | 390 U []   | 400 U []   |
| 4-NITROANILINE              | 1            | 980 U []   | 990 U []   |
| 4-NITROPHENOL               | 1            | 980 U []   | 990 U []   |
| ACETOPHENONE                |              | 390 U []   | 400 U []   |
| ANILINE                     |              |            |            |
| ATRAZINE                    |              | 390 U []   | 400 U []   |
| AZOBENZENE                  | -            |            |            |
| BENZIDINE                   |              |            |            |
| BENZOIC ACID                |              |            |            |
| BENZYL ALCOHOL              |              |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |              | 390 U []   | 400 U []   |
| BIS(2-CHLOROETHYL)ETHER     |              | 390 U []   | 400 U []   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              | 390 U []   | 400 U []   |
| BUTYL BENZYL PHTHALATE      |              | 390 U []   | 400 U []   |
| CAPROLACTAM                 |              | 390 U []   | 400 U []   |
| CARBAZOLE                   |              | 390 U []   | 400 U []   |
| DIBENZOFURAN                |              | 390 U []   | 400 U []   |
| DIETHYL PHTHALATE           |              | 390 U []   | 400 U []   |
| DIMETHYL PHTHALATE          | <u></u>      | 390 U []   | 400 U []   |
| DI-N-BUTYL PHTHALATE        | <u></u>      | 390 U []   | 400 U []   |
| DI-N-OCTYL PHTHALATE        | <del></del>  | 390 U []   | 400 U []   |
| HEXACHLOROBENZENE           | <del></del>  | 390 U []   | 400 U []   |
| HEXACHLOROBUTADIENE         | <del></del>  | 390 U []   | 400 U []   |
| HEXACHLOROCYCLOPENTADIENE   |              | 390 U []   | 400 U []   |

| SUIL                           |              |            |            |
|--------------------------------|--------------|------------|------------|
| LOCATION                       | SB-024A      | SB-025     | SB-025     |
| SAMPLE ID                      | F-SB-24ARE-5 | SB-25-05   | SB-25-10   |
| SAMPLE DATE                    | 9/22/2009    | 11/17/2003 | 11/17/2003 |
| HEXACHLOROETHANE               |              | 390 U []   | 400 U []   |
| ISOPHORONE                     |              | 390 U []   | 400 U []   |
| NITROBENZENE                   |              | 390 U []   | 400 U []   |
| N-NITROSODIMETHYLAMINE         |              |            |            |
| N-NITROSO-DI-N-PROPYLAMINE     |              | 390 U []   | 400 U []   |
| N-NITROSODIPHENYLAMINE         |              | 390 U []   | 400 U []   |
| PENTACHLOROPHENOL              |              | 980 U []   | 990 U []   |
| PHENOL                         |              | 390 U []   | 400 U []   |
| PYRIDINE                       |              |            |            |
| VOLATILES (UG/KG)              | •            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |              | 6 U []     | 6 U []     |
| 1,1,1-TRICHLOROETHANE          |              | 6 U []     | 6 U []     |
| 1,1,2,2-TETRACHLOROETHANE      |              | 6 U []     | 6 U []     |
| 1,1,2-TRICHLOROETHANE          |              | 6 U []     | 6 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |            |            |
| 1,1-DICHLOROETHANE             |              | 6 U []     | 6 U []     |
| 1,1-DICHLOROETHENE             |              | 6 U []     | 6 U []     |
| 1,1-DICHLOROPROPENE            |              | 6 U []     | 6 U []     |
| 1,2,3-TRICHLOROBENZENE         |              | 6 U []     | 6 U []     |
| 1,2,3-TRICHLOROPROPANE         |              | 6 U []     | 6 U []     |
| 1,2,3-TRIMETHYLBENZENE         |              |            |            |
| 1,2,4-TRICHLOROBENZENE         |              | 6 U []     | 6 U []     |
| 1,2,4-TRIMETHYLBENZENE         |              | 6 U []     | 6 U []     |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              | 6 U []     | 6 U []     |
| 1,2-DIBROMOETHANE              |              | 6 U []     | 6 U []     |
| 1,2-DICHLOROBENZENE            |              | 6 U []     | 6 U []     |
| 1,2-DICHLOROETHANE             |              | 6 U []     | 6 U []     |
| 1,2-DICHLOROPROPANE            |              | 6 U []     | 6 U []     |
| 1,3,5-TRIMETHYLBENZENE         |              | 6 U []     | 6 U []     |
| 1,3-DICHLOROBENZENE            |              | 6 U[]      | 6 U []     |
| 1,3-DICHLOROPROPANE            |              | 6 U []     | 6 U []     |
| 1,3-DICHLOROPROPENE            |              |            |            |
| 1,4-DICHLOROBENZENE            |              | 6 U []     | 6 U []     |
| 1,4-DIOXANE                    |              |            |            |
| 2,2-DICHLOROPROPANE            |              | 6 U []     | 6 U []     |
| 2-BUTANONE                     |              | 59 U[]     | 59 U []    |
| 2-CHLOROETHYL VINYL ETHER      |              | 6 U []     | 6 U []     |
| 2-CHLOROTOLUENE                |              | 6 U []     | 6 U []     |

February 2013 Page A-38

| LOCATION                | SB-024A      | SB-025     | SB-025     |
|-------------------------|--------------|------------|------------|
| SAMPLE ID               | F-SB-24ARE-5 | SB-25-05   | SB-25-10   |
| SAMPLE DATE             | 9/22/2009    | 11/17/2003 | 11/17/2003 |
| 2-HEXANONE              |              | 59 U []    | 59 U []    |
| 4-CHLOROTOLUENE         |              | 6 U []     | 6 U []     |
| 4-ISOPROPYLTOLUENE      |              | 6 U []     | 6 U []     |
| 4-METHYL-2-PENTANONE    |              | 59 U[]     | 59 U []    |
| ACETONE                 |              | 59 U []    | 59 U []    |
| BENZENE                 |              | 6 U []     | 6 U []     |
| BROMOBENZENE            |              | 6 U []     | 6 U []     |
| BROMOCHLOROMETHANE      |              | 6 U []     | 6 U []     |
| BROMODICHLOROMETHANE    |              | 6 U []     | 6 U []     |
| BROMOFORM               |              | 6 U []     | 6 U []     |
| BROMOMETHANE            |              | 6 U []     | 6 U []     |
| CARBON DISULFIDE        |              | 6 U []     | 6 U []     |
| CARBON TETRACHLORIDE    |              | 6 U []     | 6 U []     |
| CHLOROBENZENE           |              | 6 U []     | 6 U []     |
| CHLORODIBROMOMETHANE    |              | 6 U []     | 6 U []     |
| CHLOROETHANE            |              | 6 U []     | 6 U []     |
| CHLOROFORM              |              | 6 U []     | 6 U []     |
| CHLOROMETHANE           |              | 6 U []     | 6 U []     |
| CIS-1,2-DICHLOROETHENE  |              | 6 U []     | 6 U []     |
| CIS-1,3-DICHLOROPROPENE |              | 6 U []     | 6 U []     |
| DIBROMOMETHANE          |              | 6 U []     | 6 U []     |
| DICHLORODIFLUOROMETHANE |              | 6 U []     | 6 U []     |
| DIISOPROPYL ETHER       |              |            |            |
| ETHYL TERT-BUTYL ETHER  |              |            |            |
| ETHYLBENZENE            |              | 6 U []     | 6 U []     |
| FLUORODICHLOROMETHANE   |              |            |            |
| HEXACHLOROBUTADIENE     |              | 6 U []     | 6 U []     |
| ISOPROPYLBENZENE        |              | 6 U []     | 6 U []     |
| M+P-XYLENES             |              | 18 U[]     | 18 U[]     |
| METHYL TERT-BUTYL ETHER |              | 6 U []     | 6 U []     |
| METHYLENE CHLORIDE      |              | 5 J[]      | 6 J []     |
| NAPHTHALENE             |              | 6 U []     | 6 U []     |
| N-BUTYLBENZENE          |              | 6 U []     | 6 U []     |
| N-PROPYLBENZENE         |              | 6 U[]      | 6 U []     |
| O-XYLENE                |              | 18 U[]     | 18 U []    |
| SEC-BUTYLBENZENE        |              | 6 U[]      | 6 U []     |
| STYRENE                 |              | 6 U[]      | 6 U []     |
| TERT-AMYL METHYL ETHER  |              |            |            |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| LOCATION                                 | SB-024A      | SB-025       | SB-025       |
|------------------------------------------|--------------|--------------|--------------|
| SAMPLE ID                                | F-SB-24ARE-5 | SB-25-05     | SB-25-10     |
| SAMPLE DATE                              | 9/22/2009    | 11/17/2003   | 11/17/2003   |
| TERT-BUTYLBENZENE                        |              | 6 U[]        | 6 U []       |
| TERTIARY-BUTYL ALCOHOL                   |              |              |              |
| TETRACHLOROETHENE                        |              | 6 U[]        | 6 U []       |
| TOLUENE                                  |              | 6 U[]        | 6 U []       |
| TOTAL 1,2-DICHLOROETHENE                 |              |              |              |
| TOTAL XYLENES                            |              |              |              |
| TRANS-1,2-DICHLOROETHENE                 |              | 6 U[]        | 6 U []       |
| TRANS-1,3-DICHLOROPROPENE                |              | 6 U[]        | 6 U []       |
| TRICHLOROETHENE                          |              | 6 U[]        | 6 U []       |
| TRICHLOROFLUOROMETHANE                   |              | 6 U[]        | 6 U []       |
| VINYL ACETATE                            |              | 6 U[]        | 6 U []       |
| VINYL CHLORIDE                           |              | 6 U[]        | 6 U []       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •            |              |              |
| 1-METHYLNAPHTHALENE                      |              |              |              |
| 2-METHYLNAPHTHALENE                      |              | 390 U []     | 400 U []     |
| ACENAPHTHENE                             |              | 390 U []     | 400 U []     |
| ACENAPHTHYLENE                           |              | 390 U []     | 400 U []     |
| ANTHRACENE                               |              | 390 U []     | 400 U []     |
| BAP EQUIVALENT-HALFND                    |              | 390 U []     | 400 U []     |
| BAP EQUIVALENT-POS                       |              | 390 U []     | 400 U []     |
| BAP EQUIVALENT-UCL                       |              | 15.528048 [] | 17.023847 [] |
| BENZO(A)ANTHRACENE                       |              | 390 U []     | 400 U []     |
| BENZO(A)PYRENE                           |              | 390 U []     | 400 U []     |
| BENZO(B)FLUORANTHENE                     |              | 390 U []     | 400 U []     |
| BENZO(G,H,I)PERYLENE                     |              | 390 U []     | 400 U []     |
| BENZO(K)FLUORANTHENE                     |              | 390 U []     | 400 U []     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C1-FLUORANTHENES/PYRENES                 |              |              |              |
| C1-FLUORENES                             |              |              |              |
| C1-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C2-FLUORENES                             |              |              |              |
| C2-NAPHTHALENES                          |              |              |              |
| C2-PHENANTHRENES/ANTHRACENES             |              |              |              |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |              |              |
| C3-FLUORENES                             |              |              |              |
| C3-NAPHTHALENES                          |              |              |              |
|                                          |              |              |              |

February 2013 Page A-40

--

---

HEPTACHLOR

| SOIL                             |              |            |             |
|----------------------------------|--------------|------------|-------------|
| LOCATION                         | SB-024A      | SB-025     | SB-025      |
| SAMPLE ID                        | F-SB-24ARE-5 | SB-25-05   | SB-25-10    |
| SAMPLE DATE                      | 9/22/2009    | 11/17/2003 | 11/17/2003  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |              |            | <del></del> |
| C4-NAPHTHALENES                  |              |            |             |
| C4-PHENANTHRENES/ANTHRACENES     |              |            |             |
| CHRYSENE                         |              | 390 U []   | 400 U []    |
| DIBENZO(A,H)ANTHRACENE           |              | 390 U []   | 400 U []    |
| FLUORANTHENE                     |              | 390 U []   | 400 U []    |
| FLUORENE                         |              | 390 U []   | 400 U []    |
| INDENO(1,2,3-CD)PYRENE           |              | 390 U []   | 400 U []    |
| NAPHTHALENE                      |              | 390 U []   | 400 U []    |
| PHENANTHRENE                     |              | 390 U []   | 400 U []    |
| PYRENE                           |              | 390 U []   | 400 U []    |
| TOTAL PAHS                       |              | 0 U []     | 0 U []      |
| PESTICIDES/PCBS (UG/KG)          |              |            |             |
| 4,4'-DDD                         |              |            |             |
| 4,4'-DDE                         |              |            |             |
| 4,4'-DDT                         |              |            |             |
| ALDRIN                           |              |            |             |
| ALPHA-BHC                        |              |            |             |
| ALPHA-CHLORDANE                  |              |            |             |
| AROCLOR-1016                     |              | 59 U []    | 59 U []     |
| AROCLOR-1221                     |              | 59 U []    | 59 U []     |
| AROCLOR-1232                     |              | 59 U []    | 59 U []     |
| AROCLOR-1242                     |              | 59 U []    | 59 U []     |
| AROCLOR-1248                     |              | 59 U []    | 59 U []     |
| AROCLOR-1254                     |              | 59 U []    | 59 U []     |
| AROCLOR-1260                     |              | 59 U []    | 59 U []     |
| BETA-BHC                         |              |            |             |
| DELTA-BHC                        |              |            |             |
| DIELDRIN                         |              |            |             |
| ENDOSULFAN I                     |              |            |             |
| ENDOSULFAN II                    |              |            |             |
| ENDOSULFAN SULFATE               |              |            |             |
| ENDRIN                           |              |            |             |
| ENDRIN ALDEHYDE                  |              |            |             |
| ENDRIN KETONE                    |              |            |             |
| GAMMA-BHC (LINDANE)              |              |            |             |
| GAMMA-CHLORDANE                  |              |            |             |
|                                  |              |            |             |

February 2013 Page A-41

--

---

| LOCATION           | SB-024A      | SB-025     | SB-025     |
|--------------------|--------------|------------|------------|
| SAMPLE ID          | F-SB-24ARE-5 | SB-25-05   | SB-25-10   |
| SAMPLE DATE        | 9/22/2009    | 11/17/2003 | 11/17/2003 |
| HEPTACHLOR EPOXIDE |              |            |            |
| METHOXYCHLOR       | 1            |            |            |
| TOTAL AROCLOR      | 1            | 0 U []     | 0 U []     |
| TOTAL DDT POS      | 1            |            |            |
| TOXAPHENE          | 1            |            |            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | 24000 U [] | 24000 U [] |
|-------------------------|---|------------|------------|
| GASOLINE RANGE ORGANICS | - | 120 U []   | 120 U []   |
| TPH (C09-C36)           | - | ŀ          |            |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |           |            |            |
|------------------------------|-----------|------------|------------|
| LOCATION                     | SB-025    | SB-026     | SB-027     |
| SAMPLE ID                    | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE                  | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| METALS (MG/KG)               | •         |            |            |
| ANTIMONY                     | 2.7 U[]   |            |            |
| ARSENIC                      | 0.60 []   |            |            |
| BARIUM                       |           |            |            |
| BERYLLIUM                    | 5.0 []    |            |            |
| CADMIUM                      | 2.7 U []  |            |            |
| CHROMIUM                     | 18.0 []   |            |            |
| COBALT                       |           |            |            |
| COPPER                       | 15.0 []   |            |            |
| LEAD                         | 5.9 []    |            |            |
| MERCURY                      | 0.11 U [] |            |            |
| MOLYBDENUM                   |           |            |            |
| NICKEL                       | 27.0 []   |            |            |
| SELENIUM                     | 2.7 U []  |            |            |
| SILVER                       | 2.9 U []  |            |            |
| THALLIUM                     | 2.2 UL [] |            |            |
| VANADIUM                     |           |            |            |
| ZINC                         | 48.0 K [] |            |            |
| MISCELLANEOUS PARAMETERS     |           |            | •          |
| PERCENT SOLIDS (%)           |           | 77 []      | 75 []      |
| TOTAL SOLIDS (%)             |           |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |           |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |           |            |            |
| PH (S.U.)                    |           |            |            |
| MERCURY (METHYL) (UG/KG)     |           |            |            |
| SEMIVOLATILES (UG/KG)        | •         |            | •          |
| 1,1-BIPHENYL                 | 400 U []  |            |            |
| 1,2,4-TRICHLOROBENZENE       |           |            |            |
| 1,2-DICHLOROBENZENE          |           |            |            |
| 1,3-DICHLOROBENZENE          |           |            |            |
| 1,4-DICHLOROBENZENE          |           |            |            |
| 1,4-DIOXANE                  |           |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 400 U []  |            |            |
| 2,4,5-TRICHLOROPHENOL        | 990 U []  |            |            |
| 2,4,6-TRICHLOROPHENOL        | 400 U []  |            |            |
| 2,4-DICHLOROPHENOL           | 400 U []  |            |            |
| 2,4-DIMETHYLPHENOL           | 400 U []  |            |            |
| 2,4-DINITROPHENOL            | 990 U []  |            |            |
|                              |           |            |            |

| LOCATION                    | SB-025    | SB-026     | SB-027     |
|-----------------------------|-----------|------------|------------|
| SAMPLE ID                   | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE                 | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| 2,4-DINITROTOLUENE          | 400 U []  |            |            |
| 2,6-DINITROTOLUENE          | 400 U []  |            |            |
| 2-CHLORONAPHTHALENE         | 400 U []  |            |            |
| 2-CHLOROPHENOL              | 400 U []  |            |            |
| 2-METHYLPHENOL              | 400 U []  |            |            |
| 2-NITROANILINE              | 990 U []  |            |            |
| 2-NITROPHENOL               | 400 U []  |            |            |
| 3&4-METHYLPHENOL            | 400 U []  |            |            |
| 3,3'-DICHLOROBENZIDINE      | 400 U []  |            |            |
| 3-NITROANILINE              | 990 U []  |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  | 910 U []  |            |            |
| 4-BROMOPHENYL PHENYL ETHER  | 400 U []  |            |            |
| 4-CHLORO-3-METHYLPHENOL     | 400 U []  |            |            |
| 4-CHLOROANILINE             | 400 U []  |            |            |
| 4-CHLOROPHENYL PHENYL ETHER | 400 U []  |            |            |
| 4-NITROANILINE              | 990 U []  |            |            |
| 4-NITROPHENOL               | 990 U []  |            |            |
| ACETOPHENONE                | 400 U []  |            |            |
| ANILINE                     |           |            |            |
| ATRAZINE                    | 400 U []  |            |            |
| AZOBENZENE                  |           |            |            |
| BENZIDINE                   |           |            |            |
| BENZOIC ACID                |           |            |            |
| BENZYL ALCOHOL              |           |            |            |
| BIS(2-CHLOROETHOXY)METHANE  | 400 U []  |            |            |
| BIS(2-CHLOROETHYL)ETHER     | 400 U []  |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 400 U []  |            |            |
| BUTYL BENZYL PHTHALATE      | 400 U []  |            |            |
| CAPROLACTAM                 | 400 U []  |            |            |
| CARBAZOLE                   | 400 U []  |            |            |
| DIBENZOFURAN                | 400 U []  |            |            |
| DIETHYL PHTHALATE           | 400 U []  |            |            |
| DIMETHYL PHTHALATE          | 400 U []  |            |            |
| DI-N-BUTYL PHTHALATE        | 400 U []  |            |            |
| DI-N-OCTYL PHTHALATE        | 400 U []  |            |            |
| HEXACHLOROBENZENE           | 400 U []  |            |            |
| HEXACHLOROBUTADIENE         | 400 U []  |            |            |
| HEXACHLOROCYCLOPENTADIENE   | 400 U []  |            |            |

| SOIL                           |           |            |            |
|--------------------------------|-----------|------------|------------|
| LOCATION                       | SB-025    | SB-026     | SB-027     |
| SAMPLE ID                      | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE                    | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| HEXACHLOROETHANE               | 400 U []  |            |            |
| ISOPHORONE                     | 400 U []  |            |            |
| NITROBENZENE                   | 400 U []  |            |            |
| N-NITROSODIMETHYLAMINE         |           |            |            |
| N-NITROSO-DI-N-PROPYLAMINE     | 400 U []  |            |            |
| N-NITROSODIPHENYLAMINE         | 400 U []  |            |            |
| PENTACHLOROPHENOL              | 990 U []  |            |            |
| PHENOL                         | 400 U []  |            |            |
| PYRIDINE                       |           |            |            |
| VOLATILES (UG/KG)              | <u> </u>  |            |            |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,1,1-TRICHLOROETHANE          | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,1,2-TRICHLOROETHANE          | 6 U[]     | 7 U[]      | 7 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U[]     |            |            |
| 1,1-DICHLOROETHANE             | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,1-DICHLOROETHENE             | 6 U []    | 7 U[]      | 7 U[]      |
| 1,1-DICHLOROPROPENE            | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2,3-TRICHLOROBENZENE         | 6 U []    | 7 U[]      | 7 U []     |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2,3-TRIMETHYLBENZENE         |           |            |            |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]     | 7 U[]      | 7 U []     |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2-DIBROMOETHANE              | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2-DICHLOROBENZENE            | 6 U[]     | 7 U[]      | 7 U []     |
| 1,2-DICHLOROETHANE             | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,2-DICHLOROPROPANE            | 6 U[]     | 7 U[]      | 7 U []     |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,3-DICHLOROBENZENE            | 6 U[]     | 7 U[]      | 7 U[]      |
| 1,3-DICHLOROPROPANE            | 6 U []    | 7 U[]      | 7 U []     |
| 1,3-DICHLOROPROPENE            |           |            |            |
| 1,4-DICHLOROBENZENE            | 6 U []    | 7 U[]      | 7 U[]      |
| 1,4-DIOXANE                    |           |            |            |
| 2,2-DICHLOROPROPANE            | 6 U []    | 7 U[]      | 7 U []     |
| 2-BUTANONE                     | 60 U []   | 6 J []     | 67 U[]     |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]     | 7 U[]      | 7 U[]      |
| 2-CHLOROTOLUENE                | 6 U []    | 7 U[]      | 7 U[]      |

| LOCATION                | SB-025    | SB-026     | SB-027     |
|-------------------------|-----------|------------|------------|
| SAMPLE ID               | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE             | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| 2-HEXANONE              | 60 U []   | 65 U []    | 67 U []    |
| 4-CHLOROTOLUENE         | 6 U[]     | 7 U[]      | 7 U []     |
| 4-ISOPROPYLTOLUENE      | 6 U[]     | 7 U[]      | 7 U[]      |
| 4-METHYL-2-PENTANONE    | 60 U []   | 65 U[]     | 67 U []    |
| ACETONE                 | 60 UJ []  | 48 J []    | 29 J []    |
| BENZENE                 | 6 U []    | 7 U[]      | 7 U []     |
| BROMOBENZENE            | 6 U []    | 7 U[]      | 7 U []     |
| BROMOCHLOROMETHANE      | 6 U []    | 7 U[]      | 7 U []     |
| BROMODICHLOROMETHANE    | 6 U[]     | 7 U[]      | 7 U []     |
| BROMOFORM               | 6 U []    | 7 U[]      | 7 U[]      |
| BROMOMETHANE            | 6 U []    | 7 U[]      | 7 U[]      |
| CARBON DISULFIDE        | 6 U[]     | 7 U[]      | 7 U[]      |
| CARBON TETRACHLORIDE    | 6 U[]     | 7 U[]      | 7 U[]      |
| CHLOROBENZENE           | 6 U[]     | 7 U[]      | 7 U[]      |
| CHLORODIBROMOMETHANE    | 6 U[]     | 7 U[]      | 7 U []     |
| CHLOROETHANE            | 6 U []    | 7 U[]      | 7 U []     |
| CHLOROFORM              | 6 U []    | 7 U[]      | 7 U[]      |
| CHLOROMETHANE           | 6 U []    | 7 U[]      | 7 U[]      |
| CIS-1,2-DICHLOROETHENE  | 6 U []    | 7 U[]      | 7 U[]      |
| CIS-1,3-DICHLOROPROPENE | 6 U []    | 7 U[]      | 7 U[]      |
| DIBROMOMETHANE          | 6 U []    | 7 U[]      | 7 U []     |
| DICHLORODIFLUOROMETHANE | 6 U[]     | 7 U[]      | 7 U []     |
| DIISOPROPYL ETHER       |           |            |            |
| ETHYL TERT-BUTYL ETHER  |           |            |            |
| ETHYLBENZENE            | 6 U []    | 7 U[]      | 7 U []     |
| FLUORODICHLOROMETHANE   |           |            |            |
| HEXACHLOROBUTADIENE     |           | 7 U[]      | 7 U []     |
| ISOPROPYLBENZENE        | 6 U []    | 7 U[]      | 7 U []     |
| M+P-XYLENES             | 12 U []   | 20 U []    | 20 U []    |
| METHYL TERT-BUTYL ETHER | 6 U []    | 7 U[]      | 7 U []     |
| METHYLENE CHLORIDE      | 6 U[]     | 7 U []     | 7 J[]      |
| NAPHTHALENE             | 6 U[]     | 7 U []     | 7 U []     |
| N-BUTYLBENZENE          | 6 U[]     | 7 U []     | 7 U []     |
| N-PROPYLBENZENE         | 6 U[]     | 7 U []     | 7 U[]      |
| O-XYLENE                | 6 U[]     | 20 U []    | 20 U []    |
| SEC-BUTYLBENZENE        | 6 U[]     | 7 U []     | 7 U []     |
| STYRENE                 | 6 U[]     | 7 U []     | 7 U []     |
| TERT-AMYL METHYL ETHER  |           |            |            |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| OOIL                                     |              |            |            |
|------------------------------------------|--------------|------------|------------|
| LOCATION                                 | SB-025       | SB-026     | SB-027     |
| SAMPLE ID                                | SB-25A-SS    | SB-26-10   | SB-27-10   |
| SAMPLE DATE                              | 9/15/2004    | 11/17/2003 | 11/17/2003 |
| TERT-BUTYLBENZENE                        | 6 U[]        | 7 U []     | 7 U []     |
| TERTIARY-BUTYL ALCOHOL                   |              |            |            |
| TETRACHLOROETHENE                        | 6 U[]        | 7 U []     | 7 U []     |
| TOLUENE                                  | 6 U[]        | 7 U []     | 7 U []     |
| TOTAL 1,2-DICHLOROETHENE                 |              |            |            |
| TOTAL XYLENES                            |              |            |            |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]        | 7 U []     | 7 U []     |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]        | 7 U []     | 7 U []     |
| TRICHLOROETHENE                          | 6 U[]        | 7 U []     | 7 U []     |
| TRICHLOROFLUOROMETHANE                   | 6 U []       | 7 U[]      | 7 U []     |
| VINYL ACETATE                            | 6 U[]        | 7 U[]      | 7 U []     |
| VINYL CHLORIDE                           | 6 U[]        | 7 U[]      | 7 U []     |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |              |            |            |
| 1-METHYLNAPHTHALENE                      |              |            |            |
| 2-METHYLNAPHTHALENE                      | 400 U []     |            |            |
| ACENAPHTHENE                             | 400 U []     |            |            |
| ACENAPHTHYLENE                           | 400 U []     |            |            |
| ANTHRACENE                               | 400 U []     |            |            |
| BAP EQUIVALENT-HALFND                    | 400 U[]      |            |            |
| BAP EQUIVALENT-POS                       | 400 U []     |            |            |
| BAP EQUIVALENT-UCL                       | 19.753394 [] |            |            |
| BENZO(A)ANTHRACENE                       | 400 U []     |            |            |
| BENZO(A)PYRENE                           | 400 U []     |            |            |
| BENZO(B)FLUORANTHENE                     | 400 U []     |            |            |
| BENZO(G,H,I)PERYLENE                     | 400 U []     |            |            |
| BENZO(K)FLUORANTHENE                     | 400 U []     |            |            |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |            |            |
| C1-FLUORANTHENES/PYRENES                 |              |            |            |
| C1-FLUORENES                             |              |            |            |
| C1-PHENANTHRENES/ANTHRACENES             |              |            |            |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |            |            |
| C2-FLUORENES                             |              |            |            |
| C2-NAPHTHALENES                          |              |            |            |
| C2-PHENANTHRENES/ANTHRACENES             |              |            |            |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |            |            |
| C3-FLUORENES                             |              |            |            |
| C3-NAPHTHALENES                          |              |            |            |
|                                          |              |            |            |

February 2013 Page A-47

--

---

HEPTACHLOR

| SOIL                             |           |            |            |
|----------------------------------|-----------|------------|------------|
| LOCATION                         | SB-025    | SB-026     | SB-027     |
| SAMPLE ID                        | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE                      | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES | -         | -          |            |
| C4-NAPHTHALENES                  |           |            |            |
| C4-PHENANTHRENES/ANTHRACENES     |           |            |            |
| CHRYSENE                         | 400 U []  |            |            |
| DIBENZO(A,H)ANTHRACENE           | 400 U []  | -          |            |
| FLUORANTHENE                     | 400 U []  | 1          | -1         |
| FLUORENE                         | 400 U []  |            |            |
| INDENO(1,2,3-CD)PYRENE           | 400 U []  |            |            |
| NAPHTHALENE                      | 400 U []  |            |            |
| PHENANTHRENE                     | 400 U []  |            |            |
| PYRENE                           | 400 U []  |            |            |
| TOTAL PAHS                       | 0 U[]     |            |            |
| PESTICIDES/PCBS (UG/KG)          | ·         |            |            |
| 4,4'-DDD                         |           |            |            |
| 4,4'-DDE                         |           |            |            |
| 4,4'-DDT                         |           |            |            |
| ALDRIN                           |           |            |            |
| ALPHA-BHC                        |           |            |            |
| ALPHA-CHLORDANE                  |           |            |            |
| AROCLOR-1016                     | 300 U []  |            |            |
| AROCLOR-1221                     | 300 U []  |            |            |
| AROCLOR-1232                     | 300 U []  |            |            |
| AROCLOR-1242                     | 300 U []  |            |            |
| AROCLOR-1248                     | 300 U []  |            |            |
| AROCLOR-1254                     | 300 U []  |            |            |
| AROCLOR-1260                     | 300 U []  |            |            |
| BETA-BHC                         |           |            |            |
| DELTA-BHC                        |           |            |            |
| DIELDRIN                         |           |            |            |
| ENDOSULFAN I                     |           |            |            |
| ENDOSULFAN II                    |           |            |            |
| ENDOSULFAN SULFATE               |           |            |            |
| ENDRIN                           |           |            |            |
| ENDRIN ALDEHYDE                  |           |            |            |
| ENDRIN KETONE                    |           |            |            |
| GAMMA-BHC (LINDANE)              |           |            |            |
| GAMMA-CHLORDANE                  |           |            |            |
|                                  |           |            |            |

February 2013 Page A-48

--

---

| LOCATION           | SB-025    | SB-026     | SB-027     |
|--------------------|-----------|------------|------------|
| SAMPLE ID          | SB-25A-SS | SB-26-10   | SB-27-10   |
| SAMPLE DATE        | 9/15/2004 | 11/17/2003 | 11/17/2003 |
| HEPTACHLOR EPOXIDE |           |            |            |
| METHOXYCHLOR       | 1         |            |            |
| TOTAL AROCLOR      | 0 U[]     |            |            |
| TOTAL DDT POS      | 1         |            |            |
| TOXAPHENE          |           |            |            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 12000 U [] | -        |          |
|-------------------------|------------|----------|----------|
| GASOLINE RANGE ORGANICS | 1200 []    | 130 U [] | 130 U [] |
| TPH (C09-C36)           |            |          |          |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |            |            |
|------------------------------|------------|------------|------------|
| LOCATION                     | SB-028     | SB-029     | SB-030     |
| SAMPLE ID                    | SB-28-10   | SB-29-10   | SB-30-05   |
| SAMPLE DATE                  | 11/17/2003 | 11/17/2003 | 11/18/2003 |
| METALS (MG/KG)               |            |            |            |
| ANTIMONY                     |            |            | 2.9 UL []  |
| ARSENIC                      |            |            | 0.99 L []  |
| BARIUM                       |            |            |            |
| BERYLLIUM                    |            |            | 3.2 []     |
| CADMIUM                      |            |            | 2.9 U []   |
| CHROMIUM                     |            |            | 19 L []    |
| COBALT                       |            |            |            |
| COPPER                       |            |            | 21 []      |
| LEAD                         |            |            | 7.4 L[]    |
| MERCURY                      |            |            | 0.12 U []  |
| MOLYBDENUM                   |            |            |            |
| NICKEL                       |            |            | 33 L []    |
| SELENIUM                     |            |            | 4.4 L []   |
| SILVER                       |            |            | 2.9 U []   |
| THALLIUM                     |            |            | 2.3 UL []  |
| VANADIUM                     |            |            |            |
| ZINC                         |            |            | 58 UJ []   |
| MISCELLANEOUS PARAMETERS     |            |            |            |
| PERCENT SOLIDS (%)           | 77 []      | 76 []      | 87 []      |
| TOTAL SOLIDS (%)             |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |
| PH (S.U.)                    |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |
| SEMIVOLATILES (UG/KG)        |            |            |            |
| 1,1-BIPHENYL                 |            |            | 380 U []   |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |
| 1,4-DIOXANE                  |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            | 380 U []   |
| 2,4,5-TRICHLOROPHENOL        |            |            | 960 U []   |
| 2,4,6-TRICHLOROPHENOL        |            |            | 380 U []   |
| 2,4-DICHLOROPHENOL           |            |            | 380 U[]    |
| 2,4-DIMETHYLPHENOL           |            |            | 380 U[]    |
| 2,4-DINITROPHENOL            |            |            | 960 U []   |
|                              |            |            |            |

| LOCATION                    | SB-028      | SB-029     | SB-030     |
|-----------------------------|-------------|------------|------------|
| SAMPLE ID                   | SB-28-10    | SB-29-10   | SB-30-05   |
| SAMPLE DATE                 | 11/17/2003  | 11/17/2003 | 11/18/2003 |
| 2,4-DINITROTOLUENE          |             |            | 380 U []   |
| 2,6-DINITROTOLUENE          |             |            | 380 U []   |
| 2-CHLORONAPHTHALENE         |             |            | 380 U []   |
| 2-CHLOROPHENOL              |             |            | 380 U []   |
| 2-METHYLPHENOL              |             |            | 380 U []   |
| 2-NITROANILINE              |             |            | 960 U []   |
| 2-NITROPHENOL               |             |            | 380 U []   |
| 3&4-METHYLPHENOL            |             |            | 380 U []   |
| 3,3'-DICHLOROBENZIDINE      |             |            | 380 U []   |
| 3-NITROANILINE              |             |            | 960 U []   |
| 4,6-DINITRO-2-METHYLPHENOL  |             |            | 880 U []   |
| 4-BROMOPHENYL PHENYL ETHER  |             |            | 380 U []   |
| 4-CHLORO-3-METHYLPHENOL     |             |            | 380 U []   |
| 4-CHLOROANILINE             |             |            | 380 U []   |
| 4-CHLOROPHENYL PHENYL ETHER |             |            | 380 U []   |
| 4-NITROANILINE              |             |            | 960 U []   |
| 4-NITROPHENOL               |             |            | 960 U []   |
| ACETOPHENONE                |             |            | 380 U []   |
| ANILINE                     |             |            |            |
| ATRAZINE                    |             |            | 380 U []   |
| AZOBENZENE                  |             |            |            |
| BENZIDINE                   |             |            |            |
| BENZOIC ACID                |             |            |            |
| BENZYL ALCOHOL              |             |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |            | 380 U []   |
| BIS(2-CHLOROETHYL)ETHER     |             |            | 380 U []   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |            | 380 U []   |
| BUTYL BENZYL PHTHALATE      |             |            | 380 U []   |
| CAPROLACTAM                 |             |            | 380 U []   |
| CARBAZOLE                   |             |            | 380 U []   |
| DIBENZOFURAN                |             |            | 380 U []   |
| DIETHYL PHTHALATE           |             |            | 380 U []   |
| DIMETHYL PHTHALATE          |             |            | 380 U []   |
| DI-N-BUTYL PHTHALATE        |             |            | 380 U []   |
| DI-N-OCTYL PHTHALATE        |             |            | 380 U []   |
| HEXACHLOROBENZENE           |             |            | 380 U []   |
| HEXACHLOROBUTADIENE         |             |            | 380 U []   |
| HEXACHLOROCYCLOPENTADIENE   | <del></del> |            | 380 U []   |

2-CHLOROTOLUENE

| LOCATION                       | SB-028     | SB-029     | SB-030     |
|--------------------------------|------------|------------|------------|
| SAMPLE ID                      | SB-28-10   | SB-29-10   | SB-30-05   |
| SAMPLE DATE                    | 11/17/2003 | 11/17/2003 | 11/18/2003 |
| HEXACHLOROETHANE               |            |            | 380 U []   |
| ISOPHORONE                     |            |            | 380 U []   |
| NITROBENZENE                   |            |            | 380 U []   |
| N-NITROSODIMETHYLAMINE         |            |            |            |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            | 380 U []   |
| N-NITROSODIPHENYLAMINE         |            |            | 380 U []   |
| PENTACHLOROPHENOL              |            |            | 960 U []   |
| PHENOL                         |            |            | 380 U []   |
| PYRIDINE                       |            |            |            |
| VOLATILES (UG/KG)              | •          |            | •          |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U []     | 7 U[]      | 6 U []     |
| 1,1,1-TRICHLOROETHANE          | 6 U []     | 7 U []     | 6 U []     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U []     | 7 U[]      | 6 U []     |
| 1,1,2-TRICHLOROETHANE          | 6 U []     | 7 U[]      | 6 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |
| 1,1-DICHLOROETHANE             | 6 U []     | 7 U[]      | 6 U []     |
| 1,1-DICHLOROETHENE             | 6 U []     | 7 U[]      | 6 U []     |
| 1,1-DICHLOROPROPENE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,2,3-TRICHLOROBENZENE         | 6 U []     | 7 U[]      | 6 U []     |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]      | 7 U[]      | 6 U []     |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]      | 7 U[]      | 6 U []     |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]      | 7 U[]      | 6 U []     |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]      | 7 U[]      | 6 U []     |
| 1,2-DIBROMOETHANE              | 6 U[]      | 7 U[]      | 6 U []     |
| 1,2-DICHLOROBENZENE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,2-DICHLOROETHANE             | 6 U []     | 7 U[]      | 6 U []     |
| 1,2-DICHLOROPROPANE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,3,5-TRIMETHYLBENZENE         | 6 U []     | 7 U[]      | 6 U []     |
| 1,3-DICHLOROBENZENE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,3-DICHLOROPROPANE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,3-DICHLOROPROPENE            |            |            |            |
| 1,4-DICHLOROBENZENE            | 6 U []     | 7 U[]      | 6 U []     |
| 1,4-DIOXANE                    |            |            |            |
| 2,2-DICHLOROPROPANE            | 6 U[]      | 7 U[]      | 6 U []     |
| 2-BUTANONE                     | 65 U[]     | 9 J []     | 58 U []    |
| 2-CHLOROETHYL VINYL ETHER      | 6 U []     | 7 U[]      | 6 U []     |
|                                |            | T          |            |

February 2013 Page A-52

6 U [--]

7 U [--]

6 U [--]

| LOCATION                | SB-028     | SB-029     | SB-030     |
|-------------------------|------------|------------|------------|
| SAMPLE ID               | SB-28-10   | SB-29-10   | SB-30-05   |
| SAMPLE DATE             | 11/17/2003 | 11/17/2003 | 11/18/2003 |
| 2-HEXANONE              | 65 U[]     | 66 U[]     | 58 U []    |
| 4-CHLOROTOLUENE         | 6 U[]      | 7 U[]      | 6 U []     |
| 4-ISOPROPYLTOLUENE      | 6 U[]      | 7 U[]      | 6 U []     |
| 4-METHYL-2-PENTANONE    | 65 U[]     | 66 U[]     | 58 U []    |
| ACETONE                 | 14 J []    | 45 J []    | 58 U []    |
| BENZENE                 | 6 U[]      | 7 U[]      | 6 U []     |
| BROMOBENZENE            | 6 U[]      | 7 U[]      | 6 U []     |
| BROMOCHLOROMETHANE      | 6 U[]      | 7 U[]      | 6 U []     |
| BROMODICHLOROMETHANE    | 6 U[]      | 7 U[]      | 6 U []     |
| BROMOFORM               | 6 U[]      | 7 U[]      | 6 U []     |
| BROMOMETHANE            | 6 U[]      | 7 U[]      | 6 U []     |
| CARBON DISULFIDE        | 6 U[]      | 7 U[]      | 6 U []     |
| CARBON TETRACHLORIDE    | 6 U[]      | 7 U[]      | 6 U []     |
| CHLOROBENZENE           | 6 U[]      | 7 U[]      | 6 U []     |
| CHLORODIBROMOMETHANE    | 6 U[]      | 7 U[]      | 6 U []     |
| CHLOROETHANE            | 6 U[]      | 7 U[]      | 6 U []     |
| CHLOROFORM              | 6 U[]      | 7 U[]      | 6 U []     |
| CHLOROMETHANE           | 6 U[]      | 7 U[]      | 6 U []     |
| CIS-1,2-DICHLOROETHENE  | 6 U[]      | 7 U[]      | 6 U []     |
| CIS-1,3-DICHLOROPROPENE | 6 U[]      | 7 U[]      | 6 U []     |
| DIBROMOMETHANE          | 6 U[]      | 7 U[]      | 6 U []     |
| DICHLORODIFLUOROMETHANE | 6 U[]      | 7 U[]      | 6 U []     |
| DIISOPROPYL ETHER       |            |            |            |
| ETHYL TERT-BUTYL ETHER  |            |            |            |
| ETHYLBENZENE            | 6 U[]      | 7 U[]      | 6 U []     |
| FLUORODICHLOROMETHANE   |            |            |            |
| HEXACHLOROBUTADIENE     | 6 ∪[]      | 7 U[]      | 6 U []     |
| ISOPROPYLBENZENE        | 6 ∪[]      | 7 U[]      | 6 U []     |
| M+P-XYLENES             | 19 U []    | 20 U []    | 17 U[]     |
| METHYL TERT-BUTYL ETHER | 6 ∪[]      | 7 U[]      | 6 U []     |
| METHYLENE CHLORIDE      | 6 J[]      | 7 U[]      | 6 J []     |
| NAPHTHALENE             | 6 U[]      | 7 U []     | 6 U []     |
| N-BUTYLBENZENE          | 6 U[]      | 7 U []     | 6 U []     |
| N-PROPYLBENZENE         | 6 U[]      | 7 U []     | 6 U []     |
| O-XYLENE                | 19 U []    | 20 U[]     | 17 U[]     |
| SEC-BUTYLBENZENE        | 6 U[]      | 7 U []     | 6 U[]      |
| STYRENE                 | 6 U[]      | 7 U[]      | 6 ∪ []     |
| TERT-AMYL METHYL ETHER  |            |            |            |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| LOCATION                                 | SB-028     | SB-029     | SB-030       |
|------------------------------------------|------------|------------|--------------|
| SAMPLE ID                                | SB-28-10   | SB-29-10   | SB-30-05     |
| SAMPLE DATE                              | 11/17/2003 | 11/17/2003 | 11/18/2003   |
| TERT-BUTYLBENZENE                        | 6 U[]      | 7 U[]      | 6 U []       |
| TERTIARY-BUTYL ALCOHOL                   |            |            |              |
| TETRACHLOROETHENE                        | 6 U[]      | 7 U[]      | 6 U []       |
| TOLUENE                                  | 6 U[]      | 7 U[]      | 6 U []       |
| TOTAL 1,2-DICHLOROETHENE                 |            |            |              |
| TOTAL XYLENES                            |            |            |              |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]      | 7 U[]      | 6 U []       |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]      | 7 U[]      | 6 U []       |
| TRICHLOROETHENE                          | 6 U[]      | 7 U[]      | 6 U []       |
| TRICHLOROFLUOROMETHANE                   | 6 U[]      | 7 U[]      | 6 U []       |
| VINYL ACETATE                            | 6 U[]      | 7 U[]      | 6 U []       |
| VINYL CHLORIDE                           | 6 U []     | 7 U[]      | 6 U []       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •          |            |              |
| 1-METHYLNAPHTHALENE                      |            |            |              |
| 2-METHYLNAPHTHALENE                      |            |            | 380 U []     |
| ACENAPHTHENE                             |            |            | 380 U []     |
| ACENAPHTHYLENE                           |            |            | 380 U []     |
| ANTHRACENE                               |            |            | 380 U []     |
| BAP EQUIVALENT-HALFND                    |            |            | 380 U []     |
| BAP EQUIVALENT-POS                       |            |            | 380 U []     |
| BAP EQUIVALENT-UCL                       |            |            | 36.827734 [] |
| BENZO(A)ANTHRACENE                       |            |            | 380 U []     |
| BENZO(A)PYRENE                           |            |            | 380 U []     |
| BENZO(B)FLUORANTHENE                     |            |            | 380 U []     |
| BENZO(G,H,I)PERYLENE                     |            |            | 380 U []     |
| BENZO(K)FLUORANTHENE                     |            |            | 380 U []     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |            |            |              |
| C1-FLUORANTHENES/PYRENES                 |            |            |              |
| C1-FLUORENES                             |            |            |              |
| C1-PHENANTHRENES/ANTHRACENES             |            |            |              |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |            |            |              |
| C2-FLUORENES                             |            |            |              |
| C2-NAPHTHALENES                          |            |            |              |
| C2-PHENANTHRENES/ANTHRACENES             |            |            |              |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |            |            |              |
| C3-FLUORENES                             |            |            |              |
| C3-NAPHTHALENES                          |            |            |              |
|                                          |            |            |              |

February 2013 Page A-54

---

---

| SOIL                             |             |                                         |            |
|----------------------------------|-------------|-----------------------------------------|------------|
| LOCATION                         | SB-028      | SB-029                                  | SB-030     |
| SAMPLE ID                        | SB-28-10    | SB-29-10                                | SB-30-05   |
| SAMPLE DATE                      | 11/17/2003  | 11/17/2003                              | 11/18/2003 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |             |                                         |            |
| C4-NAPHTHALENES                  |             |                                         |            |
| C4-PHENANTHRENES/ANTHRACENES     |             |                                         |            |
| CHRYSENE                         |             |                                         | 380 U []   |
| DIBENZO(A,H)ANTHRACENE           |             |                                         | 380 U []   |
| FLUORANTHENE                     |             |                                         | 380 U []   |
| FLUORENE                         |             |                                         | 380 U []   |
| INDENO(1,2,3-CD)PYRENE           |             |                                         | 380 U[]    |
| NAPHTHALENE                      |             |                                         | 380 U[]    |
| PHENANTHRENE                     |             |                                         | 380 U []   |
| PYRENE                           |             |                                         | 380 U[]    |
| TOTAL PAHS                       |             |                                         | 0 U []     |
| PESTICIDES/PCBS (UG/KG)          | •           |                                         |            |
| 4,4'-DDD                         |             |                                         |            |
| 4,4'-DDE                         |             |                                         |            |
| 4,4'-DDT                         |             |                                         |            |
| ALDRIN                           |             |                                         |            |
| ALPHA-BHC                        |             |                                         |            |
| ALPHA-CHLORDANE                  |             |                                         |            |
| AROCLOR-1016                     |             |                                         | 58 U []    |
| AROCLOR-1221                     |             |                                         | 58 U []    |
| AROCLOR-1232                     |             |                                         | 58 U []    |
| AROCLOR-1242                     |             |                                         | 58 U []    |
| AROCLOR-1248                     |             |                                         | 58 U []    |
| AROCLOR-1254                     |             |                                         | 58 U []    |
| AROCLOR-1260                     |             |                                         | 58 U []    |
| BETA-BHC                         |             |                                         |            |
| DELTA-BHC                        |             |                                         |            |
| DIELDRIN                         |             |                                         |            |
| ENDOSULFAN I                     |             |                                         |            |
| ENDOSULFAN II                    |             |                                         |            |
| ENDOSULFAN SULFATE               |             |                                         |            |
| ENDRIN                           |             |                                         |            |
| ENDRIN ALDEHYDE                  |             |                                         |            |
| ENDRIN KETONE                    |             |                                         |            |
| GAMMA-BHC (LINDANE)              |             |                                         |            |
| GAMMA-CHLORDANE                  | <del></del> | i e e e e e e e e e e e e e e e e e e e |            |
|                                  |             |                                         |            |

February 2013 Page A-55

| LOCATION           | SB-028     | SB-029     | SB-030     |
|--------------------|------------|------------|------------|
| SAMPLE ID          | SB-28-10   | SB-29-10   | SB-30-05   |
| SAMPLE DATE        | 11/17/2003 | 11/17/2003 | 11/18/2003 |
| HEPTACHLOR EPOXIDE |            |            |            |
| METHOXYCHLOR       |            |            |            |
| TOTAL AROCLOR      |            |            | 0 U []     |
| TOTAL DDT POS      |            |            |            |
| TOXAPHENE          |            |            |            |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | <del></del> |          | 23000 U [] |
|-------------------------|-------------|----------|------------|
| GASOLINE RANGE ORGANICS | 130 U []    | 130 U [] | 120 U []   |
| TPH (C09-C36)           |             |          |            |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-030     | SB-050    | SB-050    |
|------------------------------|------------|-----------|-----------|
| SAMPLE ID                    | SB-30A-SS  | SB-50-05  | SB-50-10  |
| SAMPLE DATE                  | 9/15/2004  | 9/15/2004 | 9/15/2004 |
| METALS (MG/KG)               | •          |           |           |
| ANTIMONY                     | 2.7 UR []  | 2.8 U []  | 2.7 U[]   |
| ARSENIC                      | 2.3 L []   | 0.96 []   | 1.2 []    |
| BARIUM                       |            |           |           |
| BERYLLIUM                    | 2.7 ∪ []   | 2.8 U []  | 2.7 U[]   |
| CADMIUM                      | 2.7 UL []  | 2.8 U []  | 2.7 U[]   |
| CHROMIUM                     | 8.7 L []   | 13.0 []   | 5.8 []    |
| COBALT                       |            |           |           |
| COPPER                       | 4.4 K []   | 8.7 []    | 10.0 []   |
| LEAD                         | 4.5 J []   | 6.7 []    | 4.8 []    |
| MERCURY                      | 0.11 UL [] | 0.11 U [] | 0.11 U [] |
| MOLYBDENUM                   |            |           |           |
| NICKEL                       | 4.5 K []   | 18.0 []   | 28.0 []   |
| SELENIUM                     | 2.7 UL []  | 2.8 U []  | 2.7 U[]   |
| SILVER                       | 2.7 UR []  | 2.6 U []  | 2.5 U []  |
| THALLIUM                     | 2.2 UL []  | 2.2 UL [] | 2.2 UL [] |
| VANADIUM                     |            |           |           |
| ZINC                         | 27.0 UL [] | 43.0 K [] | 140 []    |
| MISCELLANEOUS PARAMETERS     | •          |           |           |
| PERCENT SOLIDS (%)           |            |           |           |
| TOTAL SOLIDS (%)             |            |           |           |
| HEXAVALENT CHROMIUM (MG/KG)  |            |           |           |
| TOTAL ORGANIC CARBON (MG/KG) |            |           |           |
| PH (S.U.)                    |            |           |           |
| MERCURY (METHYL) (UG/KG)     |            |           |           |
| SEMIVOLATILES (UG/KG)        |            |           |           |
| 1,1-BIPHENYL                 | 360 U []   |           |           |
| 1,2,4-TRICHLOROBENZENE       |            | 1         |           |
| 1,2-DICHLOROBENZENE          |            |           |           |
| 1,3-DICHLOROBENZENE          |            |           |           |
| 1,4-DICHLOROBENZENE          |            |           |           |
| 1,4-DIOXANE                  |            |           |           |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 360 U[]    | 1         |           |
| 2,4,5-TRICHLOROPHENOL        | 900 U []   |           |           |
| 2,4,6-TRICHLOROPHENOL        | 360 U[]    |           |           |
| 2,4-DICHLOROPHENOL           | 360 U[]    | -1-       |           |
| 2,4-DIMETHYLPHENOL           | 360 U[]    |           |           |
| 2,4-DINITROPHENOL            | 900 U []   |           |           |

| LOCATION                    | SB-030    | SB-050    | SB-050    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-30A-SS | SB-50-05  | SB-50-10  |
| SAMPLE DATE                 | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| 2,4-DINITROTOLUENE          | 360 U []  |           |           |
| 2,6-DINITROTOLUENE          | 360 ∪ []  |           |           |
| 2-CHLORONAPHTHALENE         | 360 ∪ []  |           |           |
| 2-CHLOROPHENOL              | 360 ∪ []  |           |           |
| 2-METHYLPHENOL              | 360 ∪ []  |           |           |
| 2-NITROANILINE              | 900 U []  |           |           |
| 2-NITROPHENOL               | 360 U []  |           |           |
| 3&4-METHYLPHENOL            | 360 ∪ []  |           |           |
| 3,3'-DICHLOROBENZIDINE      | 360 U []  |           |           |
| 3-NITROANILINE              | 900 U []  |           |           |
| 4,6-DINITRO-2-METHYLPHENOL  | 830 U []  |           |           |
| 4-BROMOPHENYL PHENYL ETHER  | 360 U[]   |           |           |
| 4-CHLORO-3-METHYLPHENOL     | 360 ∪ []  |           |           |
| 4-CHLOROANILINE             | 360 ∪ []  |           |           |
| 4-CHLOROPHENYL PHENYL ETHER | 360 ∪ []  |           |           |
| 4-NITROANILINE              | 900 ∪ []  |           |           |
| 4-NITROPHENOL               | 900 ∪ []  |           |           |
| ACETOPHENONE                | 360 U []  |           |           |
| ANILINE                     |           |           |           |
| ATRAZINE                    | 360 U []  |           |           |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  | 360 U []  |           |           |
| BIS(2-CHLOROETHYL)ETHER     | 360 U []  |           |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 360 U []  |           |           |
| BUTYL BENZYL PHTHALATE      | 360 U []  |           |           |
| CAPROLACTAM                 | 360 U []  |           |           |
| CARBAZOLE                   | 360 U []  |           |           |
| DIBENZOFURAN                | 360 U[]   |           |           |
| DIETHYL PHTHALATE           | 360 U[]   |           |           |
| DIMETHYL PHTHALATE          | 360 U[]   |           |           |
| DI-N-BUTYL PHTHALATE        | 360 U[]   |           |           |
| DI-N-OCTYL PHTHALATE        | 360 U []  |           |           |
| HEXACHLOROBENZENE           | 360 U []  |           |           |
| HEXACHLOROBUTADIENE         | 360 U[]   |           |           |
| HEXACHLOROCYCLOPENTADIENE   | 360 U[]   |           |           |

| SOIL                           |           |           |           |
|--------------------------------|-----------|-----------|-----------|
| LOCATION                       | SB-030    | SB-050    | SB-050    |
| SAMPLE ID                      | SB-30A-SS | SB-50-05  | SB-50-10  |
| SAMPLE DATE                    | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| HEXACHLOROETHANE               | 360 U []  |           |           |
| ISOPHORONE                     | 360 U []  |           |           |
| NITROBENZENE                   | 360 U []  |           |           |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     | 360 U []  |           |           |
| N-NITROSODIPHENYLAMINE         | 360 U []  |           |           |
| PENTACHLOROPHENOL              | 900 U []  |           |           |
| PHENOL                         | 360 U []  |           |           |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              | •         |           | •         |
| 1,1,1,2-TETRACHLOROETHANE      | 5 U[]     |           |           |
| 1,1,1-TRICHLOROETHANE          | 5 U[]     |           |           |
| 1,1,2,2-TETRACHLOROETHANE      | 5 U[]     |           |           |
| 1,1,2-TRICHLOROETHANE          | 5 U[]     |           |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 5 U[]     |           |           |
| 1,1-DICHLOROETHANE             | 5 U[]     |           |           |
| 1,1-DICHLOROETHENE             | 5 U[]     |           |           |
| 1,1-DICHLOROPROPENE            | 5 U[]     |           |           |
| 1,2,3-TRICHLOROBENZENE         | 5 U[]     |           |           |
| 1,2,3-TRICHLOROPROPANE         | 5 U[]     |           |           |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         | 5 U[]     |           |           |
| 1,2,4-TRIMETHYLBENZENE         | 5 U[]     |           |           |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 5 U[]     |           |           |
| 1,2-DIBROMOETHANE              | 5 U[]     |           |           |
| 1,2-DICHLOROBENZENE            | 5 U[]     |           |           |
| 1,2-DICHLOROETHANE             | 5 U[]     |           |           |
| 1,2-DICHLOROPROPANE            | 5 U[]     |           |           |
| 1,3,5-TRIMETHYLBENZENE         | 5 U[]     |           |           |
| 1,3-DICHLOROBENZENE            | 5 U[]     |           |           |
| 1,3-DICHLOROPROPANE            | 5 U[]     |           |           |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            | 5 U[]     |           |           |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            | 5 U[]     |           |           |
| 2-BUTANONE                     | 53 U[]    |           |           |
| 2-CHLOROETHYL VINYL ETHER      | 5 U[]     |           |           |
| 2-CHLOROTOLUENE                | 5 U[]     |           |           |

| LOCATION                | SB-030    | SB-050    | SB-050    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-30A-SS | SB-50-05  | SB-50-10  |
| SAMPLE DATE             | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| 2-HEXANONE              | 53 U[]    |           |           |
| 4-CHLOROTOLUENE         | 5 U[]     |           |           |
| 4-ISOPROPYLTOLUENE      | 5 U[]     |           |           |
| 4-METHYL-2-PENTANONE    | 53 U []   |           |           |
| ACETONE                 | 53 UJ []  |           |           |
| BENZENE                 | 5 U[]     |           |           |
| BROMOBENZENE            | 5 U[]     |           |           |
| BROMOCHLOROMETHANE      | 5 U[]     |           |           |
| BROMODICHLOROMETHANE    | 5 U[]     |           |           |
| BROMOFORM               | 5 U[]     |           |           |
| BROMOMETHANE            | 5 U[]     |           |           |
| CARBON DISULFIDE        | 5 U[]     |           |           |
| CARBON TETRACHLORIDE    | 5 U[]     |           |           |
| CHLOROBENZENE           | 5 U[]     |           |           |
| CHLORODIBROMOMETHANE    | 5 U[]     |           |           |
| CHLOROETHANE            | 5 U[]     |           |           |
| CHLOROFORM              | 5 U[]     |           |           |
| CHLOROMETHANE           | 5 U[]     |           |           |
| CIS-1,2-DICHLOROETHENE  | 5 U[]     |           |           |
| CIS-1,3-DICHLOROPROPENE | 5 U[]     |           |           |
| DIBROMOMETHANE          | 5 U[]     |           |           |
| DICHLORODIFLUOROMETHANE | 5 U[]     |           |           |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            | 5 U[]     |           |           |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        | 5 U[]     |           |           |
| M+P-XYLENES             | 11 U[]    |           |           |
| METHYL TERT-BUTYL ETHER | 5 U[]     |           |           |
| METHYLENE CHLORIDE      | 5 U[]     |           |           |
| NAPHTHALENE             | 5 U[]     |           |           |
| N-BUTYLBENZENE          | 5 U[]     |           |           |
| N-PROPYLBENZENE         | 5 U[]     |           |           |
| O-XYLENE                | 5 U[]     |           |           |
| SEC-BUTYLBENZENE        | 5 U[]     |           |           |
| STYRENE                 | 5 U[]     |           |           |
| TERT-AMYL METHYL ETHER  | +         |           |           |

| LOCATION                                 | SB-030       | SB-050      | SB-050    |
|------------------------------------------|--------------|-------------|-----------|
| SAMPLE ID                                | SB-30A-SS    | SB-50-05    | SB-50-10  |
| SAMPLE DATE                              | 9/15/2004    | 9/15/2004   | 9/15/2004 |
| TERT-BUTYLBENZENE                        | 5 U []       |             |           |
| TERTIARY-BUTYL ALCOHOL                   |              |             |           |
| TETRACHLOROETHENE                        | 5 U[]        |             |           |
| TOLUENE                                  | 5 U []       |             |           |
| TOTAL 1,2-DICHLOROETHENE                 |              | <del></del> |           |
| TOTAL XYLENES                            |              | <del></del> |           |
| TRANS-1,2-DICHLOROETHENE                 | 5 U []       |             |           |
| TRANS-1,3-DICHLOROPROPENE                | 5 U []       |             |           |
| TRICHLOROETHENE                          | 5 U[]        | <del></del> |           |
| TRICHLOROFLUOROMETHANE                   | 5 U[]        | <del></del> |           |
| VINYL ACETATE                            | 5 U[]        | <del></del> |           |
| VINYL CHLORIDE                           | 5 U []       | <del></del> |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |              |             |           |
| 1-METHYLNAPHTHALENE                      |              | <del></del> |           |
| 2-METHYLNAPHTHALENE                      | 360 U []     | <del></del> |           |
| ACENAPHTHENE                             | 360 U []     |             |           |
| ACENAPHTHYLENE                           | 360 U[]      | <del></del> |           |
| ANTHRACENE                               | 360 U[]      |             |           |
| BAP EQUIVALENT-HALFND                    | 400.825 []   |             |           |
| BAP EQUIVALENT-POS                       | 4.825 []     |             |           |
| BAP EQUIVALENT-UCL                       | 132.19091 [] |             |           |
| BENZO(A)ANTHRACENE                       | 44 J[]       |             |           |
| BENZO(A)PYRENE                           | 360 U []     |             |           |
| BENZO(B)FLUORANTHENE                     | 360 U []     |             |           |
| BENZO(G,H,I)PERYLENE                     | 360 U[]      |             |           |
| BENZO(K)FLUORANTHENE                     | 37 J []      |             |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |             |           |
| C1-FLUORANTHENES/PYRENES                 |              |             |           |
| C1-FLUORENES                             |              |             |           |
| C1-PHENANTHRENES/ANTHRACENES             |              |             |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |             |           |
| C2-FLUORENES                             |              |             |           |
| C2-NAPHTHALENES                          |              |             |           |
| C2-PHENANTHRENES/ANTHRACENES             |              |             |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |             |           |
| C3-FLUORENES                             |              |             |           |
| C3-NAPHTHALENES                          |              |             |           |
| C3-PHENANTHRENES/ANTHRACENES             |              |             |           |

February 2013 Page A-61

HEPTACHLOR

| OOL                              |           |           |             |
|----------------------------------|-----------|-----------|-------------|
| LOCATION                         | SB-030    | SB-050    | SB-050      |
| SAMPLE ID                        | SB-30A-SS | SB-50-05  | SB-50-10    |
| SAMPLE DATE                      | 9/15/2004 | 9/15/2004 | 9/15/2004   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |             |
| C4-NAPHTHALENES                  |           |           |             |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |             |
| CHRYSENE                         | 55 J []   |           |             |
| DIBENZO(A,H)ANTHRACENE           | 360 U[]   |           |             |
| FLUORANTHENE                     | 84 J[]    |           |             |
| FLUORENE                         | 360 U []  |           |             |
| INDENO(1,2,3-CD)PYRENE           | 360 U []  |           |             |
| NAPHTHALENE                      | 360 U []  |           |             |
| PHENANTHRENE                     | 74 J[]    |           |             |
| PYRENE                           | 110 J []  |           |             |
| TOTAL PAHS                       | 404 []    |           |             |
| PESTICIDES/PCBS (UG/KG)          |           |           |             |
| 4,4'-DDD                         |           |           |             |
| 4,4'-DDE                         |           |           |             |
| 4,4'-DDT                         |           |           |             |
| ALDRIN                           |           |           |             |
| ALPHA-BHC                        |           |           |             |
| ALPHA-CHLORDANE                  |           |           |             |
| AROCLOR-1016                     | 270 U []  |           |             |
| AROCLOR-1221                     | 270 U []  |           |             |
| AROCLOR-1232                     | 270 U []  |           |             |
| AROCLOR-1242                     | 270 U []  |           |             |
| AROCLOR-1248                     | 270 U []  |           |             |
| AROCLOR-1254                     | 270 U []  |           |             |
| AROCLOR-1260                     | 270 U []  |           |             |
| BETA-BHC                         |           |           |             |
| DELTA-BHC                        |           |           |             |
| DIELDRIN                         |           |           |             |
| ENDOSULFAN I                     |           |           |             |
| ENDOSULFAN II                    |           |           |             |
| ENDOSULFAN SULFATE               |           |           |             |
| ENDRIN                           |           |           |             |
| ENDRIN ALDEHYDE                  |           |           |             |
| ENDRIN KETONE                    |           |           |             |
| GAMMA-BHC (LINDANE)              |           |           | <del></del> |
| GAMMA-CHLORDANE                  |           |           |             |
|                                  |           |           |             |

February 2013 Page A-62

--

---

| LOCATION           | SB-030    | SB-050    | SB-050    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-30A-SS | SB-50-05  | SB-50-10  |
| SAMPLE DATE        | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| HEPTACHLOR EPOXIDE |           |           |           |
| METHOXYCHLOR       | 1         |           |           |
| TOTAL AROCLOR      | 0 U[]     |           |           |
| TOTAL DDT POS      |           |           |           |
| TOXAPHENE          |           |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 10000 U [] | <br> |
|-------------------------|------------|------|
| GASOLINE RANGE ORGANICS | 110 U []   | <br> |
| TPH (C09-C36)           | -          | <br> |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-050    | SB-055    | SB-055     |
|------------------------------|-----------|-----------|------------|
| SAMPLE ID                    | SB-50-SS  | SB-55-05  | SB-55-10   |
| SAMPLE DATE                  | 9/15/2004 | 9/15/2004 | 9/15/2004  |
| METALS (MG/KG)               | -         |           | -          |
| ANTIMONY                     | 2.4 U []  | 2.8 U []  | 2.8 UR []  |
| ARSENIC                      | 3.2 []    | 1.9 []    | 0.58 L []  |
| BARIUM                       |           |           |            |
| BERYLLIUM                    | 2.4 U []  | 6.2 []    | 2.8 U []   |
| CADMIUM                      | 2.4 U []  | 2.8 U []  | 2.8 UL []  |
| CHROMIUM                     | 9.4 []    | 15.0 []   | 8.4 L []   |
| COBALT                       |           |           |            |
| COPPER                       | 17.0 []   | 56.0 []   | 12.0 []    |
| LEAD                         | 33.0 []   | 8.4 []    | 5.2 J []   |
| MERCURY                      | 0.42 []   | 0.11 U [] | 0.11 UL [] |
| MOLYBDENUM                   |           |           |            |
| NICKEL                       | 8.5 []    | 150 []    | 11.0 []    |
| SELENIUM                     | 2.4 U []  | 2.8 []    | 2.8 UL []  |
| SILVER                       | 2.3 U []  | 3.0 UL [] | 2.8 UR []  |
| THALLIUM                     | 1.9 U []  | 2.2 U []  | 2.3 UL []  |
| VANADIUM                     |           |           |            |
| ZINC                         | 100 []    | 270 []    | 62.0 J []  |
| MISCELLANEOUS PARAMETERS     |           |           |            |
| PERCENT SOLIDS (%)           |           |           |            |
| TOTAL SOLIDS (%)             |           |           |            |
| HEXAVALENT CHROMIUM (MG/KG)  |           |           |            |
| TOTAL ORGANIC CARBON (MG/KG) |           |           |            |
| PH (S.U.)                    |           |           |            |
| MERCURY (METHYL) (UG/KG)     |           |           |            |
| SEMIVOLATILES (UG/KG)        |           |           |            |
| 1,1-BIPHENYL                 |           | 410 U []  | 420 U []   |
| 1,2,4-TRICHLOROBENZENE       |           |           |            |
| 1,2-DICHLOROBENZENE          |           |           |            |
| 1,3-DICHLOROBENZENE          |           |           |            |
| 1,4-DICHLOROBENZENE          |           |           |            |
| 1,4-DIOXANE                  |           |           |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |           | 410 U []  | 420 U []   |
| 2,4,5-TRICHLOROPHENOL        |           | 1000 U [] | 1000 U []  |
| 2,4,6-TRICHLOROPHENOL        |           | 410 U []  | 420 U []   |
| 2,4-DICHLOROPHENOL           |           | 410 U []  | 420 U []   |
| 2,4-DIMETHYLPHENOL           |           | 410 U []  | 420 U []   |
| 2,4-DINITROPHENOL            |           | 1000 U [] | 1000 U []  |
|                              |           |           |            |

| LOCATION                    | SB-050    | SB-055    | SB-055    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-50-SS  | SB-55-05  | SB-55-10  |
| SAMPLE DATE                 | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| 2,4-DINITROTOLUENE          |           | 410 U []  | 420 U []  |
| 2,6-DINITROTOLUENE          |           | 410 U []  | 420 U []  |
| 2-CHLORONAPHTHALENE         |           | 410 U []  | 420 U []  |
| 2-CHLOROPHENOL              |           | 410 U []  | 420 U []  |
| 2-METHYLPHENOL              |           | 410 U []  | 420 U []  |
| 2-NITROANILINE              |           | 1000 U [] | 1000 U [] |
| 2-NITROPHENOL               |           | 410 U []  | 420 U []  |
| 3&4-METHYLPHENOL            |           | 410 U []  | 420 U []  |
| 3,3'-DICHLOROBENZIDINE      |           | 410 U []  | 420 U []  |
| 3-NITROANILINE              |           | 1000 U [] | 1000 U [] |
| 4,6-DINITRO-2-METHYLPHENOL  |           | 940 U []  | 960 U []  |
| 4-BROMOPHENYL PHENYL ETHER  |           | 410 U []  | 420 U []  |
| 4-CHLORO-3-METHYLPHENOL     |           | 410 U []  | 420 U []  |
| 4-CHLOROANILINE             |           | 410 U []  | 420 U []  |
| 4-CHLOROPHENYL PHENYL ETHER |           | 410 U []  | 420 U []  |
| 4-NITROANILINE              |           | 1000 U [] | 1000 U [] |
| 4-NITROPHENOL               |           | 1000 U [] | 1000 U [] |
| ACETOPHENONE                |           | 410 U []  | 420 U []  |
| ANILINE                     |           |           |           |
| ATRAZINE                    |           | 410 U []  | 420 U []  |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  |           | 410 U []  | 420 U []  |
| BIS(2-CHLOROETHYL)ETHER     |           | 410 U []  | 420 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  |           | 410 U []  | 420 U []  |
| BUTYL BENZYL PHTHALATE      |           | 410 U []  | 420 U []  |
| CAPROLACTAM                 |           | 410 U []  | 420 U []  |
| CARBAZOLE                   |           | 410 U []  | 420 U []  |
| DIBENZOFURAN                |           | 410 U []  | 420 U []  |
| DIETHYL PHTHALATE           |           | 410 U []  | 420 U []  |
| DIMETHYL PHTHALATE          |           | 410 U []  | 310 J []  |
| DI-N-BUTYL PHTHALATE        | -         | 410 U []  | 420 U []  |
| DI-N-OCTYL PHTHALATE        |           | 410 U []  | 420 U []  |
| HEXACHLOROBENZENE           |           | 410 U []  | 420 U []  |
| HEXACHLOROBUTADIENE         |           | 410 U []  | 420 U []  |
| HEXACHLOROCYCLOPENTADIENE   |           | 410 U []  | 420 U []  |

2-CHLOROTOLUENE

| LOCATION                       | SB-050    | SB-055    | SB-055    |
|--------------------------------|-----------|-----------|-----------|
| SAMPLE ID                      | SB-50-SS  | SB-55-05  | SB-55-10  |
| SAMPLE DATE                    | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| HEXACHLOROETHANE               |           | 410 U []  | 420 U []  |
| ISOPHORONE                     |           | 410 U []  | 420 U []  |
| NITROBENZENE                   |           | 410 U []  | 420 U []  |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     |           | 410 U []  | 420 U []  |
| N-NITROSODIPHENYLAMINE         |           | 410 U []  | 420 U []  |
| PENTACHLOROPHENOL              |           | 1000 U [] | 1000 U [] |
| PHENOL                         |           | 480 []    | 420 U []  |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              | •         | •         |           |
| 1,1,1,2-TETRACHLOROETHANE      |           | 6 U[]     | 6 U []    |
| 1,1,1-TRICHLOROETHANE          |           | 6 U[]     | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      |           | 6 U[]     | 6 U []    |
| 1,1,2-TRICHLOROETHANE          |           | 6 U[]     | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |           | 6 U[]     | 6 U []    |
| 1,1-DICHLOROETHANE             |           | 6 U[]     | 6 U []    |
| 1,1-DICHLOROETHENE             |           | 6 U[]     | 6 U []    |
| 1,1-DICHLOROPROPENE            |           | 6 U[]     | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         |           | 6 U[]     | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         |           | 6 U[]     | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         |           | 6 U[]     | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         |           | 6 U[]     | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    |           | 6 U[]     | 6 U []    |
| 1,2-DIBROMOETHANE              |           | 6 U[]     | 6 U []    |
| 1,2-DICHLOROBENZENE            |           | 6 U[]     | 6 U []    |
| 1,2-DICHLOROETHANE             |           | 6 U[]     | 6 U []    |
| 1,2-DICHLOROPROPANE            |           | 6 U[]     | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         |           | 6 U[]     | 6 U []    |
| 1,3-DICHLOROBENZENE            |           | 6 U[]     | 6 U []    |
| 1,3-DICHLOROPROPANE            |           | 6 U[]     | 6 U []    |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            |           | 6 U[]     | 6 U []    |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            |           | 6 U[]     | 6 U []    |
| 2-BUTANONE                     |           | 61 U []   | 62 U []   |
| 2-CHLOROETHYL VINYL ETHER      |           | 6 U[]     | 6 U []    |
|                                |           |           |           |

February 2013 Page A-66

---

6 U [--]

6 U [--]

| LOCATION                | SB-050    | SB-055    | SB-055    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-50-SS  | SB-55-05  | SB-55-10  |
| SAMPLE DATE             | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| 2-HEXANONE              |           | 61 U []   | 62 U []   |
| 4-CHLOROTOLUENE         |           | 6 U[]     | 6 U []    |
| 4-ISOPROPYLTOLUENE      |           | 6 U[]     | 6 U []    |
| 4-METHYL-2-PENTANONE    |           | 61 U[]    | 62 U []   |
| ACETONE                 |           | 61 UJ []  | 62 UJ []  |
| BENZENE                 | -         | 6 U []    | 6 U []    |
| BROMOBENZENE            |           | 6 U[]     | 6 U []    |
| BROMOCHLOROMETHANE      |           | 6 U[]     | 6 U []    |
| BROMODICHLOROMETHANE    |           | 6 U[]     | 6 U []    |
| BROMOFORM               |           | 6 U[]     | 6 U []    |
| BROMOMETHANE            |           | 6 U[]     | 6 U []    |
| CARBON DISULFIDE        |           | 6 U[]     | 6 U []    |
| CARBON TETRACHLORIDE    | -         | 6 U []    | 6 U []    |
| CHLOROBENZENE           |           | 6 U []    | 6 U []    |
| CHLORODIBROMOMETHANE    | -         | 6 U []    | 6 U []    |
| CHLOROETHANE            |           | 6 U[]     | 6 U []    |
| CHLOROFORM              | -         | 6 U []    | 6 U []    |
| CHLOROMETHANE           |           | 6 U[]     | 6 U []    |
| CIS-1,2-DICHLOROETHENE  |           | 6 U[]     | 6 U []    |
| CIS-1,3-DICHLOROPROPENE |           | 6 U[]     | 6 U []    |
| DIBROMOMETHANE          |           | 6 U[]     | 6 U []    |
| DICHLORODIFLUOROMETHANE |           | 6 U[]     | 6 U []    |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            |           | 6 U[]     | 6 U []    |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        |           | 6 U[]     | 6 U []    |
| M+P-XYLENES             |           | 12 U []   | 12 U []   |
| METHYL TERT-BUTYL ETHER |           | 6 U[]     | 6 U []    |
| METHYLENE CHLORIDE      |           | 7 B []    | 6 U []    |
| NAPHTHALENE             |           | 6 U[]     | 6 U []    |
| N-BUTYLBENZENE          |           | 6 U[]     | 6 U []    |
| N-PROPYLBENZENE         |           | 6 U[]     | 6 U []    |
| O-XYLENE                |           | 6 U[]     | 6 U []    |
| SEC-BUTYLBENZENE        |           | 6 U[]     | 6 U []    |
| STYRENE                 |           | 6 U[]     | 6 U []    |
| TERT-AMYL METHYL ETHER  |           |           |           |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| LOCATION                                 | SB-050    | SB-055       | SB-055        |
|------------------------------------------|-----------|--------------|---------------|
| SAMPLE ID                                | SB-50-SS  | SB-55-05     | SB-55-10      |
| SAMPLE DATE                              | 9/15/2004 | 9/15/2004    | 9/15/2004     |
| TERT-BUTYLBENZENE                        |           | 6 U []       | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |           |              |               |
| TETRACHLOROETHENE                        |           | 6 U []       | 6 U []        |
| TOLUENE                                  |           | 6 U []       | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |           |              |               |
| TOTAL XYLENES                            |           |              |               |
| TRANS-1,2-DICHLOROETHENE                 |           | 6 U []       | 6 U []        |
| TRANS-1,3-DICHLOROPROPENE                |           | 6 U []       | 6 U []        |
| TRICHLOROETHENE                          |           | 6 U[]        | 6 U []        |
| TRICHLOROFLUOROMETHANE                   |           | 6 U[]        | 6 U []        |
| VINYL ACETATE                            |           | 6 U []       | 6 U []        |
| VINYL CHLORIDE                           |           | 6 U []       | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •         |              |               |
| 1-METHYLNAPHTHALENE                      |           |              |               |
| 2-METHYLNAPHTHALENE                      |           | 410 U []     | 420 U []      |
| ACENAPHTHENE                             |           | 410 U []     | 420 U []      |
| ACENAPHTHYLENE                           |           | 410 U []     | 420 U []      |
| ANTHRACENE                               |           | 410 U []     | 420 U []      |
| BAP EQUIVALENT-HALFND                    |           | 410 U []     | 463.85 []     |
| BAP EQUIVALENT-POS                       |           | 410 U []     | 253.85 []     |
| BAP EQUIVALENT-UCL                       |           | 62.744778 [] | 290.209311 [] |
| BENZO(A)ANTHRACENE                       |           | 410 U []     | 220 J []      |
| BENZO(A)PYRENE                           |           | 410 U []     | 200 J []      |
| BENZO(B)FLUORANTHENE                     |           | 410 U []     | 190 J []      |
| BENZO(G,H,I)PERYLENE                     |           | 410 U []     | 140 J []      |
| BENZO(K)FLUORANTHENE                     |           | 410 U []     | 160 J []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |              |               |
| C1-FLUORANTHENES/PYRENES                 |           |              |               |
| C1-FLUORENES                             |           |              |               |
| C1-PHENANTHRENES/ANTHRACENES             |           |              |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |              |               |
| C2-FLUORENES                             |           |              |               |
| C2-NAPHTHALENES                          |           |              |               |
| C2-PHENANTHRENES/ANTHRACENES             |           |              |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |              |               |
| C3-FLUORENES                             |           |              |               |
| C3-NAPHTHALENES                          |           |              |               |
|                                          |           |              |               |

February 2013 Page A-68

--

---

| SUIL                             |           | 1         | T         |
|----------------------------------|-----------|-----------|-----------|
| LOCATION                         | SB-050    | SB-055    | SB-055    |
| SAMPLE ID                        | SB-50-SS  | SB-55-05  | SB-55-10  |
| SAMPLE DATE                      | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         |           | 410 U []  | 250 J []  |
| DIBENZO(A,H)ANTHRACENE           |           | 410 U []  | 420 U []  |
| FLUORANTHENE                     |           | 410 U []  | 490 []    |
| FLUORENE                         |           | 410 U []  | 420 U []  |
| INDENO(1,2,3-CD)PYRENE           |           | 410 U []  | 110 J []  |
| NAPHTHALENE                      |           | 410 U []  | 420 U []  |
| PHENANTHRENE                     |           | 410 U []  | 190 J []  |
| PYRENE                           |           | 410 U []  | 370 J []  |
| TOTAL PAHS                       |           | 0 U []    | 2320 []   |
| PESTICIDES/PCBS (UG/KG)          | •         | •         |           |
| 4,4'-DDD                         |           | 24 U []   |           |
| 4,4'-DDE                         |           | 24 U []   |           |
| 4,4'-DDT                         |           | 24 U[]    |           |
| ALDRIN                           |           | 24 U []   |           |
| ALPHA-BHC                        |           | 24 U[]    |           |
| ALPHA-CHLORDANE                  |           | 24 U[]    |           |
| AROCLOR-1016                     |           | 300 U []  | 310 U []  |
| AROCLOR-1221                     |           | 300 U []  | 310 U []  |
| AROCLOR-1232                     |           | 300 U []  | 310 U []  |
| AROCLOR-1242                     |           | 300 U []  | 310 U []  |
| AROCLOR-1248                     |           | 300 U []  | 310 U []  |
| AROCLOR-1254                     |           | 300 U []  | 310 U []  |
| AROCLOR-1260                     |           | 300 U []  | 310 U []  |
| BETA-BHC                         |           | 24 U[]    |           |
| DELTA-BHC                        |           | 24 U[]    |           |
| DIELDRIN                         |           | 24 U[]    |           |
| ENDOSULFAN I                     |           | 24 U []   |           |
| ENDOSULFAN II                    |           | 24 U[]    |           |
| ENDOSULFAN SULFATE               |           | 24 U []   |           |
| ENDRIN                           |           | 24 U []   |           |
| ENDRIN ALDEHYDE                  |           | 24 U []   |           |
| ENDRIN KETONE                    |           | 24 U []   |           |
| GAMMA-BHC (LINDANE)              |           | 24 U []   |           |
| GAMMA-CHLORDANE                  |           | 24 U []   |           |
| HEPTACHLOR                       |           | 24 U []   |           |

February 2013 Page A-69

| LOCATION           | SB-050    | SB-055    | SB-055    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-50-SS  | SB-55-05  | SB-55-10  |
| SAMPLE DATE        | 9/15/2004 | 9/15/2004 | 9/15/2004 |
| HEPTACHLOR EPOXIDE |           | 24 U[]    |           |
| METHOXYCHLOR       | -         | 24 U[]    |           |
| TOTAL AROCLOR      | -         | 0 U[]     | 0 U []    |
| TOTAL DDT POS      | -         | 0 U[]     |           |
| TOXAPHENE          |           | 600 U []  |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | <br>12000 U [] | 12000 U [] |
|-------------------------|----------------|------------|
| GASOLINE RANGE ORGANICS | <br>120 U []   | 120 U []   |
| TPH (C09-C36)           | <br>           |            |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-055     | SB-055       | SB-055       |
|------------------------------|------------|--------------|--------------|
| SAMPLE ID                    | SB-55-SS   | F-SB-55RE-10 | F-SB-55RE-11 |
| SAMPLE DATE                  | 9/15/2004  | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)               | •          | •            |              |
| ANTIMONY                     | 2.7 UR []  |              |              |
| ARSENIC                      | 1.5 L []   |              |              |
| BARIUM                       |            |              |              |
| BERYLLIUM                    | 2.7 U[]    |              |              |
| CADMIUM                      | 2.7 UL []  |              |              |
| CHROMIUM                     | 13.0 L []  |              |              |
| COBALT                       |            |              |              |
| COPPER                       | 74.0 []    |              |              |
| LEAD                         | 420 J []   |              |              |
| MERCURY                      | 0.11 UL [] |              |              |
| MOLYBDENUM                   |            |              |              |
| NICKEL                       | 13.0 []    |              |              |
| SELENIUM                     | 2.7 UL []  |              |              |
| SILVER                       | 2.7 UR []  |              |              |
| THALLIUM                     | 2.1 UL []  |              |              |
| VANADIUM                     |            |              |              |
| ZINC                         | 58.0 J []  |              |              |
| MISCELLANEOUS PARAMETERS     | •          | •            |              |
| PERCENT SOLIDS (%)           |            |              |              |
| TOTAL SOLIDS (%)             |            |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |            |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |            |              |              |
| PH (S.U.)                    |            |              |              |
| MERCURY (METHYL) (UG/KG)     |            |              |              |
| SEMIVOLATILES (UG/KG)        | •          | •            |              |
| 1,1-BIPHENYL                 | 350 U []   |              |              |
| 1,2,4-TRICHLOROBENZENE       |            |              |              |
| 1,2-DICHLOROBENZENE          |            |              |              |
| 1,3-DICHLOROBENZENE          |            |              |              |
| 1,4-DICHLOROBENZENE          |            |              |              |
| 1,4-DIOXANE                  |            |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 350 U []   |              |              |
| 2,4,5-TRICHLOROPHENOL        | 890 U []   |              |              |
| 2,4,6-TRICHLOROPHENOL        | 350 U []   |              |              |
| 2,4-DICHLOROPHENOL           | 350 U []   |              |              |
| 2,4-DIMETHYLPHENOL           | 350 U []   |              |              |
| 2,4-DINITROPHENOL            | 890 U []   |              |              |
|                              |            |              |              |

| LOCATION                    | SB-055    | SB-055       | SB-055       |
|-----------------------------|-----------|--------------|--------------|
| SAMPLE ID                   | SB-55-SS  | F-SB-55RE-10 | F-SB-55RE-11 |
| SAMPLE DATE                 | 9/15/2004 | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          | 350 U []  |              |              |
| 2,6-DINITROTOLUENE          | 350 U []  |              |              |
| 2-CHLORONAPHTHALENE         | 350 U []  |              |              |
| 2-CHLOROPHENOL              | 350 U []  |              |              |
| 2-METHYLPHENOL              | 350 U []  |              |              |
| 2-NITROANILINE              | 890 U []  |              |              |
| 2-NITROPHENOL               | 350 U []  |              |              |
| 3&4-METHYLPHENOL            | 350 U []  |              |              |
| 3,3'-DICHLOROBENZIDINE      | 350 U []  |              |              |
| 3-NITROANILINE              | 890 U []  |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 820 U []  |              |              |
| 4-BROMOPHENYL PHENYL ETHER  | 350 U []  |              |              |
| 4-CHLORO-3-METHYLPHENOL     | 350 U []  |              |              |
| 4-CHLOROANILINE             | 350 U []  |              |              |
| 4-CHLOROPHENYL PHENYL ETHER | 350 U []  |              |              |
| 4-NITROANILINE              | 890 U []  |              |              |
| 4-NITROPHENOL               | 890 U []  |              |              |
| ACETOPHENONE                | 350 U []  |              |              |
| ANILINE                     |           |              |              |
| ATRAZINE                    | 350 U []  |              |              |
| AZOBENZENE                  |           |              |              |
| BENZIDINE                   |           |              |              |
| BENZOIC ACID                |           |              |              |
| BENZYL ALCOHOL              |           |              |              |
| BIS(2-CHLOROETHOXY)METHANE  | 350 U []  |              |              |
| BIS(2-CHLOROETHYL)ETHER     | 350 U []  |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 350 U []  |              |              |
| BUTYL BENZYL PHTHALATE      | 350 U []  |              |              |
| CAPROLACTAM                 | 350 U []  |              |              |
| CARBAZOLE                   | 350 U []  |              |              |
| DIBENZOFURAN                | 350 U []  |              |              |
| DIETHYL PHTHALATE           | 350 U []  |              |              |
| DIMETHYL PHTHALATE          | 350 U []  |              |              |
| DI-N-BUTYL PHTHALATE        | 350 U []  |              |              |
| DI-N-OCTYL PHTHALATE        | 350 U []  |              |              |
| HEXACHLOROBENZENE           | 350 U []  |              |              |
| HEXACHLOROBUTADIENE         | 350 U []  |              |              |
| HEXACHLOROCYCLOPENTADIENE   | 350 U []  |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-055    | SB-055       | SB-055       |
|--------------------------------|-----------|--------------|--------------|
| SAMPLE ID                      | SB-55-SS  | F-SB-55RE-10 | F-SB-55RE-11 |
| SAMPLE DATE                    | 9/15/2004 | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               | 350 U []  |              |              |
| ISOPHORONE                     | 350 U []  |              |              |
| NITROBENZENE                   | 350 U []  |              |              |
| N-NITROSODIMETHYLAMINE         |           |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 350 U []  |              |              |
| N-NITROSODIPHENYLAMINE         | 350 U []  |              |              |
| PENTACHLOROPHENOL              | 890 U []  |              |              |
| PHENOL                         | 350 U []  |              |              |
| PYRIDINE                       |           |              |              |
| VOLATILES (UG/KG)              | •         | •            |              |
| 1,1,1,2-TETRACHLOROETHANE      | 5 U[]     |              |              |
| 1,1,1-TRICHLOROETHANE          | 5 U[]     |              |              |
| 1,1,2,2-TETRACHLOROETHANE      | 5 U[]     |              |              |
| 1,1,2-TRICHLOROETHANE          | 5 U[]     |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 5 U[]     |              |              |
| 1,1-DICHLOROETHANE             | 5 U[]     |              |              |
| 1,1-DICHLOROETHENE             | 5 U[]     |              |              |
| 1,1-DICHLOROPROPENE            | 5 U[]     |              |              |
| 1,2,3-TRICHLOROBENZENE         | 5 U[]     |              |              |
| 1,2,3-TRICHLOROPROPANE         | 5 U[]     |              |              |
| 1,2,3-TRIMETHYLBENZENE         |           |              |              |
| 1,2,4-TRICHLOROBENZENE         | 5 U[]     |              |              |
| 1,2,4-TRIMETHYLBENZENE         | 5 U[]     |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 5 U[]     |              |              |
| 1,2-DIBROMOETHANE              | 5 U[]     |              |              |
| 1,2-DICHLOROBENZENE            | 5 U[]     |              |              |
| 1,2-DICHLOROETHANE             | 5 U[]     |              |              |
| 1,2-DICHLOROPROPANE            | 5 U[]     |              |              |
| 1,3,5-TRIMETHYLBENZENE         | 5 U[]     |              |              |
| 1,3-DICHLOROBENZENE            | 5 U[]     |              |              |
| 1,3-DICHLOROPROPANE            | 5 U[]     |              |              |
| 1,3-DICHLOROPROPENE            |           |              |              |
| 1,4-DICHLOROBENZENE            | 5 U[]     |              |              |
| 1,4-DIOXANE                    |           |              |              |
| 2,2-DICHLOROPROPANE            | 5 U[]     |              |              |
| 2-BUTANONE                     | 53 U []   |              |              |
| 2-CHLOROETHYL VINYL ETHER      | 5 U[]     |              |              |
| ·                              |           |              |              |

February 2013 Page A-73

5 U [--]

---

| LOCATION                | SB-055    | SB-055       | SB-055       |
|-------------------------|-----------|--------------|--------------|
| SAMPLE ID               | SB-55-SS  | F-SB-55RE-10 | F-SB-55RE-11 |
| SAMPLE DATE             | 9/15/2004 | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              | 53 U []   |              |              |
| 4-CHLOROTOLUENE         | 5 U[]     |              |              |
| 4-ISOPROPYLTOLUENE      | 5 U[]     |              |              |
| 4-METHYL-2-PENTANONE    | 53 U []   |              |              |
| ACETONE                 | 53 UJ []  |              |              |
| BENZENE                 | 5 U[]     |              |              |
| BROMOBENZENE            | 5 U[]     |              |              |
| BROMOCHLOROMETHANE      | 5 U[]     |              |              |
| BROMODICHLOROMETHANE    | 5 U[]     |              |              |
| BROMOFORM               | 5 U[]     |              |              |
| BROMOMETHANE            | 5 U[]     |              |              |
| CARBON DISULFIDE        | 5 U[]     |              |              |
| CARBON TETRACHLORIDE    | 5 U[]     |              |              |
| CHLOROBENZENE           | 5 U[]     |              |              |
| CHLORODIBROMOMETHANE    | 5 U[]     |              |              |
| CHLOROETHANE            | 5 U[]     |              |              |
| CHLOROFORM              | 5 U[]     |              |              |
| CHLOROMETHANE           | 5 U[]     |              |              |
| CIS-1,2-DICHLOROETHENE  | 5 U[]     |              |              |
| CIS-1,3-DICHLOROPROPENE | 5 U[]     |              |              |
| DIBROMOMETHANE          | 5 U[]     |              |              |
| DICHLORODIFLUOROMETHANE | 5 U[]     |              |              |
| DIISOPROPYL ETHER       |           |              |              |
| ETHYL TERT-BUTYL ETHER  |           |              |              |
| ETHYLBENZENE            | 5 U[]     |              |              |
| FLUORODICHLOROMETHANE   |           |              |              |
| HEXACHLOROBUTADIENE     |           |              |              |
| ISOPROPYLBENZENE        | 5 U[]     |              |              |
| M+P-XYLENES             | 11 U []   |              |              |
| METHYL TERT-BUTYL ETHER | 5 U[]     |              |              |
| METHYLENE CHLORIDE      | 5 U[]     |              |              |
| NAPHTHALENE             | 5 U[]     |              |              |
| N-BUTYLBENZENE          | 5 U[]     |              |              |
| N-PROPYLBENZENE         | 5 U[]     |              |              |
| O-XYLENE                | 5 U[]     |              |              |
| SEC-BUTYLBENZENE        | 5 U[]     |              |              |
| STYRENE                 | 5 U[]     |              |              |
| TERT-AMYL METHYL ETHER  |           |              |              |

| LOCATION                                 | SB-055        | SB-055           | SB-055           |
|------------------------------------------|---------------|------------------|------------------|
| SAMPLE ID                                | SB-55-SS      | F-SB-55RE-10     | F-SB-55RE-11     |
| SAMPLE DATE                              | 9/15/2004     | 9/18/2009        | 9/18/2009        |
| TERT-BUTYLBENZENE                        | 5 U[]         |                  |                  |
| TERTIARY-BUTYL ALCOHOL                   |               |                  |                  |
| TETRACHLOROETHENE                        | 5 U[]         |                  |                  |
| TOLUENE                                  | 5 U[]         |                  |                  |
| TOTAL 1,2-DICHLOROETHENE                 |               |                  |                  |
| TOTAL XYLENES                            |               |                  |                  |
| TRANS-1,2-DICHLOROETHENE                 | 5 U[]         |                  |                  |
| TRANS-1,3-DICHLOROPROPENE                | 5 U[]         |                  |                  |
| TRICHLOROETHENE                          | 5 U[]         |                  |                  |
| TRICHLOROFLUOROMETHANE                   | 5 U[]         |                  |                  |
| VINYL ACETATE                            | 5 U[]         |                  |                  |
| VINYL CHLORIDE                           | 5 U[]         |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •             |                  |                  |
| 1-METHYLNAPHTHALENE                      |               |                  |                  |
| 2-METHYLNAPHTHALENE                      | 350 U[]       |                  |                  |
| ACENAPHTHENE                             | 350 U[]       |                  |                  |
| ACENAPHTHYLENE                           | 350 U[]       |                  |                  |
| ANTHRACENE                               | 350 U[]       |                  |                  |
| BAP EQUIVALENT-HALFND                    | 313.13 []     | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-POS                       | 120.63 []     | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-UCL                       | 179.530336 [] |                  |                  |
| BENZO(A)ANTHRACENE                       | 110 J[]       | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 99 J []       | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 94 J []       | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     | 70 J[]        |                  |                  |
| BENZO(K)FLUORANTHENE                     | 110 J []      | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |               |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |               |                  |                  |
| C1-FLUORENES                             |               |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |               |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |               |                  |                  |
| C2-FLUORENES                             |               |                  |                  |
| C2-NAPHTHALENES                          |               |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |               |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |               |                  |                  |
| C3-FLUORENES                             |               |                  |                  |
| C3-NAPHTHALENES                          |               |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |               |                  |                  |

February 2013 Page A-75

| COLE                             |           |                  |                  |
|----------------------------------|-----------|------------------|------------------|
| LOCATION                         | SB-055    | SB-055           | SB-055           |
| SAMPLE ID                        | SB-55-SS  | F-SB-55RE-10     | F-SB-55RE-11     |
| SAMPLE DATE                      | 9/15/2004 | 9/18/2009        | 9/18/2009        |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |                  |                  |
| C4-NAPHTHALENES                  |           |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES     |           |                  |                  |
| CHRYSENE                         | 130 J []  | 1.00 U [MDL=1]   | 1.10 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 350 U []  | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| FLUORANTHENE                     | 270 J []  |                  |                  |
| FLUORENE                         | 350 U []  |                  |                  |
| INDENO(1,2,3-CD)PYRENE           | 350 U []  | 1.70 U [MDL=1.7] | 1.80 U [MDL=1.8] |
| NAPHTHALENE                      | 350 U []  |                  |                  |
| PHENANTHRENE                     | 160 J []  |                  |                  |
| PYRENE                           | 160 J []  |                  |                  |
| TOTAL PAHS                       | 1203 []   | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    |
| PESTICIDES/PCBS (UG/KG)          | •         |                  |                  |
| 4,4'-DDD                         | 42 U []   |                  |                  |
| 4,4'-DDE                         | 42 U []   |                  |                  |
| 4,4'-DDT                         | 42 U []   |                  |                  |
| ALDRIN                           | 42 U []   |                  |                  |
| ALPHA-BHC                        | 42 U []   |                  |                  |
| ALPHA-CHLORDANE                  | 42 U []   |                  |                  |
| AROCLOR-1016                     | 260 U []  |                  |                  |
| AROCLOR-1221                     | 260 U []  |                  |                  |
| AROCLOR-1232                     | 260 U []  |                  |                  |
| AROCLOR-1242                     | 260 U []  |                  |                  |
| AROCLOR-1248                     | 260 U []  |                  |                  |
| AROCLOR-1254                     | 260 U []  |                  |                  |
| AROCLOR-1260                     | 260 U []  |                  |                  |
| BETA-BHC                         | 42 U []   |                  |                  |
| DELTA-BHC                        | 42 U []   |                  |                  |
| DIELDRIN                         | 42 U []   |                  |                  |
| ENDOSULFAN I                     | 42 U []   |                  |                  |
| ENDOSULFAN II                    | 42 U []   |                  |                  |
| ENDOSULFAN SULFATE               | 42 U []   |                  |                  |
| ENDRIN                           | 42 U []   |                  |                  |
| ENDRIN ALDEHYDE                  | 42 U []   |                  |                  |
| ENDRIN KETONE                    | 42 U []   |                  |                  |
| GAMMA-BHC (LINDANE)              | 42 U []   |                  |                  |
| GAMMA-CHLORDANE                  | 42 U []   |                  |                  |
| HEPTACHLOR                       | 42 U []   |                  |                  |

| LOCATION           | SB-055    | SB-055       | SB-055       |
|--------------------|-----------|--------------|--------------|
| SAMPLE ID          | SB-55-SS  | F-SB-55RE-10 | F-SB-55RE-11 |
| SAMPLE DATE        | 9/15/2004 | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR EPOXIDE | 42 U []   |              |              |
| METHOXYCHLOR       | 42 U []   |              |              |
| TOTAL AROCLOR      | 0 U[]     |              |              |
| TOTAL DDT POS      | 0 U[]     |              |              |
| TOXAPHENE          | 1000 U [] |              |              |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 13000 [] | - |  |
|-------------------------|----------|---|--|
| GASOLINE RANGE ORGANICS | 110 U [] | ŀ |  |
| TPH (C09-C36)           |          |   |  |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |            |            |
|------------------------------|------------|------------|------------|
| LOCATION                     | SB-056     | SB-056     | SB-056     |
| SAMPLE ID                    | SB-56-05   | SB-56-10   | SB-56-15   |
| SAMPLE DATE                  | 9/13/2004  | 9/13/2004  | 9/13/2004  |
| METALS (MG/KG)               |            |            |            |
| ANTIMONY                     | 2.6 UR []  | 2.9 UR []  | 2.8 UR []  |
| ARSENIC                      | 0.53 UL [] | 0.58 UL [] | 0.56 UL [] |
| BARIUM                       |            |            |            |
| BERYLLIUM                    | 2.6 U[]    | 2.9 U []   | 2.8 U []   |
| CADMIUM                      | 2.6 UL []  | 2.9 UL []  | 2.8 UL []  |
| CHROMIUM                     | 15.0 L []  | 10.0 L []  | 9.5 L []   |
| COBALT                       |            |            |            |
| COPPER                       | 10.0 []    | 4.7 K []   | 3.9 K []   |
| LEAD                         | 3.2 J []   | 2.9 UJ []  | 2.8 UJ []  |
| MERCURY                      | 0.11 UL [] | 0.12 UL [] | 0.11 UL [] |
| MOLYBDENUM                   |            |            |            |
| NICKEL                       | 11.0 []    | 5.3 K []   | 6.0 []     |
| SELENIUM                     | 2.6 UL []  | 2.9 UL []  | 2.8 UL []  |
| SILVER                       | 2.6 UR []  | 2.9 UR []  | 2.8 UR []  |
| THALLIUM                     | 2.1 UL []  | 2.3 UL []  | 2.2 UL []  |
| VANADIUM                     |            |            |            |
| ZINC                         | 26.0 UL [] | 29.0 UL [] | 28.0 UL [] |
| MISCELLANEOUS PARAMETERS     |            |            |            |
| PERCENT SOLIDS (%)           |            |            |            |
| TOTAL SOLIDS (%)             |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |
| PH (S.U.)                    |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |
| SEMIVOLATILES (UG/KG)        | •          |            |            |
| 1,1-BIPHENYL                 | 380 U []   | 390 U []   | 400 U []   |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |
| 1,4-DIOXANE                  |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 380 ∪ []   | 390 U []   | 400 U []   |
| 2,4,5-TRICHLOROPHENOL        | 940 U[]    | 970 U []   | 1000 U []  |
| 2,4,6-TRICHLOROPHENOL        | 380 U[]    | 390 U []   | 400 U []   |
| 2,4-DICHLOROPHENOL           | 380 U[]    | 390 U []   | 400 U []   |
| 2,4-DIMETHYLPHENOL           | 380 U[]    | 390 U []   | 400 U []   |
| 2,4-DINITROPHENOL            | 940 U[]    | 970 U []   | 1000 U []  |

| LOCATION                    | SB-056    | SB-056    | SB-056    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-56-05  | SB-56-10  | SB-56-15  |
| SAMPLE DATE                 | 9/13/2004 | 9/13/2004 | 9/13/2004 |
| 2,4-DINITROTOLUENE          | 380 U []  | 390 U[]   | 400 U []  |
| 2,6-DINITROTOLUENE          | 380 U []  | 390 U[]   | 400 U []  |
| 2-CHLORONAPHTHALENE         | 380 U []  | 390 U[]   | 400 U []  |
| 2-CHLOROPHENOL              | 380 U []  | 390 U[]   | 400 U []  |
| 2-METHYLPHENOL              | 380 U []  | 390 U[]   | 400 U []  |
| 2-NITROANILINE              | 940 U []  | 970 U[]   | 1000 U [] |
| 2-NITROPHENOL               | 380 U []  | 390 U[]   | 400 U []  |
| 3&4-METHYLPHENOL            | 380 U []  | 390 U[]   | 400 U []  |
| 3,3'-DICHLOROBENZIDINE      | 380 U []  | 390 U[]   | 400 U []  |
| 3-NITROANILINE              | 940 U []  | 970 U[]   | 1000 U [] |
| 4,6-DINITRO-2-METHYLPHENOL  | 860 U []  | 890 U[]   | 930 U []  |
| 4-BROMOPHENYL PHENYL ETHER  | 380 U []  | 390 U[]   | 400 U []  |
| 4-CHLORO-3-METHYLPHENOL     | 380 U []  | 390 U[]   | 400 U []  |
| 4-CHLOROANILINE             | 380 U []  | 390 U[]   | 400 U []  |
| 4-CHLOROPHENYL PHENYL ETHER | 380 U []  | 390 U []  | 400 U []  |
| 4-NITROANILINE              | 940 U []  | 970 U []  | 1000 U [] |
| 4-NITROPHENOL               | 940 U []  | 970 U []  | 1000 U [] |
| ACETOPHENONE                | 380 U []  | 390 U []  | 400 U []  |
| ANILINE                     |           |           |           |
| ATRAZINE                    | 380 U []  | 390 U []  | 400 U []  |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  | 380 U []  | 390 U []  | 400 U []  |
| BIS(2-CHLOROETHYL)ETHER     | 380 U []  | 390 U []  | 400 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 380 U []  | 390 U []  | 400 U []  |
| BUTYL BENZYL PHTHALATE      | 380 U []  | 390 U []  | 400 U []  |
| CAPROLACTAM                 | 380 U []  | 390 U []  | 400 U []  |
| CARBAZOLE                   | 380 U []  | 390 U []  | 400 U []  |
| DIBENZOFURAN                | 380 U []  | 390 U []  | 400 U []  |
| DIETHYL PHTHALATE           | 380 U []  | 390 U []  | 400 U []  |
| DIMETHYL PHTHALATE          | 380 U[]   | 390 U []  | 400 U []  |
| DI-N-BUTYL PHTHALATE        | 380 U[]   | 390 U []  | 400 U []  |
| DI-N-OCTYL PHTHALATE        | 380 U[]   | 390 U []  | 400 U []  |
| HEXACHLOROBENZENE           | 380 U[]   | 390 U []  | 400 U []  |
| HEXACHLOROBUTADIENE         | 380 U[]   | 390 U []  | 400 U []  |
| HEXACHLOROCYCLOPENTADIENE   | 380 U []  | 390 U []  | 400 U []  |

| SOIL                           |           |           |           |
|--------------------------------|-----------|-----------|-----------|
| LOCATION                       | SB-056    | SB-056    | SB-056    |
| SAMPLE ID                      | SB-56-05  | SB-56-10  | SB-56-15  |
| SAMPLE DATE                    | 9/13/2004 | 9/13/2004 | 9/13/2004 |
| HEXACHLOROETHANE               | 380 U []  | 390 U []  | 400 U []  |
| ISOPHORONE                     | 380 U []  | 390 U []  | 400 U []  |
| NITROBENZENE                   | 380 U []  | 390 U []  | 400 U []  |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     | 380 U []  | 390 U []  | 400 U []  |
| N-NITROSODIPHENYLAMINE         | 380 U []  | 390 U []  | 400 U []  |
| PENTACHLOROPHENOL              | 940 U []  | 970 U []  | 1000 U [] |
| PHENOL                         | 910 []    | 730 []    | 770 []    |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              | <u> </u>  |           |           |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 6 U []    |
| 1,1,1-TRICHLOROETHANE          | 6 U []    | 6 U[]     | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 6 U []    |
| 1,1,2-TRICHLOROETHANE          | 6 U[]     | 6 U[]     | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U []    | 6 U[]     | 6 U []    |
| 1,1-DICHLOROETHANE             | 6 U[]     | 6 U []    | 6 U []    |
| 1,1-DICHLOROETHENE             | 6 U []    | 6 U[]     | 6 U []    |
| 1,1-DICHLOROPROPENE            | 6 U[]     | 6 U []    | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]     | 6 U[]     | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]     | 6 U []    | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         | 6 ∪[]     | 6 U []    | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]     | 6 U []    | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U []    | 6 U []    | 6 U []    |
| 1,2-DIBROMOETHANE              | 6 U []    | 6 U []    | 6 U []    |
| 1,2-DICHLOROBENZENE            | 6 U[]     | 6 U []    | 6 U []    |
| 1,2-DICHLOROETHANE             | 6 U[]     | 6 U []    | 6 U []    |
| 1,2-DICHLOROPROPANE            | 6 U []    | 6 U []    | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         | 6 U []    | 6 U[]     | 6 U []    |
| 1,3-DICHLOROBENZENE            | 6 U[]     | 6 U []    | 6 U []    |
| 1,3-DICHLOROPROPANE            | 6 U[]     | 6 U []    | 6 U []    |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            | 6 U []    | 6 U []    | 6 U []    |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            | 6 U []    | 6 U[]     | 6 U []    |
| 2-BUTANONE                     | 57 U[]    | 58 U []   | 59 U []   |
| 2-CHLOROETHYL VINYL ETHER      | 6 U []    | 6 U []    | 6 U []    |
| 2-CHLOROTOLUENE                | 6 U []    | 6 U[]     | 6 U []    |

| LOCATION                | SB-056    | SB-056    | SB-056    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-56-05  | SB-56-10  | SB-56-15  |
| SAMPLE DATE             | 9/13/2004 | 9/13/2004 | 9/13/2004 |
| 2-HEXANONE              | 57 U[]    | 58 U []   | 59 U []   |
| 4-CHLOROTOLUENE         | 6 U []    | 6 U []    | 6 U []    |
| 4-ISOPROPYLTOLUENE      | 6 U []    | 6 U[]     | 6 U []    |
| 4-METHYL-2-PENTANONE    | 57 U []   | 58 U[]    | 59 U []   |
| ACETONE                 | 57 UJ []  | 58 UJ []  | 59 UJ []  |
| BENZENE                 | 6 U[]     | 6 U[]     | 6 U []    |
| BROMOBENZENE            | 6 U[]     | 6 U[]     | 6 U []    |
| BROMOCHLOROMETHANE      | 6 U[]     | 6 U[]     | 6 U []    |
| BROMODICHLOROMETHANE    | 6 U[]     | 6 U[]     | 6 U []    |
| BROMOFORM               | 6 U[]     | 6 U[]     | 6 U []    |
| BROMOMETHANE            | 6 U[]     | 6 U[]     | 6 U []    |
| CARBON DISULFIDE        | 6 U[]     | 6 U[]     | 6 U []    |
| CARBON TETRACHLORIDE    | 6 U[]     | 6 U[]     | 6 U []    |
| CHLOROBENZENE           | 6 U[]     | 6 U[]     | 6 U []    |
| CHLORODIBROMOMETHANE    | 6 U[]     | 6 U[]     | 6 U []    |
| CHLOROETHANE            | 6 U[]     | 6 U[]     | 6 U []    |
| CHLOROFORM              | 6 U[]     | 6 U[]     | 6 U []    |
| CHLOROMETHANE           | 6 U[]     | 6 U[]     | 6 U []    |
| CIS-1,2-DICHLOROETHENE  | 6 U[]     | 6 U[]     | 6 U []    |
| CIS-1,3-DICHLOROPROPENE | 6 U[]     | 6 U[]     | 6 U []    |
| DIBROMOMETHANE          | 6 U[]     | 6 U[]     | 6 U []    |
| DICHLORODIFLUOROMETHANE | 6 U[]     | 6 U[]     | 6 U []    |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            | 6 U[]     | 6 U[]     | 6 U []    |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        | 6 U[]     | 6 U[]     | 6 U []    |
| M+P-XYLENES             | 11 U[]    | 12 U []   | 12 U []   |
| METHYL TERT-BUTYL ETHER | 6 U[]     | 6 U[]     | 6 U []    |
| METHYLENE CHLORIDE      | 6 U[]     | 6 U[]     | 6 U[]     |
| NAPHTHALENE             | 6 U[]     | 6 U[]     | 6 U []    |
| N-BUTYLBENZENE          | 6 U[]     | 6 U[]     | 6 U[]     |
| N-PROPYLBENZENE         | 6 U[]     | 6 U[]     | 6 U[]     |
| O-XYLENE                | 6 U[]     | 6 U[]     | 6 U []    |
| SEC-BUTYLBENZENE        | 6 U[]     | 6 U[]     | 6 U []    |
| STYRENE                 | 6 U[]     | 6 U[]     | 6 U[]     |
| TERT-AMYL METHYL ETHER  |           |           |           |

| LOCATION                                 | SB-056        | SB-056        | SB-056        |
|------------------------------------------|---------------|---------------|---------------|
| SAMPLE ID                                | SB-56-05      | SB-56-10      | SB-56-15      |
| SAMPLE DATE                              | 9/13/2004     | 9/13/2004     | 9/13/2004     |
| TERT-BUTYLBENZENE                        | 6 U[]         | 6 U []        | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |               |               |               |
| TETRACHLOROETHENE                        | 6 U []        | 6 U[]         | 6 U []        |
| TOLUENE                                  | 6 U[]         | 6 U []        | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |               |               |               |
| TOTAL XYLENES                            |               |               |               |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]         | 6 U []        | 6 U[]         |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]         | 6 U []        | 6 U[]         |
| TRICHLOROETHENE                          | 6 U[]         | 6 U []        | 6 U[]         |
| TRICHLOROFLUOROMETHANE                   | 6 U[]         | 6 U []        | 6 U []        |
| VINYL ACETATE                            | 6 U[]         | 6 U []        | 6 U[]         |
| VINYL CHLORIDE                           | 6 U[]         | 6 U []        | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u> </u>      |               |               |
| 1-METHYLNAPHTHALENE                      |               |               |               |
| 2-METHYLNAPHTHALENE                      | 380 U []      | 390 U []      | 400 U []      |
| ACENAPHTHENE                             | 380 U []      | 390 U []      | 400 U []      |
| ACENAPHTHYLENE                           | 380 ∪[]       | 390 U []      | 400 U []      |
| ANTHRACENE                               | 380 U []      | 390 U []      | 400 U []      |
| BAP EQUIVALENT-HALFND                    | 380 U []      | 390 U []      | 400 U []      |
| BAP EQUIVALENT-POS                       | 380 U[]       | 390 U []      | 400 U []      |
| BAP EQUIVALENT-UCL                       | 250.639039 [] | 181.481133 [] | 123.358033 [] |
| BENZO(A)ANTHRACENE                       | 380 U[]       | 390 U []      | 400 U []      |
| BENZO(A)PYRENE                           | 380 U[]       | 390 U []      | 400 U []      |
| BENZO(B)FLUORANTHENE                     | 380 U[]       | 390 U []      | 400 U []      |
| BENZO(G,H,I)PERYLENE                     | 380 U[]       | 390 U []      | 400 U []      |
| BENZO(K)FLUORANTHENE                     | 380 U[]       | 390 U []      | 400 U []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C1-FLUORANTHENES/PYRENES                 |               |               |               |
| C1-FLUORENES                             |               |               |               |
| C1-PHENANTHRENES/ANTHRACENES             |               |               |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C2-FLUORENES                             |               |               |               |
| C2-NAPHTHALENES                          |               |               |               |
| C2-PHENANTHRENES/ANTHRACENES             |               |               |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C3-FLUORENES                             |               |               |               |
| C3-NAPHTHALENES                          |               |               |               |
| C3-PHENANTHRENES/ANTHRACENES             |               |               |               |

February 2013 Page A-82

HEPTACHLOR

| SOIL                             |           |           |           |
|----------------------------------|-----------|-----------|-----------|
| LOCATION                         | SB-056    | SB-056    | SB-056    |
| SAMPLE ID                        | SB-56-05  | SB-56-10  | SB-56-15  |
| SAMPLE DATE                      | 9/13/2004 | 9/13/2004 | 9/13/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         | 380 U []  | 390 U []  | 400 U []  |
| DIBENZO(A,H)ANTHRACENE           | 380 U []  | 390 U []  | 400 U []  |
| FLUORANTHENE                     | 380 U []  | 390 U []  | 400 U []  |
| FLUORENE                         | 380 U []  | 390 U []  | 400 U []  |
| INDENO(1,2,3-CD)PYRENE           | 380 U []  | 390 U []  | 400 U []  |
| NAPHTHALENE                      | 380 U []  | 390 U []  | 400 U []  |
| PHENANTHRENE                     | 380 U []  | 390 U []  | 400 U []  |
| PYRENE                           | 380 U []  | 390 U []  | 400 U []  |
| TOTAL PAHS                       | 0 U []    | 0 U []    | 0 U []    |
| PESTICIDES/PCBS (UG/KG)          | <u>.</u>  |           |           |
| 4,4'-DDD                         | 22 U []   |           |           |
| 4,4'-DDE                         | 22 U []   |           |           |
| 4,4'-DDT                         | 22 U []   |           |           |
| ALDRIN                           | 22 U []   |           |           |
| ALPHA-BHC                        | 22 U []   |           |           |
| ALPHA-CHLORDANE                  | 22 U []   |           |           |
| AROCLOR-1016                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1221                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1232                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1242                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1248                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1254                     | 280 U []  | 280 U []  | 300 U []  |
| AROCLOR-1260                     | 280 U []  | 280 U []  | 300 U []  |
| BETA-BHC                         | 22 U []   |           |           |
| DELTA-BHC                        | 22 U []   |           |           |
| DIELDRIN                         | 22 U []   |           |           |
| ENDOSULFAN I                     | 22 U []   |           |           |
| ENDOSULFAN II                    | 22 U []   |           |           |
| ENDOSULFAN SULFATE               | 22 U []   |           |           |
| ENDRIN                           | 22 U []   |           |           |
| ENDRIN ALDEHYDE                  | 22 U []   |           |           |
| ENDRIN KETONE                    | 22 U []   |           |           |
| GAMMA-BHC (LINDANE)              | 22 U []   |           |           |
| GAMMA-CHLORDANE                  | 22 U []   |           |           |
|                                  |           |           |           |

February 2013 Page A-83

22 U [--]

---

| LOCATION           | SB-056    | SB-056    | SB-056    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-56-05  | SB-56-10  | SB-56-15  |
| SAMPLE DATE        | 9/13/2004 | 9/13/2004 | 9/13/2004 |
| HEPTACHLOR EPOXIDE | 22 U []   |           |           |
| METHOXYCHLOR       | 22 U []   | -         |           |
| TOTAL AROCLOR      | 0 U[]     | 0 U[]     | 0 U []    |
| TOTAL DDT POS      | 0 U[]     | -         |           |
| TOXAPHENE          | 560 U []  |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 11000 U [] | 11000 U [] | 12000 U [] |
|-------------------------|------------|------------|------------|
| GASOLINE RANGE ORGANICS | 110 U []   | 110 U[]    | 120 U []   |
| TPH (C09-C36)           |            |            |            |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |             |              |
|------------------------------|------------|-------------|--------------|
| LOCATION                     | SB-056     | SB-056      | SB-056       |
| SAMPLE ID                    | SB-56-SS   | F-SB-56RE-1 | F-SB-56RE-10 |
| SAMPLE DATE                  | 9/13/2004  | 9/18/2009   | 9/18/2009    |
| METALS (MG/KG)               | •          | •           | •            |
| ANTIMONY                     | 4.0 UR []  |             |              |
| ARSENIC                      | 2.9 L []   |             |              |
| BARIUM                       |            |             |              |
| BERYLLIUM                    | 4.0 U []   |             |              |
| CADMIUM                      | 4.0 UL []  |             |              |
| CHROMIUM                     | 14.0 L []  |             |              |
| COBALT                       |            |             |              |
| COPPER                       | 11.0 []    |             |              |
| LEAD                         | 6.3 J []   |             |              |
| MERCURY                      | 0.16 UL [] |             |              |
| MOLYBDENUM                   |            |             |              |
| NICKEL                       | 5.1 K []   |             |              |
| SELENIUM                     | 4.0 UL []  |             |              |
| SILVER                       | 4.0 UR []  |             |              |
| THALLIUM                     | 3.2 UL []  |             |              |
| VANADIUM                     |            |             |              |
| ZINC                         | 40.0 UL [] |             |              |
| MISCELLANEOUS PARAMETERS     |            | •           |              |
| PERCENT SOLIDS (%)           |            |             |              |
| TOTAL SOLIDS (%)             |            |             |              |
| HEXAVALENT CHROMIUM (MG/KG)  |            |             |              |
| TOTAL ORGANIC CARBON (MG/KG) |            |             |              |
| PH (S.U.)                    |            |             |              |
| MERCURY (METHYL) (UG/KG)     |            |             |              |
| SEMIVOLATILES (UG/KG)        | •          |             | •            |
| 1,1-BIPHENYL                 | 560 U[]    |             |              |
| 1,2,4-TRICHLOROBENZENE       |            |             |              |
| 1,2-DICHLOROBENZENE          |            |             |              |
| 1,3-DICHLOROBENZENE          |            |             |              |
| 1,4-DICHLOROBENZENE          |            |             |              |
| 1,4-DIOXANE                  |            |             |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 560 U []   |             |              |
| 2,4,5-TRICHLOROPHENOL        | 1400 U[]   |             |              |
| 2,4,6-TRICHLOROPHENOL        | 560 U []   |             |              |
| 2,4-DICHLOROPHENOL           | 560 U[]    |             |              |
| 2,4-DIMETHYLPHENOL           | 560 U[]    |             |              |
| 2,4-DINITROPHENOL            | 1400 U[]   |             |              |

| LOCATION                    | SB-056    | SB-056      | SB-056       |
|-----------------------------|-----------|-------------|--------------|
| SAMPLE ID                   | SB-56-SS  | F-SB-56RE-1 | F-SB-56RE-10 |
| SAMPLE DATE                 | 9/13/2004 | 9/18/2009   | 9/18/2009    |
| 2,4-DINITROTOLUENE          | 560 U []  |             |              |
| 2,6-DINITROTOLUENE          | 560 U []  |             |              |
| 2-CHLORONAPHTHALENE         | 560 U []  |             |              |
| 2-CHLOROPHENOL              | 560 U []  |             |              |
| 2-METHYLPHENOL              | 560 U []  |             |              |
| 2-NITROANILINE              | 1400 U [] |             |              |
| 2-NITROPHENOL               | 560 U[]   |             |              |
| 3&4-METHYLPHENOL            | 560 U[]   |             |              |
| 3,3'-DICHLOROBENZIDINE      | 560 U[]   |             |              |
| 3-NITROANILINE              | 1400 U [] |             |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 1300 U [] |             |              |
| 4-BROMOPHENYL PHENYL ETHER  | 560 U[]   |             |              |
| 4-CHLORO-3-METHYLPHENOL     | 560 U []  |             |              |
| 4-CHLOROANILINE             | 560 U []  |             |              |
| 4-CHLOROPHENYL PHENYL ETHER | 560 U[]   |             |              |
| 4-NITROANILINE              | 1400 U [] |             |              |
| 4-NITROPHENOL               | 1400 U [] |             |              |
| ACETOPHENONE                | 560 U[]   |             |              |
| ANILINE                     |           |             |              |
| ATRAZINE                    | 560 U []  |             |              |
| AZOBENZENE                  |           |             |              |
| BENZIDINE                   |           |             |              |
| BENZOIC ACID                |           |             |              |
| BENZYL ALCOHOL              |           |             |              |
| BIS(2-CHLOROETHOXY)METHANE  | 560 U []  |             |              |
| BIS(2-CHLOROETHYL)ETHER     | 560 U []  |             |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 560 U []  |             |              |
| BUTYL BENZYL PHTHALATE      | 560 U []  |             |              |
| CAPROLACTAM                 | 560 U []  |             |              |
| CARBAZOLE                   | 560 U []  |             |              |
| DIBENZOFURAN                | 560 U []  |             |              |
| DIETHYL PHTHALATE           | 560 U []  |             |              |
| DIMETHYL PHTHALATE          | 560 U []  |             |              |
| DI-N-BUTYL PHTHALATE        | 560 U []  |             |              |
| DI-N-OCTYL PHTHALATE        | 560 U []  |             |              |
| HEXACHLOROBENZENE           | 560 U []  |             |              |
| HEXACHLOROBUTADIENE         | 560 U []  |             |              |
| HEXACHLOROCYCLOPENTADIENE   | 560 U []  |             |              |

| SOIL                           |           |             |              |
|--------------------------------|-----------|-------------|--------------|
| LOCATION                       | SB-056    | SB-056      | SB-056       |
| SAMPLE ID                      | SB-56-SS  | F-SB-56RE-1 | F-SB-56RE-10 |
| SAMPLE DATE                    | 9/13/2004 | 9/18/2009   | 9/18/2009    |
| HEXACHLOROETHANE               | 560 U[]   |             |              |
| ISOPHORONE                     | 560 U[]   |             |              |
| NITROBENZENE                   | 560 U[]   |             |              |
| N-NITROSODIMETHYLAMINE         |           |             |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 560 U[]   |             |              |
| N-NITROSODIPHENYLAMINE         | 560 U []  |             |              |
| PENTACHLOROPHENOL              | 1400 U [] |             |              |
| PHENOL                         | 560 U []  |             |              |
| PYRIDINE                       |           |             |              |
| VOLATILES (UG/KG)              |           | •           | •            |
| 1,1,1,2-TETRACHLOROETHANE      | 8 U[]     |             |              |
| 1,1,1-TRICHLOROETHANE          | 8 U[]     |             |              |
| 1,1,2,2-TETRACHLOROETHANE      | 8 U[]     |             |              |
| 1,1,2-TRICHLOROETHANE          | 8 U[]     |             |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 8 U[]     |             |              |
| 1,1-DICHLOROETHANE             | 8 U []    |             |              |
| 1,1-DICHLOROETHENE             | 8 U []    |             |              |
| 1,1-DICHLOROPROPENE            | 8 U[]     |             |              |
| 1,2,3-TRICHLOROBENZENE         | 8 U[]     |             |              |
| 1,2,3-TRICHLOROPROPANE         | 8 U[]     |             |              |
| 1,2,3-TRIMETHYLBENZENE         |           |             |              |
| 1,2,4-TRICHLOROBENZENE         | 8 U []    |             |              |
| 1,2,4-TRIMETHYLBENZENE         | 8 U[]     |             |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 8 U[]     |             |              |
| 1,2-DIBROMOETHANE              | 8 U []    |             |              |
| 1,2-DICHLOROBENZENE            | 8 U[]     |             |              |
| 1,2-DICHLOROETHANE             | 8 U[]     |             |              |
| 1,2-DICHLOROPROPANE            | 8 U[]     |             |              |
| 1,3,5-TRIMETHYLBENZENE         | 8 U[]     |             |              |
| 1,3-DICHLOROBENZENE            | 8 U []    |             |              |
| 1,3-DICHLOROPROPANE            | 8 U[]     |             |              |
| 1,3-DICHLOROPROPENE            |           |             |              |
| 1,4-DICHLOROBENZENE            | 8 U[]     |             |              |
| 1,4-DIOXANE                    |           |             |              |
| 2,2-DICHLOROPROPANE            | 8 U[]     |             |              |
| 2-BUTANONE                     | 82 U []   |             |              |
| 2-CHLOROETHYL VINYL ETHER      | 8 U[]     |             |              |
| 2-CHLOROTOLUENE                | 8 U[]     |             |              |

| LOCATION                | SB-056    | SB-056      | SB-056       |
|-------------------------|-----------|-------------|--------------|
| SAMPLE ID               | SB-56-SS  | F-SB-56RE-1 | F-SB-56RE-10 |
| SAMPLE DATE             | 9/13/2004 | 9/18/2009   | 9/18/2009    |
| 2-HEXANONE              | 82 U []   |             |              |
| 4-CHLOROTOLUENE         | 8 U []    |             |              |
| 4-ISOPROPYLTOLUENE      | 8 U[]     |             |              |
| 4-METHYL-2-PENTANONE    | 82 U []   |             |              |
| ACETONE                 | 82 U []   |             |              |
| BENZENE                 | 8 U []    |             |              |
| BROMOBENZENE            | 8 U[]     |             |              |
| BROMOCHLOROMETHANE      | 8 U []    |             |              |
| BROMODICHLOROMETHANE    | 8 U []    |             |              |
| BROMOFORM               | 8 U []    |             |              |
| BROMOMETHANE            | 8 U[]     |             |              |
| CARBON DISULFIDE        | 8 U []    |             |              |
| CARBON TETRACHLORIDE    | 8 U []    |             |              |
| CHLOROBENZENE           | 8 U []    |             |              |
| CHLORODIBROMOMETHANE    | 8 U []    |             |              |
| CHLOROETHANE            | 8 U []    |             |              |
| CHLOROFORM              | 8 U []    |             |              |
| CHLOROMETHANE           | 8 U []    |             |              |
| CIS-1,2-DICHLOROETHENE  | 8 U []    |             |              |
| CIS-1,3-DICHLOROPROPENE | 8 U []    |             |              |
| DIBROMOMETHANE          | 8 U[]     |             |              |
| DICHLORODIFLUOROMETHANE | 8 U[]     |             |              |
| DIISOPROPYL ETHER       |           |             |              |
| ETHYL TERT-BUTYL ETHER  |           |             |              |
| ETHYLBENZENE            | 8 U []    |             |              |
| FLUORODICHLOROMETHANE   |           |             |              |
| HEXACHLOROBUTADIENE     |           |             |              |
| ISOPROPYLBENZENE        | 8 U []    |             |              |
| M+P-XYLENES             | 16 U []   |             |              |
| METHYL TERT-BUTYL ETHER | 8 U[]     |             |              |
| METHYLENE CHLORIDE      | 8 U[]     |             |              |
| NAPHTHALENE             | 8 U[]     |             |              |
| N-BUTYLBENZENE          | 8 U[]     |             |              |
| N-PROPYLBENZENE         | 8 U[]     |             |              |
| O-XYLENE                | 8 U[]     |             |              |
| SEC-BUTYLBENZENE        | 8 U[]     |             |              |
| STYRENE                 | 8 U[]     |             |              |
| TERT-AMYL METHYL ETHER  |           |             |              |

| LOCATION                                 | SB-056       | SB-056           | SB-056          |
|------------------------------------------|--------------|------------------|-----------------|
| SAMPLE ID                                | SB-56-SS     | F-SB-56RE-1      | F-SB-56RE-10    |
| SAMPLE DATE                              | 9/13/2004    | 9/18/2009        | 9/18/2009       |
| TERT-BUTYLBENZENE                        | 8 U[]        |                  |                 |
| TERTIARY-BUTYL ALCOHOL                   |              |                  |                 |
| TETRACHLOROETHENE                        | 8 U[]        |                  |                 |
| TOLUENE                                  | 8 U[]        |                  |                 |
| TOTAL 1,2-DICHLOROETHENE                 |              |                  |                 |
| TOTAL XYLENES                            |              |                  |                 |
| TRANS-1,2-DICHLOROETHENE                 | 8 U[]        |                  |                 |
| TRANS-1,3-DICHLOROPROPENE                | 8 U[]        |                  |                 |
| TRICHLOROETHENE                          | 8 U[]        |                  |                 |
| TRICHLOROFLUOROMETHANE                   | 8 U []       |                  |                 |
| VINYL ACETATE                            | 8 U []       |                  |                 |
| VINYL CHLORIDE                           | 8 U []       |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |              |                  |                 |
| 1-METHYLNAPHTHALENE                      |              |                  |                 |
| 2-METHYLNAPHTHALENE                      | 560 U []     |                  |                 |
| ACENAPHTHENE                             | 560 U []     |                  |                 |
| ACENAPHTHYLENE                           | 560 U []     |                  |                 |
| ANTHRACENE                               | 560 U []     |                  |                 |
| BAP EQUIVALENT-HALFND                    | 560 U []     | 22.839 [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 560 U []     | 22.039 [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       | 80.642029 [] |                  |                 |
| BENZO(A)ANTHRACENE                       | 560 U []     | 17 [MDL=1.2]     | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 560 U []     | 17 [MDL=1.6]     | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 560 U []     | 21 [MDL=1.5]     | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     | 560 U []     |                  |                 |
| BENZO(K)FLUORANTHENE                     | 560 U []     | 12 [MDL=2.1]     | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |              |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |              |                  |                 |
| C1-FLUORENES                             |              |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |              |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |              |                  |                 |
| C2-FLUORENES                             |              |                  |                 |
| C2-NAPHTHALENES                          |              |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |              |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |              |                  |                 |
| C3-FLUORENES                             |              |                  |                 |
| C3-NAPHTHALENES                          |              |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |              |                  |                 |
|                                          |              |                  |                 |

| OOIE                            |           |                 |                 |
|---------------------------------|-----------|-----------------|-----------------|
| LOCATION                        | SB-056    | SB-056          | SB-056          |
| SAMPLE ID                       | SB-56-SS  | F-SB-56RE-1     | F-SB-56RE-10    |
| SAMPLE DATE                     | 9/13/2004 | 9/18/2009       | 9/18/2009       |
| 4-CHRYSENES/BENZO(A)ANTHRACENES |           |                 |                 |
| C4-NAPHTHALENES                 |           |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES    |           |                 |                 |
| CHRYSENE                        | 560 U []  | 19 [MDL=1.1]    | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE          | 560 U []  | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| LUORANTHENE                     | 560 U[]   |                 |                 |
| LUORENE                         | 560 U[]   |                 |                 |
| NDENO(1,2,3-CD)PYRENE           | 560 U[]   | 11 [MDL=1.9]    | 1.8 U [MDL=1.8] |
| IAPHTHALENE                     | 560 U[]   |                 |                 |
| PHENANTHRENE                    | 560 U[]   |                 |                 |
| PYRENE                          | 560 U[]   |                 |                 |
| OTAL PAHS                       | 0 U[]     | 97 [MDL=1.6]    | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)         |           | -               |                 |
| I,4'-DDD                        | 33 U []   |                 |                 |
| ,4'-DDE                         | 33 U []   |                 |                 |
| ,4'-DDT                         | 33 U []   |                 |                 |
| LDRIN                           | 33 ∪ []   |                 |                 |
| LPHA-BHC                        | 33 U []   |                 |                 |
| LPHA-CHLORDANE                  | 33 U []   |                 |                 |
| ROCLOR-1016                     | 410 U []  |                 |                 |
| ROCLOR-1221                     | 410 U []  |                 |                 |
| AROCLOR-1232                    | 410 U []  |                 |                 |
| ROCLOR-1242                     | 410 U []  |                 |                 |
| ROCLOR-1248                     | 410 U []  |                 |                 |
| ROCLOR-1254                     | 410 U []  |                 |                 |
| ROCLOR-1260                     | 410 U []  |                 |                 |
| BETA-BHC                        | 33 ∪ []   |                 |                 |
| DELTA-BHC                       | 33 ∪ []   |                 |                 |
| DIELDRIN                        | 33 U[]    |                 |                 |
| NDOSULFAN I                     | 33 U[]    |                 |                 |
| ENDOSULFAN II                   | 33 U[]    |                 |                 |
| NDOSULFAN SULFATE               | 33 U[]    |                 |                 |
| NDRIN                           | 33 U[]    |                 |                 |
| NDRIN ALDEHYDE                  | 33 U[]    |                 |                 |
| NDRIN KETONE                    | 33 U[]    |                 |                 |
| GAMMA-BHC (LINDANE)             | 33 U[]    |                 |                 |
| GAMMA-CHLORDANE                 | 33 U[]    |                 |                 |
| HEPTACHLOR                      | 33 U[]    |                 |                 |

February 2013 Page A-90

| LOCATION           | SB-056    | SB-056      | SB-056       |
|--------------------|-----------|-------------|--------------|
| SAMPLE ID          | SB-56-SS  | F-SB-56RE-1 | F-SB-56RE-10 |
| SAMPLE DATE        | 9/13/2004 | 9/18/2009   | 9/18/2009    |
| HEPTACHLOR EPOXIDE | 33 U []   |             |              |
| METHOXYCHLOR       | 33 U []   | -           |              |
| TOTAL AROCLOR      | 0 U []    |             |              |
| TOTAL DDT POS      | 0 U[]     |             |              |
| TOXAPHENE          | 820 U []  |             |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 17000 U [] |   |  |
|-------------------------|------------|---|--|
| GASOLINE RANGE ORGANICS | 170 U []   | ŀ |  |
| TPH (C09-C36)           |            |   |  |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |              |
|------------------------------|--------------|--------------|--------------|
| LOCATION                     | SB-056       | SB-056       | SB-056       |
| SAMPLE ID                    | F-SB-56RE-11 | F-SB-56RE-12 | F-SB-56RE-13 |
| SAMPLE DATE                  | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)               | •            | •            |              |
| ANTIMONY                     |              |              |              |
| ARSENIC                      |              |              |              |
| BARIUM                       |              |              |              |
| BERYLLIUM                    |              |              |              |
| CADMIUM                      |              |              |              |
| CHROMIUM                     |              |              |              |
| COBALT                       |              |              |              |
| COPPER                       |              |              |              |
| LEAD                         |              |              |              |
| MERCURY                      |              |              |              |
| MOLYBDENUM                   |              |              |              |
| NICKEL                       |              |              |              |
| SELENIUM                     |              |              |              |
| SILVER                       |              |              |              |
| THALLIUM                     |              |              |              |
| VANADIUM                     |              |              |              |
| ZINC                         |              |              |              |
| MISCELLANEOUS PARAMETERS     | •            | •            |              |
| PERCENT SOLIDS (%)           |              |              |              |
| TOTAL SOLIDS (%)             |              |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |              |
| PH (S.U.)                    |              |              |              |
| MERCURY (METHYL) (UG/KG)     |              |              |              |
| SEMIVOLATILES (UG/KG)        |              |              |              |
| 1,1-BIPHENYL                 |              |              |              |
| 1,2,4-TRICHLOROBENZENE       |              |              |              |
| 1,2-DICHLOROBENZENE          |              |              |              |
| 1,3-DICHLOROBENZENE          |              |              |              |
| 1,4-DICHLOROBENZENE          |              |              |              |
| 1,4-DIOXANE                  |              |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |              |
| 2,4,5-TRICHLOROPHENOL        |              |              |              |
| 2,4,6-TRICHLOROPHENOL        |              |              |              |
| 2,4-DICHLOROPHENOL           |              |              |              |
| 2,4-DIMETHYLPHENOL           |              |              |              |
| 2,4-DINITROPHENOL            |              |              |              |

| LOCATION                    | SB-056       | SB-056       | SB-056       |
|-----------------------------|--------------|--------------|--------------|
| SAMPLE ID                   | F-SB-56RE-11 | F-SB-56RE-12 | F-SB-56RE-13 |
| SAMPLE DATE                 | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |              |              |              |
| 2,6-DINITROTOLUENE          |              |              |              |
| 2-CHLORONAPHTHALENE         |              |              |              |
| 2-CHLOROPHENOL              |              |              |              |
| 2-METHYLPHENOL              |              |              |              |
| 2-NITROANILINE              |              |              |              |
| 2-NITROPHENOL               |              |              |              |
| 3&4-METHYLPHENOL            |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |
| 3-NITROANILINE              |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |
| 4-CHLOROANILINE             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |
| 4-NITROANILINE              |              |              |              |
| 4-NITROPHENOL               |              |              |              |
| ACETOPHENONE                |              |              |              |
| ANILINE                     |              |              |              |
| ATRAZINE                    |              |              |              |
| AZOBENZENE                  |              |              |              |
| BENZIDINE                   |              |              |              |
| BENZOIC ACID                |              |              |              |
| BENZYL ALCOHOL              |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |              |
| CAPROLACTAM                 |              |              |              |
| CARBAZOLE                   |              |              |              |
| DIBENZOFURAN                |              |              |              |
| DIETHYL PHTHALATE           |              |              |              |
| DIMETHYL PHTHALATE          |              |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |              |
| HEXACHLOROBENZENE           |              |              |              |
| HEXACHLOROBUTADIENE         |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-056       | SB-056       | SB-056       |
|--------------------------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-56RE-11 | F-SB-56RE-12 | F-SB-56RE-13 |
| SAMPLE DATE                    | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               |              |              |              |
| ISOPHORONE                     |              |              |              |
| NITROBENZENE                   |              |              |              |
| N-NITROSODIMETHYLAMINE         |              |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |
| N-NITROSODIPHENYLAMINE         |              |              |              |
| PENTACHLOROPHENOL              |              |              |              |
| PHENOL                         |              |              |              |
| PYRIDINE                       |              |              |              |
| VOLATILES (UG/KG)              |              |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,1-TRICHLOROETHANE          |              |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,2-TRICHLOROETHANE          |              |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |
| 1,1-DICHLOROETHANE             |              |              |              |
| 1,1-DICHLOROETHENE             |              |              |              |
| 1,1-DICHLOROPROPENE            |              |              |              |
| 1,2,3-TRICHLOROBENZENE         |              |              |              |
| 1,2,3-TRICHLOROPROPANE         |              |              |              |
| 1,2,3-TRIMETHYLBENZENE         |              |              |              |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |
| 1,2,4-TRIMETHYLBENZENE         |              |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |
| 1,2-DIBROMOETHANE              |              |              |              |
| 1,2-DICHLOROBENZENE            |              |              |              |
| 1,2-DICHLOROETHANE             |              |              |              |
| 1,2-DICHLOROPROPANE            |              |              |              |
| 1,3,5-TRIMETHYLBENZENE         |              |              |              |
| 1,3-DICHLOROBENZENE            |              |              |              |
| 1,3-DICHLOROPROPANE            |              |              |              |
| 1,3-DICHLOROPROPENE            |              |              |              |
| 1,4-DICHLOROBENZENE            |              |              |              |
| 1,4-DIOXANE                    |              |              |              |
| 2,2-DICHLOROPROPANE            |              |              |              |
| 2-BUTANONE                     |              |              |              |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |

February 2013 Page A-94

--

--

| LOCATION                | SB-056       | SB-056       | SB-056       |
|-------------------------|--------------|--------------|--------------|
| SAMPLE ID               | F-SB-56RE-11 | F-SB-56RE-12 | F-SB-56RE-13 |
| SAMPLE DATE             | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |              |              |              |
| 4-CHLOROTOLUENE         |              |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |              |
| 4-METHYL-2-PENTANONE    |              |              |              |
| ACETONE                 |              |              |              |
| BENZENE                 |              |              |              |
| BROMOBENZENE            |              |              |              |
| BROMOCHLOROMETHANE      |              |              |              |
| BROMODICHLOROMETHANE    |              |              |              |
| BROMOFORM               |              |              |              |
| BROMOMETHANE            |              |              |              |
| CARBON DISULFIDE        |              |              |              |
| CARBON TETRACHLORIDE    |              |              |              |
| CHLOROBENZENE           |              |              |              |
| CHLORODIBROMOMETHANE    |              |              |              |
| CHLOROETHANE            |              |              |              |
| CHLOROFORM              |              |              |              |
| CHLOROMETHANE           |              |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |              |
| DIBROMOMETHANE          |              |              |              |
| DICHLORODIFLUOROMETHANE |              |              |              |
| DIISOPROPYL ETHER       |              |              |              |
| ETHYL TERT-BUTYL ETHER  |              |              |              |
| ETHYLBENZENE            |              |              |              |
| FLUORODICHLOROMETHANE   |              |              |              |
| HEXACHLOROBUTADIENE     |              |              |              |
| ISOPROPYLBENZENE        |              |              |              |
| M+P-XYLENES             |              |              |              |
| METHYL TERT-BUTYL ETHER |              |              |              |
| METHYLENE CHLORIDE      |              |              |              |
| NAPHTHALENE             |              |              |              |
| N-BUTYLBENZENE          |              |              |              |
| N-PROPYLBENZENE         |              |              |              |
| O-XYLENE                |              |              |              |
| SEC-BUTYLBENZENE        |              |              |              |
| STYRENE                 |              |              |              |
| TERT-AMYL METHYL ETHER  |              |              |              |

| LOCATION                                 | SB-056          | SB-056          | SB-056          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-56RE-11    | F-SB-56RE-12    | F-SB-56RE-13    |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | ·               |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
|                                          | -               |                 |                 |

| SOIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-056          | SB-056          | SB-056          |
| SAMPLE ID                        | F-SB-56RE-11    | F-SB-56RE-12    | F-SB-56RE-13    |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 | 1               |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 | <del></del>     |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-97

| LOCATION           | SB-056       | SB-056       | SB-056       |  |
|--------------------|--------------|--------------|--------------|--|
| SAMPLE ID          | F-SB-56RE-11 | F-SB-56RE-12 | F-SB-56RE-13 |  |
| SAMPLE DATE        | 9/18/2009    | 9/18/2009    | 9/18/2009    |  |
| HEPTACHLOR EPOXIDE |              |              |              |  |
| METHOXYCHLOR       |              |              |              |  |
| TOTAL AROCLOR      |              |              |              |  |
| TOTAL DDT POS      |              |              |              |  |
| TOXAPHENE          |              |              |              |  |
|                    |              |              |              |  |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |                |              |              |
|------------------------------|----------------|--------------|--------------|
| LOCATION                     | SB-056         | SB-056       | SB-056       |
| SAMPLE ID                    | F-SB-56RE-13-D | F-SB-56RE-14 | F-SB-56RE-15 |
| SAMPLE DATE                  | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)               | •              |              |              |
| ANTIMONY                     |                |              |              |
| ARSENIC                      |                |              |              |
| BARIUM                       |                |              |              |
| BERYLLIUM                    |                |              |              |
| CADMIUM                      |                |              |              |
| CHROMIUM                     |                |              |              |
| COBALT                       |                |              |              |
| COPPER                       |                |              |              |
| LEAD                         |                |              |              |
| MERCURY                      |                |              |              |
| MOLYBDENUM                   |                |              |              |
| NICKEL                       |                |              |              |
| SELENIUM                     |                |              |              |
| SILVER                       |                |              |              |
| THALLIUM                     |                |              |              |
| VANADIUM                     |                |              |              |
| ZINC                         |                |              |              |
| MISCELLANEOUS PARAMETERS     |                |              | •            |
| PERCENT SOLIDS (%)           |                |              |              |
| TOTAL SOLIDS (%)             |                |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |                |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |                |              |              |
| PH (S.U.)                    |                |              |              |
| MERCURY (METHYL) (UG/KG)     |                |              |              |
| SEMIVOLATILES (UG/KG)        |                |              |              |
| 1,1-BIPHENYL                 |                |              |              |
| 1,2,4-TRICHLOROBENZENE       |                |              |              |
| 1,2-DICHLOROBENZENE          |                |              |              |
| 1,3-DICHLOROBENZENE          |                |              |              |
| 1,4-DICHLOROBENZENE          |                |              |              |
| 1,4-DIOXANE                  |                |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                |              |              |
| 2,4,5-TRICHLOROPHENOL        |                |              |              |
| 2,4,6-TRICHLOROPHENOL        |                |              |              |
| 2,4-DICHLOROPHENOL           |                |              |              |
| 2,4-DIMETHYLPHENOL           |                |              |              |
| 2,4-DINITROPHENOL            |                |              |              |

| LOCATION                    | SB-056         | SB-056       | SB-056       |
|-----------------------------|----------------|--------------|--------------|
| SAMPLE ID                   | F-SB-56RE-13-D | F-SB-56RE-14 | F-SB-56RE-15 |
| SAMPLE DATE                 | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |                |              |              |
| 2,6-DINITROTOLUENE          |                |              |              |
| 2-CHLORONAPHTHALENE         |                |              |              |
| 2-CHLOROPHENOL              |                |              |              |
| 2-METHYLPHENOL              |                |              |              |
| 2-NITROANILINE              |                |              |              |
| 2-NITROPHENOL               |                |              |              |
| 3&4-METHYLPHENOL            |                |              |              |
| 3,3'-DICHLOROBENZIDINE      |                |              |              |
| 3-NITROANILINE              |                |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |                |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |                |              |              |
| 4-CHLORO-3-METHYLPHENOL     |                |              |              |
| 4-CHLOROANILINE             |                |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |                |              |              |
| 4-NITROANILINE              |                |              |              |
| 4-NITROPHENOL               |                |              |              |
| ACETOPHENONE                |                |              |              |
| ANILINE                     |                |              |              |
| ATRAZINE                    |                |              |              |
| AZOBENZENE                  |                |              |              |
| BENZIDINE                   |                |              |              |
| BENZOIC ACID                |                |              |              |
| BENZYL ALCOHOL              |                |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |                |              |              |
| BIS(2-CHLOROETHYL)ETHER     |                |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |                |              |              |
| BUTYL BENZYL PHTHALATE      |                |              |              |
| CAPROLACTAM                 |                |              |              |
| CARBAZOLE                   |                |              |              |
| DIBENZOFURAN                |                |              |              |
| DIETHYL PHTHALATE           |                |              |              |
| DIMETHYL PHTHALATE          |                |              |              |
| DI-N-BUTYL PHTHALATE        |                |              |              |
| DI-N-OCTYL PHTHALATE        |                |              |              |
| HEXACHLOROBENZENE           |                |              |              |
| HEXACHLOROBUTADIENE         |                |              |              |
| HEXACHLOROCYCLOPENTADIENE   |                |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-056         | SB-056       | SB-056       |
|--------------------------------|----------------|--------------|--------------|
| SAMPLE ID                      | F-SB-56RE-13-D | F-SB-56RE-14 | F-SB-56RE-15 |
| SAMPLE DATE                    | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               |                |              |              |
| ISOPHORONE                     |                |              |              |
| NITROBENZENE                   |                |              |              |
| N-NITROSODIMETHYLAMINE         |                |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |                |              |              |
| N-NITROSODIPHENYLAMINE         |                |              |              |
| PENTACHLOROPHENOL              |                |              |              |
| PHENOL                         |                |              |              |
| PYRIDINE                       |                |              |              |
| VOLATILES (UG/KG)              |                |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,1-TRICHLOROETHANE          |                |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,2-TRICHLOROETHANE          |                |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                |              |              |
| 1,1-DICHLOROETHANE             |                |              |              |
| 1,1-DICHLOROETHENE             |                |              |              |
| 1,1-DICHLOROPROPENE            |                |              |              |
| 1,2,3-TRICHLOROBENZENE         |                |              |              |
| 1,2,3-TRICHLOROPROPANE         |                |              |              |
| 1,2,3-TRIMETHYLBENZENE         |                |              |              |
| 1,2,4-TRICHLOROBENZENE         |                |              |              |
| 1,2,4-TRIMETHYLBENZENE         |                |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                |              |              |
| 1,2-DIBROMOETHANE              |                |              |              |
| 1,2-DICHLOROBENZENE            |                |              |              |
| 1,2-DICHLOROETHANE             |                |              |              |
| 1,2-DICHLOROPROPANE            |                |              |              |
| 1,3,5-TRIMETHYLBENZENE         |                |              |              |
| 1,3-DICHLOROBENZENE            |                |              |              |
| 1,3-DICHLOROPROPANE            |                |              |              |
| 1,3-DICHLOROPROPENE            |                |              |              |
| 1,4-DICHLOROBENZENE            |                |              |              |
| 1,4-DIOXANE                    |                |              |              |
| 2,2-DICHLOROPROPANE            |                |              |              |
| 2-BUTANONE                     |                |              |              |
| 2-CHLOROETHYL VINYL ETHER      |                |              |              |

February 2013 Page A-101

---

---

| LOCATION                | SB-056         | SB-056       | SB-056       |
|-------------------------|----------------|--------------|--------------|
| SAMPLE ID               | F-SB-56RE-13-D | F-SB-56RE-14 | F-SB-56RE-15 |
| SAMPLE DATE             | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |                |              |              |
| 4-CHLOROTOLUENE         |                |              |              |
| 4-ISOPROPYLTOLUENE      |                |              |              |
| 4-METHYL-2-PENTANONE    |                |              |              |
| ACETONE                 |                |              |              |
| BENZENE                 |                |              |              |
| BROMOBENZENE            |                |              |              |
| BROMOCHLOROMETHANE      |                |              |              |
| BROMODICHLOROMETHANE    |                |              |              |
| BROMOFORM               |                |              |              |
| BROMOMETHANE            |                | <del></del>  |              |
| CARBON DISULFIDE        |                | <del></del>  |              |
| CARBON TETRACHLORIDE    |                | <del></del>  |              |
| CHLOROBENZENE           |                |              |              |
| CHLORODIBROMOMETHANE    |                |              |              |
| CHLOROETHANE            |                |              |              |
| CHLOROFORM              |                |              |              |
| CHLOROMETHANE           |                |              |              |
| CIS-1,2-DICHLOROETHENE  |                |              |              |
| CIS-1,3-DICHLOROPROPENE |                |              |              |
| DIBROMOMETHANE          |                |              |              |
| DICHLORODIFLUOROMETHANE |                |              |              |
| DIISOPROPYL ETHER       |                |              |              |
| ETHYL TERT-BUTYL ETHER  |                |              |              |
| ETHYLBENZENE            |                |              |              |
| FLUORODICHLOROMETHANE   |                |              |              |
| HEXACHLOROBUTADIENE     |                |              |              |
| ISOPROPYLBENZENE        |                |              |              |
| M+P-XYLENES             |                |              |              |
| METHYL TERT-BUTYL ETHER |                |              |              |
| METHYLENE CHLORIDE      |                |              |              |
| NAPHTHALENE             |                |              |              |
| N-BUTYLBENZENE          |                |              |              |
| N-PROPYLBENZENE         |                |              |              |
| O-XYLENE                |                |              |              |
| SEC-BUTYLBENZENE        |                |              |              |
| STYRENE                 |                |              |              |
| TERT-AMYL METHYL ETHER  |                |              |              |

| SAMPLE IO         P-88-58RE-13-D 918/2009         P-88-58RE-14 918/2009         P-88-58RE-15 918/2009         918/2009           TERT-BYTYLEENZENE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCATION                                 | SB-056          | SB-056          | SB-056          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-----------------|-----------------|
| TERT BLY LEENY ALCOHOL   TERT BLAY BUTY LECHOLOGETHENE   TOTAL 1,2 DICHLOR CETHENE   TOTAL 1,3 DICHLOR CETHENE   TOTAL 1,3 DICHLOR CETHENE   TERMS 1,2 DICHLOR CETHENE   TERMS 1,2 DICHLOR CETHENE   TERMS 1,3 DICHLOR CETHENE   TERMS 1,3 DICHLOR CETHENE   TERMS 1,4 DICHLOR CETHENE     | SAMPLE ID                                | F-SB-56RE-13-D  | F-SB-56RE-14    | F-SB-56RE-15    |
| TERTRAPHUTVI ALCOHOL TETRACHOROFTHENE TOLUENE TOLUENE TOTAL 12-DICHLOROETHENE TOTAL 12-DICHLOROETHENE TOTAL 12-DICHLOROETHENE TOTAL 12-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRANS-13-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENES | SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| TETRACHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                 |                 |                 |
| TOUDLENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE | TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TOTAL 72 ENCHOROCETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TETRACHLOROETHENE                        |                 |                 |                 |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                 |                 |                 |
| TRANS-12-DICHLOROFITEME TRICHLOROFITEME TRICHLOROFITEME TRICHLOROFITHME TRICHL | TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL XYLENES                            |                 |                 |                 |
| TRICHLOROFLUORONETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE  INVINIT CHILORIDE  INVINIT  | TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| VINYL CALCRITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                 |                 |                 |
| VNYL CHLORIDE         —         —         —           POLYCYCLIG AROMATIC HYDROCARBONS (UG/KG)           LIMETHYLINAPHTHALENE         —         —         —           2METHYLINAPHTHALENE         —         —         —           ACENAPHTHENE         —         —         —           ACENAPHTHYLENE         —         —         —           ANTHRACENE         —         —         —           BAP EQUIVALENTHALEND         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]           BAP EQUIVALENTHOR         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]           BAP EQUIVALENTHOR         —         —         —         —           BAP EQUIVALENTHOR         1.1 U [MDL=1.1]         1.1 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.1]         1.1 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=2.6]         1.5 U [MDL=2.6]<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VINYL ACETATE                            |                 |                 |                 |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                 |                 |                 |
| 2METHYLNAPHTHALENE              ACENAPHTHENE              ACENAPHTHYLENE              ANTHRACENE              BAP EQUIVALENT-HALFND         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]           BAP EQUIVALENT-POS         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]           BAP EQUIVALENT-POS         1.1 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]           BENZO(A)ANTHRACENE         1.1 U [MDL=1.1]         1.1 U [MDL=1.1]         1.1 U [MDL=1.1]         1.1 U [MDL=1.1]         1.5 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.5]         1.6 U [MDL=1.5]         1.6 U [MDL=1.5]         1.6 U [MDL=1.5]         1.5 U [MDL=1.5]         1.6 U [MDL=1.6]         1.5 U [MDL=1.5]         1.6 U [MDL=1.5]         1.5 U [MDL=1.5]         1.6 U [MDL=1.5]         1.5 U [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| ACENAPHTHENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE BAP EQUIVALENT-HALFND BAP EQUIVALENT-HALFND BAP EQUIVALENT-POS BAP EQUIVALENT-UCL BAP EQUIVALENT-UCL BAP EQUIVALENT-UCL BENZO(A)ANTHRACENE 1.1 U [MDL=1.5] BENZO(A)ANTHRACENE 1.1 U [MDL=1.1] BENZO(B)FLUORANTHENE BE                                                                                                                                                                                                                                                                                                                                                         | 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHYLENE ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ANTHRACENE BAP EQUIVALENT-HALFND 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] 1.5 U [MDL=1.5] 1.6 U [MDL=1.1] 1.1 U [MDL=1.1] 1.2 U [MDL=1.6] 1.3 U [MDL=1.6] 1.4 U [MDL=1.6] 1.5 U [MDL=1.6] 1.5 U [MDL=1.6] 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] 1.7 U [MDL=1.6] 1.8 U [MDL=1.6] 1.9 U [MDL=1. | ACENAPHTHENE                             |                 |                 |                 |
| BAP EQUIVALENT-HALFND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACENAPHTHYLENE                           |                 |                 |                 |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(K)FLUORANTHENE   2.0 U [MDL=2]   2.0 U [MDL=2.1]   2.0 U [MDL=2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-PHENANTHRENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 2.0 U [MDL=2]   | 2.0 U [MDL=2.1] | 2.0 U [MDL=2]   |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES            C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                 |                 |                 |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                 |                 |                 |
| C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                 |                 |                 |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |

HEPTACHLOR

| JOIL                             |                 | 1               |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-056          | SB-056          | SB-056          |
| SAMPLE ID                        | F-SB-56RE-13-D  | F-SB-56RE-14    | F-SB-56RE-15    |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 | •               |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| C. Million C. C. Corton Mile     |                 |                 |                 |

February 2013 Page A-104

--

---

| LOCATION           | SB-056         | SB-056       | SB-056       |
|--------------------|----------------|--------------|--------------|
| SAMPLE ID          | F-SB-56RE-13-D | F-SB-56RE-14 | F-SB-56RE-15 |
| SAMPLE DATE        | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR EPOXIDE |                |              |              |
| METHOXYCHLOR       |                |              |              |
| TOTAL AROCLOR      |                |              |              |
| TOTAL DDT POS      |                |              |              |
| TOXAPHENE          |                |              |              |
|                    |                |              | -            |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-056      | SB-056      | SB-056      |
| SAMPLE ID                    | F-SB-56RE-2 | F-SB-56RE-3 | F-SB-56RE-4 |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| METALS (MG/KG)               |             |             |             |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-056      | SB-056      | SB-056      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-56RE-2 | F-SB-56RE-3 | F-SB-56RE-4 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

| SAMPLE DATE   F-SB-SRE2   F-SB-SRE3   F-SB-SRE4     SAMPLE DATE   9/18/2009   9/18/2009   9/18/2009     IEXAD-LOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCATION                       | SB-056      | SB-056      | SB-056      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|
| EKACHUROCETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                      | F-SB-56RE-2 | F-SB-56RE-3 | F-SB-56RE-4 |
| SOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| NITROSONETYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEXACHLOROETHANE               |             |             |             |
| N-NITGSODIMETHYLAMINE N-NITGSODIA-PROPYLAMINE N-NITGSO | ISOPHORONE                     |             |             |             |
| N-NTROSO-DN-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NITROBENZENE                   |             |             |             |
| NATIOSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-NITROSODIMETHYLAMINE         |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |
| VOLATILES (UG/KG)   1.1.1.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PHENOL                         |             |             |             |
| 1.1.1.2-TETRACHLOROETHANE       -       -       -         1.1.1-TRICHLOROETHANE       -       -       -         1.1.2-TRICHLOROETHANE       -       -       -         1.1.2-TRICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROENEHE       -       -       -         1.1-DICHLOROENENEE       -       -       -         1.2.3-TRICHLOROBENZENE       -       -       -         1.2.3-TRIMETHYLBENZENE       -       -       -         1.2.4-TRIMETHYLBENZENE       -       -       -         1.2.2-DIGNOO-3-CHLOROPROPANE       -       -       -         1.2-DIGNOO-3-CHLOROPROPANE       -       -       -         1.2-DICHLOROENENE       -       -       -         1.2-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PYRIDINE                       |             |             |             |
| 1,1,1-TRICHLOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLATILES (UG/KG)              |             | •           |             |
| 1.1,2,2-TETRACHLOROETHANE       -       -       -         1.1,2-TRICHLOROETHANE       -       -       -         1.1,2-TRICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHENE       -       -       -         1.1-DICHLOROPROPENE       -       -       -         1.2,3-TRICHLOROBENZENE       -       -       -         1.2,3-TRICHLOROPROPANE       -       -       -         1.2,4-TRICHLOROBENZENE       -       -       -         1.2,4-TRIMETHYLBENZENE       -       -       -         1.2,4-TRIMETHYLBENZENE       -       -       -         1.2,4-DIBROMO-3-CHLOROPROPANE       -       -       -         1.2-DIBROMO-3-CHLOROPROPANE       -       -       -         1.2-DICHLOROBENZENE       -       -       -         1.2-DICHLOROPROPANE       -       -       -         1.2-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       - <td>1,1,1,2-TETRACHLOROETHANE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1.2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1-2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1-DICHLOROETHANE            1,1-DICHLOROFTHENE            1,1-DICHLOROPROPENE            1,2,3-TRICHLOROBENZENE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROPROPENE            1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1-DICHLOROETHENE       -       -       -         1,1-DICHLOROPROPENE       -       -       -         1,2,3-TRICHLOROBENZENE       -       -       -         1,2,3-TRICHLOROPROPANE       -       -       -         1,2,3-TRIMETHYLBENZENE       -       -       -         1,2,4-TRICHLOROBENZENE       -       -       -         1,2-LATRIMETHYLBENZENE       -       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROPROPANE       -       -       -         1,3-DICHLOROPROPANE       -       -       -         1,3-DICHLOROPROPENE       -       -       -         1,4-DICHLOROBENZENE       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1.1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-DICHLOROETHANE             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |
| 1.2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPHANE            1,2-DICHLOROPROPANE            1,3-S-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,4-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE             1,4-DICHLOROBENZENE              1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-DICHLOROBENZENE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE             1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-DICHLOROETHANE             |             |             |             |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE             1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE             1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE             1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,3-DICHLOROBENZENE            |             |             |             |
| 1,4-DICHLOROBENZENE          1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-DICHLOROPROPANE            |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-DICHLOROPROPENE            |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-DICHLOROBENZENE            |             |             |             |
| 2.2-DICHI OROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-DIOXANE                    |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |

February 2013 Page A-108

| LOCATION                | SB-056      | SB-056      | SB-056      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-56RE-2 | F-SB-56RE-3 | F-SB-56RE-4 |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-056          | SB-056          | SB-056          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-56RE-2     | F-SB-56RE-3     | F-SB-56RE-4     |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.3 U [MDL=1.3] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 | 1               |                 |
| BENZO(K)FLUORANTHENE                     | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 | -               |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 | -               |                 |
|                                          |                 |                 |                 |

| SUIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-056          | SB-056          | SB-056          |
| SAMPLE ID                        | F-SB-56RE-2     | F-SB-56RE-3     | F-SB-56RE-4     |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 | <del></del>     |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 | <del></del>     |
| DIELDRIN                         |                 |                 | <del></del>     |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 | <del></del>     |
| ENDOSULFAN SULFATE               |                 |                 | <del></del>     |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-111

| LOCATION           | SB-056      | SB-056      | SB-056      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-56RE-2 | F-SB-56RE-3 | F-SB-56RE-4 |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       | 1           |             |             |
| TOTAL AROCLOR      | 1           |             |             |
| TOTAL DDT POS      |             |             |             |
| TOXAPHENE          |             |             |             |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

U = The chemical was not detected.

L = The chemical result was positively detected and biased low.

UR = The chemical was nondetected and rejected.

UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.

 $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$ 

UL = The chemical was nondetected and the concentration reported is an biased low.

B = The chemical result was present as a laboratory artifact.

| LOCATION                                | SB-056      | SB-056      | SB-056      |
|-----------------------------------------|-------------|-------------|-------------|
| SAMPLE ID                               | F-SB-56RE-5 | F-SB-56RE-6 | F-SB-56RE-7 |
| SAMPLE DATE                             | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| METALS (MG/KG)                          |             |             |             |
| ANTIMONY                                |             |             |             |
| ARSENIC                                 |             |             |             |
| BARIUM                                  |             |             |             |
| BERYLLIUM                               |             |             |             |
| CADMIUM                                 |             |             |             |
| CHROMIUM                                |             |             |             |
| COBALT                                  |             |             |             |
| COPPER                                  |             |             |             |
| LEAD                                    |             |             |             |
| MERCURY                                 |             |             |             |
| MOLYBDENUM                              |             |             |             |
| NICKEL                                  |             |             |             |
| SELENIUM                                |             |             |             |
| SILVER                                  |             |             |             |
| THALLIUM                                |             |             |             |
| VANADIUM                                |             |             |             |
| ZINC                                    |             |             |             |
| MISCELLANEOUS PARAMETERS                |             |             |             |
| PERCENT SOLIDS (%)                      |             |             |             |
| TOTAL SOLIDS (%)                        |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG)            |             |             |             |
| PH (S.U.)                               |             |             |             |
| MERCURY (METHYL) (UG/KG)                |             |             |             |
| SEMIVOLATILES (UG/KG)                   |             |             |             |
| 1,1-BIPHENYL                            |             |             |             |
| 1,2,4-TRICHLOROBENZENE                  |             |             |             |
| 1,2-DICHLOROBENZENE                     |             |             |             |
| 1,3-DICHLOROBENZENE                     |             |             |             |
| 1,4-DICHLOROBENZENE                     |             |             |             |
| 1,4-DIOXANE                             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE)            |             |             |             |
| 2,4,5-TRICHLOROPHENOL                   |             |             |             |
| 2,4,6-TRICHLOROPHENOL                   |             |             |             |
| 2,4-DICHLOROPHENOL                      | <del></del> |             |             |
| O A DIMETINA DI IENO                    | <u></u>     |             |             |
| 2,4-DIMETHYLPHENOL<br>2,4-DINITROPHENOL |             |             |             |

| LOCATION                    | SB-056      | SB-056      | SB-056      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-56RE-5 | F-SB-56RE-6 | F-SB-56RE-7 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-056      | SB-056      | SB-056      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-56RE-5 | F-SB-56RE-6 | F-SB-56RE-7 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |

February 2013 Page A-115

--

--

| LOCATION                | SB-056      | SB-056      | SB-056      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-56RE-5 | F-SB-56RE-6 | F-SB-56RE-7 |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-056          | SB-056          | SB-056          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-56RE-5     | F-SB-56RE-6     | F-SB-56RE-7     |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u> </u>        |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
|                                          |                 |                 |                 |

HEPTACHLOR

| JOIL                             |                 | T               | _               |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-056          | SB-056          | SB-056          |
| SAMPLE ID                        | F-SB-56RE-5     | F-SB-56RE-6     | F-SB-56RE-7     |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 0 U [MDL=1.6]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 | <br>            |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| GAIVIIVIA-CITLORDAINE            |                 |                 |                 |

February 2013 Page A-118

--

---

| LOCATION           | SB-056      | SB-056      | SB-056      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-56RE-5 | F-SB-56RE-6 | F-SB-56RE-7 |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       | 1           |             |             |
| TOTAL AROCLOR      | 1           |             |             |
| TOTAL DDT POS      |             |             |             |
| TOXAPHENE          |             |             |             |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-056      | SB-056      | SB-093     |
|------------------------------|-------------|-------------|------------|
| SAMPLE ID                    | F-SB-56RE-8 | F-SB-56RE-9 | SB-93-05   |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/16/2004  |
| METALS (MG/KG)               | •           |             |            |
| ANTIMONY                     |             |             | 3 UR []    |
| ARSENIC                      |             |             | 0.59 UL [] |
| BARIUM                       |             |             |            |
| BERYLLIUM                    |             |             | 3 UL []    |
| CADMIUM                      |             |             | 3 UL []    |
| CHROMIUM                     |             |             | 20 []      |
| COBALT                       |             |             |            |
| COPPER                       |             |             | 13 L []    |
| LEAD                         |             |             | 8.7 L []   |
| MERCURY                      |             |             | 0.12 U []  |
| MOLYBDENUM                   |             |             |            |
| NICKEL                       |             |             | 17 []      |
| SELENIUM                     |             |             | 4.3 L []   |
| SILVER                       |             |             | 3 UR []    |
| THALLIUM                     |             |             | 2.4 UL []  |
| VANADIUM                     |             |             |            |
| ZINC                         |             |             | 30 U []    |
| MISCELLANEOUS PARAMETERS     |             |             |            |
| PERCENT SOLIDS (%)           |             |             |            |
| TOTAL SOLIDS (%)             |             |             |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |
| PH (S.U.)                    |             |             |            |
| MERCURY (METHYL) (UG/KG)     |             |             |            |
| SEMIVOLATILES (UG/KG)        |             |             |            |
| 1,1-BIPHENYL                 |             |             | 400 U []   |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |
| 1,2-DICHLOROBENZENE          |             |             |            |
| 1,3-DICHLOROBENZENE          |             |             |            |
| 1,4-DICHLOROBENZENE          |             |             |            |
| 1,4-DIOXANE                  |             |             |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             | 400 U []   |
| 2,4,5-TRICHLOROPHENOL        |             |             | 990 U []   |
| 2,4,6-TRICHLOROPHENOL        |             |             | 400 U []   |
| 2,4-DICHLOROPHENOL           |             |             | 400 U []   |
| 2,4-DIMETHYLPHENOL           |             |             | 400 U []   |
| 2,4-DINITROPHENOL            |             |             | 990 U []   |

| LOCATION                    | SB-056      | SB-056      | SB-093    |
|-----------------------------|-------------|-------------|-----------|
| SAMPLE ID                   | F-SB-56RE-8 | F-SB-56RE-9 | SB-93-05  |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| 2,4-DINITROTOLUENE          |             |             | 400 U []  |
| 2,6-DINITROTOLUENE          |             |             | 400 U []  |
| 2-CHLORONAPHTHALENE         |             |             | 400 U []  |
| 2-CHLOROPHENOL              |             |             | 400 U []  |
| 2-METHYLPHENOL              |             |             | 400 U []  |
| 2-NITROANILINE              |             |             | 990 U []  |
| 2-NITROPHENOL               |             |             | 400 U []  |
| 3&4-METHYLPHENOL            |             |             | 400 U []  |
| 3,3'-DICHLOROBENZIDINE      |             |             | 400 U []  |
| 3-NITROANILINE              |             |             | 990 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             | 910 U []  |
| 4-BROMOPHENYL PHENYL ETHER  |             |             | 400 U []  |
| 4-CHLORO-3-METHYLPHENOL     |             |             | 400 U []  |
| 4-CHLOROANILINE             |             |             | 400 U []  |
| 4-CHLOROPHENYL PHENYL ETHER |             |             | 400 U []  |
| 4-NITROANILINE              |             |             | 990 U []  |
| 4-NITROPHENOL               |             |             | 990 U []  |
| ACETOPHENONE                |             |             | 400 U []  |
| ANILINE                     |             |             |           |
| ATRAZINE                    |             |             | 400 U []  |
| AZOBENZENE                  |             |             |           |
| BENZIDINE                   |             |             |           |
| BENZOIC ACID                |             |             |           |
| BENZYL ALCOHOL              |             |             |           |
| BIS(2-CHLOROETHOXY)METHANE  |             |             | 400 U []  |
| BIS(2-CHLOROETHYL)ETHER     |             |             | 400 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  | <del></del> |             | 400 U []  |
| BUTYL BENZYL PHTHALATE      | <del></del> |             | 400 U []  |
| CAPROLACTAM                 | <del></del> |             | 400 U []  |
| CARBAZOLE                   | <del></del> |             | 400 U []  |
| DIBENZOFURAN                | <del></del> |             | 400 U []  |
| DIETHYL PHTHALATE           | <del></del> |             | 400 U []  |
| DIMETHYL PHTHALATE          |             |             | 400 U []  |
| DI-N-BUTYL PHTHALATE        |             |             | 400 U []  |
| DI-N-OCTYL PHTHALATE        |             |             | 400 U []  |
| HEXACHLOROBENZENE           |             |             | 400 U []  |
| HEXACHLOROBUTADIENE         |             |             | 400 U []  |
| HEXACHLOROCYCLOPENTADIENE   |             |             | 400 U []  |

| SOIL                           |             |             |           |
|--------------------------------|-------------|-------------|-----------|
| LOCATION                       | SB-056      | SB-056      | SB-093    |
| SAMPLE ID                      | F-SB-56RE-8 | F-SB-56RE-9 | SB-93-05  |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| HEXACHLOROETHANE               |             |             | 400 U []  |
| ISOPHORONE                     |             |             | 400 U []  |
| NITROBENZENE                   |             |             | 400 U []  |
| N-NITROSODIMETHYLAMINE         |             |             |           |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             | 400 U []  |
| N-NITROSODIPHENYLAMINE         |             |             | 400 U []  |
| PENTACHLOROPHENOL              |             |             | 990 U []  |
| PHENOL                         |             |             | 400 U []  |
| PYRIDINE                       |             |             |           |
| VOLATILES (UG/KG)              | <u>.</u>    | •           | •         |
| 1,1,1,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,1-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,2-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             | 6 U []    |
| 1,1-DICHLOROETHANE             |             |             | 6 U []    |
| 1,1-DICHLOROETHENE             |             |             | 6 U []    |
| 1,1-DICHLOROPROPENE            |             |             | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         |             |             | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |             |             |           |
| 1,2,4-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             | 6 U []    |
| 1,2-DIBROMOETHANE              |             |             | 6 U []    |
| 1,2-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,2-DICHLOROETHANE             |             |             | 6 U []    |
| 1,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,3-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPENE            |             |             |           |
| 1,4-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,4-DIOXANE                    |             |             |           |
| 2,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 2-BUTANONE                     |             |             | 60 U[]    |
| 2-CHLOROETHYL VINYL ETHER      |             |             | 6 U []    |
| 2-CHLOROTOLUENE                |             |             | 6 U []    |

| LOCATION                | SB-056      | SB-056      | SB-093    |
|-------------------------|-------------|-------------|-----------|
| SAMPLE ID               | F-SB-56RE-8 | F-SB-56RE-9 | SB-93-05  |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| 2-HEXANONE              |             |             | 60 U []   |
| 4-CHLOROTOLUENE         |             |             | 6 U []    |
| 4-ISOPROPYLTOLUENE      |             |             | 6 U []    |
| 4-METHYL-2-PENTANONE    |             |             | 60 U []   |
| ACETONE                 |             |             | 60 U []   |
| BENZENE                 |             |             | 6 U []    |
| BROMOBENZENE            |             |             | 6 U []    |
| BROMOCHLOROMETHANE      |             |             | 6 U []    |
| BROMODICHLOROMETHANE    |             |             | 6 U []    |
| BROMOFORM               |             |             | 6 U []    |
| BROMOMETHANE            |             |             | 6 U []    |
| CARBON DISULFIDE        |             |             | 6 U []    |
| CARBON TETRACHLORIDE    |             |             | 6 U []    |
| CHLOROBENZENE           |             |             | 6 U []    |
| CHLORODIBROMOMETHANE    |             |             | 6 U []    |
| CHLOROETHANE            |             |             | 6 U []    |
| CHLOROFORM              |             |             | 6 U []    |
| CHLOROMETHANE           |             |             | 6 U []    |
| CIS-1,2-DICHLOROETHENE  |             |             | 6 U []    |
| CIS-1,3-DICHLOROPROPENE |             |             | 6 U []    |
| DIBROMOMETHANE          |             |             | 6 U []    |
| DICHLORODIFLUOROMETHANE |             |             | 6 U []    |
| DIISOPROPYL ETHER       |             |             |           |
| ETHYL TERT-BUTYL ETHER  |             |             |           |
| ETHYLBENZENE            |             |             | 6 U []    |
| FLUORODICHLOROMETHANE   |             |             |           |
| HEXACHLOROBUTADIENE     |             |             |           |
| ISOPROPYLBENZENE        |             |             | 6 U []    |
| M+P-XYLENES             |             |             | 12 U []   |
| METHYL TERT-BUTYL ETHER |             |             | 6 U []    |
| METHYLENE CHLORIDE      |             |             | 6 U []    |
| NAPHTHALENE             |             |             | 6 U []    |
| N-BUTYLBENZENE          |             |             | 6 U []    |
| N-PROPYLBENZENE         |             |             | 6 U []    |
| O-XYLENE                |             |             | 6 U []    |
| SEC-BUTYLBENZENE        |             |             | 6 U []    |
| STYRENE                 |             |             | 6 U []    |
| TERT-AMYL METHYL ETHER  |             |             |           |

| LOCATION                                 | SB-056          | SB-056          | SB-093        |
|------------------------------------------|-----------------|-----------------|---------------|
| SAMPLE ID                                | F-SB-56RE-8     | F-SB-56RE-9     | SB-93-05      |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/16/2004     |
| TERT-BUTYLBENZENE                        |                 |                 | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |               |
| TETRACHLOROETHENE                        |                 |                 | 6 U []        |
| TOLUENE                                  |                 |                 | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |               |
| TOTAL XYLENES                            |                 |                 |               |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 | 6 U []        |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 | 6 U []        |
| TRICHLOROETHENE                          |                 |                 | 6 U []        |
| TRICHLOROFLUOROMETHANE                   |                 |                 | 6 U []        |
| VINYL ACETATE                            |                 |                 | 6 U []        |
| VINYL CHLORIDE                           |                 |                 | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •               |                 |               |
| 1-METHYLNAPHTHALENE                      |                 |                 |               |
| 2-METHYLNAPHTHALENE                      |                 |                 | 400 U []      |
| ACENAPHTHENE                             |                 |                 | 400 U []      |
| ACENAPHTHYLENE                           |                 |                 | 400 U []      |
| ANTHRACENE                               |                 |                 | 400 U []      |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 400 U []      |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 400 U []      |
| BAP EQUIVALENT-UCL                       |                 |                 | 343.609261 [] |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 400 U []      |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 400 U []      |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 400 U []      |
| BENZO(G,H,I)PERYLENE                     |                 |                 | 400 U []      |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 400 U []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |               |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |               |
| C1-FLUORENES                             |                 | 1               |               |
| C1-PHENANTHRENES/ANTHRACENES             |                 | 1               |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 | 1               |               |
| C2-FLUORENES                             |                 | 1               |               |
| C2-NAPHTHALENES                          |                 | 1               |               |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |               |
| C3-FLUORENES                             |                 | -               |               |
| C3-NAPHTHALENES                          |                 | -               |               |
| C3-PHENANTHRENES/ANTHRACENES             |                 | -               |               |
| ·                                        |                 |                 |               |

| OOL                              |                 |                 |           |
|----------------------------------|-----------------|-----------------|-----------|
| LOCATION                         | SB-056          | SB-056          | SB-093    |
| SAMPLE ID                        | F-SB-56RE-8     | F-SB-56RE-9     | SB-93-05  |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |           |
| C4-NAPHTHALENES                  |                 |                 |           |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |           |
| CHRYSENE                         | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 400 U []  |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 400 U []  |
| FLUORANTHENE                     |                 |                 | 400 U []  |
| FLUORENE                         |                 |                 | 400 U []  |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 400 U []  |
| NAPHTHALENE                      |                 |                 | 400 U []  |
| PHENANTHRENE                     |                 |                 | 400 U []  |
| PYRENE                           |                 |                 | 400 U []  |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U []    |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |           |
| 4,4'-DDD                         |                 |                 | 23 U []   |
| 4,4'-DDE                         |                 |                 | 23 U []   |
| 4,4'-DDT                         |                 |                 | 23 U []   |
| ALDRIN                           |                 |                 | 23 U []   |
| ALPHA-BHC                        |                 |                 | 23 U []   |
| ALPHA-CHLORDANE                  |                 |                 | 23 U []   |
| AROCLOR-1016                     |                 |                 | 290 U []  |
| AROCLOR-1221                     |                 |                 | 290 U []  |
| AROCLOR-1232                     |                 |                 | 290 U []  |
| AROCLOR-1242                     |                 |                 | 290 U []  |
| AROCLOR-1248                     |                 |                 | 290 U []  |
| AROCLOR-1254                     |                 |                 | 290 U []  |
| AROCLOR-1260                     |                 |                 | 290 U []  |
| BETA-BHC                         |                 |                 | 23 U []   |
| DELTA-BHC                        |                 |                 | 23 U []   |
| DIELDRIN                         |                 |                 | 23 U []   |
| ENDOSULFAN I                     |                 |                 | 23 U []   |
| ENDOSULFAN II                    |                 |                 | 23 U []   |
| ENDOSULFAN SULFATE               |                 |                 | 23 U []   |
| ENDRIN                           |                 |                 | 23 U []   |
| ENDRIN ALDEHYDE                  |                 |                 | 23 U []   |
| ENDRIN KETONE                    |                 |                 | 23 U []   |
| GAMMA-BHC (LINDANE)              |                 |                 | 23 U []   |
| GAMMA-CHLORDANE                  |                 |                 | 23 U []   |
| HEPTACHLOR                       |                 |                 | 23 U []   |

February 2013 Page A-125

| LOCATION           | SB-056      | SB-056      | SB-093    |
|--------------------|-------------|-------------|-----------|
| SAMPLE ID          | F-SB-56RE-8 | F-SB-56RE-9 | SB-93-05  |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| HEPTACHLOR EPOXIDE |             |             | 23 U []   |
| METHOXYCHLOR       |             |             | 23 U []   |
| TOTAL AROCLOR      |             |             | 0 U []    |
| TOTAL DDT POS      |             |             | 0 U []    |
| TOXAPHENE          |             |             | 580 U []  |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   | <br>12000 U [] |
|-------------------------|---|----------------|
| GASOLINE RANGE ORGANICS | 1 | <br>120 U []   |
| TPH (C09-C36)           |   | <br>           |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| S | 0 |   | L |  |
|---|---|---|---|--|
| 5 | v | Ш |   |  |

| JOIL                         |            |            |            |
|------------------------------|------------|------------|------------|
| LOCATION                     | SB-093     | SB-093     | SB-093     |
| SAMPLE ID                    | SB-93-10   | SB-93-15   | SB-93-SS   |
| SAMPLE DATE                  | 9/16/2004  | 9/16/2004  | 9/16/2004  |
| METALS (MG/KG)               | •          |            |            |
| ANTIMONY                     | 2.8 UR []  | 2.8 UR []  | 3.1 UR []  |
| ARSENIC                      | 0.56 UL [] | 0.56 UL [] | 1.8 L []   |
| BARIUM                       |            |            |            |
| BERYLLIUM                    | 2.8 UL []  | 2.8 UL []  | 3.1 UL []  |
| CADMIUM                      | 2.8 UL []  | 2.8 UL []  | 3.5 L []   |
| CHROMIUM                     | 9.9 K []   | 18 []      | 110 []     |
| COBALT                       |            |            |            |
| COPPER                       | 10 L []    | 12 L []    | 21 L []    |
| LEAD                         | 2.9 L []   | 4 L []     | 73 L []    |
| MERCURY                      | 0.11 U []  | 0.11 U []  | 0.68 []    |
| MOLYBDENUM                   |            |            |            |
| NICKEL                       | 4 K []     | 18 []      | 11 []      |
| SELENIUM                     | 2.8 UL []  | 2.8 UL []  | 3.1 UL []  |
| SILVER                       | 2.8 UR []  | 2.8 UR []  | 3.1 UR []  |
| THALLIUM                     | 2.2 UL []  | 2.3 UL []  | 2.5 UL []  |
| VANADIUM                     | -          |            |            |
| ZINC                         | 28 U []    | 28 U []    | 100 K []   |
| MISCELLANEOUS PARAMETERS     |            |            |            |
| PERCENT SOLIDS (%)           |            |            |            |
| TOTAL SOLIDS (%)             |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |
| PH (S.U.)                    |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |
| SEMIVOLATILES (UG/KG)        | <u> </u>   |            |            |
| 1,1-BIPHENYL                 | 390 U []   | 400 U []   | 4500 U []  |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |
| 1,4-DIOXANE                  |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U []   | 400 U []   | 4500 U []  |
| 2,4,5-TRICHLOROPHENOL        | 980 U []   | 990 U []   | 11000 U [] |
| 2,4,6-TRICHLOROPHENOL        | 390 U []   | 400 U []   | 4500 U []  |
| 2,4-DICHLOROPHENOL           | 390 U []   | 400 U []   | 4500 U []  |
| 2,4-DIMETHYLPHENOL           | 390 U []   | 400 U []   | 4500 U []  |
| 2,4-DINITROPHENOL            | 980 U []   | 990 U []   | 11000 U [] |
|                              |            |            |            |

| LOCATION                    | SB-093    | SB-093    | SB-093     |
|-----------------------------|-----------|-----------|------------|
| SAMPLE ID                   | SB-93-10  | SB-93-15  | SB-93-SS   |
| SAMPLE DATE                 | 9/16/2004 | 9/16/2004 | 9/16/2004  |
| 2,4-DINITROTOLUENE          | 390 U []  | 400 U []  | 4500 U []  |
| 2,6-DINITROTOLUENE          | 390 U []  | 400 U []  | 4500 U []  |
| 2-CHLORONAPHTHALENE         | 390 U []  | 400 U []  | 4500 U []  |
| 2-CHLOROPHENOL              | 390 U []  | 400 U []  | 4500 U []  |
| 2-METHYLPHENOL              | 390 U []  | 400 U []  | 4500 U []  |
| 2-NITROANILINE              | 980 U []  | 990 U []  | 11000 U [] |
| 2-NITROPHENOL               | 390 U []  | 400 U []  | 4500 U []  |
| 3&4-METHYLPHENOL            | 390 U []  | 400 U []  | 4500 U []  |
| 3,3'-DICHLOROBENZIDINE      | 390 U []  | 400 U []  | 4500 U []  |
| 3-NITROANILINE              | 980 U []  | 990 U []  | 11000 U [] |
| 4,6-DINITRO-2-METHYLPHENOL  | 900 U []  | 910 U[]   | 10000 U [] |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U []  | 400 U []  | 4500 U []  |
| 4-CHLORO-3-METHYLPHENOL     | 390 U []  | 400 U []  | 4500 U []  |
| 4-CHLOROANILINE             | 390 U []  | 400 U []  | 4500 U []  |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U []  | 400 U []  | 4500 U []  |
| 4-NITROANILINE              | 980 U []  | 990 U []  | 11000 U [] |
| 4-NITROPHENOL               | 980 U []  | 990 U []  | 11000 U [] |
| ACETOPHENONE                | 390 U[]   | 400 U []  | 4500 U []  |
| ANILINE                     |           |           |            |
| ATRAZINE                    | 390 U []  | 400 U []  | 4500 U []  |
| AZOBENZENE                  |           |           |            |
| BENZIDINE                   |           |           |            |
| BENZOIC ACID                |           |           |            |
| BENZYL ALCOHOL              |           |           |            |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U []  | 400 U []  | 4500 U []  |
| BIS(2-CHLOROETHYL)ETHER     | 390 U []  | 400 U []  | 4500 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U []  | 400 U []  | 4500 U []  |
| BUTYL BENZYL PHTHALATE      | 390 U []  | 400 U []  | 4500 U []  |
| CAPROLACTAM                 | 390 U []  | 400 U []  | 4500 U []  |
| CARBAZOLE                   | 390 U []  | 400 U []  | 4500 U []  |
| DIBENZOFURAN                | 390 U []  | 400 U []  | 4500 U []  |
| DIETHYL PHTHALATE           | 390 U[]   | 400 U []  | 4500 U []  |
| DIMETHYL PHTHALATE          | 390 U[]   | 400 U []  | 4500 U []  |
| DI-N-BUTYL PHTHALATE        | 390 U[]   | 400 U []  | 4500 U []  |
| DI-N-OCTYL PHTHALATE        | 390 U[]   | 400 U []  | 4500 U []  |
| HEXACHLOROBENZENE           | 390 U []  | 400 U []  | 4500 U []  |
| HEXACHLOROBUTADIENE         | 390 U []  | 400 U []  | 4500 U []  |
| HEXACHLOROCYCLOPENTADIENE   | 390 U []  | 400 U []  | 4500 U []  |

2-CHLOROTOLUENE

| LOCATION                       | SB-093    | SB-093    | SB-093     |
|--------------------------------|-----------|-----------|------------|
| SAMPLE ID                      | SB-93-10  | SB-93-15  | SB-93-SS   |
| SAMPLE DATE                    | 9/16/2004 | 9/16/2004 | 9/16/2004  |
| HEXACHLOROETHANE               | 390 U []  | 400 U []  | 4500 U []  |
| ISOPHORONE                     | 390 U []  | 400 U []  | 4500 U []  |
| NITROBENZENE                   | 390 U []  | 400 U []  | 4500 U []  |
| N-NITROSODIMETHYLAMINE         |           |           |            |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U []  | 400 U []  | 4500 U []  |
| N-NITROSODIPHENYLAMINE         | 390 U []  | 400 U []  | 4500 U []  |
| PENTACHLOROPHENOL              | 980 U []  | 990 U []  | 11000 U [] |
| PHENOL                         | 390 U []  | 400 U []  | 4500 U []  |
| PYRIDINE                       |           |           |            |
| VOLATILES (UG/KG)              |           |           |            |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U []    | 6 U[]     | 7 U []     |
| 1,1,1-TRICHLOROETHANE          | 6 U []    | 6 U[]     | 7 U []     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U []    | 6 U[]     | 7 U []     |
| 1,1,2-TRICHLOROETHANE          | 6 U []    | 6 U[]     | 7 U []     |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U []    | 6 U[]     | 7 U []     |
| 1,1-DICHLOROETHANE             | 6 U []    | 6 U[]     | 7 U []     |
| 1,1-DICHLOROETHENE             | 6 U []    | 6 U[]     | 7 U []     |
| 1,1-DICHLOROPROPENE            | 6 U []    | 6 U[]     | 7 U []     |
| 1,2,3-TRICHLOROBENZENE         | 6 U []    | 6 U[]     | 7 U []     |
| 1,2,3-TRICHLOROPROPANE         | 6 U []    | 6 U[]     | 7 U []     |
| 1,2,3-TRIMETHYLBENZENE         |           |           |            |
| 1,2,4-TRICHLOROBENZENE         | 6 U []    | 6 U[]     | 7 U []     |
| 1,2,4-TRIMETHYLBENZENE         | 6 U []    | 6 U[]     | 7 U []     |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]     | 6 U[]     | 7 U []     |
| 1,2-DIBROMOETHANE              | 6 U[]     | 6 U[]     | 7 U []     |
| 1,2-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 7 U []     |
| 1,2-DICHLOROETHANE             | 6 U[]     | 6 U[]     | 7 U []     |
| 1,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 7 U []     |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]     | 6 U[]     | 7 U []     |
| 1,3-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 7 U []     |
| 1,3-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 7 U []     |
| 1,3-DICHLOROPROPENE            |           |           |            |
| 1,4-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 7 U []     |
| 1,4-DIOXANE                    |           |           |            |
| 2,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 7 U[]      |
| 2-BUTANONE                     | 59 U []   | 59 U[]    | 66 U []    |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]     | 6 U []    | 7 U []     |
|                                |           |           |            |

February 2013 Page A-129

6 U [--]

6 U [--]

7 U [--]

| LOCATION                | SB-093    | SB-093    | SB-093    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-93-10  | SB-93-15  | SB-93-SS  |
| SAMPLE DATE             | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| 2-HEXANONE              | 59 U[]    | 59 U []   | 66 U[]    |
| 4-CHLOROTOLUENE         | 6 U[]     | 6 U []    | 7 U []    |
| 4-ISOPROPYLTOLUENE      | 6 U[]     | 6 U []    | 7 U []    |
| 4-METHYL-2-PENTANONE    | 59 U[]    | 59 U []   | 66 U[]    |
| ACETONE                 | 59 U[]    | 59 U []   | 66 U[]    |
| BENZENE                 | 6 U[]     | 6 U []    | 7 U []    |
| BROMOBENZENE            | 6 U[]     | 6 U []    | 7 U []    |
| BROMOCHLOROMETHANE      | 6 U[]     | 6 U []    | 7 U []    |
| BROMODICHLOROMETHANE    | 6 U[]     | 6 U []    | 7 U []    |
| BROMOFORM               | 6 U[]     | 6 U []    | 7 U []    |
| BROMOMETHANE            | 6 U[]     | 6 U []    | 7 U []    |
| CARBON DISULFIDE        | 6 U[]     | 6 U []    | 7 U []    |
| CARBON TETRACHLORIDE    | 6 U[]     | 6 U []    | 7 U []    |
| CHLOROBENZENE           | 6 U[]     | 6 U []    | 7 U []    |
| CHLORODIBROMOMETHANE    | 6 U[]     | 6 U []    | 7 U []    |
| CHLOROETHANE            | 6 U[]     | 6 U []    | 7 U []    |
| CHLOROFORM              | 6 U[]     | 6 U []    | 7 U []    |
| CHLOROMETHANE           | 6 U[]     | 6 U []    | 7 U []    |
| CIS-1,2-DICHLOROETHENE  | 6 U[]     | 6 U []    | 7 U []    |
| CIS-1,3-DICHLOROPROPENE | 6 U[]     | 6 U[]     | 7 U []    |
| DIBROMOMETHANE          | 6 U[]     | 6 U[]     | 7 U []    |
| DICHLORODIFLUOROMETHANE | 6 U[]     | 6 U[]     | 7 U []    |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            | 6 U[]     | 6 U[]     | 7 U []    |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        | 6 U[]     | 6 U[]     | 7 U []    |
| M+P-XYLENES             | 12 U []   | 12 U []   | 13 U[]    |
| METHYL TERT-BUTYL ETHER | 6 U[]     | 6 U[]     | 7 U[]     |
| METHYLENE CHLORIDE      | 6 U[]     | 8 J []    | 7 U []    |
| NAPHTHALENE             | 6 U[]     | 6 U[]     | 7 U []    |
| N-BUTYLBENZENE          | 6 U[]     | 6 U[]     | 7 U []    |
| N-PROPYLBENZENE         | 6 U[]     | 6 U[]     | 7 U []    |
| O-XYLENE                | 6 U[]     | 6 U[]     | 7 U []    |
| SEC-BUTYLBENZENE        | 6 U[]     | 6 U[]     | 7 U []    |
| STYRENE                 | 6 ∪[]     | 6 U []    | 7 U []    |
| TERT-AMYL METHYL ETHER  |           |           |           |

C3-PHENANTHRENES/ANTHRACENES

## SOIL

| OOL                                      |               |               |                |
|------------------------------------------|---------------|---------------|----------------|
| LOCATION                                 | SB-093        | SB-093        | SB-093         |
| SAMPLE ID                                | SB-93-10      | SB-93-15      | SB-93-SS       |
| SAMPLE DATE                              | 9/16/2004     | 9/16/2004     | 9/16/2004      |
| TERT-BUTYLBENZENE                        | 6 U[]         | 6 U []        | 7 U []         |
| TERTIARY-BUTYL ALCOHOL                   |               |               |                |
| TETRACHLOROETHENE                        | 6 U[]         | 6 U []        | 7 U []         |
| TOLUENE                                  | 6 U[]         | 6 U []        | 7 U []         |
| TOTAL 1,2-DICHLOROETHENE                 |               |               |                |
| TOTAL XYLENES                            |               |               |                |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]         | 6 U[]         | 7 U []         |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]         | 6 U[]         | 7 U []         |
| TRICHLOROETHENE                          | 6 U []        | 6 U []        | 7 U []         |
| TRICHLOROFLUOROMETHANE                   | 6 U[]         | 6 U []        | 7 U []         |
| VINYL ACETATE                            | 6 U[]         | 6 U []        | 7 U []         |
| VINYL CHLORIDE                           | 6 U[]         | 6 U []        | 7 U []         |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •             |               |                |
| 1-METHYLNAPHTHALENE                      |               |               |                |
| 2-METHYLNAPHTHALENE                      | 390 U []      | 400 U []      | 4500 U []      |
| ACENAPHTHENE                             | 390 U []      | 400 U []      | 4500 U []      |
| ACENAPHTHYLENE                           | 390 U []      | 400 U []      | 4500 U []      |
| ANTHRACENE                               | 390 U []      | 400 U []      | 4500 U []      |
| BAP EQUIVALENT-HALFND                    | 390 U []      | 400 U []      | 4189.3 []      |
| BAP EQUIVALENT-POS                       | 390 U []      | 400 U []      | 1939.3 []      |
| BAP EQUIVALENT-UCL                       | 518.856451 [] | 399.476695 [] | 1993.953365 [] |
| BENZO(A)ANTHRACENE                       | 390 U []      | 400 U []      | 1800 J []      |
| BENZO(A)PYRENE                           | 390 U []      | 400 U []      | 1500 J []      |
| BENZO(B)FLUORANTHENE                     | 390 U []      | 400 U []      | 1600 J []      |
| BENZO(G,H,I)PERYLENE                     | 390 U []      | 400 U []      | 1000 J []      |
| BENZO(K)FLUORANTHENE                     | 390 U []      | 400 U []      | 1500 J []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |                |
| C1-FLUORANTHENES/PYRENES                 |               |               |                |
| C1-FLUORENES                             |               |               |                |
| C1-PHENANTHRENES/ANTHRACENES             |               |               |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |                |
| C2-FLUORENES                             |               |               |                |
| C2-NAPHTHALENES                          |               |               |                |
| C2-PHENANTHRENES/ANTHRACENES             |               |               |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |                |
| C3-FLUORENES                             |               |               |                |
| C3-NAPHTHALENES                          |               |               |                |
| <del>,</del>                             |               |               |                |

February 2013 Page A-131

--

--

--

| LOCATION                         | SB-093    | SB-093    | SB-093    |
|----------------------------------|-----------|-----------|-----------|
| SAMPLE ID                        | SB-93-10  | SB-93-15  | SB-93-SS  |
| SAMPLE DATE                      | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         | 390 U []  | 400 U []  | 2300 J [] |
| DIBENZO(A,H)ANTHRACENE           | 390 U []  | 400 U []  | 4500 U [] |
| FLUORANTHENE                     | 390 U []  | 400 U []  | 3400 J [] |
| FLUORENE                         | 390 U []  | 400 U []  | 4500 U [] |
| INDENO(1,2,3-CD)PYRENE           | 390 U []  | 400 U []  | 820 J []  |
| NAPHTHALENE                      | 390 U []  | 400 U []  | 4500 U [] |
| PHENANTHRENE                     | 390 U []  | 400 U []  | 1600 J [] |
| PYRENE                           | 390 U []  | 400 U []  | 4000 J [] |
| TOTAL PAHS                       | 0 U[]     | 0 U[]     | 19520 []  |
| PESTICIDES/PCBS (UG/KG)          | <u>.</u>  |           |           |
| 4,4'-DDD                         | 23 U[]    | 23 U[]    | 54 U []   |
| 4,4'-DDE                         | 23 U[]    | 23 U []   | 54 U []   |
| 4,4'-DDT                         | 23 U[]    | 23 U []   | 54 U []   |
| ALDRIN                           | 23 U[]    | 23 U []   | 54 U []   |
| ALPHA-BHC                        | 23 U[]    | 23 U []   | 54 U []   |
| ALPHA-CHLORDANE                  | 23 U[]    | 23 U []   | 54 U []   |
| AROCLOR-1016                     | 290 U []  | 290 U[]   | 330 U []  |
| AROCLOR-1221                     | 290 U []  | 290 U []  | 330 U []  |
| AROCLOR-1232                     | 290 U []  | 290 U[]   | 330 U []  |
| AROCLOR-1242                     | 290 U []  | 290 U[]   | 330 U []  |
| AROCLOR-1248                     | 290 U []  | 290 U[]   | 330 U []  |
| AROCLOR-1254                     | 290 U []  | 290 U[]   | 330 U []  |
| AROCLOR-1260                     | 290 U []  | 290 U[]   | 800 []    |
| BETA-BHC                         | 23 U[]    | 23 U []   | 54 U []   |
| DELTA-BHC                        | 23 U[]    | 23 U []   | 54 U []   |
| DIELDRIN                         | 23 U[]    | 23 U []   | 54 U []   |
| ENDOSULFAN I                     | 23 U []   | 23 U []   | 54 U []   |
| ENDOSULFAN II                    | 23 U []   | 23 U []   | 54 U []   |
| ENDOSULFAN SULFATE               | 23 U []   | 23 U []   | 54 U []   |
| ENDRIN                           | 23 U []   | 23 U []   | 54 U []   |
| ENDRIN ALDEHYDE                  | 23 U[]    | 23 U []   | 54 U []   |
| ENDRIN KETONE                    | 23 U[]    | 23 U []   | 54 U []   |
| GAMMA-BHC (LINDANE)              | 23 U []   | 23 U []   | 54 U []   |
| GAMMA-CHLORDANE                  | 23 U []   | 23 U []   | 54 U []   |
| HEPTACHLOR                       | 23 U []   | 23 U []   | 54 U[]    |

| LOCATION           | SB-093    | SB-093    | SB-093    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-93-10  | SB-93-15  | SB-93-SS  |
| SAMPLE DATE        | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| HEPTACHLOR EPOXIDE | 23 U []   | 23 U []   | 54 U []   |
| METHOXYCHLOR       | 23 U []   | 23 U []   | 54 U []   |
| TOTAL AROCLOR      | 0 U []    | 0 U[]     | 800 []    |
| TOTAL DDT POS      | 0 U []    | 0 U[]     | 0 U []    |
| TOXAPHENE          | 580 U []  | 580 U[]   | 1300 U [] |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 12000 U [] | 12000 U [] | 150000 [] |
|-------------------------|------------|------------|-----------|
| GASOLINE RANGE ORGANICS | 120 U []   | 120 U[]    | 130 U []  |
| TPH (C09-C36)           |            |            |           |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |              |              |
|------------------------------|-------------|--------------|--------------|
| LOCATION                     | SB-093      | SB-093       | SB-093       |
| SAMPLE ID                    | F-SB-93RE-1 | F-SB-93RE-10 | F-SB-93RE-11 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               |             |              |              |
| ANTIMONY                     |             |              |              |
| ARSENIC                      |             |              |              |
| BARIUM                       |             |              |              |
| BERYLLIUM                    |             |              |              |
| CADMIUM                      |             |              |              |
| CHROMIUM                     |             |              |              |
| COBALT                       |             |              |              |
| COPPER                       |             |              |              |
| LEAD                         |             |              |              |
| MERCURY                      |             |              |              |
| MOLYBDENUM                   |             |              |              |
| NICKEL                       |             |              |              |
| SELENIUM                     |             |              |              |
| SILVER                       |             |              |              |
| THALLIUM                     |             |              |              |
| VANADIUM                     |             |              |              |
| ZINC                         |             |              |              |
| MISCELLANEOUS PARAMETERS     | <u> </u>    |              | •            |
| PERCENT SOLIDS (%)           |             |              |              |
| TOTAL SOLIDS (%)             |             |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |             |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |             |              |              |
| PH (S.U.)                    |             |              |              |
| MERCURY (METHYL) (UG/KG)     |             |              |              |
| SEMIVOLATILES (UG/KG)        | •           |              |              |
| 1,1-BIPHENYL                 |             |              |              |
| 1,2,4-TRICHLOROBENZENE       |             |              |              |
| 1,2-DICHLOROBENZENE          |             |              |              |
| 1,3-DICHLOROBENZENE          |             |              |              |
| 1,4-DICHLOROBENZENE          |             |              |              |
| 1,4-DIOXANE                  |             |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |              |              |
| 2,4,5-TRICHLOROPHENOL        |             |              |              |
| 2,4,6-TRICHLOROPHENOL        |             |              |              |
| 2,4-DICHLOROPHENOL           |             |              |              |
| 2,4-DIMETHYLPHENOL           |             |              |              |
| 2,4-DINITROPHENOL            |             |              |              |

| LOCATION                    | SB-093      | SB-093       | SB-093       |
|-----------------------------|-------------|--------------|--------------|
| SAMPLE ID                   | F-SB-93RE-1 | F-SB-93RE-10 | F-SB-93RE-11 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |             |              |              |
| 2,6-DINITROTOLUENE          |             |              |              |
| 2-CHLORONAPHTHALENE         |             |              |              |
| 2-CHLOROPHENOL              |             |              |              |
| 2-METHYLPHENOL              |             |              |              |
| 2-NITROANILINE              |             |              |              |
| 2-NITROPHENOL               |             |              |              |
| 3&4-METHYLPHENOL            |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |              |              |
| 3-NITROANILINE              |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |              |              |
| 4-CHLOROANILINE             |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |              |              |
| 4-NITROANILINE              |             |              |              |
| 4-NITROPHENOL               |             |              |              |
| ACETOPHENONE                |             |              |              |
| ANILINE                     |             |              |              |
| ATRAZINE                    |             |              |              |
| AZOBENZENE                  |             |              |              |
| BENZIDINE                   |             |              |              |
| BENZOIC ACID                |             |              |              |
| BENZYL ALCOHOL              |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |              |              |
| BUTYL BENZYL PHTHALATE      |             |              |              |
| CAPROLACTAM                 |             |              |              |
| CARBAZOLE                   |             |              |              |
| DIBENZOFURAN                |             |              |              |
| DIETHYL PHTHALATE           |             |              |              |
| DIMETHYL PHTHALATE          |             |              |              |
| DI-N-BUTYL PHTHALATE        |             |              |              |
| DI-N-OCTYL PHTHALATE        |             |              |              |
| HEXACHLOROBENZENE           |             |              |              |
| HEXACHLOROBUTADIENE         |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |              |              |

| SOIL                           |             |              |              |
|--------------------------------|-------------|--------------|--------------|
| LOCATION                       | SB-093      | SB-093       | SB-093       |
| SAMPLE ID                      | F-SB-93RE-1 | F-SB-93RE-10 | F-SB-93RE-11 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| HEXACHLOROETHANE               |             |              |              |
| ISOPHORONE                     |             |              |              |
| NITROBENZENE                   |             |              |              |
| N-NITROSODIMETHYLAMINE         |             |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |             |              |              |
| N-NITROSODIPHENYLAMINE         |             |              |              |
| PENTACHLOROPHENOL              |             |              |              |
| PHENOL                         |             |              |              |
| PYRIDINE                       |             |              |              |
| VOLATILES (UG/KG)              | •           |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |             |              |              |
| 1,1,1-TRICHLOROETHANE          |             |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |              |              |
| 1,1,2-TRICHLOROETHANE          |             |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |              |              |
| 1,1-DICHLOROETHANE             |             |              |              |
| 1,1-DICHLOROETHENE             |             |              |              |
| 1,1-DICHLOROPROPENE            |             |              |              |
| 1,2,3-TRICHLOROBENZENE         |             |              |              |
| 1,2,3-TRICHLOROPROPANE         |             |              |              |
| 1,2,3-TRIMETHYLBENZENE         |             |              |              |
| 1,2,4-TRICHLOROBENZENE         |             |              |              |
| 1,2,4-TRIMETHYLBENZENE         |             |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |              |              |
| 1,2-DIBROMOETHANE              |             |              |              |
| 1,2-DICHLOROBENZENE            |             |              |              |
| 1,2-DICHLOROETHANE             |             |              |              |
| 1,2-DICHLOROPROPANE            |             |              |              |
| 1,3,5-TRIMETHYLBENZENE         |             |              |              |
| 1,3-DICHLOROBENZENE            |             |              |              |
| 1,3-DICHLOROPROPANE            |             |              |              |
| 1,3-DICHLOROPROPENE            |             |              |              |
| 1,4-DICHLOROBENZENE            |             |              |              |
| 1,4-DIOXANE                    |             |              |              |
| 2,2-DICHLOROPROPANE            |             |              |              |
| 2-BUTANONE                     |             |              |              |
| 2-CHLOROETHYL VINYL ETHER      |             |              |              |
| 2-CHLOROTOLUENE                |             |              |              |

| LOCATION                | SB-093      | SB-093       | SB-093       |
|-------------------------|-------------|--------------|--------------|
| SAMPLE ID               | F-SB-93RE-1 | F-SB-93RE-10 | F-SB-93RE-11 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |             |              |              |
| 4-CHLOROTOLUENE         |             |              |              |
| 4-ISOPROPYLTOLUENE      |             |              |              |
| 4-METHYL-2-PENTANONE    |             |              |              |
| ACETONE                 |             |              |              |
| BENZENE                 |             |              |              |
| BROMOBENZENE            |             |              |              |
| BROMOCHLOROMETHANE      |             |              |              |
| BROMODICHLOROMETHANE    |             |              |              |
| BROMOFORM               |             |              |              |
| BROMOMETHANE            |             |              |              |
| CARBON DISULFIDE        |             |              |              |
| CARBON TETRACHLORIDE    |             |              |              |
| CHLOROBENZENE           |             |              |              |
| CHLORODIBROMOMETHANE    |             |              |              |
| CHLOROETHANE            |             |              |              |
| CHLOROFORM              |             |              |              |
| CHLOROMETHANE           | -1          |              |              |
| CIS-1,2-DICHLOROETHENE  | 1           |              |              |
| CIS-1,3-DICHLOROPROPENE |             |              |              |
| DIBROMOMETHANE          |             |              |              |
| DICHLORODIFLUOROMETHANE | -           |              |              |
| DIISOPROPYL ETHER       |             |              |              |
| ETHYL TERT-BUTYL ETHER  |             |              |              |
| ETHYLBENZENE            |             |              |              |
| FLUORODICHLOROMETHANE   |             |              |              |
| HEXACHLOROBUTADIENE     | -           |              |              |
| ISOPROPYLBENZENE        | -           |              |              |
| M+P-XYLENES             | -           |              |              |
| METHYL TERT-BUTYL ETHER | -           |              |              |
| METHYLENE CHLORIDE      |             |              |              |
| NAPHTHALENE             | -           |              |              |
| N-BUTYLBENZENE          |             |              |              |
| N-PROPYLBENZENE         |             |              |              |
| O-XYLENE                |             |              |              |
| SEC-BUTYLBENZENE        |             |              |              |
| STYRENE                 |             |              |              |
| TERT-AMYL METHYL ETHER  |             |              |              |

| LOCATION                                 | SB-093            | SB-093               | SB-093               |
|------------------------------------------|-------------------|----------------------|----------------------|
| SAMPLE ID                                | F-SB-93RE-1       | F-SB-93RE-10         | F-SB-93RE-11         |
| SAMPLE DATE                              | 9/21/2009         | 9/21/2009            | 9/21/2009            |
| TERT-BUTYLBENZENE                        |                   |                      |                      |
| TERTIARY-BUTYL ALCOHOL                   |                   |                      |                      |
| TETRACHLOROETHENE                        |                   |                      |                      |
| TOLUENE                                  |                   |                      |                      |
| TOTAL 1,2-DICHLOROETHENE                 |                   |                      |                      |
| TOTAL XYLENES                            |                   |                      |                      |
| TRANS-1,2-DICHLOROETHENE                 |                   |                      |                      |
| TRANS-1,3-DICHLOROPROPENE                |                   |                      |                      |
| TRICHLOROETHENE                          |                   |                      |                      |
| TRICHLOROFLUOROMETHANE                   |                   |                      |                      |
| VINYL ACETATE                            |                   |                      |                      |
| VINYL CHLORIDE                           |                   |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                      |                      |
| 1-METHYLNAPHTHALENE                      |                   |                      |                      |
| 2-METHYLNAPHTHALENE                      |                   |                      |                      |
| ACENAPHTHENE                             |                   |                      |                      |
| ACENAPHTHYLENE                           |                   |                      |                      |
| ANTHRACENE                               |                   |                      |                      |
| BAP EQUIVALENT-HALFND                    | 1189.76 [MDL=1.4] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS                       | 1189.76 [MDL=1.4] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL                       |                   |                      |                      |
| BENZO(A)ANTHRACENE                       | 890 [MDL=1.1]     | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 810 [MDL=1.4]     | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1200 [MDL=1.3]    | 1.400000 U [MDL=1.4] | 1.400000 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                   |                      |                      |
| BENZO(K)FLUORANTHENE                     | 390 [MDL=1.9]     | 2.000000 U [MDL=2]   | 2.000000 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C1-FLUORANTHENES/PYRENES                 |                   |                      |                      |
| C1-FLUORENES                             |                   |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C2-FLUORENES                             |                   |                      |                      |
| C2-NAPHTHALENES                          |                   |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C3-FLUORENES                             |                   |                      |                      |
| C3-NAPHTHALENES                          |                   |                      |                      |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |

February 2013 Page A-138

| SAMPLE DO TE   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12099   92/12   | LOCATION                         | SB-093               | SB-093               | SB-093               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|----------------------|----------------------|
| CACHRYSENESBENZO/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE ID                        | F-SB-93RE-1          | F-SB-93RE-10         | F-SB-93RE-11         |
| CAMAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 9/21/2009            |
| CAPHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                      |
| CHRYSENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4-NAPHTHALENES                  |                      |                      |                      |
| DIBENZO(A-H)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                      |
| FLUORANTHENE FLUORENE | CHRYSENE                         | 860 [MDL=1]          | 1.000000 U [MDL=1]   | 1.000000 U [MDL=1]   |
| FLUDENEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIBENZO(A,H)ANTHRACENE           | 120 [MDL=1.4]        | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| INDENOTIC 23-CDIPYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLUORANTHENE                     |                      |                      |                      |
| NAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FLUORENE                         |                      |                      |                      |
| PHENANTHRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INDENO(1,2,3-CD)PYRENE           | 460 [MDL=1.7]        | 1.700000 U [MDL=1.7] | 1.700000 U [MDL=1.7] |
| PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NAPHTHALENE                      |                      |                      |                      |
| TOTAL PAHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PHENANTHRENE                     |                      |                      |                      |
| ### PESTICIDES/PCBS (UG/KG) ### 4,4*-DDD ### 4,4*-DDD ### 4,4*-DDT ### | PYRENE                           |                      |                      |                      |
| 4,4*DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL PAHS                       | 4730 [MDL=1.4]       | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        |
| 4,4*-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PESTICIDES/PCBS (UG/KG)          | •                    |                      |                      |
| ALPHA-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,4'-DDD                         |                      |                      |                      |
| ALDRIN ALPHA-BHC ALPHA-CHLORDANE AROCLOR-1016 23.00000 U [MDL=23] AROCLOR-1221 AROCLOR-1221 AROCLOR-1221 18.00000 U [MDL=18] 19.00000 U [MDL=19] 19.00000 U [MDL=19] 19.00000 U [MDL=19] 19.00000 U [MDL=16] 16.00000 U [MDL=16] 16.00000 U [MDL=16] 16.00000 U [MDL=16] 17.00000 U [MDL=16] 18.00000 U [MDL=19] 18.00000 U [M         | 4,4'-DDE                         |                      |                      |                      |
| ALPHA-BHC ALPHA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,4'-DDT                         |                      |                      |                      |
| ALPHA-CHLORDANE  AROCLOR-1016  23,000000 U [MDL=23]  24,000000 U [MDL=24]  24,000000 U [MDL=19]  19,000000 U [MDL=18]  19,000000 U [MDL=18]  10,000000 U [MDL=18]  11,000000 U [MDL=19]  11,000000 U [MDL=19]  11,000000 U [MDL=20]  11,000000 U [ | ALDRIN                           |                      |                      |                      |
| AROCLOR-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALPHA-BHC                        |                      |                      |                      |
| AROCLOR-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALPHA-CHLORDANE                  |                      |                      |                      |
| AROCLOR-1232 16.00000 U [MDL=16] 16.00000 U [MDL=15] 15.00000 U [MDL=15] 15.00000 U [MDL=15] 15.00000 U [MDL=15] 15.00000 U [MDL=20] 20.00000 U [M | AROCLOR-1016                     | 23.000000 U [MDL=23] | 24.000000 U [MDL=24] | 24.000000 U [MDL=24] |
| AROCLOR-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AROCLOR-1221                     | 18.000000 U [MDL=18] | 19.000000 U [MDL=19] | 19.000000 U [MDL=19] |
| AROCLOR-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AROCLOR-1232                     | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] |
| AROCLOR-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AROCLOR-1242                     | 14.000000 U [MDL=14] | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] |
| AROCLOR-1260 120 [MDL=19] 20.00000 U [MDL=20] 20.00000 U [MDL=20] BETA-BHC DELTA-BHC DIELDRIN ENDOSULFAN I ENDOSULFAN SULFATE ENDRIN ENDRIN ALDEHYDE ENDRIN KETONE GAMMA-BHC (LINDANE) GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AROCLOR-1248                     | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| BETA-BHC              DELTA-BHC              DIELDRIN              ENDOSULFAN I              ENDOSULFAN SULFATE              ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AROCLOR-1254                     | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| DELTA-BHC              DIELDRIN              ENDOSULFAN I              ENDOSULFAN SULFATE              ENDRIN               ENDRIN ALDEHYDE               ENDRIN KETONE               GAMMA-BHC (LINDANE)               GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AROCLOR-1260                     | 120 [MDL=19]         | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| DIELDRIN              ENDOSULFAN I              ENDOSULFAN SULFATE              ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BETA-BHC                         |                      |                      |                      |
| ENDOSULFAN I              ENDOSULFAN III              ENDOSULFAN SULFATE              ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DELTA-BHC                        |                      |                      |                      |
| ENDOSULFAN II              ENDOSULFAN SULFATE              ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                      |                      |                      |
| ENDOSULFAN SULFATE              ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                      |                      |                      |
| ENDRIN              ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENDOSULFAN II                    |                      |                      |                      |
| ENDRIN ALDEHYDE              ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                      |                      |                      |
| ENDRIN KETONE              GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                      |                      |                      |
| GAMMA-BHC (LINDANE)              GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                      |                      |                      |
| GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                      |                      |                      |
| HEPTACHLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEPTACHLOR                       |                      |                      |                      |

| LOCATION           | SB-093       | SB-093       | SB-093       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-93RE-1  | F-SB-93RE-10 | F-SB-93RE-11 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 120 [MDL=23] | 0 U [MDL=24] | 0 U [MDL=24] |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                             | SB-093       | SB-093       | SB-093       |
|--------------------------------------|--------------|--------------|--------------|
| SAMPLE ID                            | F-SB-93RE-12 | F-SB-93RE-13 | F-SB-93RE-14 |
| SAMPLE DATE                          | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)                       |              | •            |              |
| ANTIMONY                             |              |              |              |
| ARSENIC                              |              |              |              |
| BARIUM                               |              |              |              |
| BERYLLIUM                            |              |              |              |
| CADMIUM                              |              |              |              |
| CHROMIUM                             |              |              |              |
| COBALT                               |              |              |              |
| COPPER                               |              |              |              |
| LEAD                                 |              |              |              |
| MERCURY                              |              |              |              |
| MOLYBDENUM                           |              |              |              |
| NICKEL                               |              |              |              |
| SELENIUM                             |              |              |              |
| SILVER                               |              |              |              |
| THALLIUM                             |              |              |              |
| VANADIUM                             |              |              |              |
| ZINC                                 |              |              |              |
| MISCELLANEOUS PARAMETERS             |              | •            | •            |
| PERCENT SOLIDS (%)                   |              |              |              |
| TOTAL SOLIDS (%)                     |              |              |              |
| HEXAVALENT CHROMIUM (MG/KG)          |              |              |              |
| TOTAL ORGANIC CARBON (MG/KG)         |              |              |              |
| PH (S.U.)                            |              |              |              |
| MERCURY (METHYL) (UG/KG)             |              |              |              |
| SEMIVOLATILES (UG/KG)                |              |              |              |
| 1,1-BIPHENYL                         |              |              |              |
| 1,2,4-TRICHLOROBENZENE               |              |              |              |
| 1,2-DICHLOROBENZENE                  |              |              |              |
| 1,3-DICHLOROBENZENE                  |              |              |              |
| 1,4-DICHLOROBENZENE                  |              |              |              |
| 1,4-DIOXANE                          |              |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE)         |              |              |              |
| 2,4,5-TRICHLOROPHENOL                |              |              |              |
| 2,4,6-TRICHLOROPHENOL                |              |              |              |
| 2,4-DICHLOROPHENOL                   |              |              | <del></del>  |
|                                      |              | <u></u>      |              |
| 2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL |              |              |              |

| LOCATION                    | SB-093       | SB-093       | SB-093       |
|-----------------------------|--------------|--------------|--------------|
| SAMPLE ID                   | F-SB-93RE-12 | F-SB-93RE-13 | F-SB-93RE-14 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |              |              |              |
| 2,6-DINITROTOLUENE          |              |              |              |
| 2-CHLORONAPHTHALENE         |              |              |              |
| 2-CHLOROPHENOL              |              |              |              |
| 2-METHYLPHENOL              |              |              |              |
| 2-NITROANILINE              |              |              |              |
| 2-NITROPHENOL               |              |              |              |
| 3&4-METHYLPHENOL            |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |
| 3-NITROANILINE              |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |
| 4-CHLOROANILINE             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |
| 4-NITROANILINE              |              |              |              |
| 4-NITROPHENOL               |              |              |              |
| ACETOPHENONE                |              |              |              |
| ANILINE                     |              |              |              |
| ATRAZINE                    |              |              |              |
| AZOBENZENE                  |              |              |              |
| BENZIDINE                   |              |              |              |
| BENZOIC ACID                |              |              |              |
| BENZYL ALCOHOL              |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |              |
| CAPROLACTAM                 |              |              |              |
| CARBAZOLE                   |              |              |              |
| DIBENZOFURAN                |              |              |              |
| DIETHYL PHTHALATE           |              |              |              |
| DIMETHYL PHTHALATE          |              |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |              |
| HEXACHLOROBENZENE           |              |              |              |
| HEXACHLOROBUTADIENE         |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |

| LOCATION                       | SB-093       | SB-093       | SB-093       |
|--------------------------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-93RE-12 | F-SB-93RE-13 | F-SB-93RE-14 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEXACHLOROETHANE               |              |              |              |
| ISOPHORONE                     |              |              |              |
| NITROBENZENE                   |              |              |              |
| N-NITROSODIMETHYLAMINE         |              |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |
| N-NITROSODIPHENYLAMINE         |              |              |              |
| PENTACHLOROPHENOL              |              |              |              |
| PHENOL                         |              |              |              |
| PYRIDINE                       |              |              |              |
| VOLATILES (UG/KG)              | •            | •            |              |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,1-TRICHLOROETHANE          |              |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,2-TRICHLOROETHANE          |              |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |
| 1,1-DICHLOROETHANE             |              |              |              |
| 1,1-DICHLOROETHENE             |              |              |              |
| 1,1-DICHLOROPROPENE            |              |              |              |
| 1,2,3-TRICHLOROBENZENE         |              |              |              |
| 1,2,3-TRICHLOROPROPANE         |              |              |              |
| 1,2,3-TRIMETHYLBENZENE         |              |              |              |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |
| 1,2,4-TRIMETHYLBENZENE         |              |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |
| 1,2-DIBROMOETHANE              |              |              |              |
| 1,2-DICHLOROBENZENE            |              |              |              |
| 1,2-DICHLOROETHANE             |              |              |              |
| 1,2-DICHLOROPROPANE            |              |              |              |
| 1,3,5-TRIMETHYLBENZENE         |              |              |              |
| 1,3-DICHLOROBENZENE            |              |              |              |
| 1,3-DICHLOROPROPANE            |              |              |              |
| 1,3-DICHLOROPROPENE            |              |              |              |
| 1,4-DICHLOROBENZENE            |              |              |              |
| 1,4-DIOXANE                    |              |              |              |
| 2,2-DICHLOROPROPANE            |              |              |              |
| 2-BUTANONE                     |              |              |              |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |
| 2-CHLOROTOLUENE                |              |              |              |

February 2013 Page A-143

| LOCATION                | SB-093       | SB-093       | SB-093       |
|-------------------------|--------------|--------------|--------------|
| SAMPLE ID               | F-SB-93RE-12 | F-SB-93RE-13 | F-SB-93RE-14 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |              |              |              |
| 4-CHLOROTOLUENE         |              |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |              |
| 4-METHYL-2-PENTANONE    |              |              |              |
| ACETONE                 |              |              |              |
| BENZENE                 |              |              |              |
| BROMOBENZENE            |              |              |              |
| BROMOCHLOROMETHANE      |              |              |              |
| BROMODICHLOROMETHANE    |              |              |              |
| BROMOFORM               |              |              |              |
| BROMOMETHANE            |              |              |              |
| CARBON DISULFIDE        |              |              |              |
| CARBON TETRACHLORIDE    |              |              |              |
| CHLOROBENZENE           |              |              |              |
| CHLORODIBROMOMETHANE    |              |              |              |
| CHLOROETHANE            |              |              |              |
| CHLOROFORM              |              |              |              |
| CHLOROMETHANE           |              |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |              |
| DIBROMOMETHANE          |              |              |              |
| DICHLORODIFLUOROMETHANE |              |              |              |
| DIISOPROPYL ETHER       |              |              |              |
| ETHYL TERT-BUTYL ETHER  |              |              |              |
| ETHYLBENZENE            |              |              |              |
| FLUORODICHLOROMETHANE   |              |              |              |
| HEXACHLOROBUTADIENE     |              |              |              |
| ISOPROPYLBENZENE        |              |              |              |
| M+P-XYLENES             |              |              |              |
| METHYL TERT-BUTYL ETHER |              |              |              |
| METHYLENE CHLORIDE      |              |              |              |
| NAPHTHALENE             |              |              | -1-          |
| N-BUTYLBENZENE          |              |              | -1-          |
| N-PROPYLBENZENE         |              |              | -1-          |
| O-XYLENE                |              |              |              |
| SEC-BUTYLBENZENE        |              |              |              |
| STYRENE                 |              |              |              |
| TERT-AMYL METHYL ETHER  |              |              |              |

| LOCATION                                 | SB-093               | SB-093               | SB-093               |
|------------------------------------------|----------------------|----------------------|----------------------|
| SAMPLE ID                                | F-SB-93RE-12         | F-SB-93RE-13         | F-SB-93RE-14         |
| SAMPLE DATE                              | 9/21/2009            | 9/21/2009            | 9/21/2009            |
| TERT-BUTYLBENZENE                        |                      |                      |                      |
| TERTIARY-BUTYL ALCOHOL                   |                      |                      |                      |
| TETRACHLOROETHENE                        |                      |                      |                      |
| TOLUENE                                  |                      |                      |                      |
| TOTAL 1,2-DICHLOROETHENE                 |                      |                      |                      |
| TOTAL XYLENES                            |                      |                      |                      |
| TRANS-1,2-DICHLOROETHENE                 |                      |                      |                      |
| TRANS-1,3-DICHLOROPROPENE                |                      |                      |                      |
| TRICHLOROETHENE                          |                      |                      |                      |
| TRICHLOROFLUOROMETHANE                   |                      |                      |                      |
| VINYL ACETATE                            |                      |                      |                      |
| VINYL CHLORIDE                           |                      |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                      |                      |                      |
| 1-METHYLNAPHTHALENE                      |                      |                      |                      |
| 2-METHYLNAPHTHALENE                      |                      |                      |                      |
| ACENAPHTHENE                             |                      |                      |                      |
| ACENAPHTHYLENE                           |                      |                      |                      |
| ANTHRACENE                               |                      |                      |                      |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5]      | 23.6335 [MDL=1.8]    | 14.4225 [MDL=1.6]    |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5]      | 22.722 [MDL=1.8]     | 13.612 [MDL=1.6]     |
| BAP EQUIVALENT-UCL                       |                      |                      |                      |
| BENZO(A)ANTHRACENE                       | 1.100000 U [MDL=1.1] | 22 [MDL=1.3]         | 14 [MDL=1.2]         |
| BENZO(A)PYRENE                           | 1.500000 U [MDL=1.5] | 16 [MDL=1.8]         | 9.3 [MDL=1.6]        |
| BENZO(B)FLUORANTHENE                     | 1.400000 U [MDL=1.4] | 24 [MDL=1.7]         | 12 [MDL=1.5]         |
| BENZO(G,H,I)PERYLENE                     |                      |                      |                      |
| BENZO(K)FLUORANTHENE                     | 2.000000 U [MDL=2]   | 2.300000 U [MDL=2.3] | 2.100000 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                      |
| C1-FLUORANTHENES/PYRENES                 |                      |                      |                      |
| C1-FLUORENES                             |                      |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES             |                      |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                      |
| C2-FLUORENES                             |                      |                      |                      |
| C2-NAPHTHALENES                          |                      |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES             |                      |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                      |
| C3-FLUORENES                             |                      |                      |                      |
| C3-NAPHTHALENES                          |                      |                      |                      |
| C3-PHENANTHRENES/ANTHRACENES             |                      |                      |                      |

| LOCATION                         | SB-093               | SB-093               | SB-093               |
|----------------------------------|----------------------|----------------------|----------------------|
| SAMPLE ID                        | F-SB-93RE-12         | F-SB-93RE-13         | F-SB-93RE-14         |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                      |
| C4-NAPHTHALENES                  |                      |                      |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                      |
| CHRYSENE                         | 1.100000 U [MDL=1.1] | 22 [MDL=1.2]         | 12 [MDL=1.1]         |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.800000 U [MDL=1.8] | 1.600000 U [MDL=1.6] |
| FLUORANTHENE                     |                      |                      |                      |
| FLUORENE                         |                      |                      |                      |
| INDENO(1,2,3-CD)PYRENE           | 1.800000 U [MDL=1.8] | 21 [MDL=2.1]         | 17 [MDL=1.9]         |
| NAPHTHALENE                      |                      |                      |                      |
| PHENANTHRENE                     |                      |                      |                      |
| PYRENE                           |                      |                      |                      |
| TOTAL PAHS                       | 0 U [MDL=1.5]        | 105 [MDL=1.8]        | 64.3 [MDL=1.6]       |
| PESTICIDES/PCBS (UG/KG)          | •                    | -                    |                      |
| 4,4'-DDD                         |                      |                      |                      |
| 4,4'-DDE                         |                      |                      |                      |
| 4,4'-DDT                         |                      |                      |                      |
| ALDRIN                           |                      |                      |                      |
| ALPHA-BHC                        |                      |                      |                      |
| ALPHA-CHLORDANE                  |                      |                      |                      |
| AROCLOR-1016                     | 25.000000 U [MDL=25] | 29.000000 U [MDL=29] | 26.000000 U [MDL=26] |
| AROCLOR-1221                     | 19.000000 U [MDL=19] | 22.000000 U [MDL=22] | 20.000000 U [MDL=20] |
| AROCLOR-1232                     | 17.000000 U [MDL=17] | 19.000000 U [MDL=19] | 18.000000 U [MDL=18] |
| AROCLOR-1242                     | 15.000000 U [MDL=15] | 18.000000 U [MDL=18] | 16.000000 U [MDL=16] |
| AROCLOR-1248                     | 20.000000 U [MDL=20] | 23.000000 U [MDL=23] | 21.000000 U [MDL=21] |
| AROCLOR-1254                     | 20.000000 U [MDL=20] | 23.000000 U [MDL=23] | 21.000000 U [MDL=21] |
| AROCLOR-1260                     | 20.000000 U [MDL=20] | 23.000000 U [MDL=23] | 21.000000 U [MDL=21] |
| BETA-BHC                         |                      |                      |                      |
| DELTA-BHC                        |                      |                      |                      |
| DIELDRIN                         |                      |                      |                      |
| ENDOSULFAN I                     |                      |                      |                      |
| ENDOSULFAN II                    |                      |                      |                      |
| ENDOSULFAN SULFATE               |                      |                      |                      |
| ENDRIN                           |                      | 1                    |                      |
| ENDRIN ALDEHYDE                  |                      | 1                    |                      |
| ENDRIN KETONE                    |                      |                      |                      |
| GAMMA-BHC (LINDANE)              |                      |                      |                      |
| GAMMA-CHLORDANE                  |                      |                      |                      |
| HEPTACHLOR                       |                      | -1                   |                      |

February 2013 Page A-146

| LOCATION           | SB-093       | SB-093       | SB-093       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-93RE-12 | F-SB-93RE-13 | F-SB-93RE-14 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=25] | 0 U [MDL=29] | 0 U [MDL=26] |
| TOTAL DDT POS      |              | -            |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-093      | SB-093      | SB-093      |
| SAMPLE ID                    | F-SB-93RE-2 | F-SB-93RE-3 | F-SB-93RE-4 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| METALS (MG/KG)               |             |             |             |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           | •           |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           | <del></del> |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-093      | SB-093      | SB-093      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-93RE-2 | F-SB-93RE-3 | F-SB-93RE-4 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-093      | SB-093      | SB-093      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-93RE-2 | F-SB-93RE-3 | F-SB-93RE-4 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| ·                              |             |             |             |

February 2013 Page A-150

---

---

--

| LOCATION                | SB-093      | SB-093      | SB-093      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-93RE-2 | F-SB-93RE-3 | F-SB-93RE-4 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| SAMPLE IO TE         P.SB-93RE-3         P.SB-93RE-4         P.SB-94RE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOCATION                                 | SB-093           | SB-093               | SB-093               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|----------------------|----------------------|
| TERTSHYNERWENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE ID                                | F-SB-93RE-2      | F-SB-93RE-3          | F-SB-93RE-4          |
| TERTIARY-BUTYL ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE DATE                              | 9/21/2009        | 9/21/2009            | 9/21/2009            |
| TETRACHIOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                  |                      |                      |
| TOLUENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLO | TERTIARY-BUTYL ALCOHOL                   |                  |                      |                      |
| TOTAL X1ENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TETRACHLOROETHENE                        |                  |                      |                      |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                  |                      |                      |
| TRANS-12-DICHLOROPTROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL 1,2-DICHLOROETHENE                 |                  |                      |                      |
| TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHONE TRIC | TOTAL XYLENES                            |                  |                      |                      |
| TRICHLOROFTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS-1,2-DICHLOROETHENE                 |                  |                      |                      |
| TRICHLOROFLUOROMETHANE VINYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS-1,3-DICHLOROPROPENE                |                  |                      |                      |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                  |                      |                      |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROFLUOROMETHANE                   |                  |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VINYL ACETATE                            |                  |                      |                      |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                  |                      |                      |
| 2-METHYLNAPHTHALENE            ACENAPHTHENE            ACENAPHTHYLENE            ANTHRACENE            BAP EQUIVALENT-HALFND       150.16 [MDL=1.6]       1.5 U [MDL=1.5]       1.5 U [MDL=1.5]         BAP EQUIVALENT-POS       150.16 [MDL=1.6]       1.5 U [MDL=1.5]       1.5 U [MDL=1.5]         BAP EQUIVALENT-UCL            BENZO(A)ANTHRACENE       100 [MDL=1.1]       1.100000 U [MDL=1.1]       1.100000 U [MDL=1.1]         BENZO(A)ANTHENE       89 [MDL=1.6]       1.500000 U [MDL=1.1]       1.500000 U [MDL=1.5]         BENZO(B)FLUORANTHENE       140 [MDL=1.4]       1.30000 U [MDL=1.5]       1.500000 U [MDL=1.5]         BENZO(S)FLUORANTHENE            C1-CHRYSENES/BENZO(A)ANTHRACENES            BENZO(S)FLUORANTHENE       46 [MDL=2]       1.900000 U [MDL=1.3]       1.400000 U [MDL=1.5]         BENZO(S)FLUORANTHENES/PYRENES            C1-FLUORANTHENES/PYRENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES </td <td>POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)</td> <td>·</td> <td>•</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | ·                | •                    |                      |
| ACENAPHTHENE ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-METHYLNAPHTHALENE                      |                  |                      |                      |
| ACENAPHTHYLENE ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-METHYLNAPHTHALENE                      |                  |                      |                      |
| ANTHRACENE BAP EQUIVALENT-HALFND  150.16 [MDL=1.6]  1.5 U [MDL=1.5]  1.5 U [MDL=1.6]  1.5 U | ACENAPHTHENE                             |                  |                      |                      |
| BAP EQUIVALENT-HALFND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACENAPHTHYLENE                           |                  |                      |                      |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTHRACENE                               |                  |                      |                      |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 150.16 [MDL=1.6] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-POS                       | 150.16 [MDL=1.6] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BENZO(A)PYRENE   89 [MDL=1.6]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.4]   1.300000 U[MDL=1.3]   1.400000 U[MDL=1.4]   1.500000 U[MDL=1.3]   1.400000 U[MDL=1.4]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.4]   1.500000 U[MDL=1.5]   1.500000 U[MDL=1.4]   1.500000 U[MDL=1.5]   1.500000 U   | BAP EQUIVALENT-UCL                       |                  |                      |                      |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)ANTHRACENE                       | 100 [MDL=1.1]    | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 89 [MDL=1.6]     | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| BENZO(K)FLUORANTHENE         46 [MDL=2]         1.900000 U [MDL=1.9]         2.000000 U [MDL=2]           C1-CHRYSENES/BENZO(A)ANTHRACENES              C1-FLUORANTHENES/PYRENES              C1-FLUORENES              C1-PHENANTHRENES/ANTHRACENES              C2-CHRYSENES/BENZO(A)ANTHRACENES              C2-FLUORENES               C2-NAPHTHALENES               C2-PHENANTHRENES/ANTHRACENES               C3-CHRYSENES/BENZO(A)ANTHRACENES                C3-FLUORENES                 C3-NAPHTHALENES                 C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(B)FLUORANTHENE                     | 140 [MDL=1.4]    | 1.300000 U [MDL=1.3] | 1.400000 U [MDL=1.4] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-PHENANTHRENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                  |                      |                      |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BENZO(K)FLUORANTHENE                     | 46 [MDL=2]       | 1.900000 U [MDL=1.9] | 2.000000 U [MDL=2]   |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES            C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                  |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1-FLUORENES                             |                  |                      |                      |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                  |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2-NAPHTHALENES                          |                  |                      |                      |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                  |                      |                      |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                  |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |

| LOCATION                         | SB-093               | SB-093               | SB-093               |
|----------------------------------|----------------------|----------------------|----------------------|
| SAMPLE ID                        | F-SB-93RE-2          | F-SB-93RE-3          | F-SB-93RE-4          |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                      |
| C4-NAPHTHALENES                  |                      |                      |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                      |
| CHRYSENE                         | 100 [MDL=1.1]        | 1.000000 U [MDL=1]   | 1.100000 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 30 [MDL=1.6]         | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     |                      |                      |                      |
| FLUORENE                         |                      |                      |                      |
| INDENO(1,2,3-CD)PYRENE           | 66 [MDL=1.8]         | 1.700000 U [MDL=1.7] | 1.800000 U [MDL=1.8] |
| NAPHTHALENE                      |                      |                      |                      |
| PHENANTHRENE                     |                      |                      |                      |
| PYRENE                           |                      |                      |                      |
| TOTAL PAHS                       | 571 [MDL=1.6]        | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          |                      |                      |                      |
| 4,4'-DDD                         |                      |                      |                      |
| 4,4'-DDE                         |                      |                      |                      |
| 4,4'-DDT                         |                      |                      |                      |
| ALDRIN                           |                      |                      |                      |
| ALPHA-BHC                        |                      |                      |                      |
| ALPHA-CHLORDANE                  |                      |                      |                      |
| AROCLOR-1016                     | 25.000000 U [MDL=25] | 24.000000 U [MDL=24] | 25.000000 U [MDL=25] |
| AROCLOR-1221                     | 19.000000 U [MDL=19] | 18.000000 U [MDL=18] | 19.000000 U [MDL=19] |
| AROCLOR-1232                     | 17.000000 U [MDL=17] | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] |
| AROCLOR-1242                     | 16.000000 U [MDL=16] | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] |
| AROCLOR-1248                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] |
| AROCLOR-1254                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] |
| AROCLOR-1260                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] |
| BETA-BHC                         |                      |                      |                      |
| DELTA-BHC                        |                      |                      |                      |
| DIELDRIN                         |                      |                      |                      |
| ENDOSULFAN I                     |                      |                      |                      |
| ENDOSULFAN II                    |                      |                      |                      |
| ENDOSULFAN SULFATE               |                      |                      |                      |
| ENDRIN                           |                      |                      |                      |
| ENDRIN ALDEHYDE                  |                      |                      |                      |
| ENDRIN KETONE                    |                      |                      |                      |
| GAMMA-BHC (LINDANE)              |                      |                      |                      |
| GAMMA-CHLORDANE                  |                      |                      |                      |
| HEPTACHLOR                       |                      |                      |                      |

February 2013 Page A-153

| LOCATION           | SB-093       | SB-093       | SB-093       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-93RE-2  | F-SB-93RE-3  | F-SB-93RE-4  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              | 1            |              |
| TOTAL AROCLOR      | 0 U [MDL=25] | 0 U [MDL=24] | 0 U [MDL=25] |
| TOTAL DDT POS      |              | 1            |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $\ensuremath{\mathsf{K}}$  = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-093      | SB-093      | SB-093      |
| SAMPLE ID                    | F-SB-93RE-5 | F-SB-93RE-6 | F-SB-93RE-7 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| METALS (MG/KG)               | ·           | •           | •           |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           |             |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-093      | SB-093      | SB-093      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-93RE-5 | F-SB-93RE-6 | F-SB-93RE-7 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

| LOCATION                       | SB-093      | SB-093      | SB-093      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-93RE-5 | F-SB-93RE-6 | F-SB-93RE-7 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |
| <u></u>                        | -           |             |             |

February 2013 Page A-157

| LOCATION                | SB-093      | SB-093      | SB-093      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-93RE-5 | F-SB-93RE-6 | F-SB-93RE-7 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| I COLTION                                | 00.000           | 00.000               | 00.000               |
|------------------------------------------|------------------|----------------------|----------------------|
| LOCATION                                 | SB-093           | SB-093               | SB-093               |
| SAMPLE ID                                | F-SB-93RE-5      | F-SB-93RE-6          | F-SB-93RE-7          |
| SAMPLE DATE                              | 9/21/2009        | 9/21/2009            | 9/21/2009            |
| TERT-BUTYLBENZENE                        |                  |                      |                      |
| TERTIARY-BUTYL ALCOHOL                   |                  |                      |                      |
| TETRACHLOROETHENE                        |                  |                      |                      |
| TOLUENE                                  |                  |                      |                      |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                      |                      |
| TOTAL XYLENES                            |                  |                      |                      |
| TRANS-1,2-DICHLOROETHENE                 | <del></del>      |                      |                      |
| TRANS-1,3-DICHLOROPROPENE                |                  |                      |                      |
| TRICHLOROETHENE                          |                  |                      |                      |
| TRICHLOROFLUOROMETHANE                   |                  |                      |                      |
| VINYL ACETATE                            |                  |                      |                      |
| VINYL CHLORIDE                           |                  |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                      |                      |
| 1-METHYLNAPHTHALENE                      |                  |                      |                      |
| 2-METHYLNAPHTHALENE                      |                  |                      |                      |
| ACENAPHTHENE                             |                  |                      |                      |
| ACENAPHTHYLENE                           |                  |                      |                      |
| ANTHRACENE                               |                  |                      |                      |
| BAP EQUIVALENT-HALFND                    | 36.009 [MDL=1.5] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS                       | 35.259 [MDL=1.5] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL                       |                  |                      |                      |
| BENZO(A)ANTHRACENE                       | 28 [MDL=1.1]     | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 26 [MDL=1.5]     | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 40 [MDL=1.4]     | 1.400000 U [MDL=1.4] | 1.400000 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                      |                      |
| BENZO(K)FLUORANTHENE                     | 13 [MDL=1.9]     | 2.000000 U [MDL=2]   | 2.000000 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C1-FLUORANTHENES/PYRENES                 |                  |                      |                      |
| C1-FLUORENES                             |                  |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C2-FLUORENES                             |                  |                      |                      |
| C2-NAPHTHALENES                          |                  |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| OE I HEN WITHKENEON WITH WOLKED          |                  |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
|                                          |                  |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |

| LOCATION                         | SB-093               | SB-093               | SB-093               |
|----------------------------------|----------------------|----------------------|----------------------|
| SAMPLE ID                        | F-SB-93RE-5          | F-SB-93RE-6          | F-SB-93RE-7          |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                      |
| C4-NAPHTHALENES                  |                      |                      |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                      |
| CHRYSENE                         | 29 [MDL=1]           | 1.000000 U [MDL=1]   | 1.100000 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     |                      |                      |                      |
| FLUORENE                         |                      |                      |                      |
| INDENO(1,2,3-CD)PYRENE           | 23 [MDL=1.7]         | 1.700000 U [MDL=1.7] | 1.800000 U [MDL=1.8] |
| NAPHTHALENE                      |                      |                      |                      |
| PHENANTHRENE                     |                      |                      |                      |
| PYRENE                           |                      |                      |                      |
| TOTAL PAHS                       | 159 [MDL=1.5]        | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>             |                      |                      |
| 4,4'-DDD                         |                      |                      |                      |
| 4,4'-DDE                         |                      |                      |                      |
| 4,4'-DDT                         |                      |                      |                      |
| ALDRIN                           |                      |                      |                      |
| ALPHA-BHC                        |                      |                      |                      |
| ALPHA-CHLORDANE                  |                      |                      |                      |
| AROCLOR-1016                     | 24.000000 U [MDL=24] | 24.000000 U [MDL=24] | 25.000000 U [MDL=25] |
| AROCLOR-1221                     | 18.000000 U [MDL=18] | 19.000000 U [MDL=19] | 19.000000 U [MDL=19] |
| AROCLOR-1232                     | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] |
| AROCLOR-1242                     | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] |
| AROCLOR-1248                     | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| AROCLOR-1254                     | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| AROCLOR-1260                     | 19.000000 U [MDL=19] | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] |
| BETA-BHC                         |                      |                      |                      |
| DELTA-BHC                        |                      |                      |                      |
| DIELDRIN                         |                      |                      |                      |
| ENDOSULFAN I                     |                      |                      |                      |
| ENDOSULFAN II                    |                      |                      |                      |
| ENDOSULFAN SULFATE               |                      |                      |                      |
| ENDRIN                           |                      |                      |                      |
| ENDRIN ALDEHYDE                  |                      |                      |                      |
| ENDRIN KETONE                    |                      |                      |                      |
| GAMMA-BHC (LINDANE)              |                      |                      |                      |
| GAMMA-CHLORDANE                  |                      |                      |                      |
| HEPTACHLOR                       |                      |                      |                      |

February 2013 Page A-160

| LOCATION           | SB-093       | SB-093       | SB-093       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-93RE-5  | F-SB-93RE-6  | F-SB-93RE-7  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              | 1            |              |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U [MDL=24] | 0 U [MDL=25] |
| TOTAL DDT POS      |              | 1            |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-093      | SB-093      | SB-094     |
|------------------------------|-------------|-------------|------------|
| SAMPLE ID                    | F-SB-93RE-8 | F-SB-93RE-9 | SB-94-05   |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009   | 9/16/2004  |
| METALS (MG/KG)               | ·           | •           | •          |
| ANTIMONY                     |             |             | 2.9 UR []  |
| ARSENIC                      |             |             | 0.58 UL [] |
| BARIUM                       |             |             |            |
| BERYLLIUM                    |             |             | 3.2 L []   |
| CADMIUM                      |             |             | 2.9 UL []  |
| CHROMIUM                     |             |             | 14 []      |
| COBALT                       |             |             |            |
| COPPER                       |             |             | 21 L []    |
| LEAD                         |             |             | 6.7 L []   |
| MERCURY                      |             |             | 0.12 U []  |
| MOLYBDENUM                   |             |             |            |
| NICKEL                       |             |             | 12 []      |
| SELENIUM                     |             |             | 4.2 L []   |
| SILVER                       |             |             | 2.9 UR []  |
| THALLIUM                     |             |             | 2.3 UL []  |
| VANADIUM                     |             |             |            |
| ZINC                         |             |             | 29 U []    |
| MISCELLANEOUS PARAMETERS     | •           | •           |            |
| PERCENT SOLIDS (%)           |             |             |            |
| TOTAL SOLIDS (%)             |             |             |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |
| PH (S.U.)                    |             |             |            |
| MERCURY (METHYL) (UG/KG)     |             |             |            |
| SEMIVOLATILES (UG/KG)        | ·           | •           | •          |
| 1,1-BIPHENYL                 |             |             | 400 U []   |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |
| 1,2-DICHLOROBENZENE          |             |             |            |
| 1,3-DICHLOROBENZENE          |             |             |            |
| 1,4-DICHLOROBENZENE          |             |             |            |
| 1,4-DIOXANE                  |             |             |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             | 400 U []   |
| 2,4,5-TRICHLOROPHENOL        |             |             | 1000 U []  |
| 2,4,6-TRICHLOROPHENOL        |             |             | 400 U []   |
| 2,4-DICHLOROPHENOL           |             |             | 400 U []   |
| 2,4-DIMETHYLPHENOL           |             |             | 400 U []   |
| 2,4-DINITROPHENOL            |             |             | 1000 U []  |

| LOCATION                    | SB-093      | SB-093      | SB-094    |
|-----------------------------|-------------|-------------|-----------|
| SAMPLE ID                   | F-SB-93RE-8 | F-SB-93RE-9 | SB-94-05  |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/16/2004 |
| 2,4-DINITROTOLUENE          |             |             | 400 U []  |
| 2,6-DINITROTOLUENE          |             |             | 400 U []  |
| 2-CHLORONAPHTHALENE         |             |             | 400 U []  |
| 2-CHLOROPHENOL              |             |             | 400 U []  |
| 2-METHYLPHENOL              |             |             | 400 U []  |
| 2-NITROANILINE              |             |             | 1000 U [] |
| 2-NITROPHENOL               |             |             | 400 U []  |
| 3&4-METHYLPHENOL            |             |             | 400 U []  |
| 3,3'-DICHLOROBENZIDINE      |             |             | 400 U []  |
| 3-NITROANILINE              |             |             | 1000 U [] |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             | 920 U []  |
| 4-BROMOPHENYL PHENYL ETHER  |             |             | 400 U []  |
| 4-CHLORO-3-METHYLPHENOL     |             |             | 400 U []  |
| 4-CHLOROANILINE             |             |             | 400 U []  |
| 4-CHLOROPHENYL PHENYL ETHER |             |             | 400 U []  |
| 4-NITROANILINE              |             |             | 1000 U [] |
| 4-NITROPHENOL               |             |             | 1000 U [] |
| ACETOPHENONE                |             |             | 400 U []  |
| ANILINE                     |             |             |           |
| ATRAZINE                    |             |             | 400 U []  |
| AZOBENZENE                  |             |             |           |
| BENZIDINE                   |             |             |           |
| BENZOIC ACID                |             |             |           |
| BENZYL ALCOHOL              |             |             |           |
| BIS(2-CHLOROETHOXY)METHANE  |             |             | 400 U []  |
| BIS(2-CHLOROETHYL)ETHER     |             |             | 400 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             | 400 U []  |
| BUTYL BENZYL PHTHALATE      |             |             | 400 U []  |
| CAPROLACTAM                 |             |             | 400 U []  |
| CARBAZOLE                   |             |             | 200 J []  |
| DIBENZOFURAN                |             |             | 73 J []   |
| DIETHYL PHTHALATE           |             |             | 400 U []  |
| DIMETHYL PHTHALATE          |             |             | 400 U []  |
| DI-N-BUTYL PHTHALATE        |             |             | 400 U []  |
| DI-N-OCTYL PHTHALATE        |             |             | 400 U []  |
| HEXACHLOROBENZENE           |             |             | 400 U []  |
| HEXACHLOROBUTADIENE         |             |             | 400 U []  |
| HEXACHLOROCYCLOPENTADIENE   |             |             | 400 U []  |

2-CHLOROTOLUENE

| LOCATION                       | SB-093      | SB-093      | SB-094    |
|--------------------------------|-------------|-------------|-----------|
| SAMPLE ID                      | F-SB-93RE-8 | F-SB-93RE-9 | SB-94-05  |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/16/2004 |
| HEXACHLOROETHANE               |             |             | 400 U []  |
| ISOPHORONE                     |             |             | 400 U []  |
| NITROBENZENE                   |             |             | 400 U []  |
| N-NITROSODIMETHYLAMINE         |             |             |           |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             | 400 U []  |
| N-NITROSODIPHENYLAMINE         |             |             | 400 U []  |
| PENTACHLOROPHENOL              |             |             | 1000 U [] |
| PHENOL                         |             |             | 400 U []  |
| PYRIDINE                       |             |             |           |
| VOLATILES (UG/KG)              |             |             |           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,1-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,2-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             | 6 U []    |
| 1,1-DICHLOROETHANE             |             |             | 6 U []    |
| 1,1-DICHLOROETHENE             |             |             | 6 U []    |
| 1,1-DICHLOROPROPENE            |             |             | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         |             |             | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |             |             |           |
| 1,2,4-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             | 6 U []    |
| 1,2-DIBROMOETHANE              |             |             | 6 U []    |
| 1,2-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,2-DICHLOROETHANE             |             |             | 6 U []    |
| 1,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,3-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPENE            |             |             |           |
| 1,4-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,4-DIOXANE                    |             |             |           |
| 2,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 2-BUTANONE                     |             |             | 59 U []   |
| 2-CHLOROETHYL VINYL ETHER      |             |             | 6 U []    |
| •                              |             |             |           |

February 2013 Page A-164

---

6 U [--]

---

| LOCATION                | SB-093      | SB-093      | SB-094    |
|-------------------------|-------------|-------------|-----------|
| SAMPLE ID               | F-SB-93RE-8 | F-SB-93RE-9 | SB-94-05  |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/16/2004 |
| 2-HEXANONE              |             |             | 59 U []   |
| 4-CHLOROTOLUENE         |             |             | 6 U []    |
| 4-ISOPROPYLTOLUENE      |             |             | 6 U []    |
| 4-METHYL-2-PENTANONE    |             |             | 59 U []   |
| ACETONE                 |             |             | 59 U []   |
| BENZENE                 |             |             | 6 U []    |
| BROMOBENZENE            |             |             | 6 U []    |
| BROMOCHLOROMETHANE      |             |             | 6 U []    |
| BROMODICHLOROMETHANE    |             |             | 6 U []    |
| BROMOFORM               |             |             | 6 U []    |
| BROMOMETHANE            |             |             | 6 U []    |
| CARBON DISULFIDE        |             |             | 6 U []    |
| CARBON TETRACHLORIDE    |             |             | 6 U []    |
| CHLOROBENZENE           |             |             | 6 U []    |
| CHLORODIBROMOMETHANE    |             |             | 6 U []    |
| CHLOROETHANE            |             |             | 6 U []    |
| CHLOROFORM              |             |             | 6 U []    |
| CHLOROMETHANE           |             |             | 6 U []    |
| CIS-1,2-DICHLOROETHENE  |             |             | 6 U []    |
| CIS-1,3-DICHLOROPROPENE |             |             | 6 U []    |
| DIBROMOMETHANE          |             |             | 6 U []    |
| DICHLORODIFLUOROMETHANE |             |             | 6 U []    |
| DIISOPROPYL ETHER       |             |             |           |
| ETHYL TERT-BUTYL ETHER  |             |             |           |
| ETHYLBENZENE            |             |             | 6 U []    |
| FLUORODICHLOROMETHANE   |             |             |           |
| HEXACHLOROBUTADIENE     |             |             |           |
| ISOPROPYLBENZENE        |             |             | 6 U []    |
| M+P-XYLENES             |             |             | 12 U []   |
| METHYL TERT-BUTYL ETHER |             |             | 6 U []    |
| METHYLENE CHLORIDE      |             |             | 6 U []    |
| NAPHTHALENE             |             |             | 6 U []    |
| N-BUTYLBENZENE          |             |             | 6 U []    |
| N-PROPYLBENZENE         |             |             | 6 U []    |
| O-XYLENE                |             |             | 6 U []    |
| SEC-BUTYLBENZENE        |             |             | 6 U []    |
| STYRENE                 |             |             | 6 U []    |
| TERT-AMYL METHYL ETHER  |             |             |           |

| LOCATION                                 | SB-093               | SB-093               | SB-094        |
|------------------------------------------|----------------------|----------------------|---------------|
| SAMPLE ID                                | F-SB-93RE-8          | F-SB-93RE-9          | SB-94-05      |
| SAMPLE DATE                              | 9/21/2009            | 9/21/2009            | 9/16/2004     |
| TERT-BUTYLBENZENE                        |                      |                      | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |                      |                      |               |
| TETRACHLOROETHENE                        |                      |                      | 6 U []        |
| TOLUENE                                  |                      |                      | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |                      |                      |               |
| TOTAL XYLENES                            |                      |                      |               |
| TRANS-1,2-DICHLOROETHENE                 |                      |                      | 6 U []        |
| TRANS-1,3-DICHLOROPROPENE                |                      |                      | 6 U []        |
| TRICHLOROETHENE                          |                      |                      | 6 U []        |
| TRICHLOROFLUOROMETHANE                   |                      |                      | 6 U []        |
| VINYL ACETATE                            |                      |                      | 6 U []        |
| VINYL CHLORIDE                           |                      |                      | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                      |                      |               |
| 1-METHYLNAPHTHALENE                      |                      |                      |               |
| 2-METHYLNAPHTHALENE                      |                      |                      | 400 U []      |
| ACENAPHTHENE                             |                      |                      | 110 J []      |
| ACENAPHTHYLENE                           |                      |                      | 400 U []      |
| ANTHRACENE                               |                      |                      | 270 J []      |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      | 847.16 []     |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      | 647.16 []     |
| BAP EQUIVALENT-UCL                       |                      |                      | 868.335836 [] |
| BENZO(A)ANTHRACENE                       | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] | 620 []        |
| BENZO(A)PYRENE                           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 490 []        |
| BENZO(B)FLUORANTHENE                     | 1.400000 U [MDL=1.4] | 1.400000 U [MDL=1.4] | 630 []        |
| BENZO(G,H,I)PERYLENE                     |                      |                      | 280 J []      |
| BENZO(K)FLUORANTHENE                     | 2.000000 U [MDL=2]   | 2.000000 U [MDL=2]   | 450 []        |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |               |
| C1-FLUORANTHENES/PYRENES                 |                      |                      |               |
| C1-FLUORENES                             |                      |                      |               |
| C1-PHENANTHRENES/ANTHRACENES             |                      |                      |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |               |
| C2-FLUORENES                             |                      |                      |               |
| C2-NAPHTHALENES                          |                      |                      |               |
| C2-PHENANTHRENES/ANTHRACENES             |                      |                      |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |               |
| C3-FLUORENES                             |                      |                      |               |
| C3-NAPHTHALENES                          |                      |                      |               |
| C3-PHENANTHRENES/ANTHRACENES             |                      |                      |               |
| ·                                        |                      |                      |               |

| LOCATION                         | SB-093               | SB-093               | SB-094    |
|----------------------------------|----------------------|----------------------|-----------|
| SAMPLE ID                        | F-SB-93RE-8          | F-SB-93RE-9          | SB-94-05  |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |           |
| C4-NAPHTHALENES                  |                      |                      |           |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |           |
| CHRYSENE                         | 1.000000 U [MDL=1]   | 1.100000 U [MDL=1.1] | 660 []    |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 400 U []  |
| FLUORANTHENE                     |                      |                      | 1500 []   |
| FLUORENE                         |                      |                      | 110 J []  |
| INDENO(1,2,3-CD)PYRENE           | 1.700000 U [MDL=1.7] | 1.800000 U [MDL=1.8] | 270 J []  |
| NAPHTHALENE                      |                      |                      | 400 U []  |
| PHENANTHRENE                     |                      |                      | 1200 []   |
| PYRENE                           |                      |                      | 1100 []   |
| TOTAL PAHS                       | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        | 7690 []   |
| PESTICIDES/PCBS (UG/KG)          | 1 2 2 [              |                      | [ ]       |
| 4,4'-DDD                         |                      |                      | 23 U []   |
| 4,4'-DDE                         |                      |                      | 23 U []   |
| 4,4'-DDT                         |                      |                      | 23 U []   |
| ALDRIN                           |                      |                      | 23 U []   |
| ALPHA-BHC                        |                      |                      | 23 U []   |
| ALPHA-CHLORDANE                  |                      |                      | 23 U []   |
| AROCLOR-1016                     | 24.000000 U [MDL=24] | 25.000000 U [MDL=25] | 290 U []  |
| AROCLOR-1221                     | 18.000000 U [MDL=18] | 19.000000 U [MDL=19] | 290 U []  |
| AROCLOR-1232                     | 16.000000 U [MDL=16] | 16.000000 U [MDL=16] | 290 U []  |
| AROCLOR-1242                     | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] | 290 U []  |
| AROCLOR-1248                     | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] | 290 U []  |
| AROCLOR-1254                     | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] | 290 U []  |
| AROCLOR-1260                     | 20.000000 U [MDL=20] | 20.000000 U [MDL=20] | 290 U []  |
| BETA-BHC                         |                      |                      | 23 U []   |
| DELTA-BHC                        |                      |                      | 23 U []   |
| DIELDRIN                         |                      |                      | 23 U []   |
| ENDOSULFAN I                     |                      |                      | 23 U []   |
| ENDOSULFAN II                    |                      |                      | 23 U []   |
| ENDOSULFAN SULFATE               |                      |                      | 23 U[]    |
| ENDRIN                           |                      |                      | 23 U []   |
| ENDRIN ALDEHYDE                  |                      |                      | 23 U []   |
| ENDRIN KETONE                    |                      |                      | 23 U []   |
| GAMMA-BHC (LINDANE)              |                      |                      | 23 U []   |
| GAMMA-CHLORDANE                  |                      |                      | 23 U []   |
| HEPTACHLOR                       |                      |                      | 23 U []   |

| LOCATION           | SB-093       | SB-093       | SB-094    |
|--------------------|--------------|--------------|-----------|
| SAMPLE ID          | F-SB-93RE-8  | F-SB-93RE-9  | SB-94-05  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/16/2004 |
| HEPTACHLOR EPOXIDE |              |              | 23 U []   |
| METHOXYCHLOR       |              |              | 23 U []   |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U [MDL=25] | 0 U []    |
| TOTAL DDT POS      |              |              | 0 U []    |
| TOXAPHENE          |              |              | 590 U []  |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br>17000 [] |
|-------------------------|---|--------------|
| GASOLINE RANGE ORGANICS | 1 | <br>120 U [] |
| TPH (C09-C36)           |   | <br>         |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |            |           |
|------------------------------|------------|------------|-----------|
| LOCATION                     | SB-094     | SB-094     | SB-094    |
| SAMPLE ID                    | SB-94-10   | SB-94-15   | SB-94-SS  |
| SAMPLE DATE                  | 9/16/2004  | 9/16/2004  | 9/16/2004 |
| METALS (MG/KG)               |            |            |           |
| ANTIMONY                     | 2.8 UR []  | 3 UR []    | 2.6 UR [] |
| ARSENIC                      | 0.55 UL [] | 0.59 UL [] | 2.1 L []  |
| BARIUM                       |            |            |           |
| BERYLLIUM                    | 2.8 UL []  | 3 UL []    | 2.6 UL [] |
| CADMIUM                      | 2.8 UL []  | 3 UL []    | 4.5 L []  |
| CHROMIUM                     | 20 []      | 27 []      | 25 []     |
| COBALT                       |            |            |           |
| COPPER                       | 11 L []    | 7.4 L []   | 21 L []   |
| LEAD                         | 17 L []    | 3.3 L []   | 65 L []   |
| MERCURY                      | 0.11 U []  | 0.12 U []  | 0.97 []   |
| MOLYBDENUM                   |            |            |           |
| NICKEL                       | 21 []      | 20 []      | 11 []     |
| SELENIUM                     | 2.8 UL []  | 3 UL []    | 2.6 UL [] |
| SILVER                       | 2.8 UR []  | 3 UR []    | 2.6 UR [] |
| THALLIUM                     | 2.2 UL []  | 2.4 UL []  | 2 UL []   |
| VANADIUM                     |            |            |           |
| ZINC                         | 33 K []    | 30 U []    | 92 K []   |
| MISCELLANEOUS PARAMETERS     | •          |            |           |
| PERCENT SOLIDS (%)           |            |            |           |
| TOTAL SOLIDS (%)             |            |            |           |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |           |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |           |
| PH (S.U.)                    |            |            |           |
| MERCURY (METHYL) (UG/KG)     |            |            |           |
| SEMIVOLATILES (UG/KG)        | •          |            |           |
| 1,1-BIPHENYL                 | 390 U []   | 400 U []   | 3600 U [] |
| 1,2,4-TRICHLOROBENZENE       |            |            |           |
| 1,2-DICHLOROBENZENE          |            |            |           |
| 1,3-DICHLOROBENZENE          |            |            |           |
| 1,4-DICHLOROBENZENE          |            |            |           |
| 1,4-DIOXANE                  |            |            |           |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U[]    | 400 U []   | 3600 U [] |
| 2,4,5-TRICHLOROPHENOL        | 970 ∪ []   | 1000 U []  | 9000 U [] |
| 2,4,6-TRICHLOROPHENOL        | 390 U[]    | 400 U []   | 3600 U [] |
| 2,4-DICHLOROPHENOL           | 390 U[]    | 400 U []   | 3600 U [] |
| 2,4-DIMETHYLPHENOL           | 390 U[]    | 400 U []   | 3600 U [] |
| 2,4-DINITROPHENOL            | 970 ∪ []   | 1000 U []  | 9000 U [] |

| LOCATION                    | SB-094    | SB-094    | SB-094    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-94-10  | SB-94-15  | SB-94-SS  |
| SAMPLE DATE                 | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| 2,4-DINITROTOLUENE          | 390 U []  | 400 U []  | 3600 U [] |
| 2,6-DINITROTOLUENE          | 390 U []  | 400 U []  | 3600 U [] |
| 2-CHLORONAPHTHALENE         | 390 U []  | 400 U []  | 3600 U [] |
| 2-CHLOROPHENOL              | 390 U []  | 400 U []  | 3600 U [] |
| 2-METHYLPHENOL              | 390 U []  | 400 U []  | 3600 U [] |
| 2-NITROANILINE              | 970 U []  | 1000 U [] | 9000 U [] |
| 2-NITROPHENOL               | 390 U []  | 400 U []  | 3600 U [] |
| 3&4-METHYLPHENOL            | 390 U []  | 400 U []  | 3600 U [] |
| 3,3'-DICHLOROBENZIDINE      | 390 U []  | 400 U []  | 3600 U [] |
| 3-NITROANILINE              | 970 U []  | 1000 U [] | 9000 U [] |
| 4,6-DINITRO-2-METHYLPHENOL  | 890 U []  | 920 U []  | 8200 U [] |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U []  | 400 U []  | 3600 U [] |
| 4-CHLORO-3-METHYLPHENOL     | 390 U []  | 400 U []  | 3600 U [] |
| 4-CHLOROANILINE             | 390 U []  | 400 U []  | 3600 U [] |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U []  | 400 U []  | 3600 U [] |
| 4-NITROANILINE              | 970 U []  | 1000 U [] | 9000 U [] |
| 4-NITROPHENOL               | 970 U []  | 1000 U [] | 9000 U [] |
| ACETOPHENONE                | 390 U []  | 400 U []  | 3600 U [] |
| ANILINE                     |           |           |           |
| ATRAZINE                    | 390 U []  | 400 U []  | 3600 U [] |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U []  | 400 U []  | 3600 U [] |
| BIS(2-CHLOROETHYL)ETHER     | 390 U []  | 400 U []  | 3600 U [] |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U []  | 400 U []  | 3600 U [] |
| BUTYL BENZYL PHTHALATE      | 390 U []  | 400 U []  | 3600 U [] |
| CAPROLACTAM                 | 390 U []  | 400 U []  | 3600 U [] |
| CARBAZOLE                   | 380 J []  | 400 U []  | 3600 U [] |
| DIBENZOFURAN                | 130 J []  | 400 U []  | 3600 U [] |
| DIETHYL PHTHALATE           | 390 U []  | 400 U []  | 3600 U [] |
| DIMETHYL PHTHALATE          | 390 U []  | 400 U []  | 3600 U [] |
| DI-N-BUTYL PHTHALATE        | 390 U []  | 400 U []  | 3600 U [] |
| DI-N-OCTYL PHTHALATE        | 390 U []  | 400 U []  | 3600 U [] |
| HEXACHLOROBENZENE           | 390 U []  | 400 U []  | 3600 U [] |
| HEXACHLOROBUTADIENE         | 390 U []  | 400 U []  | 3600 U [] |
| HEXACHLOROCYCLOPENTADIENE   | 390 U []  | 400 U []  | 3600 U [] |

2-CHLOROTOLUENE

| LOCATION                       | SB-094    | SB-094    | SB-094    |
|--------------------------------|-----------|-----------|-----------|
| SAMPLE ID                      | SB-94-10  | SB-94-15  | SB-94-SS  |
| SAMPLE DATE                    | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| HEXACHLOROETHANE               | 390 U []  | 400 U []  | 3600 U [] |
| ISOPHORONE                     | 390 U[]   | 400 U []  | 3600 U [] |
| NITROBENZENE                   | 390 U []  | 400 U []  | 3600 U [] |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U []  | 400 U []  | 3600 U [] |
| N-NITROSODIPHENYLAMINE         | 390 U []  | 400 U []  | 3600 U [] |
| PENTACHLOROPHENOL              | 970 U []  | 1000 U [] | 9000 U [] |
| PHENOL                         | 390 U []  | 400 U []  | 3600 U [] |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              | •         |           |           |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1,1-TRICHLOROETHANE          | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1,2-TRICHLOROETHANE          | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U[]     | 6 U []    | 5 U []    |
| 1,1-DICHLOROETHANE             | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1-DICHLOROETHENE             | 6 U[]     | 6 U[]     | 5 U []    |
| 1,1-DICHLOROPROPENE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]     | 6 U []    | 5 U []    |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]     | 6 U []    | 5 U []    |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2-DIBROMOETHANE              | 6 U[]     | 6 U []    | 5 U []    |
| 1,2-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2-DICHLOROETHANE             | 6 U[]     | 6 U[]     | 5 U []    |
| 1,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]     | 6 U[]     | 5 U []    |
| 1,3-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,3-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 5 U []    |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 5 U []    |
| 2-BUTANONE                     | 57 U[]    | 59 U []   | 54 U []   |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]     | 6 U[]     | 5 U []    |
| <del></del>                    |           |           | 1 -       |

February 2013 Page A-171

6 U [--]

6 U [--]

5 U [--]

| LOCATION                | SB-094    | SB-094    | SB-094    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-94-10  | SB-94-15  | SB-94-SS  |
| SAMPLE DATE             | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| 2-HEXANONE              | 57 U []   | 59 U []   | 54 U []   |
| 4-CHLOROTOLUENE         | 6 U []    | 6 U []    | 5 U []    |
| 4-ISOPROPYLTOLUENE      | 6 U []    | 6 U []    | 5 U []    |
| 4-METHYL-2-PENTANONE    | 57 U []   | 59 U []   | 54 U []   |
| ACETONE                 | 57 U []   | 59 U []   | 54 U []   |
| BENZENE                 | 6 U []    | 6 U []    | 5 U []    |
| BROMOBENZENE            | 6 U []    | 6 U []    | 5 U []    |
| BROMOCHLOROMETHANE      | 6 U []    | 6 U []    | 5 U []    |
| BROMODICHLOROMETHANE    | 6 U []    | 6 U []    | 5 U []    |
| BROMOFORM               | 6 U []    | 6 U []    | 5 U []    |
| BROMOMETHANE            | 6 U []    | 6 U []    | 5 U []    |
| CARBON DISULFIDE        | 6 U[]     | 6 U[]     | 5 U []    |
| CARBON TETRACHLORIDE    | 6 U []    | 6 U []    | 5 U []    |
| CHLOROBENZENE           | 6 U []    | 6 U[]     | 5 U []    |
| CHLORODIBROMOMETHANE    | 6 U []    | 6 U[]     | 5 U []    |
| CHLOROETHANE            | 6 U []    | 6 U[]     | 5 U []    |
| CHLOROFORM              | 6 U []    | 6 U []    | 5 U []    |
| CHLOROMETHANE           | 6 U[]     | 6 U[]     | 5 U []    |
| CIS-1,2-DICHLOROETHENE  | 6 U []    | 6 U []    | 5 U []    |
| CIS-1,3-DICHLOROPROPENE | 6 U[]     | 6 U[]     | 5 U []    |
| DIBROMOMETHANE          | 6 U []    | 6 U[]     | 5 U []    |
| DICHLORODIFLUOROMETHANE | 6 U []    | 6 U[]     | 5 U []    |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            | 6 U[]     | 6 U[]     | 5 U []    |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        | 6 U []    | 6 U[]     | 5 U []    |
| M+P-XYLENES             | 11 U []   | 12 U []   | 11 U []   |
| METHYL TERT-BUTYL ETHER | 6 U []    | 6 U[]     | 5 U []    |
| METHYLENE CHLORIDE      | 6 U []    | 6 U[]     | 5 U []    |
| NAPHTHALENE             | 6 U[]     | 6 U[]     | 5 U []    |
| N-BUTYLBENZENE          | 6 U[]     | 6 U[]     | 5 U[]     |
| N-PROPYLBENZENE         | 6 U[]     | 6 U[]     | 5 U[]     |
| O-XYLENE                | 6 U[]     | 6 U[]     | 5 U []    |
| SEC-BUTYLBENZENE        | 6 U[]     | 6 U[]     | 5 U []    |
| STYRENE                 | 6 U[]     | 6 U[]     | 5 U[]     |
| TERT-AMYL METHYL ETHER  |           |           |           |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| JOIL                                     | 1              |               | T              |
|------------------------------------------|----------------|---------------|----------------|
| LOCATION                                 | SB-094         | SB-094        | SB-094         |
| SAMPLE ID                                | SB-94-10       | SB-94-15      | SB-94-SS       |
| SAMPLE DATE                              | 9/16/2004      | 9/16/2004     | 9/16/2004      |
| TERT-BUTYLBENZENE                        | 6 U[]          | 6 U []        | 5 U []         |
| TERTIARY-BUTYL ALCOHOL                   |                |               |                |
| TETRACHLOROETHENE                        | 6 U []         | 6 U []        | 5 U []         |
| TOLUENE                                  | 6 U []         | 6 U []        | 5 U []         |
| TOTAL 1,2-DICHLOROETHENE                 |                |               |                |
| TOTAL XYLENES                            |                |               |                |
| TRANS-1,2-DICHLOROETHENE                 | 6 U []         | 6 U[]         | 5 U []         |
| TRANS-1,3-DICHLOROPROPENE                | 6 U []         | 6 U []        | 5 U []         |
| TRICHLOROETHENE                          | 6 U []         | 6 U []        | 5 U []         |
| TRICHLOROFLUOROMETHANE                   | 6 U []         | 6 U []        | 5 U []         |
| VINYL ACETATE                            | 6 U []         | 6 U []        | 5 U []         |
| VINYL CHLORIDE                           | 6 U[]          | 6 U []        | 5 U []         |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                |               |                |
| 1-METHYLNAPHTHALENE                      |                |               |                |
| 2-METHYLNAPHTHALENE                      | 390 U []       | 400 U []      | 3600 U []      |
| ACENAPHTHENE                             | 190 J []       | 400 U []      | 3600 U []      |
| ACENAPHTHYLENE                           | 390 U []       | 400 U []      | 3600 U []      |
| ANTHRACENE                               | 430 []         | 400 U []      | 3600 U []      |
| BAP EQUIVALENT-HALFND                    | 1434.6 []      | 400 U []      | 2874.1 []      |
| BAP EQUIVALENT-POS                       | 1239.6 []      | 400 U []      | 1074.1 []      |
| BAP EQUIVALENT-UCL                       | 1510.189704 [] | 507.088948 [] | 1242.426938 [] |
| BENZO(A)ANTHRACENE                       | 1200 []        | 400 U []      | 880 J []       |
| BENZO(A)PYRENE                           | 950 []         | 400 U []      | 850 J []       |
| BENZO(B)FLUORANTHENE                     | 1000 []        | 400 U []      | 890 J []       |
| BENZO(G,H,I)PERYLENE                     | 600 J []       | 400 U []      | 3600 U []      |
| BENZO(K)FLUORANTHENE                     | 940 []         | 400 U []      | 1000 J []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                |               |                |
| C1-FLUORANTHENES/PYRENES                 |                |               |                |
| C1-FLUORENES                             |                |               |                |
| C1-PHENANTHRENES/ANTHRACENES             |                |               |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                |               |                |
| C2-FLUORENES                             |                |               |                |
| C2-NAPHTHALENES                          |                |               |                |
| C2-PHENANTHRENES/ANTHRACENES             |                |               |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                |               |                |
| C3-FLUORENES                             |                |               |                |
| C3-NAPHTHALENES                          |                |               |                |
| OO NALTITIALLINEO                        |                |               |                |

February 2013 Page A-173

--

--

--

| LOCATION                         | SB-094    | SB-094    | SB-094    |
|----------------------------------|-----------|-----------|-----------|
| SAMPLE ID                        | SB-94-10  | SB-94-15  | SB-94-SS  |
| SAMPLE DATE                      | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         | 1200 []   | 400 U []  | 1100 J [] |
| DIBENZO(A,H)ANTHRACENE           | 390 U []  | 400 U []  | 3600 U [] |
| FLUORANTHENE                     | 2700 []   | 400 U []  | 2000 J [] |
| FLUORENE                         | 200 J []  | 400 U []  | 3600 U [] |
| INDENO(1,2,3-CD)PYRENE           | 590 []    | 400 U []  | 360 J []  |
| NAPHTHALENE                      | 58 J []   | 400 U []  | 3600 U [] |
| PHENANTHRENE                     | 2200 []   | 400 U []  | 1100 J [] |
| PYRENE                           | 1900 []   | 400 U []  | 1400 J [] |
| TOTAL PAHS                       | 14158 []  | 0 U []    | 9580 []   |
| PESTICIDES/PCBS (UG/KG)          | •         |           |           |
| 4,4'-DDD                         | 46 U[]    | 24 U []   | 42 U []   |
| 4,4'-DDE                         | 46 U[]    | 24 U []   | 42 U []   |
| 4,4'-DDT                         | 46 U[]    | 24 U []   | 42 U []   |
| ALDRIN                           | 46 U[]    | 24 U []   | 42 U []   |
| ALPHA-BHC                        | 46 U[]    | 24 U []   | 42 U []   |
| ALPHA-CHLORDANE                  | 46 U[]    | 24 U []   | 42 U []   |
| AROCLOR-1016                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1221                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1232                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1242                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1248                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1254                     | 290 U []  | 300 U []  | 1300 U [] |
| AROCLOR-1260                     | 290 U []  | 300 U []  | 1400 []   |
| BETA-BHC                         | 46 U[]    | 24 U []   | 42 U []   |
| DELTA-BHC                        | 46 U[]    | 24 U []   | 42 U []   |
| DIELDRIN                         | 46 U[]    | 24 U []   | 42 U []   |
| ENDOSULFAN I                     | 46 U[]    | 24 U []   | 42 U []   |
| ENDOSULFAN II                    | 46 U[]    | 24 U []   | 42 U []   |
| ENDOSULFAN SULFATE               | 46 U[]    | 24 U []   | 42 U []   |
| ENDRIN                           | 46 U []   | 24 U[]    | 42 U []   |
| ENDRIN ALDEHYDE                  | 46 U []   | 24 U[]    | 42 U []   |
| ENDRIN KETONE                    | 46 U[]    | 24 U []   | 42 U []   |
| GAMMA-BHC (LINDANE)              | 46 U[]    | 24 U []   | 42 U []   |
| GAMMA-CHLORDANE                  | 46 U []   | 24 U[]    | 42 U []   |
| HEPTACHLOR                       | 46 U[]    | 24 U []   | 42 U []   |

| LOCATION           | SB-094    | SB-094    | SB-094    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-94-10  | SB-94-15  | SB-94-SS  |
| SAMPLE DATE        | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| HEPTACHLOR EPOXIDE | 46 U []   | 24 U []   | 42 U []   |
| METHOXYCHLOR       | 46 U []   | 24 U []   | 42 U []   |
| TOTAL AROCLOR      | 0 U []    | 0 U []    | 1400 []   |
| TOTAL DDT POS      | 0 U []    | 0 U []    | 0 U []    |
| TOXAPHENE          | 1100 U [] | 590 U []  | 1100 U [] |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 12000 U [] | 12000 U [] | 67000 [] |
|-------------------------|------------|------------|----------|
| GASOLINE RANGE ORGANICS | 120 U []   | 120 U []   | 110 U [] |
| TPH (C09-C36)           |            |            |          |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |              |              |
|------------------------------|-------------|--------------|--------------|
| LOCATION                     | SB-094      | SB-094       | SB-094       |
| SAMPLE ID                    | F-SB-94RE-1 | F-SB-94RE-10 | F-SB-94RE-11 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               | <u>.</u>    | •            | •            |
| ANTIMONY                     |             |              |              |
| ARSENIC                      |             |              |              |
| BARIUM                       |             |              |              |
| BERYLLIUM                    |             |              |              |
| CADMIUM                      |             |              |              |
| CHROMIUM                     |             |              |              |
| COBALT                       |             |              |              |
| COPPER                       |             |              |              |
| LEAD                         |             |              |              |
| MERCURY                      |             |              |              |
| MOLYBDENUM                   |             |              |              |
| NICKEL                       |             |              |              |
| SELENIUM                     |             |              |              |
| SILVER                       |             |              |              |
| THALLIUM                     |             |              |              |
| VANADIUM                     |             |              |              |
| ZINC                         |             |              |              |
| MISCELLANEOUS PARAMETERS     | <u> </u>    |              |              |
| PERCENT SOLIDS (%)           |             |              |              |
| TOTAL SOLIDS (%)             |             |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |             |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |             |              |              |
| PH (S.U.)                    |             |              |              |
| MERCURY (METHYL) (UG/KG)     |             |              |              |
| SEMIVOLATILES (UG/KG)        | <u> </u>    | •            |              |
| 1,1-BIPHENYL                 |             |              |              |
| 1,2,4-TRICHLOROBENZENE       |             |              |              |
| 1,2-DICHLOROBENZENE          |             |              |              |
| 1,3-DICHLOROBENZENE          |             |              |              |
| 1,4-DICHLOROBENZENE          |             |              |              |
| 1,4-DIOXANE                  |             |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |              |              |
| 2,4,5-TRICHLOROPHENOL        |             |              |              |
| 2,4,6-TRICHLOROPHENOL        |             |              |              |
| 2,4-DICHLOROPHENOL           |             |              |              |
| 2,4-DIMETHYLPHENOL           |             |              |              |
| 2,4-DINITROPHENOL            |             |              |              |

| LOCATION                    | SB-094      | SB-094       | SB-094       |
|-----------------------------|-------------|--------------|--------------|
| SAMPLE ID                   | F-SB-94RE-1 | F-SB-94RE-10 | F-SB-94RE-11 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |             |              |              |
| 2,6-DINITROTOLUENE          |             |              |              |
| 2-CHLORONAPHTHALENE         |             |              |              |
| 2-CHLOROPHENOL              |             |              |              |
| 2-METHYLPHENOL              |             |              |              |
| 2-NITROANILINE              |             |              |              |
| 2-NITROPHENOL               |             |              |              |
| 3&4-METHYLPHENOL            |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |              |              |
| 3-NITROANILINE              |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |              |              |
| 4-CHLOROANILINE             |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |              |              |
| 4-NITROANILINE              |             |              |              |
| 4-NITROPHENOL               |             |              |              |
| ACETOPHENONE                |             |              |              |
| ANILINE                     |             |              |              |
| ATRAZINE                    |             |              |              |
| AZOBENZENE                  |             |              |              |
| BENZIDINE                   |             |              |              |
| BENZOIC ACID                |             |              |              |
| BENZYL ALCOHOL              |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |              |              |
| BUTYL BENZYL PHTHALATE      |             |              |              |
| CAPROLACTAM                 |             |              |              |
| CARBAZOLE                   |             |              |              |
| DIBENZOFURAN                |             |              |              |
| DIETHYL PHTHALATE           |             |              |              |
| DIMETHYL PHTHALATE          |             |              |              |
| DI-N-BUTYL PHTHALATE        |             |              |              |
| DI-N-OCTYL PHTHALATE        |             |              |              |
| HEXACHLOROBENZENE           |             |              |              |
| HEXACHLOROBUTADIENE         |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |              |              |

2-CHLOROTOLUENE

| SB-094      | SB-094                | SB-094                |
|-------------|-----------------------|-----------------------|
| F-SB-94RE-1 | F-SB-94RE-10          | F-SB-94RE-11          |
| 9/21/2009   | 9/21/2009             | 9/21/2009             |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
| •           |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             | F-SB-94RE-1 9/21/2009 | F-SB-94RE-1 9/21/2009 |

February 2013 Page A-178

--

--

--

| LOCATION                | SB-094      | SB-094       | SB-094       |
|-------------------------|-------------|--------------|--------------|
| SAMPLE ID               | F-SB-94RE-1 | F-SB-94RE-10 | F-SB-94RE-11 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |             |              |              |
| 4-CHLOROTOLUENE         |             |              |              |
| 4-ISOPROPYLTOLUENE      |             |              |              |
| 4-METHYL-2-PENTANONE    |             |              |              |
| ACETONE                 |             |              |              |
| BENZENE                 |             |              |              |
| BROMOBENZENE            |             |              |              |
| BROMOCHLOROMETHANE      |             |              |              |
| BROMODICHLOROMETHANE    |             |              |              |
| BROMOFORM               |             |              |              |
| BROMOMETHANE            |             |              |              |
| CARBON DISULFIDE        | 1           |              |              |
| CARBON TETRACHLORIDE    | 1           |              |              |
| CHLOROBENZENE           |             |              |              |
| CHLORODIBROMOMETHANE    | 1           |              |              |
| CHLOROETHANE            | 1           |              |              |
| CHLOROFORM              |             |              |              |
| CHLOROMETHANE           | 1           |              |              |
| CIS-1,2-DICHLOROETHENE  | 1           |              |              |
| CIS-1,3-DICHLOROPROPENE |             |              |              |
| DIBROMOMETHANE          |             |              |              |
| DICHLORODIFLUOROMETHANE |             |              |              |
| DIISOPROPYL ETHER       |             |              |              |
| ETHYL TERT-BUTYL ETHER  |             |              |              |
| ETHYLBENZENE            |             |              |              |
| FLUORODICHLOROMETHANE   |             |              |              |
| HEXACHLOROBUTADIENE     | -           |              |              |
| ISOPROPYLBENZENE        | -           |              |              |
| M+P-XYLENES             | -           |              |              |
| METHYL TERT-BUTYL ETHER | -           |              |              |
| METHYLENE CHLORIDE      | -           |              |              |
| NAPHTHALENE             |             |              |              |
| N-BUTYLBENZENE          |             |              |              |
| N-PROPYLBENZENE         |             |              |              |
| O-XYLENE                |             |              |              |
| SEC-BUTYLBENZENE        |             |              |              |
| STYRENE                 |             |              |              |
| TERT-AMYL METHYL ETHER  |             |              |              |

| SOIL TO THE PROPERTY OF THE PR |                  |                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB-094           | SB-094          | SB-094          |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-SB-94RE-1      | F-SB-94RE-10    | F-SB-94RE-11    |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/21/2009        | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                 |                 |
| TERTIARY-BUTYL ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                 |                 |
| TETRACHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                 |                 |
| TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 4               |                 |
| TOTAL 1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                 |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                 |
| TRANS-1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | -               |                 |
| TRANS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 1               |                 |
| TRICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1               |                 |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 1               |                 |
| VINYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                 |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | ŧ.              |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                 |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                 |
| 2-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                 |
| ACENAPHTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |
| ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 |                 |
| ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                 |
| BAP EQUIVALENT-HALFND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 184.16 [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 184.16 [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                 |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110 [MDL=1.1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130 [MDL=1.5]    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 [MDL=1.4]    | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                 |
| BENZO(K)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91 [MDL=2]       | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                 |
| C1-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                 |
| C2-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |
| C2-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                |                 |                 |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                 |

| LOCATION                         | SB-094          | SB-094          | SB-094          |
|----------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-94RE-1     | F-SB-94RE-10    | F-SB-94RE-11    |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 150 [MDL=1]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 19 [MDL=1.5]    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 81 [MDL=1.7]    | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 731 [MDL=1.5]   | 0 U [MDL=1.6]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | ·               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 24.0 U [MDL=24] | 25.0 U [MDL=25] | 25.0 U [MDL=25] |
| AROCLOR-1221                     | 18.0 U [MDL=18] | 19.0 U [MDL=19] | 19.0 U [MDL=19] |
| AROCLOR-1232                     | 16.0 U [MDL=16] | 17.0 U [MDL=17] | 17.0 U [MDL=17] |
| AROCLOR-1242                     | 15.0 U [MDL=15] | 16.0 U [MDL=16] | 16.0 U [MDL=16] |
| AROCLOR-1248                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1254                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1260                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| BETA-BHC                         |                 | 1               |                 |
| DELTA-BHC                        |                 | 1               |                 |
| DIELDRIN                         |                 | 1               |                 |
| ENDOSULFAN I                     |                 | 1               |                 |
| ENDOSULFAN II                    |                 | 1               |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-181

| LOCATION           | SB-094       | SB-094       | SB-094       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-94RE-1  | F-SB-94RE-10 | F-SB-94RE-11 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       | 1            | 1            |              |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U [MDL=25] | 0 U [MDL=25] |
| TOTAL DDT POS      | 1            | 1            |              |
| TOXAPHENE          | -            |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-094       | SB-094         | SB-094       |
|------------------------------|--------------|----------------|--------------|
| SAMPLE ID                    | F-SB-94RE-12 | F-SB-94RE-12-D | F-SB-94RE-13 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009      | 9/21/2009    |
| METALS (MG/KG)               | •            |                | •            |
| ANTIMONY                     |              |                |              |
| ARSENIC                      |              |                |              |
| BARIUM                       |              |                |              |
| BERYLLIUM                    |              |                |              |
| CADMIUM                      |              |                |              |
| CHROMIUM                     |              |                |              |
| COBALT                       |              |                |              |
| COPPER                       |              |                |              |
| LEAD                         |              |                |              |
| MERCURY                      |              |                |              |
| MOLYBDENUM                   |              |                |              |
| NICKEL                       |              |                |              |
| SELENIUM                     |              |                |              |
| SILVER                       |              |                |              |
| THALLIUM                     |              |                |              |
| VANADIUM                     |              |                |              |
| ZINC                         |              |                |              |
| MISCELLANEOUS PARAMETERS     | -            | •              | •            |
| PERCENT SOLIDS (%)           |              |                |              |
| TOTAL SOLIDS (%)             |              |                |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |                |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |                |              |
| PH (S.U.)                    |              |                |              |
| MERCURY (METHYL) (UG/KG)     |              |                |              |
| SEMIVOLATILES (UG/KG)        |              |                |              |
| 1,1-BIPHENYL                 |              |                |              |
| 1,2,4-TRICHLOROBENZENE       |              |                |              |
| 1,2-DICHLOROBENZENE          |              |                |              |
| 1,3-DICHLOROBENZENE          |              |                |              |
| 1,4-DICHLOROBENZENE          |              |                |              |
| 1,4-DIOXANE                  |              |                |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |                |              |
| 2,4,5-TRICHLOROPHENOL        |              |                |              |
| 2,4,6-TRICHLOROPHENOL        |              |                |              |
| 2,4-DICHLOROPHENOL           |              |                |              |
| 2,4-DIMETHYLPHENOL           | <del></del>  |                |              |
| 2,4-DINITROPHENOL            |              |                |              |

| LOCATION                    | SB-094       | SB-094         | SB-094       |
|-----------------------------|--------------|----------------|--------------|
| SAMPLE ID                   | F-SB-94RE-12 | F-SB-94RE-12-D | F-SB-94RE-13 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009      | 9/21/2009    |
| 2,4-DINITROTOLUENE          |              |                |              |
| 2,6-DINITROTOLUENE          |              |                |              |
| 2-CHLORONAPHTHALENE         |              |                |              |
| 2-CHLOROPHENOL              |              |                |              |
| 2-METHYLPHENOL              |              |                |              |
| 2-NITROANILINE              |              |                |              |
| 2-NITROPHENOL               |              |                |              |
| 3&4-METHYLPHENOL            |              |                |              |
| 3,3'-DICHLOROBENZIDINE      |              |                |              |
| 3-NITROANILINE              |              |                |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |                |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |                |              |
| 4-CHLORO-3-METHYLPHENOL     |              |                |              |
| 4-CHLOROANILINE             |              |                |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |                |              |
| 4-NITROANILINE              |              |                |              |
| 4-NITROPHENOL               |              |                |              |
| ACETOPHENONE                |              |                |              |
| ANILINE                     |              |                |              |
| ATRAZINE                    |              |                |              |
| AZOBENZENE                  |              |                |              |
| BENZIDINE                   |              |                |              |
| BENZOIC ACID                |              |                |              |
| BENZYL ALCOHOL              |              |                |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |                |              |
| BIS(2-CHLOROETHYL)ETHER     |              |                |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |                |              |
| BUTYL BENZYL PHTHALATE      |              |                |              |
| CAPROLACTAM                 |              |                |              |
| CARBAZOLE                   |              |                |              |
| DIBENZOFURAN                |              |                |              |
| DIETHYL PHTHALATE           |              |                |              |
| DIMETHYL PHTHALATE          |              |                |              |
| DI-N-BUTYL PHTHALATE        |              |                |              |
| DI-N-OCTYL PHTHALATE        |              |                |              |
| HEXACHLOROBENZENE           |              |                |              |
| HEXACHLOROBUTADIENE         |              |                |              |
| HEXACHLOROCYCLOPENTADIENE   |              |                |              |

| LOCATION                       | SB-094       | SB-094         | SB-094       |
|--------------------------------|--------------|----------------|--------------|
| SAMPLE ID                      | F-SB-94RE-12 | F-SB-94RE-12-D | F-SB-94RE-13 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009      | 9/21/2009    |
| HEXACHLOROETHANE               |              |                |              |
| ISOPHORONE                     |              |                |              |
| NITROBENZENE                   |              |                |              |
| N-NITROSODIMETHYLAMINE         |              |                |              |
| N-NITROSO-DI-N-PROPYLAMINE     |              |                |              |
| N-NITROSODIPHENYLAMINE         |              |                |              |
| PENTACHLOROPHENOL              |              |                |              |
| PHENOL                         |              |                |              |
| PYRIDINE                       |              |                |              |
| VOLATILES (UG/KG)              |              |                |              |
| 1,1,1,2-TETRACHLOROETHANE      |              |                |              |
| 1,1,1-TRICHLOROETHANE          |              |                |              |
| 1,1,2,2-TETRACHLOROETHANE      |              |                |              |
| 1,1,2-TRICHLOROETHANE          |              |                |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |                |              |
| 1,1-DICHLOROETHANE             |              |                |              |
| 1,1-DICHLOROETHENE             |              |                |              |
| 1,1-DICHLOROPROPENE            |              |                |              |
| 1,2,3-TRICHLOROBENZENE         |              |                |              |
| 1,2,3-TRICHLOROPROPANE         |              |                |              |
| 1,2,3-TRIMETHYLBENZENE         |              |                |              |
| 1,2,4-TRICHLOROBENZENE         |              |                |              |
| 1,2,4-TRIMETHYLBENZENE         |              |                |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |                |              |
| 1,2-DIBROMOETHANE              |              |                |              |
| 1,2-DICHLOROBENZENE            |              |                |              |
| 1,2-DICHLOROETHANE             |              |                |              |
| 1,2-DICHLOROPROPANE            |              |                |              |
| 1,3,5-TRIMETHYLBENZENE         |              |                |              |
| 1,3-DICHLOROBENZENE            |              |                |              |
| 1,3-DICHLOROPROPANE            |              |                |              |
| 1,3-DICHLOROPROPENE            |              |                |              |
| 1,4-DICHLOROBENZENE            |              |                |              |
| 1,4-DIOXANE                    |              |                |              |
| 2,2-DICHLOROPROPANE            |              |                |              |
| 2-BUTANONE                     |              |                |              |
| 2-CHLOROETHYL VINYL ETHER      |              |                |              |
| 2-CHLOROTOLUENE                |              |                |              |
| <u> </u>                       |              |                |              |

February 2013 Page A-185

| LOCATION                | SB-094       | SB-094         | SB-094       |
|-------------------------|--------------|----------------|--------------|
| SAMPLE ID               | F-SB-94RE-12 | F-SB-94RE-12-D | F-SB-94RE-13 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009      | 9/21/2009    |
| 2-HEXANONE              |              |                |              |
| 4-CHLOROTOLUENE         |              |                |              |
| 4-ISOPROPYLTOLUENE      |              |                |              |
| 4-METHYL-2-PENTANONE    |              |                |              |
| ACETONE                 |              |                |              |
| BENZENE                 |              |                |              |
| BROMOBENZENE            |              |                |              |
| BROMOCHLOROMETHANE      |              |                |              |
| BROMODICHLOROMETHANE    |              |                |              |
| BROMOFORM               |              |                |              |
| BROMOMETHANE            |              |                |              |
| CARBON DISULFIDE        |              |                |              |
| CARBON TETRACHLORIDE    |              |                |              |
| CHLOROBENZENE           |              |                |              |
| CHLORODIBROMOMETHANE    |              |                |              |
| CHLOROETHANE            |              |                |              |
| CHLOROFORM              |              |                |              |
| CHLOROMETHANE           |              |                |              |
| CIS-1,2-DICHLOROETHENE  |              |                |              |
| CIS-1,3-DICHLOROPROPENE |              |                |              |
| DIBROMOMETHANE          |              |                |              |
| DICHLORODIFLUOROMETHANE |              |                |              |
| DIISOPROPYL ETHER       |              |                |              |
| ETHYL TERT-BUTYL ETHER  |              |                |              |
| ETHYLBENZENE            |              |                |              |
| FLUORODICHLOROMETHANE   |              |                |              |
| HEXACHLOROBUTADIENE     |              |                |              |
| ISOPROPYLBENZENE        |              |                |              |
| M+P-XYLENES             |              |                |              |
| METHYL TERT-BUTYL ETHER |              |                |              |
| METHYLENE CHLORIDE      |              |                |              |
| NAPHTHALENE             |              |                |              |
| N-BUTYLBENZENE          |              |                |              |
| N-PROPYLBENZENE         |              |                |              |
| O-XYLENE                |              |                |              |
| SEC-BUTYLBENZENE        |              |                |              |
| STYRENE                 |              |                |              |
| TERT-AMYL METHYL ETHER  |              |                |              |

| SAMPLE ID         FSB-94RE-12         FSB-94RE-12009         PSB-94RE-13009           SAMPLE DATE         921/2009         921/2009         921/2009           TERT FBY-PUTY, LEDNEY         -         -         -           TERTABY-BUTY, ALCOHOL         -         -         -           TERTABY-BUTY, ALCOHOL         -         -         -           TOTAL 1, 201CHLOROETHENE         -         -         -           TOTAL 1, 201CHLOROETHENE         -         -         -           TRANS-1, 2, DICHLOROETHENE         -         -         -           TOLLORIDE         -         -         -         -           TOLOROETHENE         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION                                 | SB-094          | SB-094          | SB-094          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-----------------|-----------------|
| TERTSHYNERWENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE ID                                | F-SB-94RE-12    | F-SB-94RE-12-D  | F-SB-94RE-13    |
| TERTIARY-BUTYL ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| TETRACHIOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                 |                 |                 |
| TOLUENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLO | TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TOTAL X1ENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TETRACHLOROETHENE                        |                 |                 |                 |
| TOTAL XYLENES TRANS-12-DICHLOROPHOPENE TRANS-13-DICHLOROPHOPENE TRICHLOROPHOPENE TOTAL TOTA | TOLUENE                                  |                 |                 |                 |
| TRANS-12-DICHLOROPTROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHONE TRIC | TOTAL XYLENES                            |                 |                 |                 |
| TRICHLOROFTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE VINYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                 |                 |                 |
| VNYL CHLORIDE         -         -         -         -         -         POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VINYL ACETATE                            |                 |                 |                 |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                 |                 |                 |
| 2-METHYLNAPHTHALENE            ACENAPHTHENE            ACENAPHTHUENE            ANTHRACENE            BAP EQUIVALENT-HALFND       1.5 U [MDL=1.5]       1.5 U [MDL=1.6]       1.6 U [MDL=1.6]         BAP EQUIVALENT-POS       1.5 U [MDL=1.5]       1.5 U [MDL=1.5]       1.6 U [MDL=1.6]         BAP EQUIVALENT-UCL            BENZO(A)ANTHRACENE       1.1 U [MDL=1.1]       1.1 U [MDL=1.1]       1.2 U [MDL=1.2]         BENZO(A)ANTHENE       1.5 U [MDL=1.5]       1.5 U [MDL=1.5]       1.6 U [MDL=1.6]         BENZO(G,H,)PERYLENE       1.4 U [MDL=1.4]       1.4 U [MDL=1.4]       1.5 U [MDL=1.5]       1.6 U [MDL=1.6]         BENZO(G,FLUORANTHENE       1.9 U [MDL=1.4]       1.4 U [MDL=1.4]       1.5 U [MDL=1.5]       1.6 U [MDL=1.6]         BENZO(G,FLUORANTHENE       1.9 U [MDL=1.4]       1.4 U [MDL=1.4]       1.5 U [MDL=1.5]       1.6 U [MDL=1.6]         BENZO(G,FLUORANTHENE       1.9 U [MDL=1.9]       1.9 U [MDL=1.5]       2.1 U [MDL=1.5]       1.6 U [MDL=1.6]         BENZO(G,FLUORANTHENE       1.9 U [MDL=1.9]       1.9 U [MDL=1.9]       2.1 U [MDL=2.1]       1.0 U [MDL=1.6]       1.0 U [MDL=1.6]       1.0 U [M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •               | •               | -               |
| ACENAPHTHENE ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHYLENE ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ANTHRACENE BAP EQUIVALENT-HALFND 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] BAP EQUIVALENT-VOL 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] BAP EQUIVALENT-UCL 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] BAP EQUIVALENT-UCL 1.7 U [MDL=1.1] 1.1 U [MDL=1.1] 1.2 U [MDL=1.2] BENZO(A)ANTHRACENE 1.1 U [MDL=1.1] 1.1 U [MDL=1.1] 1.2 U [MDL=1.2] BENZO(A)ANTHENE 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.6 U [MDL=1.6] BENZO(B)FLUORANTHENE 1.1 U [MDL=1.4] 1.1 U [MDL=1.4] 1.2 U [MDL=1.5] 1.5 U [MDL=1 | ACENAPHTHENE                             |                 |                 |                 |
| BAP EQUIVALENT-HALFND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACENAPHTHYLENE                           |                 |                 |                 |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(K)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-PHENANTHRENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BENZO(K)FLUORANTHENE                     | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] | 2.1 U [MDL=2.1] |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES            C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                 |                 |                 |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2-NAPHTHALENES                          |                 |                 |                 |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                 |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |

HEPTACHLOR

| OOL                              |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-094          | SB-094          | SB-094          |
| SAMPLE ID                        | F-SB-94RE-12    | F-SB-94RE-12-D  | F-SB-94RE-13    |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 1.9 U [MDL=1.9] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 24.0 U [MDL=24] | 24.0 U [MDL=24] | 26. U [MDL=26]  |
| AROCLOR-1221                     | 18.0 U [MDL=18] | 18.0 U [MDL=18] | 20.0 U [MDL=20] |
| AROCLOR-1232                     | 16.0 U [MDL=16] | 16.0 U [MDL=16] | 17.0 U [MDL=17] |
| AROCLOR-1242                     | 15.0 U [MDL=15] | 15.0 U [MDL=15] | 16.0 U [MDL=16] |
| AROCLOR-1248                     | 19.0 U [MDL=19] | 19.0 U [MDL=19] | 21.0 U [MDL=21] |
| AROCLOR-1254                     | 19.0 U [MDL=19] | 19.0 U [MDL=19] | 21.0 U [MDL=21] |
| AROCLOR-1260                     | 19.0 U [MDL=19] | 19.0 U [MDL=19] | 21.0 U [MDL=21] |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
|                                  |                 |                 |                 |

February 2013 Page A-188

--

--

--

| LOCATION           | SB-094       | SB-094         | SB-094       |
|--------------------|--------------|----------------|--------------|
| SAMPLE ID          | F-SB-94RE-12 | F-SB-94RE-12-D | F-SB-94RE-13 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009      | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |                |              |
| METHOXYCHLOR       |              |                |              |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U [MDL=24]   | 0 U [MDL=26] |
| TOTAL DDT POS      |              |                |              |
| TOXAPHENE          |              |                |              |

PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- K = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |             |
|------------------------------|--------------|--------------|-------------|
| LOCATION                     | SB-094       | SB-094       | SB-094      |
| SAMPLE ID                    | F-SB-94RE-14 | F-SB-94RE-15 | F-SB-94RE-2 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| METALS (MG/KG)               |              |              |             |
| ANTIMONY                     |              |              |             |
| ARSENIC                      |              |              |             |
| BARIUM                       |              |              |             |
| BERYLLIUM                    |              |              |             |
| CADMIUM                      |              |              |             |
| CHROMIUM                     |              |              |             |
| COBALT                       |              |              |             |
| COPPER                       |              |              |             |
| LEAD                         |              |              |             |
| MERCURY                      |              |              |             |
| MOLYBDENUM                   |              |              |             |
| NICKEL                       |              |              |             |
| SELENIUM                     |              |              |             |
| SILVER                       |              |              |             |
| THALLIUM                     |              |              |             |
| VANADIUM                     |              |              |             |
| ZINC                         |              |              |             |
| MISCELLANEOUS PARAMETERS     |              |              |             |
| PERCENT SOLIDS (%)           |              |              |             |
| TOTAL SOLIDS (%)             |              |              |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |             |
| PH (S.U.)                    |              |              |             |
| MERCURY (METHYL) (UG/KG)     |              |              |             |
| SEMIVOLATILES (UG/KG)        | •            | •            | •           |
| 1,1-BIPHENYL                 |              |              |             |
| 1,2,4-TRICHLOROBENZENE       |              |              |             |
| 1,2-DICHLOROBENZENE          |              |              |             |
| 1,3-DICHLOROBENZENE          |              |              |             |
| 1,4-DICHLOROBENZENE          |              |              |             |
| 1,4-DIOXANE                  |              |              |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |             |
| 2,4,5-TRICHLOROPHENOL        |              |              |             |
| 2,4,6-TRICHLOROPHENOL        |              |              |             |
| 2,4-DICHLOROPHENOL           |              |              |             |
| 2,4-DIMETHYLPHENOL           |              |              |             |
| 2,4-DINITROPHENOL            |              |              |             |

| LOCATION                    | SB-094       | SB-094       | SB-094      |
|-----------------------------|--------------|--------------|-------------|
| SAMPLE ID                   | F-SB-94RE-14 | F-SB-94RE-15 | F-SB-94RE-2 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| 2,4-DINITROTOLUENE          |              |              |             |
| 2,6-DINITROTOLUENE          |              |              |             |
| 2-CHLORONAPHTHALENE         |              |              |             |
| 2-CHLOROPHENOL              |              |              |             |
| 2-METHYLPHENOL              |              |              |             |
| 2-NITROANILINE              |              |              |             |
| 2-NITROPHENOL               |              |              |             |
| 3&4-METHYLPHENOL            |              |              |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |             |
| 3-NITROANILINE              |              |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |             |
| 4-CHLOROANILINE             |              |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |             |
| 4-NITROANILINE              |              |              |             |
| 4-NITROPHENOL               |              |              |             |
| ACETOPHENONE                |              |              |             |
| ANILINE                     |              |              |             |
| ATRAZINE                    |              |              |             |
| AZOBENZENE                  |              |              |             |
| BENZIDINE                   |              |              |             |
| BENZOIC ACID                |              |              |             |
| BENZYL ALCOHOL              |              |              |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |             |
| BUTYL BENZYL PHTHALATE      |              |              |             |
| CAPROLACTAM                 |              |              |             |
| CARBAZOLE                   |              |              |             |
| DIBENZOFURAN                |              |              |             |
| DIETHYL PHTHALATE           |              |              |             |
| DIMETHYL PHTHALATE          |              |              |             |
| DI-N-BUTYL PHTHALATE        |              |              |             |
| DI-N-OCTYL PHTHALATE        |              |              |             |
| HEXACHLOROBENZENE           |              |              |             |
| HEXACHLOROBUTADIENE         |              |              |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-094       | SB-094       | SB-094      |
|--------------------------------|--------------|--------------|-------------|
| SAMPLE ID                      | F-SB-94RE-14 | F-SB-94RE-15 | F-SB-94RE-2 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| HEXACHLOROETHANE               |              |              |             |
| ISOPHORONE                     |              |              |             |
| NITROBENZENE                   |              |              |             |
| N-NITROSODIMETHYLAMINE         |              |              |             |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |             |
| N-NITROSODIPHENYLAMINE         |              |              |             |
| PENTACHLOROPHENOL              |              |              |             |
| PHENOL                         |              |              |             |
| PYRIDINE                       |              |              |             |
| VOLATILES (UG/KG)              |              |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |             |
| 1,1,1-TRICHLOROETHANE          |              |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |             |
| 1,1,2-TRICHLOROETHANE          |              |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |             |
| 1,1-DICHLOROETHANE             |              |              |             |
| 1,1-DICHLOROETHENE             |              |              |             |
| 1,1-DICHLOROPROPENE            |              |              |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |             |
| 1,2-DIBROMOETHANE              |              |              |             |
| 1,2-DICHLOROBENZENE            |              |              |             |
| 1,2-DICHLOROETHANE             |              |              |             |
| 1,2-DICHLOROPROPANE            |              |              |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |             |
| 1,3-DICHLOROBENZENE            |              |              |             |
| 1,3-DICHLOROPROPANE            |              |              |             |
| 1,3-DICHLOROPROPENE            |              |              |             |
| 1,4-DICHLOROBENZENE            |              |              |             |
| 1,4-DIOXANE                    |              |              |             |
| 2,2-DICHLOROPROPANE            |              |              |             |
| 2-BUTANONE                     |              |              |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |             |

February 2013 Page A-192

--

---

--

| LOCATION                | SB-094       | SB-094       | SB-094      |
|-------------------------|--------------|--------------|-------------|
| SAMPLE ID               | F-SB-94RE-14 | F-SB-94RE-15 | F-SB-94RE-2 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| 2-HEXANONE              |              |              |             |
| 4-CHLOROTOLUENE         |              |              |             |
| 4-ISOPROPYLTOLUENE      |              |              |             |
| 4-METHYL-2-PENTANONE    |              |              |             |
| ACETONE                 |              |              |             |
| BENZENE                 |              |              |             |
| BROMOBENZENE            |              |              |             |
| BROMOCHLOROMETHANE      |              |              |             |
| BROMODICHLOROMETHANE    |              |              |             |
| BROMOFORM               |              |              |             |
| BROMOMETHANE            |              |              |             |
| CARBON DISULFIDE        |              |              |             |
| CARBON TETRACHLORIDE    |              |              |             |
| CHLOROBENZENE           |              |              |             |
| CHLORODIBROMOMETHANE    |              |              |             |
| CHLOROETHANE            |              |              |             |
| CHLOROFORM              |              |              |             |
| CHLOROMETHANE           |              |              |             |
| CIS-1,2-DICHLOROETHENE  |              |              |             |
| CIS-1,3-DICHLOROPROPENE |              |              |             |
| DIBROMOMETHANE          |              |              |             |
| DICHLORODIFLUOROMETHANE |              |              |             |
| DIISOPROPYL ETHER       |              |              |             |
| ETHYL TERT-BUTYL ETHER  |              |              |             |
| ETHYLBENZENE            |              |              |             |
| FLUORODICHLOROMETHANE   |              |              |             |
| HEXACHLOROBUTADIENE     |              |              |             |
| ISOPROPYLBENZENE        |              |              |             |
| M+P-XYLENES             |              |              |             |
| METHYL TERT-BUTYL ETHER |              |              |             |
| METHYLENE CHLORIDE      |              |              |             |
| NAPHTHALENE             |              |              |             |
| N-BUTYLBENZENE          |              |              |             |
| N-PROPYLBENZENE         |              |              |             |
| O-XYLENE                |              |              |             |
| SEC-BUTYLBENZENE        |              |              |             |
| STYRENE                 |              |              |             |
| TERT-AMYL METHYL ETHER  |              |              |             |

| LOCATION                                 | SB-094          | SB-094          | SB-094           |
|------------------------------------------|-----------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-94RE-14    | F-SB-94RE-15    | F-SB-94RE-2      |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009        |
| TERT-BUTYLBENZENE                        |                 |                 |                  |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                  |
| TETRACHLOROETHENE                        |                 |                 |                  |
| TOLUENE                                  |                 |                 |                  |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                  |
| TOTAL XYLENES                            |                 |                 |                  |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                  |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                  |
| TRICHLOROETHENE                          |                 |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                  |
| VINYL ACETATE                            |                 |                 |                  |
| VINYL CHLORIDE                           |                 |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                  |
| 1-METHYLNAPHTHALENE                      |                 |                 |                  |
| 2-METHYLNAPHTHALENE                      |                 |                 |                  |
| ACENAPHTHENE                             |                 |                 |                  |
| ACENAPHTHYLENE                           |                 |                 |                  |
| ANTHRACENE                               |                 |                 |                  |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 95.413 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 95.413 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                 |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] | 57 [MDL=1.2]     |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 55 [MDL=1.6]     |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 58 [MDL=1.5]     |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 2.1 U [MDL=2.1] | 24 [MDL=2.1]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                  |
| C1-FLUORENES                             |                 |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |
| C2-FLUORENES                             |                 |                 |                  |
| C2-NAPHTHALENES                          |                 |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |
| C3-FLUORENES                             |                 |                 |                  |
| C3-NAPHTHALENES                          |                 |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |

HEPTACHLOR

| LOCATION                         | SB-094          | SB-094          | SB-094          |
|----------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-94RE-14    | F-SB-94RE-15    | F-SB-94RE-2     |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 73 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 25 [MDL=1.6]    |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] | 36 [MDL=1.8]    |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 0 U [MDL=1.6]   | 328 [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 26.0 U [MDL=26] | 26.0 U [MDL=26] | 26.0 U [MDL=26] |
| AROCLOR-1221                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1232                     | 17.0 U [MDL=17] | 18.0 U [MDL=18] | 17.0 U [MDL=17] |
| AROCLOR-1242                     | 16.0 U [MDL=16] | 16.0 U [MDL=16] | 16.0 U [MDL=16] |
| AROCLOR-1248                     | 21.0 U [MDL=21] | 21.0 U [MDL=21] | 21.0 U [MDL=21] |
| AROCLOR-1254                     | 21.0 U [MDL=21] | 21.0 U [MDL=21] | 21.0 U [MDL=21] |
| AROCLOR-1260                     | 21.0 U [MDL=21] | 21.0 U [MDL=21] | 21.0 U [MDL=21] |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
|                                  |                 |                 |                 |

February 2013 Page A-195

--

--

| LOCATION           | SB-094       | SB-094       | SB-094       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-94RE-14 | F-SB-94RE-15 | F-SB-94RE-2  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=26] | 0 U [MDL=26] | 0 U [MDL=26] |
| TOTAL DDT POS      | 1            |              |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SB-094      | SB-094                | SB-094                |
|-------------|-----------------------|-----------------------|
| F-SB-94RE-3 | F-SB-94RE-4           | F-SB-94RE-5           |
| 9/21/2009   | 9/21/2009             | 9/21/2009             |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             | •                     | •                     |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
| -           | •                     |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             |                       |                       |
|             | F-SB-94RE-3 9/21/2009 | F-SB-94RE-3 9/21/2009 |

| LOCATION                    | SB-094      | SB-094      | SB-094      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-94RE-3 | F-SB-94RE-4 | F-SB-94RE-5 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  | 1           |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  | 1           |             |             |
| BIS(2-CHLOROETHYL)ETHER     | 1           |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  | -           |             |             |
| BUTYL BENZYL PHTHALATE      | -           |             |             |
| CAPROLACTAM                 | 1           |             |             |
| CARBAZOLE                   | -           |             |             |
| DIBENZOFURAN                | -           |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        | -           |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-094      | SB-094      | SB-094      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-94RE-3 | F-SB-94RE-4 | F-SB-94RE-5 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| <u></u>                        |             |             |             |

February 2013 Page A-199

---

---

| LOCATION                | SB-094      | SB-094      | SB-094      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-94RE-3 | F-SB-94RE-4 | F-SB-94RE-5 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-094          | SB-094          | SB-094          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-94RE-3     | F-SB-94RE-4     | F-SB-94RE-5     |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 | 1               | ŀ               |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 | 1               | ŀ               |
| VINYL CHLORIDE                           |                 | 1               | ŀ               |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 | 1               | 1               |
| 2-METHYLNAPHTHALENE                      |                 | 1               | ŀ               |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 | 1               | 1               |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 | 1               | 1               |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 | 1               | 1               |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |

HEPTACHLOR

| OOIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-094          | SB-094          | SB-094          |
| SAMPLE ID                        | F-SB-94RE-3     | F-SB-94RE-4     | F-SB-94RE-5     |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 25.0 U [MDL=25] | 25.0 U [MDL=25] | 24.0 U [MDL=24] |
| AROCLOR-1221                     | 19.0 U [MDL=19] | 19.0 U [MDL=19] | 19.0 U [MDL=19] |
| AROCLOR-1232                     | 17.0 U [MDL=17] | 16.0 U [MDL=16] | 16.0 U [MDL=16] |
| AROCLOR-1242                     | 16.0 U [MDL=16] | 15.0 U [MDL=15] | 15.0 U [MDL=15] |
| AROCLOR-1248                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1254                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1260                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
|                                  |                 |                 |                 |

February 2013 Page A-202

--

--

| LOCATION           | SB-094       | SB-094       | SB-094       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-94RE-3  | F-SB-94RE-4  | F-SB-94RE-5  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=25] | 0 U [MDL=25] | 0 U [MDL=24] |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              | 1            |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SAMPLE ID SAMPLE DATE METALS (MG/KG) ANTIMONY | F-SB-94RE-6<br>9/21/2009 | F-SB-94RE-7<br>9/21/2009 | F-SB-94RE-8<br>9/21/2009 |
|-----------------------------------------------|--------------------------|--------------------------|--------------------------|
| METALS (MG/KG)                                |                          | 9/21/2009                | 9/21/2009                |
|                                               |                          |                          |                          |
| NTIMONY                                       |                          |                          |                          |
|                                               |                          |                          |                          |
| ARSENIC                                       | <del></del>              |                          |                          |
| BARIUM                                        |                          |                          |                          |
| BERYLLIUM                                     |                          |                          |                          |
| CADMIUM                                       |                          |                          |                          |
| CHROMIUM                                      |                          |                          |                          |
| COBALT                                        |                          |                          |                          |
| COPPER                                        |                          |                          |                          |
| EAD                                           |                          |                          |                          |
| MERCURY                                       |                          |                          |                          |
| MOLYBDENUM                                    |                          |                          |                          |
| NICKEL                                        |                          |                          |                          |
| SELENIUM                                      |                          |                          |                          |
| SILVER                                        |                          |                          |                          |
| THALLIUM                                      |                          |                          |                          |
| /ANADIUM                                      |                          |                          |                          |
| ZINC                                          |                          |                          |                          |
| MISCELLANEOUS PARAMETERS                      | •                        |                          |                          |
| PERCENT SOLIDS (%)                            |                          |                          |                          |
| TOTAL SOLIDS (%)                              |                          |                          |                          |
| HEXAVALENT CHROMIUM (MG/KG)                   |                          |                          |                          |
| TOTAL ORGANIC CARBON (MG/KG)                  |                          |                          |                          |
| PH (S.U.)                                     |                          |                          |                          |
| MERCURY (METHYL) (UG/KG)                      |                          |                          |                          |
| SEMIVOLATILES (UG/KG)                         |                          |                          |                          |
| ,1-BIPHENYL                                   |                          |                          |                          |
| ,2,4-TRICHLOROBENZENE                         |                          |                          |                          |
| ,2-DICHLOROBENZENE                            |                          |                          |                          |
| ,3-DICHLOROBENZENE                            |                          |                          |                          |
| ,4-DICHLOROBENZENE                            |                          |                          |                          |
| ,4-DIOXANE                                    |                          |                          |                          |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                  |                          |                          |                          |
| 2,4,5-TRICHLOROPHENOL                         |                          |                          |                          |
| 2,4,6-TRICHLOROPHENOL                         |                          |                          |                          |
| 2,4-DICHLOROPHENOL                            |                          |                          |                          |
| 2,4-DIMETHYLPHENOL                            |                          |                          |                          |
| 2,4-DINITROPHENOL                             |                          |                          |                          |

| LOCATION                    | SB-094      | SB-094      | SB-094      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-94RE-6 | F-SB-94RE-7 | F-SB-94RE-8 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

| SOIL                           |             |             |             |
|--------------------------------|-------------|-------------|-------------|
| LOCATION                       | SB-094      | SB-094      | SB-094      |
| SAMPLE ID                      | F-SB-94RE-6 | F-SB-94RE-7 | F-SB-94RE-8 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |

February 2013 Page A-206

| LOCATION                | SB-094      | SB-094      | SB-094      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-94RE-6 | F-SB-94RE-7 | F-SB-94RE-8 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| 30IL                                     |                  |                 | 1               |
|------------------------------------------|------------------|-----------------|-----------------|
| LOCATION                                 | SB-094           | SB-094          | SB-094          |
| SAMPLE ID                                | F-SB-94RE-6      | F-SB-94RE-7     | F-SB-94RE-8     |
| SAMPLE DATE                              | 9/21/2009        | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                  | <del></del>     |                 |
| TERTIARY-BUTYL ALCOHOL                   |                  |                 |                 |
| TETRACHLOROETHENE                        |                  |                 |                 |
| TOLUENE                                  |                  |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                 |                 |
| TOTAL XYLENES                            |                  |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                  |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                  |                 |                 |
| TRICHLOROETHENE                          |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                 |
| VINYL ACETATE                            |                  |                 |                 |
| VINYL CHLORIDE                           |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                 |                 |
| 1-METHYLNAPHTHALENE                      |                  |                 |                 |
| 2-METHYLNAPHTHALENE                      |                  |                 |                 |
| ACENAPHTHENE                             |                  |                 |                 |
| ACENAPHTHYLENE                           |                  |                 |                 |
| ANTHRACENE                               |                  |                 |                 |
| BAP EQUIVALENT-HALFND                    | 24.603 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 24.603 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                 |                 |
| BENZO(A)ANTHRACENE                       | 12 [MDL=1.1]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 11 [MDL=1.5]     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 15 [MDL=1.4]     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                 |
| BENZO(K)FLUORANTHENE                     | 9.2 [MDL=2]      | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |
| C1-FLUORENES                             |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C2-FLUORENES                             |                  |                 |                 |
| C2-NAPHTHALENES                          |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C3-FLUORENES                             |                  |                 |                 |
| C3-NAPHTHALENES                          |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |

| LOCATION                         | SB-094          | SB-094          | SB-094          |
|----------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-94RE-6     | F-SB-94RE-7     | F-SB-94RE-8     |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 11 [MDL=1]      | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 9.8 [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 10 [MDL=1.7]    | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 78 [MDL=1.5]    | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | ·               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 24.0 U [MDL=24] | 25.0 U [MDL=25] | 24.0 U [MDL=24] |
| AROCLOR-1221                     | 19.0 U [MDL=19] | 19.0 U [MDL=19] | 18.0 U [MDL=18] |
| AROCLOR-1232                     | 16.0 U [MDL=16] | 17.0 U [MDL=17] | 16.0 U [MDL=16] |
| AROCLOR-1242                     | 15.0 U [MDL=15] | 15.0 U [MDL=15] | 15.0 U [MDL=15] |
| AROCLOR-1248                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1254                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| AROCLOR-1260                     | 20.0 U [MDL=20] | 20.0 U [MDL=20] | 20.0 U [MDL=20] |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-209

| LOCATION           | SB-094       | SB-094       | SB-094       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-94RE-6  | F-SB-94RE-7  | F-SB-94RE-8  |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              | -            |              |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U [MDL=25] | 0 U [MDL=24] |
| TOTAL DDT POS      |              | -            |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- K = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| Ī           |                       |                                                                                                                 |
|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| SB-094      | SB-095                | SB-095                                                                                                          |
| F-SB-94RE-9 |                       | SB-95-10                                                                                                        |
| 9/21/2009   | 9/16/2004             | 9/16/2004                                                                                                       |
|             |                       |                                                                                                                 |
|             | 2.9 UR []             | 2.9 UR []                                                                                                       |
|             | 0.58 UL []            | 0.59 UL []                                                                                                      |
|             |                       |                                                                                                                 |
|             | 5.2 L []              | 2.9 UL []                                                                                                       |
|             | 2.9 UL []             | 2.9 UL []                                                                                                       |
|             | 19 []                 | 9.6 K []                                                                                                        |
|             |                       |                                                                                                                 |
|             | 24 L []               | 5.5 L []                                                                                                        |
|             | 5.2 L []              | 3.2 L []                                                                                                        |
|             | 0.12 U []             | 0.12 U []                                                                                                       |
|             |                       |                                                                                                                 |
|             | 21 []                 | 8.4 []                                                                                                          |
|             |                       | 2.9 UL []                                                                                                       |
|             |                       | 2.9 UR []                                                                                                       |
|             |                       | 2.4 UL []                                                                                                       |
|             |                       |                                                                                                                 |
|             | 29 U []               | 29 U []                                                                                                         |
|             | . ,                   |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             | 400 U []              | 390 U []                                                                                                        |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             |                       |                                                                                                                 |
|             | <del></del>           |                                                                                                                 |
|             | <del></del>           |                                                                                                                 |
|             | 400 U []              | 390 U []                                                                                                        |
|             |                       | 980 U []                                                                                                        |
|             |                       | 390 U []                                                                                                        |
|             |                       | 390 U []                                                                                                        |
|             |                       | 390 U []                                                                                                        |
|             |                       | 980 U []                                                                                                        |
|             | F-SB-94RE-9 9/21/2009 | F-SB-94RE-9 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2009 9/21/2004 |

| LOCATION                    | SB-094      | SB-095    | SB-095    |
|-----------------------------|-------------|-----------|-----------|
| SAMPLE ID                   | F-SB-94RE-9 | SB-95-05  | SB-95-10  |
| SAMPLE DATE                 | 9/21/2009   | 9/16/2004 | 9/16/2004 |
| 2,4-DINITROTOLUENE          |             | 400 U []  | 390 U []  |
| 2,6-DINITROTOLUENE          |             | 400 U []  | 390 U []  |
| 2-CHLORONAPHTHALENE         |             | 400 U []  | 390 U []  |
| 2-CHLOROPHENOL              |             | 400 U []  | 390 U []  |
| 2-METHYLPHENOL              |             | 400 U []  | 390 U []  |
| 2-NITROANILINE              |             | 1000 U [] | 980 U []  |
| 2-NITROPHENOL               |             | 400 U []  | 390 U []  |
| 3&4-METHYLPHENOL            |             | 400 U []  | 390 U []  |
| 3,3'-DICHLOROBENZIDINE      |             | 400 U []  | 390 U []  |
| 3-NITROANILINE              |             | 1000 U [] | 980 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  |             | 930 U []  | 900 U []  |
| 4-BROMOPHENYL PHENYL ETHER  |             | 400 U []  | 390 U []  |
| 4-CHLORO-3-METHYLPHENOL     |             | 400 U []  | 390 U []  |
| 4-CHLOROANILINE             |             | 400 U []  | 390 U []  |
| 4-CHLOROPHENYL PHENYL ETHER |             | 400 U []  | 390 U []  |
| 4-NITROANILINE              |             | 1000 U [] | 980 U []  |
| 4-NITROPHENOL               |             | 1000 U [] | 980 U []  |
| ACETOPHENONE                |             | 400 U []  | 390 U []  |
| ANILINE                     |             |           |           |
| ATRAZINE                    |             | 400 U []  | 390 U []  |
| AZOBENZENE                  |             |           |           |
| BENZIDINE                   |             |           |           |
| BENZOIC ACID                |             |           |           |
| BENZYL ALCOHOL              |             |           |           |
| BIS(2-CHLOROETHOXY)METHANE  |             | 400 U []  | 390 U []  |
| BIS(2-CHLOROETHYL)ETHER     |             | 400 U []  | 390 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             | 400 U []  | 390 U []  |
| BUTYL BENZYL PHTHALATE      |             | 400 U []  | 390 U []  |
| CAPROLACTAM                 |             | 400 U []  | 390 U []  |
| CARBAZOLE                   |             | 400 U []  | 390 U []  |
| DIBENZOFURAN                |             | 400 U []  | 390 U []  |
| DIETHYL PHTHALATE           |             | 400 U []  | 390 U []  |
| DIMETHYL PHTHALATE          |             | 400 U []  | 77 J []   |
| DI-N-BUTYL PHTHALATE        |             | 400 U []  | 390 U []  |
| DI-N-OCTYL PHTHALATE        | <del></del> | 400 U []  | 390 U []  |
| HEXACHLOROBENZENE           |             | 400 U []  | 390 U []  |
| HEXACHLOROBUTADIENE         |             | 400 U []  | 390 U []  |
| HEXACHLOROCYCLOPENTADIENE   |             | 400 U []  | 390 U []  |

2-CHLOROTOLUENE

| JOIL                           |             |           |           |
|--------------------------------|-------------|-----------|-----------|
| LOCATION                       | SB-094      | SB-095    | SB-095    |
| SAMPLE ID                      | F-SB-94RE-9 | SB-95-05  | SB-95-10  |
| SAMPLE DATE                    | 9/21/2009   | 9/16/2004 | 9/16/2004 |
| HEXACHLOROETHANE               |             | 400 U []  | 390 U []  |
| ISOPHORONE                     |             | 400 U []  | 390 U []  |
| NITROBENZENE                   |             | 400 U []  | 390 U []  |
| N-NITROSODIMETHYLAMINE         |             |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     |             | 400 U []  | 390 U []  |
| N-NITROSODIPHENYLAMINE         |             | 400 U []  | 390 U []  |
| PENTACHLOROPHENOL              |             | 1000 U [] | 980 U []  |
| PHENOL                         |             | 140 J []  | 390 U []  |
| PYRIDINE                       |             |           |           |
| VOLATILES (UG/KG)              | <u> </u>    |           |           |
| 1,1,1,2-TETRACHLOROETHANE      |             | 6 U []    | 6 U []    |
| 1,1,1-TRICHLOROETHANE          |             | 6 U []    | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      |             | 6 U []    | 6 U []    |
| 1,1,2-TRICHLOROETHANE          |             | 6 U []    | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             | 6 U []    | 6 U []    |
| 1,1-DICHLOROETHANE             |             | 6 U []    | 6 U []    |
| 1,1-DICHLOROETHENE             |             | 6 U []    | 6 U []    |
| 1,1-DICHLOROPROPENE            |             | 6 U []    | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         |             | 6 U []    | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         |             | 6 U []    | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |             |           |           |
| 1,2,4-TRICHLOROBENZENE         |             | 6 U []    | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         |             | 6 U []    | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             | 6 U []    | 6 U []    |
| 1,2-DIBROMOETHANE              |             | 6 U []    | 6 U []    |
| 1,2-DICHLOROBENZENE            |             | 6 U []    | 6 U []    |
| 1.2-DICHLOROETHANE             |             | 6 U []    | 6 U []    |
| 1,2-DICHLOROPROPANE            |             | 6 U []    | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         |             | 6 U []    | 6 U []    |
| 1,3-DICHLOROBENZENE            |             | 6 U []    | 6 U []    |
| 1,3-DICHLOROPROPANE            |             | 6 U []    | 6 U []    |
| 1,3-DICHLOROPROPENE            |             |           |           |
| 1,4-DICHLOROBENZENE            |             | 6 U[]     | 6 U []    |
| 1,4-DIOXANE                    |             |           |           |
| 2,2-DICHLOROPROPANE            |             | 6 U []    | 6 U []    |
| 2-BUTANONE                     |             | 60 U []   | 58 U []   |
| 2-CHLOROETHYL VINYL ETHER      |             | 6 U []    | 6 U []    |
| 2 ONLONGE WITH EITHER          |             | 0 0 [ ]   | 0 0 [ ]   |

February 2013 Page A-213

--

6 U [--]

6 U [--]

| LOCATION                | SB-094      | SB-095    | SB-095    |
|-------------------------|-------------|-----------|-----------|
| SAMPLE ID               | F-SB-94RE-9 | SB-95-05  | SB-95-10  |
| SAMPLE DATE             | 9/21/2009   | 9/16/2004 | 9/16/2004 |
| 2-HEXANONE              |             | 60 U []   | 58 U []   |
| 4-CHLOROTOLUENE         |             | 6 U []    | 6 U []    |
| 4-ISOPROPYLTOLUENE      |             | 6 U []    | 6 U []    |
| 4-METHYL-2-PENTANONE    |             | 60 U[]    | 58 U []   |
| ACETONE                 |             | 60 U []   | 58 U []   |
| BENZENE                 |             | 6 U []    | 6 U []    |
| BROMOBENZENE            |             | 6 U []    | 6 U []    |
| BROMOCHLOROMETHANE      |             | 6 U []    | 6 U []    |
| BROMODICHLOROMETHANE    |             | 6 U []    | 6 U []    |
| BROMOFORM               |             | 6 U []    | 6 U []    |
| BROMOMETHANE            |             | 6 U []    | 6 U []    |
| CARBON DISULFIDE        |             | 6 U []    | 6 U []    |
| CARBON TETRACHLORIDE    |             | 6 U []    | 6 U []    |
| CHLOROBENZENE           |             | 6 U []    | 6 U []    |
| CHLORODIBROMOMETHANE    |             | 6 U []    | 6 U []    |
| CHLOROETHANE            |             | 6 U []    | 6 U []    |
| CHLOROFORM              |             | 6 U []    | 6 U []    |
| CHLOROMETHANE           |             | 6 U []    | 6 U []    |
| CIS-1,2-DICHLOROETHENE  |             | 6 U []    | 6 U []    |
| CIS-1,3-DICHLOROPROPENE |             | 6 U []    | 6 U []    |
| DIBROMOMETHANE          |             | 6 U []    | 6 U []    |
| DICHLORODIFLUOROMETHANE |             | 6 U []    | 6 U []    |
| DIISOPROPYL ETHER       |             |           |           |
| ETHYL TERT-BUTYL ETHER  |             |           |           |
| ETHYLBENZENE            |             | 6 U []    | 6 U []    |
| FLUORODICHLOROMETHANE   |             |           |           |
| HEXACHLOROBUTADIENE     |             |           |           |
| ISOPROPYLBENZENE        |             | 6 U []    | 6 U []    |
| M+P-XYLENES             |             | 12 U []   | 12 U[]    |
| METHYL TERT-BUTYL ETHER |             | 6 U []    | 6 U []    |
| METHYLENE CHLORIDE      |             | 6 U []    | 6 U []    |
| NAPHTHALENE             |             | 6 U []    | 6 U []    |
| N-BUTYLBENZENE          |             | 6 U []    | 6 U []    |
| N-PROPYLBENZENE         |             | 6 U []    | 6 U []    |
| O-XYLENE                |             | 6 U[]     | 6 U []    |
| SEC-BUTYLBENZENE        |             | 6 U[]     | 6 U []    |
| STYRENE                 |             | 6 U[]     | 6 U []    |
| TERT-AMYL METHYL ETHER  |             |           |           |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

| OOIL                                     |                 |               |               |
|------------------------------------------|-----------------|---------------|---------------|
| LOCATION                                 | SB-094          | SB-095        | SB-095        |
| SAMPLE ID                                | F-SB-94RE-9     | SB-95-05      | SB-95-10      |
| SAMPLE DATE                              | 9/21/2009       | 9/16/2004     | 9/16/2004     |
| TERT-BUTYLBENZENE                        |                 | 6 U[]         | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |                 |               |               |
| TETRACHLOROETHENE                        |                 | 6 U[]         | 6 U []        |
| TOLUENE                                  |                 | 6 U[]         | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |                 |               |               |
| TOTAL XYLENES                            |                 |               |               |
| TRANS-1,2-DICHLOROETHENE                 |                 | 6 U[]         | 6 U []        |
| TRANS-1,3-DICHLOROPROPENE                |                 | 6 U[]         | 6 U []        |
| TRICHLOROETHENE                          |                 | 6 U[]         | 6 U []        |
| TRICHLOROFLUOROMETHANE                   |                 | 6 U[]         | 6 U []        |
| VINYL ACETATE                            |                 | 6 U []        | 6 U []        |
| VINYL CHLORIDE                           |                 | 6 U[]         | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |               |               |
| 1-METHYLNAPHTHALENE                      |                 |               |               |
| 2-METHYLNAPHTHALENE                      |                 | 400 U []      | 390 U []      |
| ACENAPHTHENE                             |                 | 400 U []      | 390 U []      |
| ACENAPHTHYLENE                           |                 | 400 U []      | 390 U []      |
| ANTHRACENE                               |                 | 400 U []      | 390 U[]       |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 400 U []      | 390 U []      |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 400 U []      | 390 U []      |
| BAP EQUIVALENT-UCL                       |                 | 621.998487 [] | 657.575298 [] |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 400 U []      | 390 U []      |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 400 U []      | 390 U []      |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 400 U []      | 390 U []      |
| BENZO(G,H,I)PERYLENE                     |                 | 400 U []      | 390 U []      |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 400 U []      | 390 U []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |               |               |
| C1-FLUORANTHENES/PYRENES                 |                 |               |               |
| C1-FLUORENES                             |                 |               |               |
| C1-PHENANTHRENES/ANTHRACENES             |                 |               |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |               |               |
| C2-FLUORENES                             |                 |               |               |
| C2-NAPHTHALENES                          |                 |               |               |
| C2-PHENANTHRENES/ANTHRACENES             |                 |               |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 | -             |               |
| C3-FLUORENES                             |                 | -             |               |
| C3-NAPHTHALENES                          |                 |               |               |
|                                          |                 |               | -             |

February 2013 Page A-215

--

--

| LOCATION                         | SB-094          | SB-095    | SB-095    |
|----------------------------------|-----------------|-----------|-----------|
| SAMPLE ID                        | F-SB-94RE-9     | SB-95-05  | SB-95-10  |
| SAMPLE DATE                      | 9/21/2009       | 9/16/2004 | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |           |           |
| C4-NAPHTHALENES                  |                 |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |                 |           |           |
| CHRYSENE                         | 1.0 U [MDL=1]   | 400 U []  | 390 U []  |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 400 U []  | 390 U []  |
| FLUORANTHENE                     |                 | 400 U []  | 390 U []  |
| FLUORENE                         |                 | 400 U []  | 390 U []  |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 400 U []  | 390 U []  |
| NAPHTHALENE                      |                 | 400 U []  | 390 U []  |
| PHENANTHRENE                     |                 | 400 U []  | 390 U []  |
| PYRENE                           |                 | 400 U []  | 390 U []  |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U []    | 0 U []    |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |           |           |
| 4,4'-DDD                         |                 | 24 U[]    | 23 U []   |
| 4,4'-DDE                         |                 | 24 U[]    | 23 U []   |
| 4,4'-DDT                         |                 | 24 U[]    | 23 U []   |
| ALDRIN                           |                 | 24 U[]    | 23 U []   |
| ALPHA-BHC                        |                 | 24 U []   | 23 U []   |
| ALPHA-CHLORDANE                  |                 | 24 U[]    | 23 U []   |
| AROCLOR-1016                     | 24.0 U [MDL=24] | 300 U []  | 290 U []  |
| AROCLOR-1221                     | 18.0 U [MDL=18] | 300 U []  | 290 U []  |
| AROCLOR-1232                     | 16.0 U [MDL=16] | 300 U []  | 290 U []  |
| AROCLOR-1242                     | 15.0 U [MDL=15] | 300 U []  | 290 U []  |
| AROCLOR-1248                     | 20.0 U [MDL=20] | 300 U []  | 290 U []  |
| AROCLOR-1254                     | 20.0 U [MDL=20] | 300 U []  | 290 U []  |
| AROCLOR-1260                     | 20.0 U [MDL=20] | 300 U []  | 290 U []  |
| BETA-BHC                         |                 | 24 U[]    | 23 U []   |
| DELTA-BHC                        |                 | 24 U[]    | 23 U []   |
| DIELDRIN                         |                 | 24 U[]    | 23 U []   |
| ENDOSULFAN I                     |                 | 24 U[]    | 23 U []   |
| ENDOSULFAN II                    |                 | 24 U[]    | 23 U []   |
| ENDOSULFAN SULFATE               |                 | 24 U[]    | 23 U []   |
| ENDRIN                           |                 | 24 U[]    | 23 U []   |
| ENDRIN ALDEHYDE                  |                 | 24 U[]    | 23 U []   |
| ENDRIN KETONE                    |                 | 24 U[]    | 23 U []   |
| GAMMA-BHC (LINDANE)              |                 | 24 U[]    | 23 U []   |
| GAMMA-CHLORDANE                  |                 | 24 U[]    | 23 U []   |
| HEPTACHLOR                       |                 | 24 U []   | 23 U []   |

February 2013 Page A-216

| LOCATION           | SB-094       | SB-095    | SB-095    |
|--------------------|--------------|-----------|-----------|
| SAMPLE ID          | F-SB-94RE-9  | SB-95-05  | SB-95-10  |
| SAMPLE DATE        | 9/21/2009    | 9/16/2004 | 9/16/2004 |
| HEPTACHLOR EPOXIDE |              | 24 U[]    | 23 U []   |
| METHOXYCHLOR       |              | 24 U[]    | 23 U []   |
| TOTAL AROCLOR      | 0 U [MDL=24] | 0 U []    | 0 U []    |
| TOTAL DDT POS      |              | 0 U[]     | 0 U []    |
| TOXAPHENE          |              | 600 U []  | 580 U []  |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   | 12000 U [] | 12000 U [] |
|-------------------------|---|------------|------------|
| GASOLINE RANGE ORGANICS | 1 | 120 U []   | 120 U []   |
| TPH (C09-C36)           |   |            |            |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-095    | SB-095      | SB-095       |
|------------------------------|-----------|-------------|--------------|
| SAMPLE ID                    | SB-95-SS  | F-SB-95RE-1 | F-SB-95RE-10 |
| SAMPLE DATE                  | 9/16/2004 | 9/18/2009   | 9/18/2009    |
| METALS (MG/KG)               | •         | -           |              |
| ANTIMONY                     | 3 UR []   |             |              |
| ARSENIC                      | 2 L[]     |             |              |
| BARIUM                       |           |             |              |
| BERYLLIUM                    | 3 UL []   |             |              |
| CADMIUM                      | 3 UL []   |             |              |
| CHROMIUM                     | 14 []     |             |              |
| COBALT                       |           |             |              |
| COPPER                       | 34 L []   |             |              |
| LEAD                         | 100 L []  |             |              |
| MERCURY                      | 0.15 []   |             |              |
| MOLYBDENUM                   |           |             |              |
| NICKEL                       | 8.1 []    |             |              |
| SELENIUM                     | 3 UL []   |             |              |
| SILVER                       | 3 UR []   |             |              |
| THALLIUM                     | 2.4 UL [] |             |              |
| VANADIUM                     | -         |             |              |
| ZINC                         | 81 K []   |             |              |
| MISCELLANEOUS PARAMETERS     |           |             | •            |
| PERCENT SOLIDS (%)           |           |             |              |
| TOTAL SOLIDS (%)             |           |             |              |
| HEXAVALENT CHROMIUM (MG/KG)  |           |             |              |
| TOTAL ORGANIC CARBON (MG/KG) |           |             |              |
| PH (S.U.)                    |           |             |              |
| MERCURY (METHYL) (UG/KG)     |           |             |              |
| SEMIVOLATILES (UG/KG)        | •         |             |              |
| 1,1-BIPHENYL                 | 420 U []  |             |              |
| 1,2,4-TRICHLOROBENZENE       |           |             |              |
| 1,2-DICHLOROBENZENE          |           |             |              |
| 1,3-DICHLOROBENZENE          |           |             |              |
| 1,4-DICHLOROBENZENE          |           |             |              |
| 1,4-DIOXANE                  |           |             |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 420 U []  |             |              |
| 2,4,5-TRICHLOROPHENOL        | 1000 U [] |             |              |
| 2,4,6-TRICHLOROPHENOL        | 420 U []  |             |              |
| 2,4-DICHLOROPHENOL           | 420 U []  |             |              |
| 2,4-DIMETHYLPHENOL           | 420 U []  |             |              |
| 2,4-DINITROPHENOL            | 1000 U [] |             |              |

| LOCATION                    | SB-095    | SB-095      | SB-095       |
|-----------------------------|-----------|-------------|--------------|
| SAMPLE ID                   | SB-95-SS  | F-SB-95RE-1 | F-SB-95RE-10 |
| SAMPLE DATE                 | 9/16/2004 | 9/18/2009   | 9/18/2009    |
| 2,4-DINITROTOLUENE          | 420 U []  |             |              |
| 2,6-DINITROTOLUENE          | 420 U []  |             |              |
| 2-CHLORONAPHTHALENE         | 420 U []  |             |              |
| 2-CHLOROPHENOL              | 420 U []  |             |              |
| 2-METHYLPHENOL              | 420 U []  |             |              |
| 2-NITROANILINE              | 1000 U [] |             |              |
| 2-NITROPHENOL               | 420 U []  |             |              |
| 3&4-METHYLPHENOL            | 420 U []  |             |              |
| 3,3'-DICHLOROBENZIDINE      | 420 U []  |             |              |
| 3-NITROANILINE              | 1000 U [] |             |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 960 U []  |             |              |
| 4-BROMOPHENYL PHENYL ETHER  | 420 U []  |             |              |
| 4-CHLORO-3-METHYLPHENOL     | 420 U []  |             |              |
| 4-CHLOROANILINE             | 420 U []  |             |              |
| 4-CHLOROPHENYL PHENYL ETHER | 420 U []  |             |              |
| 4-NITROANILINE              | 1000 U [] |             |              |
| 4-NITROPHENOL               | 1000 U [] |             |              |
| ACETOPHENONE                | 420 U []  |             |              |
| ANILINE                     |           |             |              |
| ATRAZINE                    | 420 U []  |             |              |
| AZOBENZENE                  |           |             |              |
| BENZIDINE                   |           |             |              |
| BENZOIC ACID                |           |             |              |
| BENZYL ALCOHOL              |           |             |              |
| BIS(2-CHLOROETHOXY)METHANE  | 420 U []  |             |              |
| BIS(2-CHLOROETHYL)ETHER     | 420 U []  |             |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 420 U []  |             |              |
| BUTYL BENZYL PHTHALATE      | 420 U []  |             |              |
| CAPROLACTAM                 | 420 U []  |             |              |
| CARBAZOLE                   | 190 J []  |             |              |
| DIBENZOFURAN                | 54 J[]    |             |              |
| DIETHYL PHTHALATE           | 420 U []  |             |              |
| DIMETHYL PHTHALATE          | 420 U []  |             |              |
| DI-N-BUTYL PHTHALATE        | 420 U []  |             |              |
| DI-N-OCTYL PHTHALATE        | 53 J[]    |             |              |
| HEXACHLOROBENZENE           | 420 U []  |             |              |
| HEXACHLOROBUTADIENE         | 420 U []  |             |              |
| HEXACHLOROCYCLOPENTADIENE   | 420 U []  |             |              |

| LOCATION                       | SB-095    | SB-095      | SB-095       |
|--------------------------------|-----------|-------------|--------------|
| SAMPLE ID                      | SB-95-SS  | F-SB-95RE-1 | F-SB-95RE-10 |
| SAMPLE DATE                    | 9/16/2004 | 9/18/2009   | 9/18/2009    |
| HEXACHLOROETHANE               | 420 U []  |             |              |
| ISOPHORONE                     | 420 U []  |             |              |
| NITROBENZENE                   | 420 U []  |             |              |
| N-NITROSODIMETHYLAMINE         |           |             |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 420 U []  |             |              |
| N-NITROSODIPHENYLAMINE         | 420 U[]   |             |              |
| PENTACHLOROPHENOL              | 1000 U [] |             |              |
| PHENOL                         | 420 U[]   |             |              |
| PYRIDINE                       |           |             |              |
| VOLATILES (UG/KG)              | •         |             | •            |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U []    |             |              |
| 1,1,1-TRICHLOROETHANE          | 6 U []    |             |              |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U []    |             |              |
| 1,1,2-TRICHLOROETHANE          | 6 U []    |             |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U[]     |             |              |
| 1,1-DICHLOROETHANE             | 6 U []    |             |              |
| 1,1-DICHLOROETHENE             | 6 U []    |             |              |
| 1,1-DICHLOROPROPENE            | 6 U []    |             |              |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]     |             |              |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]     |             |              |
| 1,2,3-TRIMETHYLBENZENE         |           |             |              |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]     |             |              |
| 1,2,4-TRIMETHYLBENZENE         | 6 U []    |             |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U []    |             |              |
| 1,2-DIBROMOETHANE              | 6 U []    |             |              |
| 1,2-DICHLOROBENZENE            | 6 U []    |             |              |
| 1,2-DICHLOROETHANE             | 6 U []    |             |              |
| 1,2-DICHLOROPROPANE            | 6 U []    |             |              |
| 1,3,5-TRIMETHYLBENZENE         | 6 U []    |             |              |
| 1,3-DICHLOROBENZENE            | 6 U []    |             |              |
| 1,3-DICHLOROPROPANE            | 6 U []    |             |              |
| 1,3-DICHLOROPROPENE            |           |             |              |
| 1,4-DICHLOROBENZENE            | 6 U[]     |             |              |
| 1,4-DIOXANE                    |           |             |              |
| 2,2-DICHLOROPROPANE            | 6 U[]     |             |              |
| 2-BUTANONE                     | 62 U []   |             |              |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]     |             |              |
| 2-CHLOROTOLUENE                | 6 U[]     |             |              |

February 2013 Page A-220

| LOCATION                | SB-095    | SB-095      | SB-095       |
|-------------------------|-----------|-------------|--------------|
| SAMPLE ID               | SB-95-SS  | F-SB-95RE-1 | F-SB-95RE-10 |
| SAMPLE DATE             | 9/16/2004 | 9/18/2009   | 9/18/2009    |
| 2-HEXANONE              | 62 U []   |             |              |
| 4-CHLOROTOLUENE         | 6 U []    |             |              |
| 4-ISOPROPYLTOLUENE      | 6 U []    |             |              |
| 4-METHYL-2-PENTANONE    | 62 U []   |             |              |
| ACETONE                 | 62 U []   |             |              |
| BENZENE                 | 6 U []    |             |              |
| BROMOBENZENE            | 6 U []    |             |              |
| BROMOCHLOROMETHANE      | 6 U []    |             |              |
| BROMODICHLOROMETHANE    | 6 U []    |             |              |
| BROMOFORM               | 6 U []    |             |              |
| BROMOMETHANE            | 6 U []    |             |              |
| CARBON DISULFIDE        | 6 U []    |             |              |
| CARBON TETRACHLORIDE    | 6 U []    |             |              |
| CHLOROBENZENE           | 6 U []    |             |              |
| CHLORODIBROMOMETHANE    | 6 U []    |             |              |
| CHLOROETHANE            | 6 U []    |             |              |
| CHLOROFORM              | 6 U []    |             |              |
| CHLOROMETHANE           | 6 U []    |             |              |
| CIS-1,2-DICHLOROETHENE  | 6 U []    |             |              |
| CIS-1,3-DICHLOROPROPENE | 6 U[]     |             |              |
| DIBROMOMETHANE          | 6 U[]     |             |              |
| DICHLORODIFLUOROMETHANE | 6 U[]     |             |              |
| DIISOPROPYL ETHER       |           |             |              |
| ETHYL TERT-BUTYL ETHER  |           |             |              |
| ETHYLBENZENE            | 6 U[]     |             |              |
| FLUORODICHLOROMETHANE   |           |             |              |
| HEXACHLOROBUTADIENE     |           |             |              |
| ISOPROPYLBENZENE        | 6 U[]     |             |              |
| M+P-XYLENES             | 12 U []   |             |              |
| METHYL TERT-BUTYL ETHER | 6 U[]     |             |              |
| METHYLENE CHLORIDE      | 6 U[]     |             |              |
| NAPHTHALENE             | 6 U[]     |             |              |
| N-BUTYLBENZENE          | 6 U[]     |             |              |
| N-PROPYLBENZENE         | 6 U[]     |             |              |
| O-XYLENE                | 6 U[]     |             |              |
| SEC-BUTYLBENZENE        | 6 U[]     |             |              |
| STYRENE                 | 6 U[]     |             |              |
| TERT-AMYL METHYL ETHER  |           |             |              |

| LOCATION                                 | SB-095    | SB-095          | SB-095          |
|------------------------------------------|-----------|-----------------|-----------------|
| SAMPLE ID                                | SB-95-SS  | F-SB-95RE-1     | F-SB-95RE-10    |
| SAMPLE DATE                              | 9/16/2004 | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        | 6 U[]     |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |           |                 |                 |
| TETRACHLOROETHENE                        | 6 U[]     |                 |                 |
| TOLUENE                                  | 6 U[]     |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |           |                 |                 |
| TOTAL XYLENES                            |           |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 | 6 U[]     |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                | 6 U[]     |                 |                 |
| TRICHLOROETHENE                          | 6 U[]     |                 |                 |
| TRICHLOROFLUOROMETHANE                   | 6 U[]     |                 |                 |
| VINYL ACETATE                            | 6 U[]     |                 |                 |
| VINYL CHLORIDE                           | 6 U[]     |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |           | •               |                 |
| 1-METHYLNAPHTHALENE                      |           |                 |                 |
| 2-METHYLNAPHTHALENE                      | 420 U []  |                 |                 |
| ACENAPHTHENE                             | 160 J []  |                 |                 |
| ACENAPHTHYLENE                           | 420 U []  |                 |                 |
| ANTHRACENE                               | 380 J []  |                 |                 |
| BAP EQUIVALENT-HALFND                    | 2131.7 [] | 50001 [MDL=76]  | 29.08 [MDL=1.7] |
| BAP EQUIVALENT-POS                       | 2131.7 [] | 49963 [MDL=76]  | 28.23 [MDL=1.7] |
| BAP EQUIVALENT-UCL                       | 2131.7 [] |                 |                 |
| BENZO(A)ANTHRACENE                       | 1600 []   | 42000 [MDL=56]  | 20 [MDL=1.2]    |
| BENZO(A)PYRENE                           | 1600 []   | 38000 [MDL=76]  | 21 [MDL=1.7]    |
| BENZO(B)FLUORANTHENE                     | 1800 []   | 55000 [MDL=70]  | 28 [MDL=1.5]    |
| BENZO(G,H,I)PERYLENE                     | 1000 J[]  |                 |                 |
| BENZO(K)FLUORANTHENE                     | 1600 []   | 23000 [MDL=100] | 11 [MDL=2.2]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |           |                 |                 |
| C1-FLUORENES                             |           |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |           |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |                 |                 |
| C2-FLUORENES                             |           |                 |                 |
| C2-NAPHTHALENES                          |           |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |           |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |                 | -               |
| C3-FLUORENES                             |           |                 | i i             |
| C3-NAPHTHALENES                          |           |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |           |                 |                 |
|                                          |           |                 | •               |

| COLE                             |           |                 |                 |
|----------------------------------|-----------|-----------------|-----------------|
| LOCATION                         | SB-095    | SB-095          | SB-095          |
| SAMPLE ID                        | SB-95-SS  | F-SB-95RE-1     | F-SB-95RE-10    |
| SAMPLE DATE                      | 9/16/2004 | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |                 |                 |
| C4-NAPHTHALENES                  |           |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |           |                 |                 |
| CHRYSENE                         | 1700 []   | 33000 [MDL=53]  | 20 [MDL=1.2]    |
| DIBENZO(A,H)ANTHRACENE           | 75 J[]    | 76.0 U [MDL=76] | 1.7 U [MDL=1.7] |
| FLUORANTHENE                     | 3300 []   |                 |                 |
| FLUORENE                         | 130 J []  |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 990 []    | 20000 [MDL=88]  | 23 [MDL=1.9]    |
| NAPHTHALENE                      | 420 U[]   |                 |                 |
| PHENANTHRENE                     | 1600 []   |                 |                 |
| PYRENE                           | 2500 []   |                 |                 |
| TOTAL PAHS                       | 18435 []  | 211000 [MDL=76] | 123 [MDL=1.7]   |
| PESTICIDES/PCBS (UG/KG)          |           |                 | • •             |
| 4,4'-DDD                         | 49 U []   |                 |                 |
| 4,4'-DDE                         | 49 U[]    |                 |                 |
| 4,4'-DDT                         | 49 U[]    |                 |                 |
| ALDRIN                           | 49 U []   |                 |                 |
| ALPHA-BHC                        | 49 U[]    |                 |                 |
| ALPHA-CHLORDANE                  | 49 U[]    |                 |                 |
| AROCLOR-1016                     | 300 U[]   |                 |                 |
| AROCLOR-1221                     | 300 U []  |                 |                 |
| AROCLOR-1232                     | 300 U []  |                 |                 |
| AROCLOR-1242                     | 300 U[]   |                 |                 |
| AROCLOR-1248                     | 300 U []  |                 |                 |
| AROCLOR-1254                     | 300 U []  |                 |                 |
| AROCLOR-1260                     | 300 U []  |                 |                 |
| BETA-BHC                         | 49 U []   |                 |                 |
| DELTA-BHC                        | 49 U []   |                 |                 |
| DIELDRIN                         | 49 U []   |                 |                 |
| ENDOSULFAN I                     | 49 U []   |                 |                 |
| ENDOSULFAN II                    | 49 U []   |                 |                 |
| ENDOSULFAN SULFATE               | 49 U []   |                 |                 |
| ENDRIN                           | 49 U []   |                 |                 |
| ENDRIN ALDEHYDE                  | 49 U []   |                 |                 |
| ENDRIN KETONE                    | 49 U[]    |                 |                 |
| GAMMA-BHC (LINDANE)              | 49 U[]    |                 |                 |
| GAMMA-CHLORDANE                  | 49 U[]    |                 |                 |
| HEPTACHLOR                       | 49 U []   |                 |                 |

February 2013 Page A-223

| LOCATION           | SB-095    | SB-095      | SB-095       |
|--------------------|-----------|-------------|--------------|
| SAMPLE ID          | SB-95-SS  | F-SB-95RE-1 | F-SB-95RE-10 |
| SAMPLE DATE        | 9/16/2004 | 9/18/2009   | 9/18/2009    |
| HEPTACHLOR EPOXIDE | 49 U []   |             |              |
| METHOXYCHLOR       | 49 U []   |             |              |
| TOTAL AROCLOR      | 0 U[]     |             |              |
| TOTAL DDT POS      | 0 U[]     |             |              |
| TOXAPHENE          | 1200 U [] |             |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 12000 U [] | <br> |
|-------------------------|------------|------|
| GASOLINE RANGE ORGANICS | 120 U []   | <br> |
| TPH (C09-C36)           |            | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- K = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |              |
|------------------------------|--------------|--------------|--------------|
| LOCATION                     | SB-095       | SB-095       | SB-095       |
| SAMPLE ID                    | F-SB-95RE-11 | F-SB-95RE-12 | F-SB-95RE-13 |
| SAMPLE DATE                  | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)               |              |              |              |
| ANTIMONY                     |              |              |              |
| ARSENIC                      |              |              |              |
| BARIUM                       |              |              |              |
| BERYLLIUM                    |              |              |              |
| CADMIUM                      |              |              |              |
| CHROMIUM                     |              |              |              |
| COBALT                       |              |              |              |
| COPPER                       |              |              |              |
| LEAD                         |              |              |              |
| MERCURY                      |              |              |              |
| MOLYBDENUM                   |              |              |              |
| NICKEL                       |              |              |              |
| SELENIUM                     |              |              |              |
| SILVER                       |              |              |              |
| THALLIUM                     |              |              |              |
| VANADIUM                     |              |              |              |
| ZINC                         |              |              |              |
| MISCELLANEOUS PARAMETERS     | •            |              | •            |
| PERCENT SOLIDS (%)           |              |              |              |
| TOTAL SOLIDS (%)             |              |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |              |
| PH (S.U.)                    |              |              |              |
| MERCURY (METHYL) (UG/KG)     |              |              |              |
| SEMIVOLATILES (UG/KG)        | •            |              | •            |
| 1,1-BIPHENYL                 |              |              |              |
| 1,2,4-TRICHLOROBENZENE       |              |              |              |
| 1,2-DICHLOROBENZENE          |              |              |              |
| 1,3-DICHLOROBENZENE          |              |              |              |
| 1,4-DICHLOROBENZENE          |              |              |              |
| 1,4-DIOXANE                  |              |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |              |
| 2,4,5-TRICHLOROPHENOL        |              |              |              |
| 2,4,6-TRICHLOROPHENOL        |              |              |              |
| 2,4-DICHLOROPHENOL           |              |              |              |
| 2,4-DIMETHYLPHENOL           |              |              |              |
| 2,4-DINITROPHENOL            |              |              |              |

| LOCATION                    | SB-095       | SB-095       | SB-095       |
|-----------------------------|--------------|--------------|--------------|
| SAMPLE ID                   | F-SB-95RE-11 | F-SB-95RE-12 | F-SB-95RE-13 |
| SAMPLE DATE                 | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |              |              |              |
| 2,6-DINITROTOLUENE          |              |              |              |
| 2-CHLORONAPHTHALENE         |              |              |              |
| 2-CHLOROPHENOL              |              |              |              |
| 2-METHYLPHENOL              |              |              |              |
| 2-NITROANILINE              |              |              |              |
| 2-NITROPHENOL               |              |              |              |
| 3&4-METHYLPHENOL            |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |
| 3-NITROANILINE              |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |
| 4-CHLOROANILINE             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |
| 4-NITROANILINE              |              |              |              |
| 4-NITROPHENOL               |              |              |              |
| ACETOPHENONE                |              |              |              |
| ANILINE                     |              |              |              |
| ATRAZINE                    |              |              |              |
| AZOBENZENE                  |              |              |              |
| BENZIDINE                   |              |              |              |
| BENZOIC ACID                |              |              |              |
| BENZYL ALCOHOL              |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |              |
| CAPROLACTAM                 |              |              |              |
| CARBAZOLE                   |              |              |              |
| DIBENZOFURAN                |              |              |              |
| DIETHYL PHTHALATE           |              |              |              |
| DIMETHYL PHTHALATE          |              |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |              |
| HEXACHLOROBENZENE           |              |              |              |
| HEXACHLOROBUTADIENE         |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-095       | SB-095       | SB-095       |
|--------------------------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-95RE-11 | F-SB-95RE-12 | F-SB-95RE-13 |
| SAMPLE DATE                    | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               |              |              |              |
| ISOPHORONE                     |              |              |              |
| NITROBENZENE                   |              |              |              |
| N-NITROSODIMETHYLAMINE         |              |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |
| N-NITROSODIPHENYLAMINE         |              |              |              |
| PENTACHLOROPHENOL              |              |              |              |
| PHENOL                         |              |              |              |
| PYRIDINE                       |              |              |              |
| VOLATILES (UG/KG)              | •            | •            |              |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,1-TRICHLOROETHANE          |              |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |              |
| 1,1,2-TRICHLOROETHANE          |              |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |
| 1,1-DICHLOROETHANE             |              |              |              |
| 1,1-DICHLOROETHENE             |              |              |              |
| 1,1-DICHLOROPROPENE            |              |              |              |
| 1,2,3-TRICHLOROBENZENE         |              |              |              |
| 1,2,3-TRICHLOROPROPANE         |              |              |              |
| 1,2,3-TRIMETHYLBENZENE         |              |              |              |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |
| 1,2,4-TRIMETHYLBENZENE         |              |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |
| 1,2-DIBROMOETHANE              |              |              |              |
| 1,2-DICHLOROBENZENE            |              |              |              |
| 1,2-DICHLOROETHANE             |              |              |              |
| 1,2-DICHLOROPROPANE            |              |              |              |
| 1,3,5-TRIMETHYLBENZENE         |              |              |              |
| 1,3-DICHLOROBENZENE            |              |              |              |
| 1,3-DICHLOROPROPANE            |              |              |              |
| 1,3-DICHLOROPROPENE            |              |              |              |
| 1,4-DICHLOROBENZENE            |              |              |              |
| 1,4-DIOXANE                    |              |              |              |
| 2,2-DICHLOROPROPANE            |              |              |              |
| 2-BUTANONE                     |              |              |              |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |
|                                | <u> </u>     |              | · -          |

February 2013 Page A-227

---

---

| LOCATION                | SB-095       | SB-095       | SB-095       |
|-------------------------|--------------|--------------|--------------|
| SAMPLE ID               | F-SB-95RE-11 | F-SB-95RE-12 | F-SB-95RE-13 |
| SAMPLE DATE             | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |              |              |              |
| 4-CHLOROTOLUENE         |              |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |              |
| 4-METHYL-2-PENTANONE    |              |              |              |
| ACETONE                 |              |              |              |
| BENZENE                 |              |              |              |
| BROMOBENZENE            |              |              |              |
| BROMOCHLOROMETHANE      |              |              |              |
| BROMODICHLOROMETHANE    |              |              |              |
| BROMOFORM               |              |              |              |
| BROMOMETHANE            |              |              |              |
| CARBON DISULFIDE        |              |              |              |
| CARBON TETRACHLORIDE    |              |              |              |
| CHLOROBENZENE           |              |              |              |
| CHLORODIBROMOMETHANE    |              |              |              |
| CHLOROETHANE            |              |              |              |
| CHLOROFORM              |              |              |              |
| CHLOROMETHANE           |              |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |              |
| DIBROMOMETHANE          |              |              |              |
| DICHLORODIFLUOROMETHANE |              |              |              |
| DIISOPROPYL ETHER       |              |              |              |
| ETHYL TERT-BUTYL ETHER  |              |              |              |
| ETHYLBENZENE            |              |              |              |
| FLUORODICHLOROMETHANE   |              |              |              |
| HEXACHLOROBUTADIENE     |              |              |              |
| ISOPROPYLBENZENE        |              |              |              |
| M+P-XYLENES             |              |              |              |
| METHYL TERT-BUTYL ETHER |              |              |              |
| METHYLENE CHLORIDE      |              |              |              |
| NAPHTHALENE             |              |              |              |
| N-BUTYLBENZENE          |              |              |              |
| N-PROPYLBENZENE         |              |              |              |
| O-XYLENE                |              |              |              |
| SEC-BUTYLBENZENE        |              |              |              |
| STYRENE                 |              |              |              |
| TERT-AMYL METHYL ETHER  |              |              |              |

| LOCATION                                 | SB-095            | SB-095          | SB-095           |
|------------------------------------------|-------------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-95RE-11      | F-SB-95RE-12    | F-SB-95RE-13     |
| SAMPLE DATE                              | 9/18/2009         | 9/18/2009       | 9/18/2009        |
| TERT-BUTYLBENZENE                        |                   |                 |                  |
| TERTIARY-BUTYL ALCOHOL                   |                   |                 |                  |
| TETRACHLOROETHENE                        |                   |                 |                  |
| TOLUENE                                  |                   |                 |                  |
| TOTAL 1,2-DICHLOROETHENE                 |                   |                 |                  |
| TOTAL XYLENES                            |                   |                 |                  |
| TRANS-1,2-DICHLOROETHENE                 |                   |                 |                  |
| TRANS-1,3-DICHLOROPROPENE                |                   |                 |                  |
| TRICHLOROETHENE                          |                   |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                   |                 |                  |
| VINYL ACETATE                            |                   |                 |                  |
| VINYL CHLORIDE                           |                   |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                 |                  |
| 1-METHYLNAPHTHALENE                      |                   |                 |                  |
| 2-METHYLNAPHTHALENE                      |                   |                 |                  |
| ACENAPHTHENE                             |                   |                 |                  |
| ACENAPHTHYLENE                           |                   |                 |                  |
| ANTHRACENE                               |                   |                 |                  |
| BAP EQUIVALENT-HALFND                    | 3.13555 [MDL=1.6] | 1.6 U [MDL=1.6] | 61.365 [MDL=1.7] |
| BAP EQUIVALENT-POS                       | 1.4 [MDL=1.6]     | 1.6 U [MDL=1.6] | 60.515 [MDL=1.7] |
| BAP EQUIVALENT-UCL                       |                   |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1]   | 1.2 U [MDL=1.2] | 54 J [MDL=1.3]   |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6] | 47 J [MDL=1.7]   |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5] | 56 J [MDL=1.6]   |
| BENZO(G,H,I)PERYLENE                     |                   |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]     | 2.1 U [MDL=2.1] | 36 J [MDL=2.3]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                   |                 |                  |
| C1-FLUORENES                             |                   |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |
| C2-FLUORENES                             |                   |                 |                  |
| C2-NAPHTHALENES                          |                   |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |
| C3-FLUORENES                             |                   |                 |                  |
| C3-NAPHTHALENES                          |                   |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |

HEPTACHLOR

| OOIL                             |                 |                 |                  |
|----------------------------------|-----------------|-----------------|------------------|
| LOCATION                         | SB-095          | SB-095          | SB-095           |
| SAMPLE ID                        | F-SB-95RE-11    | F-SB-95RE-12    | F-SB-95RE-13     |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009        |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |
| C4-NAPHTHALENES                  |                 |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 55 J [MDL=1.2]   |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.7 UJ [MDL=1.7] |
| FLUORANTHENE                     |                 |                 |                  |
| FLUORENE                         |                 |                 |                  |
| NDENO(1,2,3-CD)PYRENE            | 14 [MDL=1.8]    | 1.9 U [MDL=1.9] | 21 J [MDL=2]     |
| NAPHTHALENE                      |                 |                 |                  |
| PHENANTHRENE                     |                 |                 |                  |
| PYRENE                           |                 |                 |                  |
| TOTAL PAHS                       | 14 [MDL=1.6]    | 0 U [MDL=1.6]   | 269 [MDL=1.7]    |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |                  |
| 4,4'-DDD                         |                 |                 |                  |
| 4,4'-DDE                         |                 |                 |                  |
| 4,4'-DDT                         |                 |                 |                  |
| ALDRIN                           |                 |                 |                  |
| ALPHA-BHC                        |                 |                 |                  |
| ALPHA-CHLORDANE                  |                 |                 |                  |
| AROCLOR-1016                     |                 |                 |                  |
| AROCLOR-1221                     |                 |                 |                  |
| AROCLOR-1232                     |                 |                 |                  |
| AROCLOR-1242                     |                 |                 |                  |
| AROCLOR-1248                     |                 |                 |                  |
| AROCLOR-1254                     |                 |                 |                  |
| AROCLOR-1260                     |                 |                 |                  |
| BETA-BHC                         |                 |                 |                  |
| DELTA-BHC                        |                 |                 |                  |
| DIELDRIN                         |                 |                 |                  |
| ENDOSULFAN I                     |                 |                 |                  |
| ENDOSULFAN II                    |                 |                 |                  |
| ENDOSULFAN SULFATE               |                 |                 |                  |
| ENDRIN                           |                 |                 |                  |
| ENDRIN ALDEHYDE                  |                 |                 |                  |
| ENDRIN KETONE                    |                 |                 |                  |
| GAMMA-BHC (LINDANE)              |                 |                 |                  |
| GAMMA-CHLORDANE                  |                 |                 |                  |
|                                  |                 | 1               |                  |

February 2013 Page A-230

--

--

| LOCATION           | SB-095       | SB-095       | SB-095       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-95RE-11 | F-SB-95RE-12 | F-SB-95RE-13 |
| SAMPLE DATE        | 9/18/2009    | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      |              |              |              |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |
| -                  |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SB-095         | SB-095                   | SB-095                 |
|----------------|--------------------------|------------------------|
| F-SB-95RE-13-D | F-SB-95RE-14             | F-SB-95RE-15           |
| 9/18/2009      | 9/18/2009                | 9/18/2009              |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
| <u> </u>       |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
| <u> </u>       |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                |                          |                        |
|                | F-SB-95RE-13-D 9/18/2009 | F-SB-95RE-14 9/18/2009 |

| LOCATION                    | SB-095         | SB-095       | SB-095       |
|-----------------------------|----------------|--------------|--------------|
| SAMPLE ID                   | F-SB-95RE-13-D | F-SB-95RE-14 | F-SB-95RE-15 |
| SAMPLE DATE                 | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |                |              |              |
| 2,6-DINITROTOLUENE          |                |              |              |
| 2-CHLORONAPHTHALENE         |                |              |              |
| 2-CHLOROPHENOL              |                |              |              |
| 2-METHYLPHENOL              |                |              |              |
| 2-NITROANILINE              |                |              |              |
| 2-NITROPHENOL               |                |              |              |
| 3&4-METHYLPHENOL            |                |              |              |
| 3,3'-DICHLOROBENZIDINE      |                |              |              |
| 3-NITROANILINE              |                |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |                |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |                |              |              |
| 4-CHLORO-3-METHYLPHENOL     |                |              |              |
| 4-CHLOROANILINE             |                |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |                |              |              |
| 4-NITROANILINE              |                |              |              |
| 4-NITROPHENOL               |                |              |              |
| ACETOPHENONE                |                |              |              |
| ANILINE                     |                |              |              |
| ATRAZINE                    |                |              |              |
| AZOBENZENE                  |                |              |              |
| BENZIDINE                   |                |              |              |
| BENZOIC ACID                |                |              |              |
| BENZYL ALCOHOL              |                |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |                |              |              |
| BIS(2-CHLOROETHYL)ETHER     |                |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |                |              |              |
| BUTYL BENZYL PHTHALATE      |                |              |              |
| CAPROLACTAM                 |                |              |              |
| CARBAZOLE                   |                |              |              |
| DIBENZOFURAN                |                |              |              |
| DIETHYL PHTHALATE           |                |              |              |
| DIMETHYL PHTHALATE          |                |              |              |
| DI-N-BUTYL PHTHALATE        |                |              |              |
| DI-N-OCTYL PHTHALATE        |                |              |              |
| HEXACHLOROBENZENE           |                |              |              |
| HEXACHLOROBUTADIENE         |                |              |              |
| HEXACHLOROCYCLOPENTADIENE   |                |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-095         | SB-095       | SB-095       |
|--------------------------------|----------------|--------------|--------------|
| SAMPLE ID                      | F-SB-95RE-13-D | F-SB-95RE-14 | F-SB-95RE-15 |
| SAMPLE DATE                    | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               |                |              |              |
| ISOPHORONE                     |                |              |              |
| NITROBENZENE                   |                |              |              |
| N-NITROSODIMETHYLAMINE         |                |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |                |              |              |
| N-NITROSODIPHENYLAMINE         |                |              |              |
| PENTACHLOROPHENOL              |                |              |              |
| PHENOL                         |                |              |              |
| PYRIDINE                       |                |              |              |
| VOLATILES (UG/KG)              | •              |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,1-TRICHLOROETHANE          |                |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,2-TRICHLOROETHANE          |                |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                |              |              |
| 1,1-DICHLOROETHANE             |                |              |              |
| 1,1-DICHLOROETHENE             |                |              |              |
| 1,1-DICHLOROPROPENE            |                |              |              |
| 1,2,3-TRICHLOROBENZENE         |                |              |              |
| 1,2,3-TRICHLOROPROPANE         |                |              |              |
| 1,2,3-TRIMETHYLBENZENE         |                |              |              |
| 1,2,4-TRICHLOROBENZENE         |                |              |              |
| 1,2,4-TRIMETHYLBENZENE         |                |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                |              |              |
| 1,2-DIBROMOETHANE              |                |              |              |
| 1,2-DICHLOROBENZENE            |                |              |              |
| 1,2-DICHLOROETHANE             |                |              |              |
| 1,2-DICHLOROPROPANE            |                |              |              |
| 1,3,5-TRIMETHYLBENZENE         |                |              |              |
| 1,3-DICHLOROBENZENE            |                |              |              |
| 1,3-DICHLOROPROPANE            |                |              |              |
| 1,3-DICHLOROPROPENE            |                |              |              |
| 1,4-DICHLOROBENZENE            |                |              |              |
| 1,4-DIOXANE                    |                |              |              |
| 2,2-DICHLOROPROPANE            |                |              |              |
| 2-BUTANONE                     |                |              |              |
| 2-CHLOROETHYL VINYL ETHER      |                |              |              |
|                                |                |              |              |

February 2013 Page A-234

--

--

| LOCATION                | SB-095         | SB-095       | SB-095       |
|-------------------------|----------------|--------------|--------------|
| SAMPLE ID               | F-SB-95RE-13-D | F-SB-95RE-14 | F-SB-95RE-15 |
| SAMPLE DATE             | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |                |              |              |
| 4-CHLOROTOLUENE         | -              |              |              |
| 4-ISOPROPYLTOLUENE      |                |              |              |
| 4-METHYL-2-PENTANONE    |                |              |              |
| ACETONE                 |                |              |              |
| BENZENE                 |                |              |              |
| BROMOBENZENE            |                |              |              |
| BROMOCHLOROMETHANE      |                |              |              |
| BROMODICHLOROMETHANE    |                |              |              |
| BROMOFORM               |                |              |              |
| BROMOMETHANE            |                |              |              |
| CARBON DISULFIDE        |                |              |              |
| CARBON TETRACHLORIDE    |                |              |              |
| CHLOROBENZENE           |                |              |              |
| CHLORODIBROMOMETHANE    |                |              |              |
| CHLOROETHANE            |                |              |              |
| CHLOROFORM              |                |              |              |
| CHLOROMETHANE           |                |              |              |
| CIS-1,2-DICHLOROETHENE  |                |              |              |
| CIS-1,3-DICHLOROPROPENE |                |              |              |
| DIBROMOMETHANE          |                |              |              |
| DICHLORODIFLUOROMETHANE |                |              |              |
| DIISOPROPYL ETHER       |                |              |              |
| ETHYL TERT-BUTYL ETHER  |                |              |              |
| ETHYLBENZENE            |                |              |              |
| FLUORODICHLOROMETHANE   |                |              |              |
| HEXACHLOROBUTADIENE     |                |              |              |
| ISOPROPYLBENZENE        |                |              |              |
| M+P-XYLENES             |                |              |              |
| METHYL TERT-BUTYL ETHER |                |              |              |
| METHYLENE CHLORIDE      |                |              |              |
| NAPHTHALENE             |                |              |              |
| N-BUTYLBENZENE          |                |              |              |
| N-PROPYLBENZENE         |                |              |              |
| O-XYLENE                |                |              |              |
| SEC-BUTYLBENZENE        |                |              |              |
| STYRENE                 |                |              |              |
| TERT-AMYL METHYL ETHER  |                |              |              |

| SAMPLE DATE   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/18/2009   9/   | LOCATION                                 | SB-095           | SB-095          | SB-095           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------------|------------------|
| TERTAPY STATE ALCOHOL   TOTAL 120 OKIDARO STATE ALCOHOLOR ST   | SAMPLE ID                                | F-SB-95RE-13-D   | F-SB-95RE-14    | F-SB-95RE-15     |
| TERTAPHURAPHTHALENS TERTACHORDETHENE TERTACHORDETHENE TOTAL 1.2-DICHLOROETHENE TOTAL 1.2-DICHLOROETHENE TOTAL 1.2-DICHLOROETHENE TOTAL 1.2-DICHLOROETHENE TOTAL 1.2-DICHLOROETHENE TOTAL 1.2-DICHLOROETHENE TRANSH.3-DICHLOROETHENE TRANSH.3-DICHLOROETHENE TRANSH.3-DICHLOROETHENE TRICHLOROETHENE TRICHLOROE | SAMPLE DATE                              | 9/18/2009        | 9/18/2009       | 9/18/2009        |
| TETRACHJOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                  |                 |                  |
| TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERTIARY-BUTYL ALCOHOL                   |                  |                 |                  |
| TOTAL L2-DICHLOROETHENE TOTAL XYLENES TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROET | TETRACHLOROETHENE                        |                  |                 |                  |
| TOTAL SYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                  |                 |                  |
| TRANS-12-DICHLOROPTENEE  TRANS-13-DICHLOROPTENEE  TRICHLOROPTEUNE  TRICHLOROPTENE  TRICHLOROPTENEE  TRICHLOR | TOTAL 1,2-DICHLOROETHENE                 |                  |                 |                  |
| TRANS-1,5 DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL XYLENES                            |                  |                 |                  |
| TRICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS-1,2-DICHLOROETHENE                 |                  |                 |                  |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,3-DICHLOROPROPENE                |                  |                 |                  |
| VINYL CELORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                  |                 |                  |
| VINYL CHLORIDE POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRICHLOROFLUOROMETHANE                   |                  |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)  1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VINYL ACETATE                            |                  |                 |                  |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                  |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                 |                  |
| ACENAPHTHENE ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-METHYLNAPHTHALENE                      |                  |                 |                  |
| ACENAPHTYLENE ANTHRACENE  ANTHRACENE  ANTHRACENE  ANTHRACENE  ANTHRACENE  ANTHRACENE  BAP EQUIVALENT-HALFND  BAP EQUIVALENT-BOS  S57.69 [MDL=1.7]  BAP EQUIVALENT-POS  BAP EQUIVALENT-UCL    BENZO(A)ANTHRACENE  BENZO(A)ANTHRACENE  BENZO(B)PYRENE  BENZO(B)PYRENE  BENZO(B)FLUORANTHENE  B                                                                                                                                                                                                                                                                                                                                             | 2-METHYLNAPHTHALENE                      |                  |                 |                  |
| ANTHRACENE BAP EQUIVALENT-HALFND 557.69 [MDL=1.7] 69.88 [MDL=1.8] 31.685 [MDL=1.6] BAP EQUIVALENT-POS 557.69 [MDL=1.7] 68.98 [MDL=1.8] 30.885 [MDL=1.6] BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACENAPHTHENE                             |                  |                 |                  |
| BAP EQUIVALENT-HALFND       557.69 [MDL=1.7]       69.88 [MDL=1.8]       31.685 [MDL=1.6]         BAP EQUIVALENT-POS       557.69 [MDL=1.7]       68.98 [MDL=1.8]       30.885 [MDL=1.6]         BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACENAPHTHYLENE                           |                  |                 |                  |
| BAP EQUIVALENT-POS       557.69 [MDL=1.7]       68.98 [MDL=1.8]       30.885 [MDL=1.6]         BAP EQUIVALENT-UCL            BENZO(A)ANTHRACENE       430 J [MDL=1.2]       62 [MDL=1.3]       22 [MDL=1.2]         BENZO(B)PYRENE       390 J [MDL=1.7]       53 [MDL=1.8]       24 [MDL=1.6]         BENZO(B)FLUORANTHENE       500 J [MDL=1.5]       71 [MDL=1.6]       31 [MDL=1.5]         BENZO(K)FLUORANTHENE             BENZO(K)FLUORANTHENE       230 J [MDL=2.2]       32 [MDL=2.3]       16 [MDL=2.1]         C1-CHYSENES/BENZO(A)ANTHRACENES             C1-FLUORANTHENES/YPTENES              C1-FLUORANTHENES/ANTHRACENES </td <td>ANTHRACENE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANTHRACENE                               |                  |                 |                  |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 557.69 [MDL=1.7] | 69.88 [MDL=1.8] | 31.685 [MDL=1.6] |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-POS                       | 557.69 [MDL=1.7] | 68.98 [MDL=1.8] | 30.885 [MDL=1.6] |
| BENZO(A)PYRENE   390 J [MDL=1.7]   53 [MDL=1.8]   24 [MDL=1.6]   BENZO(B)FLUORANTHENE   500 J [MDL=1.5]   71 [MDL=1.6]   31 [MDL=1.5]   BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BAP EQUIVALENT-UCL                       |                  |                 |                  |
| BENZO(B)FLUORANTHENE   500 J [MDL=1.5]   71 [MDL=1.6]   31 [MDL=1.5]     BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BENZO(A)ANTHRACENE                       | 430 J [MDL=1.2]  | 62 [MDL=1.3]    | 22 [MDL=1.2]     |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 390 J [MDL=1.7]  | 53 [MDL=1.8]    | 24 [MDL=1.6]     |
| BENZO(K)FLUORANTHENE   230 J [MDL=2.2]   32 [MDL=2.3]   16 [MDL=2.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(B)FLUORANTHENE                     | 500 J [MDL=1.5]  | 71 [MDL=1.6]    | 31 [MDL=1.5]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(G,H,I)PERYLENE                     |                  |                 |                  |
| C1-FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENZO(K)FLUORANTHENE                     | 230 J [MDL=2.2]  | 32 [MDL=2.3]    | 16 [MDL=2.1]     |
| C1-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                  |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1-FLUORENES                             |                  |                 |                  |
| C2-FLUORENES              C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |
| C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2-FLUORENES                             |                  |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES                C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-NAPHTHALENES                          |                  |                 |                  |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                  |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                  |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |

| SUIL                             |                 |                 | <b>4</b>        |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-095          | SB-095          | SB-095          |
| SAMPLE ID                        | F-SB-95RE-13-D  | F-SB-95RE-14    | F-SB-95RE-15    |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 390 J [MDL=1.2] | 60 [MDL=1.2]    | 25 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE           | 51 J [MDL=1.7]  | 1.8 U [MDL=1.8] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| NDENO(1,2,3-CD)PYRENE            | 210 J [MDL=1.9] | 23 [MDL=2]      | 14 [MDL=1.9]    |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 2201 [MDL=1.7]  | 301 [MDL=1.8]   | 132 [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 1,4'-DDE                         |                 |                 |                 |
| 1,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-237

| LOCATION           | SB-095         | SB-095       | SB-095       |
|--------------------|----------------|--------------|--------------|
| SAMPLE ID          | F-SB-95RE-13-D | F-SB-95RE-14 | F-SB-95RE-15 |
| SAMPLE DATE        | 9/18/2009      | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR EPOXIDE |                |              |              |
| METHOXYCHLOR       |                |              |              |
| TOTAL AROCLOR      |                |              |              |
| TOTAL DDT POS      |                |              |              |
| TOXAPHENE          |                |              |              |
| -                  | •              | •            | -            |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-095      | SB-095      | SB-095      |
|------------------------------|-------------|-------------|-------------|
| SAMPLE ID                    | F-SB-95RE-2 | F-SB-95RE-3 | F-SB-95RE-4 |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| METALS (MG/KG)               |             | •           |             |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     |             | •           |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-095      | SB-095      | SB-095      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-95RE-2 | F-SB-95RE-3 | F-SB-95RE-4 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-095      | SB-095      | SB-095      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-95RE-2 | F-SB-95RE-3 | F-SB-95RE-4 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| T -                            | •           | -           | - I         |

February 2013 Page A-241

---

---

| LOCATION                | SB-095      | SB-095      | SB-095      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-95RE-2 | F-SB-95RE-3 | F-SB-95RE-4 |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-095            | SB-095          | SB-095          |
|------------------------------------------|-------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-95RE-2       | F-SB-95RE-3     | F-SB-95RE-4     |
| SAMPLE DATE                              | 9/18/2009         | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        |                   |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                   |                 |                 |
| TETRACHLOROETHENE                        |                   |                 |                 |
| TOLUENE                                  |                   |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                   |                 |                 |
| TOTAL XYLENES                            |                   |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                   |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                   |                 |                 |
| TRICHLOROETHENE                          |                   |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                   |                 |                 |
| VINYL ACETATE                            |                   |                 |                 |
| VINYL CHLORIDE                           |                   |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                 |                 |
| 1-METHYLNAPHTHALENE                      |                   |                 |                 |
| 2-METHYLNAPHTHALENE                      |                   |                 |                 |
| ACENAPHTHENE                             |                   |                 |                 |
| ACENAPHTHYLENE                           |                   |                 |                 |
| ANTHRACENE                               |                   |                 |                 |
| BAP EQUIVALENT-HALFND                    | 2.63105 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 0.85 [MDL=1.6]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                   | -               |                 |
| BENZO(A)ANTHRACENE                       | 8.5 [MDL=1.2]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5]   | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                   | -               |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   | -               |                 |
| C1-FLUORANTHENES/PYRENES                 |                   | -               |                 |
| C1-FLUORENES                             |                   | -               |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                   | -               |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   | -               |                 |
| C2-FLUORENES                             |                   | -               |                 |
| C2-NAPHTHALENES                          |                   |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   | <del></del>     |                 |
| C3-FLUORENES                             |                   |                 |                 |
| C3-NAPHTHALENES                          |                   | <del></del>     |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |

HEPTACHLOR

| JOIL                             |                 |                 | _               |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-095          | SB-095          | SB-095          |
| SAMPLE ID                        | F-SB-95RE-2     | F-SB-95RE-3     | F-SB-95RE-4     |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.9 U [MDL=1.9] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 8.5 [MDL=1.6]   | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| -                                |                 | ļ               |                 |

February 2013 Page A-244

--

--

| LOCATION           | SB-095      | SB-095      | SB-095      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-95RE-2 | F-SB-95RE-3 | F-SB-95RE-4 |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       |             |             |             |
| TOTAL AROCLOR      |             |             |             |
| TOTAL DDT POS      |             |             |             |
| TOXAPHENE          |             |             |             |
|                    | •           | •           | -           |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-095      | SB-095      | SB-095      |
| SAMPLE ID                    | F-SB-95RE-5 | F-SB-95RE-6 | F-SB-95RE-7 |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| METALS (MG/KG)               | •           | •           | -           |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-095      | SB-095      | SB-095      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-95RE-5 | F-SB-95RE-6 | F-SB-95RE-7 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-095      | SB-095      | SB-095      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-95RE-5 | F-SB-95RE-6 | F-SB-95RE-7 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             | -1          |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             | 1           |             |
| 1,1,1-TRICHLOROETHANE          |             | 1           |             |
| 1,1,2,2-TETRACHLOROETHANE      |             | 1           |             |
| 1,1,2-TRICHLOROETHANE          |             | 1           |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             | 1           |             |
| 1,1-DICHLOROETHANE             |             | 1           |             |
| 1,1-DICHLOROETHENE             |             | 1           |             |
| 1,1-DICHLOROPROPENE            |             | 1           |             |
| 1,2,3-TRICHLOROBENZENE         |             | 1           |             |
| 1,2,3-TRICHLOROPROPANE         |             | 1           |             |
| 1,2,3-TRIMETHYLBENZENE         |             | 1           |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             | -           |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             | -           |             |
| 1,2-DIBROMOETHANE              |             | -           |             |
| 1,2-DICHLOROBENZENE            |             | -           |             |
| 1,2-DICHLOROETHANE             |             | -           |             |
| 1,2-DICHLOROPROPANE            |             | -           |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             | -           |             |
| 1,3-DICHLOROPROPANE            |             | -           |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |

February 2013 Page A-248

--

---

| LOCATION                | SB-095      | SB-095      | SB-095      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-95RE-5 | F-SB-95RE-6 | F-SB-95RE-7 |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| SOIL                                     |                 |                 |                 |
|------------------------------------------|-----------------|-----------------|-----------------|
| LOCATION                                 | SB-095          | SB-095          | SB-095          |
| SAMPLE ID                                | F-SB-95RE-5     | F-SB-95RE-6     | F-SB-95RE-7     |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •               |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |

HEPTACHLOR

| SOIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-095          | SB-095          | SB-095          |
| SAMPLE ID                        | F-SB-95RE-5     | F-SB-95RE-6     | F-SB-95RE-7     |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/18/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| 3AIMMA-CHLORDAINE                | ==              | ==              | ==              |

February 2013 Page A-251

--

---

| LOCATION           | SB-095      | SB-095      | SB-095      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-95RE-5 | F-SB-95RE-6 | F-SB-95RE-7 |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       |             |             |             |
| TOTAL AROCLOR      |             |             |             |
| TOTAL DDT POS      |             |             |             |
| TOXAPHENE          |             |             |             |
|                    |             |             |             |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-095      | SB-095      | SB-096         |
|------------------------------|-------------|-------------|----------------|
| SAMPLE ID                    | F-SB-95RE-8 | F-SB-95RE-9 | SB-96-05       |
| SAMPLE ID                    | 9/18/2009   | 9/18/2009   | 9/16/2004      |
| METALS (MG/KG)               | 9/16/2009   | 9/18/2009   | 9/16/2004      |
| ANTIMONY                     |             |             | 2.6 UR []      |
| ARSENIC                      |             |             | 0.52 UL []     |
| BARIUM                       |             |             | 0.32 OL []<br> |
| BERYLLIUM                    |             |             | 2.6 UL []      |
| CADMIUM                      |             |             | 2.6 UL []      |
| CHROMIUM                     |             |             | 2.6 U []       |
| COBALT                       |             |             |                |
| COPPER                       |             |             | 4.3 L []       |
| LEAD                         |             |             | 2.6 UL []      |
| MERCURY                      |             |             | 0.1 U []       |
| MOLYBDENUM                   |             |             |                |
| NICKEL                       |             |             | 2.6 U []       |
| SELENIUM                     |             |             | 2.6 UL []      |
| SILVER                       |             |             | 2.6 UR []      |
| THALLIUM                     |             |             | 2.1 UL []      |
| VANADIUM                     |             |             |                |
| ZINC                         |             |             | 26 U []        |
| MISCELLANEOUS PARAMETERS     | L           |             | 20 0 [ ]       |
| PERCENT SOLIDS (%)           |             |             |                |
| TOTAL SOLIDS (%)             |             |             |                |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |                |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |                |
| PH (S.U.)                    |             |             |                |
| MERCURY (METHYL) (UG/KG)     |             |             |                |
| SEMIVOLATILES (UG/KG)        |             |             |                |
| 1,1-BIPHENYL                 |             |             | 390 U []       |
| 1,2,4-TRICHLOROBENZENE       |             |             |                |
| 1,2-DICHLOROBENZENE          |             |             |                |
| 1,3-DICHLOROBENZENE          |             |             |                |
| 1,4-DICHLOROBENZENE          |             |             |                |
| 1,4-DIOXANE                  |             |             |                |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             | 390 U []       |
| 2,4,5-TRICHLOROPHENOL        |             |             | 970 U[]        |
| 2,4,6-TRICHLOROPHENOL        |             |             | 390 U []       |
| 2,4-DICHLOROPHENOL           |             |             | 390 U []       |
| 2,4-DIMETHYLPHENOL           |             |             | 390 U []       |
| 2,4-DINITROPHENOL            |             |             | 970 U []       |

| LOCATION                    | SB-095      | SB-095      | SB-096    |
|-----------------------------|-------------|-------------|-----------|
| SAMPLE ID                   | F-SB-95RE-8 | F-SB-95RE-9 | SB-96-05  |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| 2,4-DINITROTOLUENE          |             |             | 390 U []  |
| 2,6-DINITROTOLUENE          |             |             | 390 U []  |
| 2-CHLORONAPHTHALENE         |             |             | 390 U []  |
| 2-CHLOROPHENOL              |             |             | 390 U []  |
| 2-METHYLPHENOL              |             |             | 390 U []  |
| 2-NITROANILINE              |             |             | 970 U []  |
| 2-NITROPHENOL               |             |             | 390 U []  |
| 3&4-METHYLPHENOL            |             |             | 390 U []  |
| 3,3'-DICHLOROBENZIDINE      |             |             | 390 U []  |
| 3-NITROANILINE              |             |             | 970 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             | 890 U []  |
| 4-BROMOPHENYL PHENYL ETHER  |             |             | 390 U []  |
| 4-CHLORO-3-METHYLPHENOL     |             |             | 390 U []  |
| 4-CHLOROANILINE             |             |             | 390 U []  |
| 4-CHLOROPHENYL PHENYL ETHER |             |             | 390 U []  |
| 4-NITROANILINE              |             |             | 970 U []  |
| 4-NITROPHENOL               |             |             | 970 U []  |
| ACETOPHENONE                |             |             | 390 U []  |
| ANILINE                     |             |             |           |
| ATRAZINE                    |             |             | 390 U []  |
| AZOBENZENE                  |             |             |           |
| BENZIDINE                   |             |             |           |
| BENZOIC ACID                |             |             |           |
| BENZYL ALCOHOL              |             |             |           |
| BIS(2-CHLOROETHOXY)METHANE  |             |             | 390 U []  |
| BIS(2-CHLOROETHYL)ETHER     |             |             | 390 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             | 390 U []  |
| BUTYL BENZYL PHTHALATE      |             |             | 390 U []  |
| CAPROLACTAM                 |             |             | 390 U []  |
| CARBAZOLE                   |             |             | 390 U []  |
| DIBENZOFURAN                |             |             | 390 U []  |
| DIETHYL PHTHALATE           |             |             | 390 U []  |
| DIMETHYL PHTHALATE          |             |             | 390 U[]   |
| DI-N-BUTYL PHTHALATE        |             |             | 390 U[]   |
| DI-N-OCTYL PHTHALATE        |             |             | 390 U[]   |
| HEXACHLOROBENZENE           |             |             | 390 U[]   |
| HEXACHLOROBUTADIENE         |             |             | 390 U []  |
| HEXACHLOROCYCLOPENTADIENE   |             |             | 390 U []  |

2-CHLOROTOLUENE

| LOCATION                       | SB-095      | SB-095      | SB-096    |
|--------------------------------|-------------|-------------|-----------|
| SAMPLE ID                      | F-SB-95RE-8 | F-SB-95RE-9 | SB-96-05  |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| HEXACHLOROETHANE               |             |             | 390 U []  |
| ISOPHORONE                     |             |             | 390 U []  |
| NITROBENZENE                   |             |             | 390 U []  |
| N-NITROSODIMETHYLAMINE         |             |             |           |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             | 390 U []  |
| N-NITROSODIPHENYLAMINE         |             |             | 390 U []  |
| PENTACHLOROPHENOL              |             |             | 970 U []  |
| PHENOL                         |             |             | 390 U []  |
| PYRIDINE                       |             |             |           |
| VOLATILES (UG/KG)              |             |             |           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,1-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2,2-TETRACHLOROETHANE      |             |             | 6 U []    |
| 1,1,2-TRICHLOROETHANE          |             |             | 6 U []    |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             | 6 U []    |
| 1,1-DICHLOROETHANE             |             |             | 6 U []    |
| 1,1-DICHLOROETHENE             |             |             | 6 U []    |
| 1,1-DICHLOROPROPENE            |             |             | 6 U []    |
| 1,2,3-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,3-TRICHLOROPROPANE         |             |             | 6 U []    |
| 1,2,3-TRIMETHYLBENZENE         |             |             |           |
| 1,2,4-TRICHLOROBENZENE         |             |             | 6 U []    |
| 1,2,4-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             | 6 U []    |
| 1,2-DIBROMOETHANE              |             |             | 6 U []    |
| 1,2-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,2-DICHLOROETHANE             |             |             | 6 U []    |
| 1,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3,5-TRIMETHYLBENZENE         |             |             | 6 U []    |
| 1,3-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPANE            |             |             | 6 U []    |
| 1,3-DICHLOROPROPENE            |             |             |           |
| 1,4-DICHLOROBENZENE            |             |             | 6 U []    |
| 1,4-DIOXANE                    |             |             |           |
| 2,2-DICHLOROPROPANE            |             |             | 6 U []    |
| 2-BUTANONE                     |             |             | 58 U []   |
| 2-CHLOROETHYL VINYL ETHER      |             |             | 6 U []    |
|                                |             |             |           |

February 2013 Page A-255

---

6 U [--]

---

| LOCATION                | SB-095      | SB-095      | SB-096    |
|-------------------------|-------------|-------------|-----------|
| SAMPLE ID               | F-SB-95RE-8 | F-SB-95RE-9 | SB-96-05  |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| 2-HEXANONE              |             |             | 58 U []   |
| 4-CHLOROTOLUENE         |             |             | 6 U []    |
| 4-ISOPROPYLTOLUENE      |             |             | 6 U []    |
| 4-METHYL-2-PENTANONE    |             |             | 58 U []   |
| ACETONE                 |             |             | 58 U []   |
| BENZENE                 |             |             | 6 U []    |
| BROMOBENZENE            |             |             | 6 U []    |
| BROMOCHLOROMETHANE      |             |             | 6 U []    |
| BROMODICHLOROMETHANE    |             |             | 6 U []    |
| BROMOFORM               |             |             | 6 U []    |
| BROMOMETHANE            |             |             | 6 U []    |
| CARBON DISULFIDE        |             |             | 6 U []    |
| CARBON TETRACHLORIDE    |             |             | 6 U []    |
| CHLOROBENZENE           |             |             | 6 U []    |
| CHLORODIBROMOMETHANE    |             |             | 6 U []    |
| CHLOROETHANE            |             |             | 6 U []    |
| CHLOROFORM              |             |             | 6 U []    |
| CHLOROMETHANE           |             |             | 6 U []    |
| CIS-1,2-DICHLOROETHENE  |             |             | 6 U []    |
| CIS-1,3-DICHLOROPROPENE |             |             | 6 U []    |
| DIBROMOMETHANE          |             |             | 6 U []    |
| DICHLORODIFLUOROMETHANE |             |             | 6 U []    |
| DIISOPROPYL ETHER       |             |             |           |
| ETHYL TERT-BUTYL ETHER  |             |             |           |
| ETHYLBENZENE            |             |             | 6 U []    |
| FLUORODICHLOROMETHANE   |             |             |           |
| HEXACHLOROBUTADIENE     |             |             |           |
| ISOPROPYLBENZENE        |             |             | 6 U []    |
| M+P-XYLENES             |             |             | 12 U []   |
| METHYL TERT-BUTYL ETHER |             |             | 6 U []    |
| METHYLENE CHLORIDE      |             |             | 6 U []    |
| NAPHTHALENE             |             |             | 6 U []    |
| N-BUTYLBENZENE          |             |             | 6 U []    |
| N-PROPYLBENZENE         |             |             | 6 U []    |
| O-XYLENE                |             |             | 6 U []    |
| SEC-BUTYLBENZENE        |             |             | 6 U []    |
| STYRENE                 |             |             | 6 U []    |
| TERT-AMYL METHYL ETHER  |             |             |           |

| LOCATION                                 | SB-095          | SB-095           | SB-096        |
|------------------------------------------|-----------------|------------------|---------------|
| SAMPLE ID                                | F-SB-95RE-8     | F-SB-95RE-9      | SB-96-05      |
| SAMPLE DATE                              | 9/18/2009       | 9/18/2009        | 9/16/2004     |
| TERT-BUTYLBENZENE                        |                 |                  | 6 U []        |
| TERTIARY-BUTYL ALCOHOL                   |                 |                  |               |
| TETRACHLOROETHENE                        |                 |                  | 6 U []        |
| TOLUENE                                  |                 |                  | 6 U []        |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                  |               |
| TOTAL XYLENES                            |                 |                  |               |
| TRANS-1,2-DICHLOROETHENE                 |                 |                  | 6 U []        |
| TRANS-1,3-DICHLOROPROPENE                |                 |                  | 6 U []        |
| TRICHLOROETHENE                          |                 |                  | 6 U []        |
| TRICHLOROFLUOROMETHANE                   |                 |                  | 6 U []        |
| VINYL ACETATE                            |                 |                  | 6 U []        |
| VINYL CHLORIDE                           |                 |                  | 6 U []        |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •               |                  |               |
| 1-METHYLNAPHTHALENE                      |                 |                  |               |
| 2-METHYLNAPHTHALENE                      |                 |                  | 390 U []      |
| ACENAPHTHENE                             |                 |                  | 390 U []      |
| ACENAPHTHYLENE                           |                 |                  | 390 U[]       |
| ANTHRACENE                               |                 |                  | 390 U []      |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 71.368 [MDL=1.6] | 390 U []      |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 70.568 [MDL=1.6] | 390 U []      |
| BAP EQUIVALENT-UCL                       |                 |                  | 811.629406 [] |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 52 [MDL=1.2]     | 390 U []      |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 54 [MDL=1.6]     | 390 U []      |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 67 [MDL=1.5]     | 390 U []      |
| BENZO(G,H,I)PERYLENE                     |                 |                  | 390 U []      |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 32 [MDL=2.1]     | 390 U []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |               |
| C1-FLUORANTHENES/PYRENES                 |                 |                  |               |
| C1-FLUORENES                             |                 |                  |               |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                  |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |               |
| C2-FLUORENES                             |                 |                  |               |
| C2-NAPHTHALENES                          |                 |                  |               |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                  |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  | -             |
| C3-FLUORENES                             |                 |                  | i i           |
| C3-NAPHTHALENES                          |                 |                  |               |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                  |               |
|                                          |                 |                  |               |

| OOL                              |                 |                 |           |
|----------------------------------|-----------------|-----------------|-----------|
| LOCATION                         | SB-095          | SB-095          | SB-096    |
| SAMPLE ID                        | F-SB-95RE-8     | F-SB-95RE-9     | SB-96-05  |
| SAMPLE DATE                      | 9/18/2009       | 9/18/2009       | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |           |
| C4-NAPHTHALENES                  |                 |                 |           |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |           |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 48 [MDL=1.1]    | 390 U []  |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 390 U []  |
| FLUORANTHENE                     |                 |                 | 390 U []  |
| FLUORENE                         |                 |                 | 390 U []  |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 43 [MDL=1.9]    | 390 U []  |
| NAPHTHALENE                      |                 |                 | 390 U []  |
| PHENANTHRENE                     |                 |                 | 390 U []  |
| PYRENE                           |                 |                 | 390 U []  |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 296 [MDL=1.6]   | 0 U[]     |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |           |
| 4,4'-DDD                         |                 |                 | 23 U []   |
| 4,4'-DDE                         |                 |                 | 23 U []   |
| 4,4'-DDT                         |                 |                 | 23 U []   |
| ALDRIN                           |                 |                 | 23 U []   |
| ALPHA-BHC                        |                 |                 | 23 U []   |
| ALPHA-CHLORDANE                  |                 |                 | 23 U []   |
| AROCLOR-1016                     |                 |                 | 290 U []  |
| AROCLOR-1221                     |                 |                 | 290 U []  |
| AROCLOR-1232                     |                 |                 | 290 U []  |
| AROCLOR-1242                     |                 |                 | 290 U []  |
| AROCLOR-1248                     |                 |                 | 290 U []  |
| AROCLOR-1254                     |                 |                 | 290 U []  |
| AROCLOR-1260                     |                 |                 | 290 U []  |
| BETA-BHC                         |                 |                 | 23 U []   |
| DELTA-BHC                        |                 |                 | 23 U []   |
| DIELDRIN                         |                 |                 | 23 U []   |
| ENDOSULFAN I                     |                 |                 | 23 U []   |
| ENDOSULFAN II                    |                 |                 | 23 U []   |
| ENDOSULFAN SULFATE               |                 |                 | 23 U []   |
| ENDRIN                           |                 |                 | 23 U []   |
| ENDRIN ALDEHYDE                  |                 |                 | 23 U []   |
| ENDRIN KETONE                    |                 |                 | 23 U []   |
| GAMMA-BHC (LINDANE)              |                 |                 | 23 U []   |
| GAMMA-CHLORDANE                  |                 |                 | 23 U []   |
| HEPTACHLOR                       |                 |                 | 23 U []   |

February 2013 Page A-258

| LOCATION           | SB-095      | SB-095      | SB-096    |
|--------------------|-------------|-------------|-----------|
| SAMPLE ID          | F-SB-95RE-8 | F-SB-95RE-9 | SB-96-05  |
| SAMPLE DATE        | 9/18/2009   | 9/18/2009   | 9/16/2004 |
| HEPTACHLOR EPOXIDE |             |             | 23 U []   |
| METHOXYCHLOR       |             | -           | 23 U []   |
| TOTAL AROCLOR      |             | -           | 0 U []    |
| TOTAL DDT POS      |             | -           | 0 U []    |
| TOXAPHENE          |             | -           | 570 U []  |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | <br> | 12000 U [] |
|-------------------------|------|------------|
| GASOLINE RANGE ORGANICS | <br> | 120 U []   |
| TPH (C09-C36)           | <br> |            |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |            |           |           |
|------------------------------|------------|-----------|-----------|
| LOCATION                     | SB-096     | SB-096    | SB-096    |
| SAMPLE ID                    | SB-96-10   | SB-96-15  | SB-96-SS  |
| SAMPLE DATE                  | 9/16/2004  | 9/16/2004 | 9/16/2004 |
| METALS (MG/KG)               |            |           |           |
| ANTIMONY                     | 3 UR []    | 3 UR []   | 2.9 UR [] |
| ARSENIC                      | 0.59 UL [] | 0.6 UL [] | 2 L []    |
| BARIUM                       |            |           |           |
| BERYLLIUM                    | 4.1 L[]    | 3 UL []   | 2.9 UL [] |
| CADMIUM                      | 3 UL []    | 3 UL []   | 2.9 UL [] |
| CHROMIUM                     | 17 []      | 3 U[]     | 9.3 K []  |
| COBALT                       |            |           |           |
| COPPER                       | 13 L []    | 3.3 L []  | 5.1 L []  |
| LEAD                         | 4.3 L []   | 3 UL []   | 3.2 L []  |
| MERCURY                      | 0.12 U []  | 0.12 U [] | 0.12 U [] |
| MOLYBDENUM                   |            |           |           |
| NICKEL                       | 22 []      | 3 U []    | 5.4 K []  |
| SELENIUM                     | 3 UL []    | 3 UL []   | 2.9 UL [] |
| SILVER                       | 3 UR []    | 3 UR []   | 2.9 UR [] |
| THALLIUM                     | 2.4 UL[]   | 2.4 UL [] | 2.3 UL [] |
| VANADIUM                     |            |           |           |
| ZINC                         | 30 ∪ []    | 30 U []   | 29 U[]    |
| MISCELLANEOUS PARAMETERS     | <u> </u>   |           |           |
| PERCENT SOLIDS (%)           |            |           |           |
| TOTAL SOLIDS (%)             |            |           |           |
| HEXAVALENT CHROMIUM (MG/KG)  |            |           |           |
| TOTAL ORGANIC CARBON (MG/KG) |            |           |           |
| PH (S.U.)                    |            |           |           |
| MERCURY (METHYL) (UG/KG)     |            |           |           |
| SEMIVOLATILES (UG/KG)        | <u> </u>   |           |           |
| 1,1-BIPHENYL                 | 400 U []   | 410 U []  | 380 U []  |
| 1,2,4-TRICHLOROBENZENE       |            |           |           |
| 1,2-DICHLOROBENZENE          |            |           |           |
| 1,3-DICHLOROBENZENE          |            |           |           |
| 1,4-DICHLOROBENZENE          |            |           |           |
| 1,4-DIOXANE                  |            |           |           |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 400 U []   | 410 U []  | 380 U []  |
| 2,4,5-TRICHLOROPHENOL        | 990 U []   | 1000 U [] | 960 U []  |
| 2,4,6-TRICHLOROPHENOL        | 400 U []   | 410 U []  | 380 U []  |
| 2,4-DICHLOROPHENOL           | 400 U []   | 410 U []  | 380 U []  |
| 2,4-DIMETHYLPHENOL           | 400 U []   | 410 U []  | 380 U []  |
| 2,4-DINITROPHENOL            | 990 U []   | 1000 U [] | 960 U[]   |
|                              |            |           | ·         |

| LOCATION                    | SB-096    | SB-096    | SB-096    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-96-10  | SB-96-15  | SB-96-SS  |
| SAMPLE DATE                 | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| 2,4-DINITROTOLUENE          | 400 U []  | 410 U []  | 380 U []  |
| 2,6-DINITROTOLUENE          | 400 U []  | 410 U []  | 380 U []  |
| 2-CHLORONAPHTHALENE         | 400 U []  | 410 U []  | 380 U []  |
| 2-CHLOROPHENOL              | 400 U []  | 410 U []  | 380 U []  |
| 2-METHYLPHENOL              | 400 U []  | 410 U []  | 380 U []  |
| 2-NITROANILINE              | 990 U []  | 1000 U [] | 960 U []  |
| 2-NITROPHENOL               | 400 U []  | 410 U []  | 380 U []  |
| 3&4-METHYLPHENOL            | 400 U []  | 410 U []  | 380 U []  |
| 3,3'-DICHLOROBENZIDINE      | 400 U []  | 410 U []  | 380 U []  |
| 3-NITROANILINE              | 990 U []  | 1000 U [] | 960 U []  |
| 4,6-DINITRO-2-METHYLPHENOL  | 910 U []  | 930 U []  | 880 U []  |
| 4-BROMOPHENYL PHENYL ETHER  | 400 U []  | 410 U []  | 380 U []  |
| 4-CHLORO-3-METHYLPHENOL     | 400 U []  | 410 U []  | 380 U []  |
| 4-CHLOROANILINE             | 400 U []  | 410 U []  | 380 U []  |
| 4-CHLOROPHENYL PHENYL ETHER | 400 U []  | 410 U []  | 380 U []  |
| 4-NITROANILINE              | 990 U []  | 1000 U [] | 960 U []  |
| 4-NITROPHENOL               | 990 U []  | 1000 U [] | 960 U []  |
| ACETOPHENONE                | 400 U []  | 410 U []  | 380 U []  |
| ANILINE                     |           |           |           |
| ATRAZINE                    | 400 U []  | 410 U []  | 380 U []  |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  | 400 U []  | 410 U []  | 380 U []  |
| BIS(2-CHLOROETHYL)ETHER     | 400 U []  | 410 U []  | 380 U []  |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 400 U []  | 410 U []  | 380 U []  |
| BUTYL BENZYL PHTHALATE      | 400 U []  | 410 U []  | 380 U []  |
| CAPROLACTAM                 | 400 U []  | 410 U []  | 380 U []  |
| CARBAZOLE                   | 400 U []  | 410 U []  | 380 U []  |
| DIBENZOFURAN                | 400 U []  | 410 U []  | 380 U []  |
| DIETHYL PHTHALATE           | 400 U []  | 410 U []  | 380 U []  |
| DIMETHYL PHTHALATE          | 400 U []  | 410 U []  | 380 U []  |
| DI-N-BUTYL PHTHALATE        | 400 U []  | 410 U []  | 380 U []  |
| DI-N-OCTYL PHTHALATE        | 400 U []  | 410 U []  | 380 U []  |
| HEXACHLOROBENZENE           | 400 U []  | 410 U []  | 380 U []  |
| HEXACHLOROBUTADIENE         | 400 U []  | 410 U []  | 380 U []  |
| HEXACHLOROCYCLOPENTADIENE   | 400 U []  | 410 U []  | 380 U []  |

2-CHLOROTOLUENE

| LOCATION                       | SB-096    | SB-096    | SB-096    |
|--------------------------------|-----------|-----------|-----------|
| SAMPLE ID                      | SB-96-10  | SB-96-15  | SB-96-SS  |
| SAMPLE DATE                    | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| HEXACHLOROETHANE               | 400 U []  | 410 U []  | 380 U []  |
| ISOPHORONE                     | 400 U []  | 410 U []  | 380 U []  |
| NITROBENZENE                   | 400 U []  | 410 U []  | 380 U []  |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     | 400 U []  | 410 U []  | 380 U []  |
| N-NITROSODIPHENYLAMINE         | 400 U []  | 410 U []  | 380 U []  |
| PENTACHLOROPHENOL              | 990 U[]   | 1000 U [] | 960 U []  |
| PHENOL                         | 400 U []  | 410 U []  | 380 U []  |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              |           |           |           |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1,1-TRICHLOROETHANE          | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1,2-TRICHLOROETHANE          | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1-DICHLOROETHANE             | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1-DICHLOROETHENE             | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,1-DICHLOROPROPENE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2,3-TRICHLOROBENZENE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2,3-TRICHLOROPROPANE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2,4-TRIMETHYLBENZENE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2-DIBROMOETHANE              | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2-DICHLOROETHANE             | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,3,5-TRIMETHYLBENZENE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,3-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,3-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            | 6 U[]     | 6 U[]     | 6 UJ []   |
| 2-BUTANONE                     | 58 U[]    | 59 U []   | 57 UJ []  |
| 2-CHLOROETHYL VINYL ETHER      | 6 U[]     | 6 U[]     | 6 UJ []   |
| •                              |           |           |           |

February 2013 Page A-262

6 U [--]

6 U [--]

6 UJ [--]

| LOCATION                | SB-096    | SB-096    | SB-096    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-96-10  | SB-96-15  | SB-96-SS  |
| SAMPLE DATE             | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| 2-HEXANONE              | 58 U []   | 59 U []   | 57 UJ []  |
| 4-CHLOROTOLUENE         | 6 U[]     | 6 U []    | 6 UJ []   |
| 4-ISOPROPYLTOLUENE      | 6 U[]     | 6 U []    | 6 UJ []   |
| 4-METHYL-2-PENTANONE    | 58 U []   | 59 U []   | 57 UJ []  |
| ACETONE                 | 58 U []   | 59 U []   | 57 UJ []  |
| BENZENE                 | 6 U []    | 6 U []    | 6 UJ []   |
| BROMOBENZENE            | 6 U []    | 6 U []    | 6 UJ []   |
| BROMOCHLOROMETHANE      | 6 U []    | 6 U []    | 6 UJ []   |
| BROMODICHLOROMETHANE    | 6 U []    | 6 U[]     | 6 UJ []   |
| BROMOFORM               | 6 U []    | 6 U[]     | 6 UJ []   |
| BROMOMETHANE            | 6 U []    | 6 U[]     | 6 UJ []   |
| CARBON DISULFIDE        | 6 U []    | 6 U[]     | 6 UJ []   |
| CARBON TETRACHLORIDE    | 6 U []    | 6 U[]     | 6 UJ []   |
| CHLOROBENZENE           | 6 U []    | 6 U[]     | 6 UJ []   |
| CHLORODIBROMOMETHANE    | 6 U []    | 6 U[]     | 6 UJ []   |
| CHLOROETHANE            | 6 U []    | 6 U[]     | 6 UJ []   |
| CHLOROFORM              | 6 U []    | 6 U[]     | 6 UJ []   |
| CHLOROMETHANE           | 6 U []    | 6 U[]     | 6 UJ []   |
| CIS-1,2-DICHLOROETHENE  | 6 U []    | 6 U[]     | 6 UJ []   |
| CIS-1,3-DICHLOROPROPENE | 6 U[]     | 6 U[]     | 6 UJ []   |
| DIBROMOMETHANE          | 6 U []    | 6 U[]     | 6 UJ []   |
| DICHLORODIFLUOROMETHANE | 6 U []    | 6 U[]     | 6 UJ []   |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            | 6 U []    | 6 U []    | 6 UJ []   |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        | 6 U[]     | 6 U []    | 6 UJ []   |
| M+P-XYLENES             | 12 U []   | 12 U []   | 11 UJ []  |
| METHYL TERT-BUTYL ETHER | 6 U []    | 6 U []    | 6 UJ []   |
| METHYLENE CHLORIDE      | 6 U []    | 6 U []    | 8 J []    |
| NAPHTHALENE             | 6 U[]     | 6 U []    | 6 UJ []   |
| N-BUTYLBENZENE          | 6 U[]     | 6 U []    | 6 UJ []   |
| N-PROPYLBENZENE         | 6 U[]     | 6 U[]     | 6 UJ []   |
| O-XYLENE                | 6 U[]     | 6 U []    | 6 UJ []   |
| SEC-BUTYLBENZENE        | 6 U[]     | 6 U[]     | 6 UJ []   |
| STYRENE                 | 6 U[]     | 6 U []    | 6 UJ []   |
| TERT-AMYL METHYL ETHER  |           |           |           |

C3-PHENANTHRENES/ANTHRACENES

## SOIL

| LOCATION                                 | SB-096        | SB-096        | SB-096        |
|------------------------------------------|---------------|---------------|---------------|
| SAMPLE ID                                | SB-96-10      | SB-96-15      | SB-96-SS      |
| SAMPLE DATE                              | 9/16/2004     | 9/16/2004     | 9/16/2004     |
| TERT-BUTYLBENZENE                        | 6 U[]         | 6 U[]         | 6 UJ []       |
| TERTIARY-BUTYL ALCOHOL                   |               |               |               |
| TETRACHLOROETHENE                        | 6 U[]         | 6 U[]         | 6 UJ []       |
| TOLUENE                                  | 6 U[]         | 6 U[]         | 6 UJ []       |
| TOTAL 1,2-DICHLOROETHENE                 |               |               |               |
| TOTAL XYLENES                            |               |               |               |
| TRANS-1,2-DICHLOROETHENE                 | 6 U []        | 6 U []        | 6 UJ []       |
| TRANS-1,3-DICHLOROPROPENE                | 6 U []        | 6 U []        | 6 UJ []       |
| TRICHLOROETHENE                          | 6 U []        | 6 U[]         | 6 UJ []       |
| TRICHLOROFLUOROMETHANE                   | 6 U []        | 6 U[]         | 6 UJ []       |
| VINYL ACETATE                            | 6 U[]         | 6 U[]         | 6 UJ []       |
| VINYL CHLORIDE                           | 6 U[]         | 6 U[]         | 6 UJ []       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u> </u>      |               |               |
| 1-METHYLNAPHTHALENE                      |               |               |               |
| 2-METHYLNAPHTHALENE                      | 400 U []      | 410 U []      | 380 U []      |
| ACENAPHTHENE                             | 400 U []      | 410 U []      | 380 U []      |
| ACENAPHTHYLENE                           | 400 U []      | 410 U []      | 380 U []      |
| ANTHRACENE                               | 400 U []      | 410 U []      | 380 U[]       |
| BAP EQUIVALENT-HALFND                    | 400 U []      | 410 U []      | 380 U []      |
| BAP EQUIVALENT-POS                       | 400 U []      | 410 U []      | 380 U []      |
| BAP EQUIVALENT-UCL                       | 796.942376 [] | 589.488737 [] | 727.976183 [] |
| BENZO(A)ANTHRACENE                       | 400 U []      | 410 U []      | 380 U[]       |
| BENZO(A)PYRENE                           | 400 U []      | 410 U []      | 380 U[]       |
| BENZO(B)FLUORANTHENE                     | 400 U []      | 410 U []      | 380 U []      |
| BENZO(G,H,I)PERYLENE                     | 400 U []      | 410 U []      | 380 U[]       |
| BENZO(K)FLUORANTHENE                     | 400 U []      | 410 U []      | 380 U []      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C1-FLUORANTHENES/PYRENES                 |               |               |               |
| C1-FLUORENES                             |               |               |               |
| C1-PHENANTHRENES/ANTHRACENES             |               |               |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C2-FLUORENES                             |               |               |               |
| C2-NAPHTHALENES                          |               |               |               |
| C2-PHENANTHRENES/ANTHRACENES             |               |               |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |               |               |               |
| C3-FLUORENES                             |               |               |               |
| C3-NAPHTHALENES                          |               |               |               |
| -                                        |               |               |               |

February 2013 Page A-264

--

--

| LOCATION                         | SB-096    | SB-096    | SB-096    |
|----------------------------------|-----------|-----------|-----------|
| SAMPLE ID                        | SB-96-10  | SB-96-15  | SB-96-SS  |
| SAMPLE DATE                      | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         | 400 U []  | 410 U []  | 380 U []  |
| DIBENZO(A,H)ANTHRACENE           | 400 U []  | 410 U []  | 380 U []  |
| FLUORANTHENE                     | 400 U []  | 410 U []  | 380 U []  |
| FLUORENE                         | 400 U []  | 410 U []  | 380 U []  |
| INDENO(1,2,3-CD)PYRENE           | 400 U []  | 410 U []  | 380 U []  |
| NAPHTHALENE                      | 400 U []  | 410 U []  | 380 U []  |
| PHENANTHRENE                     | 400 U []  | 410 U []  | 380 U []  |
| PYRENE                           | 400 U []  | 410 U []  | 380 U []  |
| TOTAL PAHS                       | 0 U []    | 0 U []    | 0 U []    |
| PESTICIDES/PCBS (UG/KG)          |           | •         |           |
| 4,4'-DDD                         | 23 U []   | 24 U []   | 23 U []   |
| 4,4'-DDE                         | 23 U []   | 24 U []   | 23 U []   |
| 4,4'-DDT                         | 23 U []   | 24 U []   | 23 U []   |
| ALDRIN                           | 23 U []   | 24 U []   | 23 U []   |
| ALPHA-BHC                        | 23 U []   | 24 U []   | 23 U []   |
| ALPHA-CHLORDANE                  | 23 U []   | 24 U []   | 23 U []   |
| AROCLOR-1016                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1221                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1232                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1242                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1248                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1254                     | 290 U []  | 300 U []  | 280 U []  |
| AROCLOR-1260                     | 290 U []  | 300 U []  | 280 U []  |
| BETA-BHC                         | 23 U []   | 24 U []   | 23 U []   |
| DELTA-BHC                        | 23 U []   | 24 U []   | 23 U []   |
| DIELDRIN                         | 23 U []   | 24 U []   | 23 U []   |
| ENDOSULFAN I                     | 23 U []   | 24 U []   | 23 U []   |
| ENDOSULFAN II                    | 23 U []   | 24 U []   | 23 U []   |
| ENDOSULFAN SULFATE               | 23 U []   | 24 U []   | 23 U []   |
| ENDRIN                           | 23 U []   | 24 U []   | 23 U []   |
| ENDRIN ALDEHYDE                  | 23 U []   | 24 U []   | 23 U []   |
| ENDRIN KETONE                    | 23 U []   | 24 U []   | 23 U []   |
| GAMMA-BHC (LINDANE)              | 23 U []   | 24 U []   | 23 U []   |
| GAMMA-CHLORDANE                  | 23 U []   | 24 U []   | 23 U []   |
| HEPTACHLOR                       | 23 U []   | 24 U []   | 23 U []   |

| LOCATION           | SB-096    | SB-096    | SB-096    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-96-10  | SB-96-15  | SB-96-SS  |
| SAMPLE DATE        | 9/16/2004 | 9/16/2004 | 9/16/2004 |
| HEPTACHLOR EPOXIDE | 23 U []   | 24 U[]    | 23 U []   |
| METHOXYCHLOR       | 23 U []   | 24 U []   | 23 U []   |
| TOTAL AROCLOR      | 0 U []    | 0 U[]     | 0 U []    |
| TOTAL DDT POS      | 0 U []    | 0 U[]     | 0 U []    |
| TOXAPHENE          | 580 U []  | 590 U []  | 570 U []  |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 12000 [] | 12000 U [] | 11000 U [] |
|-------------------------|----------|------------|------------|
| GASOLINE RANGE ORGANICS | 120 U [] | 120 U []   | 110 U []   |
| TPH (C09-C36)           |          |            |            |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                             | SB-096      | SB-096       | SB-096       |
|--------------------------------------|-------------|--------------|--------------|
| SAMPLE ID                            | F-SB-96RE-1 | F-SB-96RE-10 | F-SB-96RE-11 |
| SAMPLE DATE                          | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)                       |             |              |              |
| ANTIMONY                             |             |              |              |
| ARSENIC                              |             |              |              |
| BARIUM                               |             |              |              |
| BERYLLIUM                            |             |              |              |
| CADMIUM                              |             |              |              |
| CHROMIUM                             |             |              |              |
| COBALT                               |             |              |              |
| COPPER                               |             |              |              |
| LEAD                                 |             |              |              |
| MERCURY                              |             |              |              |
| MOLYBDENUM                           |             |              |              |
| NICKEL                               |             |              |              |
| SELENIUM                             |             |              |              |
| SILVER                               |             |              |              |
| THALLIUM                             |             |              |              |
| VANADIUM                             |             |              |              |
| ZINC                                 |             |              |              |
| MISCELLANEOUS PARAMETERS             |             | •            |              |
| PERCENT SOLIDS (%)                   |             |              |              |
| TOTAL SOLIDS (%)                     |             |              |              |
| HEXAVALENT CHROMIUM (MG/KG)          |             |              |              |
| TOTAL ORGANIC CARBON (MG/KG)         |             |              |              |
| PH (S.U.)                            |             |              |              |
| MERCURY (METHYL) (UG/KG)             |             |              |              |
| SEMIVOLATILES (UG/KG)                |             |              |              |
| 1,1-BIPHENYL                         |             |              |              |
| 1,2,4-TRICHLOROBENZENE               |             |              |              |
| 1,2-DICHLOROBENZENE                  |             |              |              |
| 1,3-DICHLOROBENZENE                  |             |              |              |
| 1,4-DICHLOROBENZENE                  |             |              |              |
| 1,4-DIOXANE                          |             |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE)         |             |              |              |
| 2,4,5-TRICHLOROPHENOL                |             |              |              |
| 2,4,6-TRICHLOROPHENOL                |             |              |              |
| 2,4-DICHLOROPHENOL                   | <del></del> |              |              |
| O 4 DIMETURA DI IEMOL                | <u></u>     |              |              |
| 2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL |             |              |              |

| LOCATION                    | SB-096      | SB-096       | SB-096       |
|-----------------------------|-------------|--------------|--------------|
| SAMPLE ID                   | F-SB-96RE-1 | F-SB-96RE-10 | F-SB-96RE-11 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |             |              |              |
| 2,6-DINITROTOLUENE          |             |              |              |
| 2-CHLORONAPHTHALENE         |             |              |              |
| 2-CHLOROPHENOL              |             |              |              |
| 2-METHYLPHENOL              |             |              |              |
| 2-NITROANILINE              |             |              |              |
| 2-NITROPHENOL               |             |              |              |
| 3&4-METHYLPHENOL            |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |              |              |
| 3-NITROANILINE              |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |              |              |
| 4-CHLOROANILINE             |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |              |              |
| 4-NITROANILINE              |             |              |              |
| 4-NITROPHENOL               |             |              |              |
| ACETOPHENONE                |             |              |              |
| ANILINE                     |             |              |              |
| ATRAZINE                    |             |              |              |
| AZOBENZENE                  |             |              |              |
| BENZIDINE                   |             |              |              |
| BENZOIC ACID                |             |              |              |
| BENZYL ALCOHOL              |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |              |              |
| BUTYL BENZYL PHTHALATE      |             |              |              |
| CAPROLACTAM                 |             |              |              |
| CARBAZOLE                   |             |              |              |
| DIBENZOFURAN                |             |              |              |
| DIETHYL PHTHALATE           |             |              |              |
| DIMETHYL PHTHALATE          |             |              |              |
| DI-N-BUTYL PHTHALATE        |             |              |              |
| DI-N-OCTYL PHTHALATE        |             |              |              |
| HEXACHLOROBENZENE           |             |              |              |
| HEXACHLOROBUTADIENE         |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |              |              |

| SAMPLE DATE         921/2009         921/2009           HEXACHLORGETHANE         -         -           INTROBERZENE         -         -           NATROSODMETHYLAMINE         -         -           NATROSODHENPROPYLAMINE         -         -           NATROSODHENNLAMINE         -         -           NATROSODHENNLAMINE         -         -           PENTACHLOROPHENOL         -         -           PEINTACHLOROPHENOL         -         -           PEINTACHLOROPHENOL         -         -           PEINTACH (LOROPHENOL)         -         -           PERITACH (LOROPHENOL)         -         -           PERITACH (LOROPHENOL)         -         -           PURITALIS         -         -           POLATILES (LOROPA)         -         -           1.1.1-TRICHLOROPATHANE         -         -           1.1.2-TERCHLOROPETHANE         -         -           1.1.2-TERCHLOROPATHANE         -         -           1.1.1-TRICHLOROPATHANE         -         -           1.1.2-TERCHLOROPATHALINE         -         -           1.1.2-TERCHLOROPATHALINE         -         -           1.1.2-TERCHLOROPATHALINE         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOCATION                       | SB-096      | SB-096       | SB-096       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|--------------|--------------|
| HEXACH_LORGETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID                      | F-SB-96RE-1 | F-SB-96RE-10 | F-SB-96RE-11 |
| ISOPHIORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE DATE                    | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEXACHLOROETHANE               |             |              |              |
| NNTROSODIMETHYLAMINE N-NTROSODIMETHYLAMINE N-NTROSODIMENPOPYLAMINE N-NTROSODIM | ISOPHORONE                     |             |              |              |
| NNTROSODIPHENPLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NITROBENZENE                   |             |              |              |
| NATIROSOUPHENYLAMINE PERTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIMETHYLAMINE         |             |              |              |
| PENTACHOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-NITROSO-DI-N-PROPYLAMINE     |             |              |              |
| PHENOL PYRIDNE VOLATILES (UGKG)  1.1.1.2-TERACHLOROETHANE 1.1.1.2-TERACHLOROETHANE 1.1.2.2-TERACHLOROETHANE 1.1.2.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.1.1-DICHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.2-TERACHLOROETHANE 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-NITROSODIPHENYLAMINE         |             |              |              |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |              |              |
| VOLATILES (UGKG)           1.1.1.2-TETRACHLOROETHANE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PHENOL                         |             |              |              |
| 1,1,12TERACHLOROETHANE 1,1,1TRICHLOROETHANE 1,1,1TRICHLOROETHANE 1,1,2TRICHLOROETHANE 1,1,2TRICHLOROETHANE 1,1,2TRICHLOROETHANE 1,1,2TRICHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROETHANE 1,1,1DCHLOROEROENE 1,1,1DCHLOROEROEROENE 1,1DCHLOROEROEROENE 1,1,1DCHLOROEROEROEROEROEROEROEROEROEROEROEROEROE                                                                                                                                                                                                                                                               | PYRIDINE                       |             |              |              |
| 1,1.1TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOLATILES (UG/KG)              |             |              | -            |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1,2-TETRACHLOROETHANE      |             |              |              |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |              |              |
| 1,1-2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,2,2-TETRACHLOROETHANE      |             |              |              |
| 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,1-DICHLOROENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROPROPANE 1,2-TRICHLOROPROPANE 1,2-TRICHLOROPROPANE 1,2-TRIMETHYLBENZENE 1,2-TRIMETHYLBENZENE 1,2-TRIMETHYLBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DI | 1,1,2-TRICHLOROETHANE          |             |              |              |
| 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,1-DICHLOROPROPENE 1,2-3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2-DIGNOMO-3-CHLOROPROPANE 1,2-DIGNOMO-3-CHLOROPROPANE 1,2-DIGNOMO-3-CHLOROPROPANE 1,2-DIGNOMO-3-CHLOROPROPANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPA | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |              |              |
| 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2-DICHOROPROPANE 1,2-DICHOROPROPANE 1,2-DICHOROBENZENE 1,2-DICHOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPENE 1,3-DICHLOROBENZENE 1,3 | 1,1-DICHLOROETHANE             |             |              |              |
| 1,2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |              |              |
| 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPAN | 1,1-DICHLOROPROPENE            |             |              |              |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-LIBROMO-3-CHLOROPROPANE            1,2-DIBROMO-5-THANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE </td <td>1,2,3-TRICHLOROBENZENE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,3-TRICHLOROBENZENE         |             |              |              |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |              |              |
| 1,2.4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROFTHANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2,3-TRIMETHYLBENZENE         |             |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,4-DICHLOROBENZENE            1,4-DICHLOROPROPANE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-TRICHLOROBENZENE         |             |              |              |
| 1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROPROPENE            1,4-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,4-TRIMETHYLBENZENE         |             |              |              |
| 1,2-DICHLOROBENZENE            1,2-DICHLOROFTHANE            1,2-DICHLOROPROPANE            1,3-FTRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,4-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-DIBROMO-3-CHLOROPROPANE    |             |              |              |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DIBROMOETHANE              |             |              |              |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROBENZENE            |             |              |              |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROETHANE             |             |              |              |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DICHLOROPROPANE            |             |              |              |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3,5-TRIMETHYLBENZENE         |             |              |              |
| 1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE             2-BUTANONE              2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-DICHLOROBENZENE            |             |              |              |
| 1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROPROPANE            |             |              |              |
| 1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-DICHLOROPROPENE            |             |              |              |
| 2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-DICHLOROBENZENE            |             |              |              |
| 2-BUTANONE               2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,4-DIOXANE                    |             |              |              |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |              |              |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROETHYL VINYL ETHER      |             |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |              |              |

February 2013 Page A-269

| LOCATION                | SB-096      | SB-096       | SB-096       |
|-------------------------|-------------|--------------|--------------|
| SAMPLE ID               | F-SB-96RE-1 | F-SB-96RE-10 | F-SB-96RE-11 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |             |              |              |
| 4-CHLOROTOLUENE         |             |              |              |
| 4-ISOPROPYLTOLUENE      |             |              |              |
| 4-METHYL-2-PENTANONE    |             |              |              |
| ACETONE                 |             |              |              |
| BENZENE                 |             |              |              |
| BROMOBENZENE            |             |              |              |
| BROMOCHLOROMETHANE      |             |              |              |
| BROMODICHLOROMETHANE    |             |              |              |
| BROMOFORM               |             |              |              |
| BROMOMETHANE            |             |              |              |
| CARBON DISULFIDE        |             |              |              |
| CARBON TETRACHLORIDE    |             |              |              |
| CHLOROBENZENE           |             |              |              |
| CHLORODIBROMOMETHANE    |             |              |              |
| CHLOROETHANE            |             |              |              |
| CHLOROFORM              |             |              |              |
| CHLOROMETHANE           | -1          | -1           |              |
| CIS-1,2-DICHLOROETHENE  | 1           | 1            |              |
| CIS-1,3-DICHLOROPROPENE |             | 1            |              |
| DIBROMOMETHANE          |             | 1            |              |
| DICHLORODIFLUOROMETHANE | -           | -            |              |
| DIISOPROPYL ETHER       |             | 1            |              |
| ETHYL TERT-BUTYL ETHER  |             | 1            |              |
| ETHYLBENZENE            |             | 1            |              |
| FLUORODICHLOROMETHANE   |             | 1            |              |
| HEXACHLOROBUTADIENE     | -           | -            |              |
| ISOPROPYLBENZENE        | -           | -            |              |
| M+P-XYLENES             | -           | -            |              |
| METHYL TERT-BUTYL ETHER | -           | -            |              |
| METHYLENE CHLORIDE      | -           | -            |              |
| NAPHTHALENE             | -           | -            |              |
| N-BUTYLBENZENE          |             |              |              |
| N-PROPYLBENZENE         |             |              |              |
| O-XYLENE                |             |              |              |
| SEC-BUTYLBENZENE        |             |              |              |
| STYRENE                 |             |              |              |
| TERT-AMYL METHYL ETHER  |             |              |              |

| SAMPLE ID TE         F.SB-98RE-10         F.SB-98RE-10         P.SB-98RE-10         P.SB-98RE-10         P.SB-98RE-10         P.SB-98RE-10         P.SB-98RE-10         92/12/000           SAMPLE DATE         92/12/000         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION                                 | SB-096           | SB-096          | SB-096          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------------|-----------------|
| TERTERTH/SENTAL ACOPOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE ID                                | F-SB-96RE-1      | F-SB-96RE-10    | F-SB-96RE-11    |
| TERTIARY-BUTYL ALCOHOL TETRACHUROSCHENE TOTAL 1, 2-DICH ONCETHENE TRANSH 3-DICH ONCE OF THE THE TRANSH 3-DICH ONCE OF THE  | SAMPLE DATE                              | 9/21/2009        | 9/21/2009       | 9/21/2009       |
| TETRACH-GROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                  |                 |                 |
| TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERTIARY-BUTYL ALCOHOL                   |                  |                 |                 |
| TOTAL X7LENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TETRACHLOROETHENE                        |                  |                 |                 |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                  |                 |                 |
| TRANS-1, 2-DICHLOROFTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL 1,2-DICHLOROETHENE                 |                  |                 |                 |
| TRANS-13-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHONE TO THE THY TRICHLORO | TOTAL XYLENES                            |                  |                 |                 |
| TRICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS-1,2-DICHLOROETHENE                 |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,3-DICHLOROPROPENE                |                  |                 |                 |
| VINYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRICHLOROETHENE                          |                  |                 |                 |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROFLUOROMETHANE                   |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)   1ETHYLINAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VINYL ACETATE                            |                  |                 |                 |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                  |                 |                 |
| 2METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                |                 | •               |
| ACENAPHTHENE ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-METHYLNAPHTHALENE                      |                  |                 |                 |
| ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-METHYLNAPHTHALENE                      |                  |                 |                 |
| ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACENAPHTHENE                             |                  |                 |                 |
| BAP EQUIVALENT-HALFND   601.84 [MDL=1.5]   1.5 U [MDL=1.5]   1.6 U [MDL=1.6]     BAP EQUIVALENT-POS   601.84 [MDL=1.5]   1.5 U [MDL=1.5]   1.6 U [MDL=1.6]     BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACENAPHTHYLENE                           |                  |                 |                 |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTHRACENE                               |                  |                 |                 |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 601.84 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(A)ANTHRACENE   390 [MDL=1.1]   1.1 U [MDL=1.1]   1.2 U [MDL=1.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BAP EQUIVALENT-POS                       | 601.84 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAP EQUIVALENT-UCL                       |                  |                 |                 |
| BENZO(B)FLUORANTHENE   580 [MDL=1.4]   1.4 U [MDL=1.4]   1.5 U [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENZO(A)ANTHRACENE                       | 390 [MDL=1.1]    | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 410 [MDL=1.5]    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(K)FLUORANTHENE         250 [MDL=1.9]         2.0 U [MDL=2]         2.1 U [MDL=2.1]           C1-CHRYSENES/BENZO(A)ANTHRACENES              C1-FLUORANTHENES/PYRENES              C1-FLUORENES              C1-PHENANTHRENES/ANTHRACENES              C2-CHRYSENES/BENZO(A)ANTHRACENES              C2-FLUORENES              C2-NAPHTHALENES              C2-PHENANTHRES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BENZO(B)FLUORANTHENE                     | 580 [MDL=1.4]    | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRACENES            C1-PHENANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BENZO(G,H,I)PERYLENE                     |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-PLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BENZO(K)FLUORANTHENE                     | 250 [MDL=1.9]    | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES             C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES <td>C1-CHRYSENES/BENZO(A)ANTHRACENES</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                  |                 |                 |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-FLUORENES                             |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES                C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-NAPHTHALENES                          |                  |                 |                 |
| C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                  |                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |

HEPTACHLOR

| SOIL                             |                |                 |                 |
|----------------------------------|----------------|-----------------|-----------------|
| LOCATION                         | SB-096         | SB-096          | SB-096          |
| SAMPLE ID                        | F-SB-96RE-1    | F-SB-96RE-10    | F-SB-96RE-11    |
| SAMPLE DATE                      | 9/21/2009      | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                 |                 |
| C4-NAPHTHALENES                  |                |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                |                 | <del></del>     |
| CHRYSENE                         | 340 [MDL=1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 67 [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                |                 |                 |
| FLUORENE                         |                |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 250 [MDL=1.7]  | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                |                 |                 |
| PHENANTHRENE                     |                |                 |                 |
| PYRENE                           |                |                 |                 |
| TOTAL PAHS                       | 2287 [MDL=1.5] | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                |                 |                 |
| 4,4'-DDD                         |                |                 |                 |
| 4,4'-DDE                         |                |                 |                 |
| 4,4'-DDT                         |                |                 |                 |
| ALDRIN                           |                |                 |                 |
| ALPHA-BHC                        |                |                 |                 |
| ALPHA-CHLORDANE                  |                |                 |                 |
| AROCLOR-1016                     |                |                 |                 |
| AROCLOR-1221                     |                |                 |                 |
| AROCLOR-1232                     |                |                 |                 |
| AROCLOR-1242                     |                |                 |                 |
| AROCLOR-1248                     |                |                 |                 |
| AROCLOR-1254                     |                |                 |                 |
| AROCLOR-1260                     |                |                 |                 |
| BETA-BHC                         |                |                 |                 |
| DELTA-BHC                        |                |                 |                 |
| DIELDRIN                         |                |                 |                 |
| ENDOSULFAN I                     |                |                 |                 |
| ENDOSULFAN II                    |                |                 |                 |
| ENDOSULFAN SULFATE               |                |                 |                 |
| ENDRIN                           |                |                 |                 |
| ENDRIN ALDEHYDE                  |                |                 |                 |
| ENDRIN KETONE                    |                |                 |                 |
| GAMMA-BHC (LINDANE)              |                |                 |                 |
| GAMMA-CHLORDANE                  |                |                 |                 |
|                                  |                |                 |                 |

February 2013 Page A-272

--

---

| LOCATION           | SB-096      | SB-096       | SB-096       |
|--------------------|-------------|--------------|--------------|
| SAMPLE ID          | F-SB-96RE-1 | F-SB-96RE-10 | F-SB-96RE-11 |
| SAMPLE DATE        | 9/21/2009   | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |             |              |              |
| METHOXYCHLOR       |             |              |              |
| TOTAL AROCLOR      |             |              |              |
| TOTAL DDT POS      |             |              |              |
| TOXAPHENE          |             |              |              |
| -                  | •           |              | ·            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-096         | SB-096       | SB-096       |
|------------------------------|----------------|--------------|--------------|
| SAMPLE ID                    | F-SB-96RE-11-D | F-SB-96RE-12 | F-SB-96RE-13 |
| SAMPLE DATE                  | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               | •              | •            |              |
| ANTIMONY                     |                |              |              |
| ARSENIC                      |                |              |              |
| BARIUM                       |                |              |              |
| BERYLLIUM                    |                |              |              |
| CADMIUM                      |                |              |              |
| CHROMIUM                     |                |              |              |
| COBALT                       |                |              |              |
| COPPER                       |                |              |              |
| LEAD                         |                |              |              |
| MERCURY                      |                |              |              |
| MOLYBDENUM                   |                |              |              |
| NICKEL                       |                |              |              |
| SELENIUM                     |                |              |              |
| SILVER                       |                |              |              |
| THALLIUM                     |                |              |              |
| VANADIUM                     |                |              |              |
| ZINC                         |                |              |              |
| MISCELLANEOUS PARAMETERS     | •              | •            | •            |
| PERCENT SOLIDS (%)           |                |              |              |
| TOTAL SOLIDS (%)             |                |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |                |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |                |              |              |
| PH (S.U.)                    |                |              |              |
| MERCURY (METHYL) (UG/KG)     |                |              |              |
| SEMIVOLATILES (UG/KG)        |                |              |              |
| 1,1-BIPHENYL                 |                |              |              |
| 1,2,4-TRICHLOROBENZENE       |                |              |              |
| 1,2-DICHLOROBENZENE          |                |              |              |
| 1,3-DICHLOROBENZENE          |                |              |              |
| 1,4-DICHLOROBENZENE          |                |              |              |
| 1,4-DIOXANE                  |                |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                |              |              |
| 2,4,5-TRICHLOROPHENOL        |                |              |              |
| 2,4,6-TRICHLOROPHENOL        |                |              |              |
| 2,4-DICHLOROPHENOL           |                |              |              |
| 2,4-DIMETHYLPHENOL           |                |              |              |
| 2,4-DINITROPHENOL            |                |              |              |

| LOCATION                    | SB-096         | SB-096       | SB-096       |
|-----------------------------|----------------|--------------|--------------|
| SAMPLE ID                   | F-SB-96RE-11-D | F-SB-96RE-12 | F-SB-96RE-13 |
| SAMPLE DATE                 | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |                |              |              |
| 2,6-DINITROTOLUENE          |                |              |              |
| 2-CHLORONAPHTHALENE         |                |              |              |
| 2-CHLOROPHENOL              |                |              |              |
| 2-METHYLPHENOL              |                |              |              |
| 2-NITROANILINE              |                |              |              |
| 2-NITROPHENOL               |                |              |              |
| 3&4-METHYLPHENOL            |                |              |              |
| 3,3'-DICHLOROBENZIDINE      |                |              |              |
| 3-NITROANILINE              |                |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |                |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |                |              |              |
| 4-CHLORO-3-METHYLPHENOL     |                |              |              |
| 4-CHLOROANILINE             |                |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |                |              |              |
| 4-NITROANILINE              |                |              |              |
| 4-NITROPHENOL               |                |              |              |
| ACETOPHENONE                |                |              |              |
| ANILINE                     |                |              |              |
| ATRAZINE                    |                |              |              |
| AZOBENZENE                  |                |              |              |
| BENZIDINE                   |                |              |              |
| BENZOIC ACID                |                |              |              |
| BENZYL ALCOHOL              |                |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |                |              |              |
| BIS(2-CHLOROETHYL)ETHER     |                |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |                |              |              |
| BUTYL BENZYL PHTHALATE      |                |              |              |
| CAPROLACTAM                 |                |              |              |
| CARBAZOLE                   |                |              |              |
| DIBENZOFURAN                |                |              |              |
| DIETHYL PHTHALATE           |                |              |              |
| DIMETHYL PHTHALATE          |                |              |              |
| DI-N-BUTYL PHTHALATE        |                |              |              |
| DI-N-OCTYL PHTHALATE        |                |              |              |
| HEXACHLOROBENZENE           |                |              |              |
| HEXACHLOROBUTADIENE         |                |              |              |
| HEXACHLOROCYCLOPENTADIENE   |                |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-096         | SB-096       | SB-096       |
|--------------------------------|----------------|--------------|--------------|
| SAMPLE ID                      | F-SB-96RE-11-D | F-SB-96RE-12 | F-SB-96RE-13 |
| SAMPLE DATE                    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| HEXACHLOROETHANE               |                |              |              |
| ISOPHORONE                     |                |              |              |
| NITROBENZENE                   |                |              |              |
| N-NITROSODIMETHYLAMINE         |                |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |                |              |              |
| N-NITROSODIPHENYLAMINE         |                |              |              |
| PENTACHLOROPHENOL              |                |              |              |
| PHENOL                         |                |              |              |
| PYRIDINE                       |                |              |              |
| VOLATILES (UG/KG)              |                |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,1-TRICHLOROETHANE          |                |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |                |              |              |
| 1,1,2-TRICHLOROETHANE          |                |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                |              |              |
| 1,1-DICHLOROETHANE             |                |              |              |
| 1,1-DICHLOROETHENE             |                |              |              |
| 1,1-DICHLOROPROPENE            |                |              |              |
| 1,2,3-TRICHLOROBENZENE         |                |              |              |
| 1,2,3-TRICHLOROPROPANE         |                |              |              |
| 1,2,3-TRIMETHYLBENZENE         |                |              |              |
| 1,2,4-TRICHLOROBENZENE         |                |              |              |
| 1,2,4-TRIMETHYLBENZENE         |                |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                |              |              |
| 1,2-DIBROMOETHANE              |                |              |              |
| 1,2-DICHLOROBENZENE            |                |              |              |
| 1,2-DICHLOROETHANE             |                |              |              |
| 1,2-DICHLOROPROPANE            |                |              |              |
| 1,3,5-TRIMETHYLBENZENE         |                |              |              |
| 1,3-DICHLOROBENZENE            |                |              |              |
| 1,3-DICHLOROPROPANE            |                |              |              |
| 1,3-DICHLOROPROPENE            |                |              |              |
| 1,4-DICHLOROBENZENE            |                |              |              |
| 1,4-DIOXANE                    |                |              |              |
| 2,2-DICHLOROPROPANE            |                |              |              |
| 2-BUTANONE                     |                |              |              |
| 2-CHLOROETHYL VINYL ETHER      |                |              |              |
| 1                              |                |              |              |

February 2013 Page A-276

---

---

| LOCATION                | SB-096         | SB-096       | SB-096       |
|-------------------------|----------------|--------------|--------------|
| SAMPLE ID               | F-SB-96RE-11-D | F-SB-96RE-12 | F-SB-96RE-13 |
| SAMPLE DATE             | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |                |              |              |
| 4-CHLOROTOLUENE         |                |              |              |
| 4-ISOPROPYLTOLUENE      |                |              |              |
| 4-METHYL-2-PENTANONE    |                |              |              |
| ACETONE                 |                |              |              |
| BENZENE                 |                |              |              |
| BROMOBENZENE            |                |              |              |
| BROMOCHLOROMETHANE      |                |              |              |
| BROMODICHLOROMETHANE    |                |              |              |
| BROMOFORM               |                |              |              |
| BROMOMETHANE            |                |              |              |
| CARBON DISULFIDE        |                |              |              |
| CARBON TETRACHLORIDE    |                |              |              |
| CHLOROBENZENE           |                |              |              |
| CHLORODIBROMOMETHANE    |                |              |              |
| CHLOROETHANE            |                |              |              |
| CHLOROFORM              |                |              |              |
| CHLOROMETHANE           |                |              |              |
| CIS-1,2-DICHLOROETHENE  |                |              |              |
| CIS-1,3-DICHLOROPROPENE |                |              |              |
| DIBROMOMETHANE          |                |              |              |
| DICHLORODIFLUOROMETHANE |                |              |              |
| DIISOPROPYL ETHER       |                |              |              |
| ETHYL TERT-BUTYL ETHER  |                |              |              |
| ETHYLBENZENE            |                |              |              |
| FLUORODICHLOROMETHANE   |                |              |              |
| HEXACHLOROBUTADIENE     |                |              |              |
| ISOPROPYLBENZENE        |                |              |              |
| M+P-XYLENES             |                |              |              |
| METHYL TERT-BUTYL ETHER |                |              |              |
| METHYLENE CHLORIDE      |                |              |              |
| NAPHTHALENE             |                | 1            |              |
| N-BUTYLBENZENE          |                | 1            |              |
| N-PROPYLBENZENE         |                | 1            |              |
| O-XYLENE                |                |              |              |
| SEC-BUTYLBENZENE        |                |              |              |
| STYRENE                 |                |              |              |
| TERT-AMYL METHYL ETHER  |                |              |              |

| LOCATION                                 | SB-096          | SB-096          | SB-096          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-96RE-11-D  | F-SB-96RE-12    | F-SB-96RE-13    |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 38.57 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 37.77 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 27 [MDL=1.1]    |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 30 [MDL=1.6]    |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 32 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 24 [MDL=2]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 | <del></del>     |                 |

February 2013 Page A-278

| SOIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-096          | SB-096          | SB-096          |
| SAMPLE ID                        | F-SB-96RE-11-D  | F-SB-96RE-12    | F-SB-96RE-13    |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 30 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| NDENO(1,2,3-CD)PYRENE            | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 16 [MDL=1.8]    |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   | 159 [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                 | -               |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 1,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-279

| LOCATION           | SB-096         | SB-096       | SB-096       |
|--------------------|----------------|--------------|--------------|
| SAMPLE ID          | F-SB-96RE-11-D | F-SB-96RE-12 | F-SB-96RE-13 |
| SAMPLE DATE        | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |                |              |              |
| METHOXYCHLOR       |                |              |              |
| TOTAL AROCLOR      |                |              |              |
| TOTAL DDT POS      |                |              |              |
| TOXAPHENE          |                |              |              |
|                    |                |              | ·            |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-096       | SB-096       | SB-096      |
|------------------------------|--------------|--------------|-------------|
| SAMPLE ID                    | F-SB-96RE-14 | F-SB-96RE-15 | F-SB-96RE-2 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| METALS (MG/KG)               | •            |              |             |
| ANTIMONY                     |              |              |             |
| ARSENIC                      |              |              |             |
| BARIUM                       |              |              |             |
| BERYLLIUM                    |              |              |             |
| CADMIUM                      |              |              |             |
| CHROMIUM                     |              |              |             |
| COBALT                       |              |              |             |
| COPPER                       |              |              |             |
| LEAD                         |              |              |             |
| MERCURY                      |              |              |             |
| MOLYBDENUM                   |              |              |             |
| NICKEL                       |              |              |             |
| SELENIUM                     |              |              |             |
| SILVER                       |              |              |             |
| THALLIUM                     |              |              |             |
| VANADIUM                     |              |              |             |
| ZINC                         |              |              |             |
| MISCELLANEOUS PARAMETERS     | -            | •            | •           |
| PERCENT SOLIDS (%)           |              |              |             |
| TOTAL SOLIDS (%)             |              |              |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |             |
| PH (S.U.)                    |              |              |             |
| MERCURY (METHYL) (UG/KG)     |              |              |             |
| SEMIVOLATILES (UG/KG)        |              |              |             |
| 1,1-BIPHENYL                 |              |              |             |
| 1,2,4-TRICHLOROBENZENE       |              |              |             |
| 1,2-DICHLOROBENZENE          |              |              |             |
| 1,3-DICHLOROBENZENE          |              |              |             |
| 1,4-DICHLOROBENZENE          |              |              |             |
| 1,4-DIOXANE                  |              |              |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |             |
| 2,4,5-TRICHLOROPHENOL        |              |              |             |
| 2,4,6-TRICHLOROPHENOL        |              |              |             |
| 2,4-DICHLOROPHENOL           |              |              |             |
| 2,4-DIMETHYLPHENOL           |              |              |             |
| 2,4-DINITROPHENOL            |              |              |             |

| LOCATION                    | SB-096       | SB-096       | SB-096      |
|-----------------------------|--------------|--------------|-------------|
| SAMPLE ID                   | F-SB-96RE-14 | F-SB-96RE-15 | F-SB-96RE-2 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| 2,4-DINITROTOLUENE          |              |              |             |
| 2,6-DINITROTOLUENE          |              |              |             |
| 2-CHLORONAPHTHALENE         |              |              |             |
| 2-CHLOROPHENOL              |              |              |             |
| 2-METHYLPHENOL              |              |              |             |
| 2-NITROANILINE              |              |              |             |
| 2-NITROPHENOL               |              |              |             |
| 3&4-METHYLPHENOL            |              |              |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |             |
| 3-NITROANILINE              |              |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |             |
| 4-BROMOPHENYL PHENYL ETHER  | -            |              |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |             |
| 4-CHLOROANILINE             |              |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |             |
| 4-NITROANILINE              |              |              |             |
| 4-NITROPHENOL               |              |              |             |
| ACETOPHENONE                |              |              |             |
| ANILINE                     |              |              |             |
| ATRAZINE                    |              |              |             |
| AZOBENZENE                  |              |              |             |
| BENZIDINE                   |              |              |             |
| BENZOIC ACID                | -            |              |             |
| BENZYL ALCOHOL              |              |              |             |
| BIS(2-CHLOROETHOXY)METHANE  | -            |              |             |
| BIS(2-CHLOROETHYL)ETHER     | -            |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  | -            |              |             |
| BUTYL BENZYL PHTHALATE      | -            |              |             |
| CAPROLACTAM                 | -            |              |             |
| CARBAZOLE                   | -            |              |             |
| DIBENZOFURAN                | -            |              |             |
| DIETHYL PHTHALATE           |              |              |             |
| DIMETHYL PHTHALATE          |              |              |             |
| DI-N-BUTYL PHTHALATE        | -            |              |             |
| DI-N-OCTYL PHTHALATE        |              |              |             |
| HEXACHLOROBENZENE           |              |              |             |
| HEXACHLOROBUTADIENE         |              |              |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |             |

| SOIL                           |              |              |             |
|--------------------------------|--------------|--------------|-------------|
| LOCATION                       | SB-096       | SB-096       | SB-096      |
| SAMPLE ID                      | F-SB-96RE-14 | F-SB-96RE-15 | F-SB-96RE-2 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| HEXACHLOROETHANE               |              |              |             |
| ISOPHORONE                     |              |              |             |
| NITROBENZENE                   |              |              |             |
| N-NITROSODIMETHYLAMINE         |              |              |             |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |             |
| N-NITROSODIPHENYLAMINE         |              |              |             |
| PENTACHLOROPHENOL              |              |              |             |
| PHENOL                         |              |              |             |
| PYRIDINE                       |              |              |             |
| VOLATILES (UG/KG)              |              |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |             |
| 1,1,1-TRICHLOROETHANE          |              |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |             |
| 1,1,2-TRICHLOROETHANE          |              |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |             |
| 1,1-DICHLOROETHANE             |              |              |             |
| 1,1-DICHLOROETHENE             |              |              |             |
| 1,1-DICHLOROPROPENE            |              |              |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |             |
| 1,2-DIBROMOETHANE              |              |              |             |
| 1,2-DICHLOROBENZENE            |              |              |             |
| 1,2-DICHLOROETHANE             |              |              |             |
| 1,2-DICHLOROPROPANE            |              |              |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |             |
| 1,3-DICHLOROBENZENE            |              |              |             |
| 1,3-DICHLOROPROPANE            |              |              |             |
| 1,3-DICHLOROPROPENE            |              |              |             |
| 1,4-DICHLOROBENZENE            |              |              |             |
| 1,4-DIOXANE                    |              |              |             |
| 2,2-DICHLOROPROPANE            |              |              |             |
| 2-BUTANONE                     |              |              |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |             |
| 2-CHLOROTOLUENE                |              |              |             |

| LOCATION                | SB-096       | SB-096       | SB-096      |
|-------------------------|--------------|--------------|-------------|
| SAMPLE ID               | F-SB-96RE-14 | F-SB-96RE-15 | F-SB-96RE-2 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| 2-HEXANONE              |              |              |             |
| 4-CHLOROTOLUENE         |              |              |             |
| 4-ISOPROPYLTOLUENE      |              |              |             |
| 4-METHYL-2-PENTANONE    |              |              |             |
| ACETONE                 |              |              |             |
| BENZENE                 |              |              |             |
| BROMOBENZENE            |              |              |             |
| BROMOCHLOROMETHANE      |              |              |             |
| BROMODICHLOROMETHANE    |              |              |             |
| BROMOFORM               |              |              |             |
| BROMOMETHANE            |              |              |             |
| CARBON DISULFIDE        |              |              |             |
| CARBON TETRACHLORIDE    |              |              |             |
| CHLOROBENZENE           |              |              |             |
| CHLORODIBROMOMETHANE    |              |              |             |
| CHLOROETHANE            |              |              |             |
| CHLOROFORM              |              |              |             |
| CHLOROMETHANE           |              |              |             |
| CIS-1,2-DICHLOROETHENE  |              |              |             |
| CIS-1,3-DICHLOROPROPENE |              |              |             |
| DIBROMOMETHANE          |              |              |             |
| DICHLORODIFLUOROMETHANE |              |              |             |
| DIISOPROPYL ETHER       |              |              |             |
| ETHYL TERT-BUTYL ETHER  |              |              |             |
| ETHYLBENZENE            |              |              |             |
| FLUORODICHLOROMETHANE   |              |              |             |
| HEXACHLOROBUTADIENE     |              |              |             |
| ISOPROPYLBENZENE        |              |              |             |
| M+P-XYLENES             |              |              |             |
| METHYL TERT-BUTYL ETHER |              |              |             |
| METHYLENE CHLORIDE      |              |              |             |
| NAPHTHALENE             |              |              |             |
| N-BUTYLBENZENE          |              |              |             |
| N-PROPYLBENZENE         |              |              |             |
| O-XYLENE                |              |              |             |
| SEC-BUTYLBENZENE        |              |              |             |
| STYRENE                 |              |              |             |
| TERT-AMYL METHYL ETHER  |              |              |             |

|                                          |                  | •               |                 |
|------------------------------------------|------------------|-----------------|-----------------|
| LOCATION                                 | SB-096           | SB-096          | SB-096          |
| SAMPLE ID                                | F-SB-96RE-14     | F-SB-96RE-15    | F-SB-96RE-2     |
| SAMPLE DATE                              | 9/21/2009        | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                  |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                  |                 |                 |
| TETRACHLOROETHENE                        |                  |                 |                 |
| TOLUENE                                  |                  |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                 |                 |
| TOTAL XYLENES                            |                  |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                  |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                  |                 |                 |
| TRICHLOROETHENE                          |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                 |
| VINYL ACETATE                            |                  |                 |                 |
| VINYL CHLORIDE                           |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                |                 |                 |
| 1-METHYLNAPHTHALENE                      |                  |                 |                 |
| 2-METHYLNAPHTHALENE                      |                  |                 |                 |
| ACENAPHTHENE                             |                  |                 |                 |
| ACENAPHTHYLENE                           |                  |                 |                 |
| ANTHRACENE                               |                  |                 |                 |
| BAP EQUIVALENT-HALFND                    | 57.888 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 57.888 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                  |                 |                 |
| BENZO(A)ANTHRACENE                       | 25 [MDL=1.1]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 27 [MDL=1.5]     | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 42 [MDL=1.4]     | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                 |
| BENZO(K)FLUORANTHENE                     | 16 [MDL=2]       | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |
| C1-FLUORENES                             |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C2-FLUORENES                             |                  |                 |                 |
| C2-NAPHTHALENES                          |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |
| C3-FLUORENES                             |                  |                 |                 |
| C3-NAPHTHALENES                          |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |

HEPTACHLOR

| JOIL                             |               |                 |                 |
|----------------------------------|---------------|-----------------|-----------------|
| LOCATION                         | SB-096        | SB-096          | SB-096          |
| SAMPLE ID                        | F-SB-96RE-14  | F-SB-96RE-15    | F-SB-96RE-2     |
| SAMPLE DATE                      | 9/21/2009     | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |                 |                 |
| C4-NAPHTHALENES                  |               |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |               |                 |                 |
| CHRYSENE                         | 28 [MDL=1.1]  | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 21 [MDL=1.5]  | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |               |                 |                 |
| FLUORENE                         |               |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 30 [MDL=1.8]  | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |               |                 |                 |
| PHENANTHRENE                     |               |                 |                 |
| PYRENE                           |               |                 |                 |
| TOTAL PAHS                       | 189 [MDL=1.5] | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | •             | -               |                 |
| 4,4'-DDD                         |               |                 |                 |
| 4,4'-DDE                         |               |                 |                 |
| 4,4'-DDT                         |               |                 |                 |
| ALDRIN                           |               |                 |                 |
| ALPHA-BHC                        |               |                 |                 |
| ALPHA-CHLORDANE                  |               |                 |                 |
| AROCLOR-1016                     |               |                 |                 |
| AROCLOR-1221                     |               |                 |                 |
| AROCLOR-1232                     |               |                 |                 |
| AROCLOR-1242                     |               |                 |                 |
| AROCLOR-1248                     |               |                 |                 |
| AROCLOR-1254                     |               |                 |                 |
| AROCLOR-1260                     |               |                 |                 |
| BETA-BHC                         |               |                 |                 |
| DELTA-BHC                        |               |                 |                 |
| DIELDRIN                         |               |                 |                 |
| ENDOSULFAN I                     |               |                 |                 |
| ENDOSULFAN II                    |               |                 |                 |
| ENDOSULFAN SULFATE               |               |                 |                 |
| ENDRIN                           |               |                 |                 |
| ENDRIN ALDEHYDE                  |               |                 |                 |
| ENDRIN KETONE                    |               |                 |                 |
| GAMMA-BHC (LINDANE)              |               |                 |                 |
| GAMMA-CHLORDANE                  |               |                 |                 |
|                                  |               |                 |                 |

February 2013 Page A-286

--

--

| LOCATION           | SB-096       | SB-096       | SB-096      |
|--------------------|--------------|--------------|-------------|
| SAMPLE ID          | F-SB-96RE-14 | F-SB-96RE-15 | F-SB-96RE-2 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009   |
| HEPTACHLOR EPOXIDE |              |              |             |
| METHOXYCHLOR       |              |              |             |
| TOTAL AROCLOR      | 1            |              |             |
| TOTAL DDT POS      | 1            |              |             |
| TOXAPHENE          |              |              |             |
|                    |              |              |             |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-096      | SB-096      | SB-096      |
| SAMPLE ID                    | F-SB-96RE-3 | F-SB-96RE-4 | F-SB-96RE-5 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| METALS (MG/KG)               | •           |             | •           |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           |             |             |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        | -           |             |             |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-096      | SB-096      | SB-096      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-96RE-3 | F-SB-96RE-4 | F-SB-96RE-5 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-096      | SB-096      | SB-096      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-96RE-3 | F-SB-96RE-4 | F-SB-96RE-5 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             | -1          |             |
| 1,1,2,2-TETRACHLOROETHANE      |             | -1          |             |
| 1,1,2-TRICHLOROETHANE          |             | -1          |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             | 1           |             |
| 1,1-DICHLOROETHANE             |             | -1          |             |
| 1,1-DICHLOROETHENE             |             | 1           |             |
| 1,1-DICHLOROPROPENE            |             | -1          |             |
| 1,2,3-TRICHLOROBENZENE         |             | 1           |             |
| 1,2,3-TRICHLOROPROPANE         |             | 1           |             |
| 1,2,3-TRIMETHYLBENZENE         |             | 1           |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             | -           |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             | -           |             |
| 1,2-DIBROMOETHANE              |             | -           |             |
| 1,2-DICHLOROBENZENE            |             | -           |             |
| 1,2-DICHLOROETHANE             |             | -           |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             | -           |             |
| 1,3-DICHLOROPROPANE            |             | -           |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |

February 2013 Page A-290

--

---

| LOCATION                | SB-096      | SB-096      | SB-096      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-96RE-3 | F-SB-96RE-4 | F-SB-96RE-5 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-096          | SB-096          | SB-096          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-96RE-3     | F-SB-96RE-4     | F-SB-96RE-5     |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.7 U [MDL=1.7] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.7 U [MDL=1.7] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.7 U [MDL=1.7] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.6 U [MDL=1.6] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.2 U [MDL=2.2] | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |

HEPTACHLOR

| SOIL                             |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-096          | SB-096          | SB-096          |
| SAMPLE ID                        | F-SB-96RE-3     | F-SB-96RE-4     | F-SB-96RE-5     |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.7 U [MDL=1.7] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 2.0 U [MDL=2]   | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 0 U [MDL=1.7]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
|                                  |                 |                 |                 |

February 2013 Page A-293

--

---

| LOCATION           | SB-096      | SB-096      | SB-096      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-96RE-3 | F-SB-96RE-4 | F-SB-96RE-5 |
| SAMPLE DATE        | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       | 1           |             |             |
| TOTAL AROCLOR      | 1           |             |             |
| TOTAL DDT POS      |             |             |             |
| TOXAPHENE          |             |             |             |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | <br> |  |
|-------------------------|------|--|
| GASOLINE RANGE ORGANICS | <br> |  |
| TPH (C09-C36)           | <br> |  |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- K = The chemical result was positively detected and biased high.
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |             |             |             |
|------------------------------|-------------|-------------|-------------|
| LOCATION                     | SB-096      | SB-096      | SB-096      |
| SAMPLE ID                    | F-SB-96RE-6 | F-SB-96RE-7 | F-SB-96RE-8 |
| SAMPLE DATE                  | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| METALS (MG/KG)               |             |             |             |
| ANTIMONY                     |             |             |             |
| ARSENIC                      |             |             |             |
| BARIUM                       |             |             |             |
| BERYLLIUM                    |             |             |             |
| CADMIUM                      |             |             |             |
| CHROMIUM                     |             |             |             |
| COBALT                       |             |             |             |
| COPPER                       |             |             |             |
| LEAD                         |             |             |             |
| MERCURY                      |             |             |             |
| MOLYBDENUM                   |             |             |             |
| NICKEL                       |             |             |             |
| SELENIUM                     |             |             |             |
| SILVER                       |             |             |             |
| THALLIUM                     |             |             |             |
| VANADIUM                     |             |             |             |
| ZINC                         |             |             |             |
| MISCELLANEOUS PARAMETERS     |             | •           | •           |
| PERCENT SOLIDS (%)           |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |
| PH (S.U.)                    |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |
| SEMIVOLATILES (UG/KG)        |             | •           | •           |
| 1,1-BIPHENYL                 |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |
| 1,4-DIOXANE                  |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |

| LOCATION                    | SB-096      | SB-096      | SB-096      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-96RE-6 | F-SB-96RE-7 | F-SB-96RE-8 |
| SAMPLE DATE                 | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      | 1           |             |             |
| 3-NITROANILINE              | 1           |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  | 1           |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              | 1           |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                | 1           |             |             |
| ANILINE                     | 1           |             |             |
| ATRAZINE                    | 1           |             |             |
| AZOBENZENE                  | 1           |             |             |
| BENZIDINE                   | 1           |             |             |
| BENZOIC ACID                | 1           |             |             |
| BENZYL ALCOHOL              | 1           |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      | -           |             |             |
| CAPROLACTAM                 | -           |             |             |
| CARBAZOLE                   | -           |             |             |
| DIBENZOFURAN                | -           |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

| LOCATION                       | SB-096      | SB-096      | SB-096      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-96RE-6 | F-SB-96RE-7 | F-SB-96RE-8 |
| SAMPLE DATE                    | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |
|                                |             |             |             |

February 2013 Page A-297

| LOCATION                | SB-096      | SB-096      | SB-096      |
|-------------------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-96RE-6 | F-SB-96RE-7 | F-SB-96RE-8 |
| SAMPLE DATE             | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| 2-HEXANONE              |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |
| ACETONE                 |             |             |             |
| BENZENE                 |             |             |             |
| BROMOBENZENE            |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |
| BROMOFORM               |             |             |             |
| BROMOMETHANE            |             |             |             |
| CARBON DISULFIDE        |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |
| CHLOROBENZENE           |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROETHANE            |             |             |             |
| CHLOROFORM              |             |             |             |
| CHLOROMETHANE           |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIBROMOMETHANE          |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |
| ETHYLBENZENE            |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |
| M+P-XYLENES             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |
| NAPHTHALENE             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |
| N-PROPYLBENZENE         |             |             |             |
| O-XYLENE                |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |
| STYRENE                 |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-096          | SB-096          | SB-096          |
|------------------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-96RE-6     | F-SB-96RE-7     | F-SB-96RE-8     |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| TERT-BUTYLBENZENE                        |                 |                 |                 |
| TERTIARY-BUTYL ALCOHOL                   |                 |                 |                 |
| TETRACHLOROETHENE                        |                 |                 |                 |
| TOLUENE                                  |                 |                 |                 |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                 |                 |
| TOTAL XYLENES                            |                 |                 |                 |
| TRANS-1,2-DICHLOROETHENE                 |                 |                 |                 |
| TRANS-1,3-DICHLOROPROPENE                |                 |                 |                 |
| TRICHLOROETHENE                          |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |
| C3-NAPHTHALENES                          |                 | <del></del>     |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |
| 1                                        |                 |                 |                 |

HEPTACHLOR

| JOIL TO THE PROPERTY OF THE PR |                 |                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB-096          | SB-096          | SB-096          |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F-SB-96RE-6     | F-SB-96RE-7     | F-SB-96RE-8     |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/21/2009       | 9/21/2009       | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                 |                 |
| C4-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| CHRYSENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| FLUORENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                 |
| PHENANTHRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                 |
| TOTAL PAHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>.</u>        |                 | •               |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |
| ALDRIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                 |
| ALPHA-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                 |                 |
| ALPHA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |
| AROCLOR-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| AROCLOR-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| BETA-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | <del></del>     |                 |
| DELTA-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | <del></del>     |                 |
| DIELDRIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |
| ENDOSULFAN I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                 |
| ENDOSULFAN II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                 |
| ENDOSULFAN SULFATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                 |                 |
| ENDRIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                 |
| ENDRIN ALDEHYDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |
| ENDRIN KETONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                 |                 |
| GAMMA-BHC (LINDANE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                 |                 |
| GAMMA-CHLORDANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |
| ONIVINA OFFICIALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =               | <u></u>         | <u> </u>        |

February 2013 Page A-300

--

---

| LOCATION           | SB-096      | SB-096      | SB-096      |
|--------------------|-------------|-------------|-------------|
| SAMPLE ID          | F-SB-96RE-6 | F-SB-96RE-7 | F-SB-96RE-8 |
| SAMPLE DATE        | 9/21/2009   | 9/21/2009   | 9/21/2009   |
| HEPTACHLOR EPOXIDE |             |             |             |
| METHOXYCHLOR       |             | 1           |             |
| TOTAL AROCLOR      |             | 1           |             |
| TOTAL DDT POS      |             | 1           |             |
| TOXAPHENE          |             |             |             |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                              | SB-096      | SB-236              | SB-236             |
|---------------------------------------|-------------|---------------------|--------------------|
| SAMPLE ID                             | F-SB-96RE-9 | SB-236-01           | SB-236-05          |
| SAMPLE DATE                           | 9/21/2009   | 5/9/2005            | 5/9/2005           |
| METALS (MG/KG)                        | •           |                     |                    |
| ANTIMONY                              |             | 2 L [MDL=0.3]       | 2 L [MDL=0.3]      |
| ARSENIC                               |             | 4 [MDL=0.6]         | 7 [MDL=0.5]        |
| BARIUM                                |             | 83 [MDL=0.3]        | 103 [MDL=0.3]      |
| BERYLLIUM                             |             | 0.7 [MDL=0.04]      | 0.6 [MDL=0.03]     |
| CADMIUM                               |             | 0.4 [MDL=0.05]      | 0.5 [MDL=0.04]     |
| CHROMIUM                              |             | 19.8 [MDL=0.2]      | 20.6 [MDL=0.2]     |
| COBALT                                |             | 5.8 [MDL=0.08]      | 6.2 [MDL=0.07]     |
| COPPER                                |             | 22 [MDL=0.3]        | 38 [MDL=0.3]       |
| LEAD                                  |             | 51 [MDL=0.3]        | 81 [MDL=0.3]       |
| MERCURY                               |             | 0.92 L []           | 0.97 L []          |
| MOLYBDENUM                            |             | 0.6 B [MDL=0.5]     | 0.6 B [MDL=0.4]    |
| NICKEL                                |             | 12 [MDL=0.1]        | 17 [MDL=0.09]      |
| SELENIUM                              |             | 2 U [MDL=2]         | 3 [MDL=2]          |
| SILVER                                |             | 0.9 [MDL=0.05]      | 2.3 [MDL=0.04]     |
| THALLIUM                              |             | 1 U [MDL=1]         | 0.9 U [MDL=0.9]    |
| VANADIUM                              |             | 31 [MDL=0.2]        | 26.9 [MDL=0.2]     |
| ZINC                                  |             | 82 [MDL=0.2]        | 131 [MDL=0.2]      |
| MISCELLANEOUS PARAMETERS              |             |                     |                    |
| PERCENT SOLIDS (%)                    |             |                     |                    |
| TOTAL SOLIDS (%)                      |             |                     |                    |
| HEXAVALENT CHROMIUM (MG/KG)           |             |                     |                    |
| TOTAL ORGANIC CARBON (MG/KG)          |             |                     |                    |
| PH (S.U.)                             |             | 8.2 []              | 7.7 []             |
| MERCURY (METHYL) (UG/KG)              |             | 0.734 J [MDL=0.019] | 1.21 J [MDL=0.048] |
| SEMIVOLATILES (UG/KG)                 |             |                     |                    |
| 1,1-BIPHENYL                          |             |                     |                    |
| 1,2,4-TRICHLOROBENZENE                |             |                     |                    |
| 1,2-DICHLOROBENZENE                   |             |                     |                    |
| 1,3-DICHLOROBENZENE                   |             |                     |                    |
| 1,4-DICHLOROBENZENE                   |             |                     |                    |
| 1,4-DIOXANE                           |             |                     |                    |
| 2,2'-OXYBIS(1-CHLOROPROPANE)          |             |                     |                    |
| 2,4,5-TRICHLOROPHENOL                 |             |                     |                    |
| 2,4,6-TRICHLOROPHENOL                 |             |                     |                    |
|                                       |             |                     |                    |
| 2,4-DICHLOROPHENOL                    |             |                     | <br>               |
| 2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL |             |                     |                    |

| LOCATION                    | SB-096      | SB-236    | SB-236    |
|-----------------------------|-------------|-----------|-----------|
| SAMPLE ID                   | F-SB-96RE-9 | SB-236-01 | SB-236-05 |
| SAMPLE DATE                 | 9/21/2009   | 5/9/2005  | 5/9/2005  |
| 2,4-DINITROTOLUENE          |             |           |           |
| 2,6-DINITROTOLUENE          |             |           |           |
| 2-CHLORONAPHTHALENE         |             |           |           |
| 2-CHLOROPHENOL              |             |           |           |
| 2-METHYLPHENOL              |             |           |           |
| 2-NITROANILINE              |             |           |           |
| 2-NITROPHENOL               |             |           |           |
| 3&4-METHYLPHENOL            |             |           |           |
| 3,3'-DICHLOROBENZIDINE      |             |           |           |
| 3-NITROANILINE              |             |           |           |
| 4,6-DINITRO-2-METHYLPHENOL  |             |           |           |
| 4-BROMOPHENYL PHENYL ETHER  |             |           |           |
| 4-CHLORO-3-METHYLPHENOL     |             |           |           |
| 4-CHLOROANILINE             |             |           |           |
| 4-CHLOROPHENYL PHENYL ETHER |             |           |           |
| 4-NITROANILINE              |             |           |           |
| 4-NITROPHENOL               |             |           |           |
| ACETOPHENONE                |             |           |           |
| ANILINE                     |             |           |           |
| ATRAZINE                    |             |           |           |
| AZOBENZENE                  |             |           |           |
| BENZIDINE                   |             |           |           |
| BENZOIC ACID                |             |           |           |
| BENZYL ALCOHOL              |             |           |           |
| BIS(2-CHLOROETHOXY)METHANE  |             |           |           |
| BIS(2-CHLOROETHYL)ETHER     |             |           |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |           |           |
| BUTYL BENZYL PHTHALATE      |             |           |           |
| CAPROLACTAM                 |             |           |           |
| CARBAZOLE                   |             |           |           |
| DIBENZOFURAN                |             |           |           |
| DIETHYL PHTHALATE           |             |           |           |
| DIMETHYL PHTHALATE          |             |           |           |
| DI-N-BUTYL PHTHALATE        |             |           |           |
| DI-N-OCTYL PHTHALATE        |             |           |           |
| HEXACHLOROBENZENE           |             |           |           |
| HEXACHLOROBUTADIENE         |             |           |           |
| HEXACHLOROCYCLOPENTADIENE   |             |           |           |

| SOIL                           |             |           |           |
|--------------------------------|-------------|-----------|-----------|
| LOCATION                       | SB-096      | SB-236    | SB-236    |
| SAMPLE ID                      | F-SB-96RE-9 | SB-236-01 | SB-236-05 |
| SAMPLE DATE                    | 9/21/2009   | 5/9/2005  | 5/9/2005  |
| HEXACHLOROETHANE               |             |           |           |
| ISOPHORONE                     |             |           |           |
| NITROBENZENE                   |             |           |           |
| N-NITROSODIMETHYLAMINE         |             |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     |             |           |           |
| N-NITROSODIPHENYLAMINE         |             |           |           |
| PENTACHLOROPHENOL              |             |           |           |
| PHENOL                         |             |           |           |
| PYRIDINE                       |             |           |           |
| VOLATILES (UG/KG)              | •           |           |           |
| 1,1,1,2-TETRACHLOROETHANE      |             |           |           |
| 1,1,1-TRICHLOROETHANE          |             |           |           |
| 1,1,2,2-TETRACHLOROETHANE      |             |           |           |
| 1,1,2-TRICHLOROETHANE          |             |           |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |           |           |
| 1,1-DICHLOROETHANE             |             |           |           |
| 1,1-DICHLOROETHENE             |             |           |           |
| 1,1-DICHLOROPROPENE            |             |           |           |
| 1,2,3-TRICHLOROBENZENE         |             |           |           |
| 1,2,3-TRICHLOROPROPANE         |             |           |           |
| 1,2,3-TRIMETHYLBENZENE         |             |           |           |
| 1,2,4-TRICHLOROBENZENE         |             |           |           |
| 1,2,4-TRIMETHYLBENZENE         |             |           |           |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |           |           |
| 1,2-DIBROMOETHANE              |             |           |           |
| 1,2-DICHLOROBENZENE            |             |           |           |
| 1,2-DICHLOROETHANE             |             |           |           |
| 1,2-DICHLOROPROPANE            |             |           |           |
| 1,3,5-TRIMETHYLBENZENE         |             |           |           |
| 1,3-DICHLOROBENZENE            |             |           |           |
| 1,3-DICHLOROPROPANE            |             |           |           |
| 1,3-DICHLOROPROPENE            |             |           |           |
| 1,4-DICHLOROBENZENE            |             |           |           |
| 1,4-DIOXANE                    |             |           |           |
| 2,2-DICHLOROPROPANE            |             |           |           |
|                                |             | <u> </u>  |           |
| 2-BUTANONE                     |             |           |           |
| 2-CHLOROETHYL VINYL ETHER      |             |           |           |

February 2013 Page A-304

| LOCATION                | SB-096      | SB-236    | SB-236    |
|-------------------------|-------------|-----------|-----------|
| SAMPLE ID               | F-SB-96RE-9 | SB-236-01 | SB-236-05 |
| SAMPLE DATE             | 9/21/2009   | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |             |           |           |
| 4-CHLOROTOLUENE         |             |           |           |
| 4-ISOPROPYLTOLUENE      |             |           |           |
| 4-METHYL-2-PENTANONE    |             |           |           |
| ACETONE                 |             |           |           |
| BENZENE                 |             |           |           |
| BROMOBENZENE            |             |           |           |
| BROMOCHLOROMETHANE      |             |           |           |
| BROMODICHLOROMETHANE    |             |           |           |
| BROMOFORM               |             |           |           |
| BROMOMETHANE            |             |           |           |
| CARBON DISULFIDE        |             |           |           |
| CARBON TETRACHLORIDE    |             |           |           |
| CHLOROBENZENE           |             |           |           |
| CHLORODIBROMOMETHANE    |             |           |           |
| CHLOROETHANE            |             |           |           |
| CHLOROFORM              |             |           |           |
| CHLOROMETHANE           |             |           |           |
| CIS-1,2-DICHLOROETHENE  |             |           |           |
| CIS-1,3-DICHLOROPROPENE |             |           |           |
| DIBROMOMETHANE          |             |           |           |
| DICHLORODIFLUOROMETHANE |             |           |           |
| DIISOPROPYL ETHER       |             |           |           |
| ETHYL TERT-BUTYL ETHER  |             |           |           |
| ETHYLBENZENE            |             |           |           |
| FLUORODICHLOROMETHANE   |             |           |           |
| HEXACHLOROBUTADIENE     |             |           |           |
| ISOPROPYLBENZENE        |             |           |           |
| M+P-XYLENES             |             |           |           |
| METHYL TERT-BUTYL ETHER |             |           |           |
| METHYLENE CHLORIDE      |             |           |           |
| NAPHTHALENE             |             |           |           |
| N-BUTYLBENZENE          |             |           |           |
| N-PROPYLBENZENE         |             |           |           |
| O-XYLENE                |             |           |           |
| SEC-BUTYLBENZENE        |             |           |           |
| STYRENE                 |             |           |           |
| TERT-AMYL METHYL ETHER  |             |           |           |

| SAMPLE DATE         92/1/2009         59/2005         59/2005           TERTRE BUTYL BERZENE         -         -         -           TERTRACH DUTYL ALCOHOL         -         -         -           TERTRACH DUTYL ALCOHOL         -         -         -           TOTUAL 12 DIGHLOROFTHENE         -         -         -           TOTAL 12 DIGHLOROFTHENE         -         -         -           TRANSH-32 DIGHLOROFTHENE         -         -         -           TRICHLOROFTHENE         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCATION                                 | SB-096           | SB-236    | SB-236    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------|-----------|
| TERTRIPYSENTY ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE ID                                | F-SB-96RE-9      | SB-236-01 | SB-236-05 |
| TERTAPHY ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE DATE                              | 9/21/2009        | 5/9/2005  | 5/9/2005  |
| TETRACHICROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                  |           |           |
| TOLILENE TOTAL 1,2-DICHLOROETHENE TOTAL XYLENES TRANSI-3,2-DICHLOROETHENE TRANSI-3,2-DICHLOROETHENE TRANSI-3,2-DICHLOROETHENE TRANSI-3,2-DICHLOROETHENE TRANSI-3,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETH | TERTIARY-BUTYL ALCOHOL                   |                  |           |           |
| TOTAL 12-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TETRACHLOROETHENE                        |                  |           |           |
| TOTAL YULENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                  |           |           |
| TRANS-12-DICHLOROPTHENE TRANS-13-DICHLOROPROPENE TRICHLOROPTHENE TRICHLOROPTHENE TRICHLOROPHANE  | TOTAL 1,2-DICHLOROETHENE                 |                  |           |           |
| TRANS-1,5-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TRICHLOROETHORE TO TO THE TRICHLOROETHORE TO THE TRICHLORDETHORE TO THE TRICHLOROETHORE TO THE TRICHLOROETHORE TO THE TRICHLOROETHORE TO THE TRICHLOROE | TOTAL XYLENES                            |                  |           |           |
| TRICHLOROETHENE TRICHLOROETHANE THYPIOLOGIC TO THE TRICHLOROETHANE THYPIOLOGIC TO THE TRICHLOROETHANE THYPIOLOGIC TO THE TRICHLOROETHANE THYPIOLOGIC TRICHLOROETHANE T | TRANS-1,2-DICHLOROETHENE                 |                  |           |           |
| TRICHLOROFLUCROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,3-DICHLOROPROPENE                |                  |           |           |
| VINYL CALORIDE         -         -         -           POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRICHLOROETHENE                          |                  |           |           |
| VINYL CHLORIDE         -         -         -           POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRICHLOROFLUOROMETHANE                   |                  |           |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)  1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VINYL ACETATE                            |                  |           |           |
| 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE 3-METHYLNAPHTHALENE 3-METH | VINYL CHLORIDE                           |                  |           |           |
| 2-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |           |           |
| ACENAPHTHENE ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-METHYLNAPHTHALENE                      |                  |           |           |
| ACENAPHTHYLENE ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-METHYLNAPHTHALENE                      |                  |           |           |
| ANTHRACENE  BAP EQUIVALENT-HALFND  17.766 [MDL=1.5]  BAP EQUIVALENT-POS  17.016 [MDL=1.5]  BAP EQUIVALENT-UCL  BENZO(A)ANTHRACENE  BENZO(A)ANTHRACENE  BENZO(B)FLUORANTHENE  BENZO(B)FLUORANTHENE  BENZO(B)FLUORANTHENE  BENZO(B,H)PERYLENE  BENZO(B,H)PERYLENE  BENZO(B,H)PERYLENE  BENZO(B,H)PERYLENE  BENZO(B,H)RACENES  C1-FLUORANTHENE  BENZO(B,H)RACENES  C1-FLUORANTHENES/PYRENES  C1-FLUORANTHENES/PYRENES  C1-FLUORENES  C1-F | ACENAPHTHENE                             |                  |           |           |
| BAP EQUIVALENT-HALFND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACENAPHTHYLENE                           |                  |           |           |
| BAP EQUIVALENT-POS       17.016 [MDL=1.5]           BAP EQUIVALENT-UCL            BENZO(A)ANTHRACENE       12 [MDL=1.1]           BENZO(B)PYRENE       13 [MDL=1.5]           BENZO(B)FLUORANTHENE       18 [MDL=1.4]           BENZO(K)FLUORANTHENE       9.2 [MDL=2]           BENZO(K)FLUORANTHENE       9.2 [MDL=2]           C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORANTHENES/ANTHRACENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C1-FLUORENES            C2-PHAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANTHRACENE                               |                  |           |           |
| BAP EQUIVALENT-UCL  BENZO(A)ANTHRACENE  BENZO(A)ANTHRACENE  BENZO(A)PYRENE  BENZO(B)FLUORANTHENE  BENZO(B,H,I)PERYLENE  BENZO(B,H,I)PERYLENE  BENZO(B,H,I)PERYLENE  BENZO(K,H,I)PERYLENE  BENZO(K,H,I) | BAP EQUIVALENT-HALFND                    | 17.766 [MDL=1.5] |           |           |
| 12 [MDL=1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BAP EQUIVALENT-POS                       | 17.016 [MDL=1.5] |           |           |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAP EQUIVALENT-UCL                       |                  |           |           |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)ANTHRACENE                       | 12 [MDL=1.1]     |           |           |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 13 [MDL=1.5]     |           |           |
| BENZO(K)FLUORANTHENE   9.2 [MDL=2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BENZO(B)FLUORANTHENE                     | 18 [MDL=1.4]     |           |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BENZO(G,H,I)PERYLENE                     |                  |           |           |
| C1-FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENZO(K)FLUORANTHENE                     | 9.2 [MDL=2]      |           |           |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES             C2-NAPHTHALENES             C2-PHENANTHRENES/ANTHRACENES             C3-CHRYSENES/BENZO(A)ANTHRACENES             C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |           |           |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                  |           |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES               C2-FLUORENES               C2-NAPHTHALENES               C2-PHENANTHRENES/ANTHRACENES               C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES                C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1-FLUORENES                             |                  |           |           |
| C2-FLUORENES              C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1-PHENANTHRENES/ANTHRACENES             |                  |           |           |
| C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |           |           |
| C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2-FLUORENES                             |                  |           |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2-NAPHTHALENES                          |                  |           |           |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                  |           |           |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                  |           |           |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                  |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                  |           |           |

HEPTACHLOR

| SOIL                             |                 |           |           |
|----------------------------------|-----------------|-----------|-----------|
| LOCATION                         | SB-096          | SB-236    | SB-236    |
| SAMPLE ID                        | F-SB-96RE-9     | SB-236-01 | SB-236-05 |
| SAMPLE DATE                      | 9/21/2009       | 5/9/2005  | 5/9/2005  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |           |           |
| C4-NAPHTHALENES                  |                 |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |                 |           |           |
| CHRYSENE                         | 14 [MDL=1.1]    |           |           |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] |           |           |
| FLUORANTHENE                     |                 |           |           |
| FLUORENE                         |                 |           |           |
| INDENO(1,2,3-CD)PYRENE           | 9.1 [MDL=1.8]   |           |           |
| NAPHTHALENE                      |                 |           |           |
| PHENANTHRENE                     |                 |           |           |
| PYRENE                           |                 |           |           |
| TOTAL PAHS                       | 75.3 [MDL=1.5]  |           |           |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |           |           |
| 4,4'-DDD                         |                 |           |           |
| 4,4'-DDE                         |                 |           |           |
| 4,4'-DDT                         |                 |           |           |
| ALDRIN                           |                 |           |           |
| ALPHA-BHC                        |                 |           |           |
| ALPHA-CHLORDANE                  |                 |           |           |
| AROCLOR-1016                     |                 |           |           |
| AROCLOR-1221                     |                 |           |           |
| AROCLOR-1232                     |                 |           |           |
| AROCLOR-1242                     |                 |           |           |
| AROCLOR-1248                     |                 |           |           |
| AROCLOR-1254                     |                 |           |           |
| AROCLOR-1260                     |                 |           |           |
| BETA-BHC                         |                 |           |           |
| DELTA-BHC                        |                 |           |           |
| DIELDRIN                         |                 |           |           |
| ENDOSULFAN I                     |                 |           |           |
| ENDOSULFAN II                    |                 |           |           |
| ENDOSULFAN SULFATE               |                 |           |           |
| ENDRIN                           |                 |           |           |
| ENDRIN ALDEHYDE                  |                 |           |           |
| ENDRIN KETONE                    |                 |           |           |
| GAMMA-BHC (LINDANE)              |                 |           |           |
| GAMMA-CHLORDANE                  |                 |           |           |
|                                  |                 |           | <u> </u>  |

February 2013 Page A-307

--

---

| LOCATION           | SB-096      | SB-236    | SB-236    |
|--------------------|-------------|-----------|-----------|
| SAMPLE ID          | F-SB-96RE-9 | SB-236-01 | SB-236-05 |
| SAMPLE DATE        | 9/21/2009   | 5/9/2005  | 5/9/2005  |
| HEPTACHLOR EPOXIDE |             |           |           |
| METHOXYCHLOR       |             |           |           |
| TOTAL AROCLOR      |             |           |           |
| TOTAL DDT POS      |             |           |           |
| TOXAPHENE          |             |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-236              | SB-237              | SB-237            |
|------------------------------|---------------------|---------------------|-------------------|
| SAMPLE ID                    | SB-236-SS           | SB-237-01           | SB-237-05         |
| SAMPLE DATE                  | 5/9/2005            | 5/9/2005            | 5/9/2005          |
| METALS (MG/KG)               |                     |                     | -                 |
| ANTIMONY                     | 0.5 L [MDL=0.3]     | 4 L [MDL=0.2]       | 0.3 UL [MDL=0.3]  |
| ARSENIC                      | 3 [MDL=0.5]         | 5 [MDL=0.5]         | 2 B [MDL=0.6]     |
| BARIUM                       | 36 [MDL=0.3]        | 68 [MDL=0.2]        | 35 [MDL=0.3]      |
| BERYLLIUM                    | 1.4 [MDL=0.03]      | 0.6 [MDL=0.03]      | 3.2 [MDL=0.04]    |
| CADMIUM                      | 0.3 [MDL=0.04]      | 0.3 [MDL=0.04]      | 0.3 [MDL=0.05]    |
| CHROMIUM                     | 17.7 [MDL=0.2]      | 185 [MDL=0.2]       | 24.6 [MDL=0.2]    |
| COBALT                       | 6.8 [MDL=0.07]      | 5.1 [MDL=0.06]      | 8 [MDL=0.08]      |
| COPPER                       | 14 [MDL=0.3]        | 33 [MDL=0.2]        | 11 [MDL=0.3]      |
| LEAD                         | 11 [MDL=0.3]        | 63 [MDL=0.2]        | 11 [MDL=0.3]      |
| MERCURY                      | 0.29 L []           | 0.35 []             | 0.01 []           |
| MOLYBDENUM                   | 0.4 B [MDL=0.4]     | 63 [MDL=0.4]        | 0.5 U [MDL=0.5]   |
| NICKEL                       | 12 [MDL=0.08]       | 18 [MDL=0.08]       | 23 [MDL=0.1]      |
| SELENIUM                     | 2 [MDL=2]           | 4 [MDL=2]           | 2 U [MDL=2]       |
| SILVER                       | 0.04 U [MDL=0.04]   | 1.4 [MDL=0.04]      | 0.05 U [MDL=0.05] |
| THALLIUM                     | 0.8 U [MDL=0.8]     | 0.8 U [MDL=0.8]     | 1 U [MDL=1]       |
| VANADIUM                     | 29.9 [MDL=0.2]      | 41.9 [MDL=0.2]      | 35.1 [MDL=0.2]    |
| ZINC                         | 35 [MDL=0.2]        | 99 [MDL=0.2]        | 41 [MDL=0.2]      |
| MISCELLANEOUS PARAMETERS     | •                   |                     |                   |
| PERCENT SOLIDS (%)           |                     |                     |                   |
| TOTAL SOLIDS (%)             |                     |                     |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |                     | 0.4 U [MDL=0.4]     | 0.4 U [MDL=0.4]   |
| TOTAL ORGANIC CARBON (MG/KG) |                     |                     |                   |
| PH (S.U.)                    | 8.1 []              |                     |                   |
| MERCURY (METHYL) (UG/KG)     | 0.071 J [MDL=0.019] | 1.467 J [MDL=0.018] |                   |
| SEMIVOLATILES (UG/KG)        |                     |                     |                   |
| 1,1-BIPHENYL                 |                     |                     |                   |
| 1,2,4-TRICHLOROBENZENE       |                     |                     |                   |
| 1,2-DICHLOROBENZENE          |                     |                     |                   |
| 1,3-DICHLOROBENZENE          |                     |                     |                   |
| 1,4-DICHLOROBENZENE          |                     |                     |                   |
| 1,4-DIOXANE                  |                     |                     |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                     |                     |                   |
| 2,4,5-TRICHLOROPHENOL        |                     |                     |                   |
| 2,4,6-TRICHLOROPHENOL        |                     |                     |                   |
| 2,4-DICHLOROPHENOL           |                     |                     |                   |
| 2,4-DIMETHYLPHENOL           |                     |                     |                   |
| 2,4-DINITROPHENOL            |                     |                     |                   |

| LOCATION                    | SB-236    | SB-237    | SB-237    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE                 | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| 2,4-DINITROTOLUENE          |           |           |           |
| 2,6-DINITROTOLUENE          |           |           |           |
| 2-CHLORONAPHTHALENE         |           |           |           |
| 2-CHLOROPHENOL              |           |           |           |
| 2-METHYLPHENOL              |           |           |           |
| 2-NITROANILINE              |           |           |           |
| 2-NITROPHENOL               |           |           |           |
| 3&4-METHYLPHENOL            |           |           |           |
| 3,3'-DICHLOROBENZIDINE      |           | 1         |           |
| 3-NITROANILINE              |           | 1         |           |
| 4,6-DINITRO-2-METHYLPHENOL  |           | 1         |           |
| 4-BROMOPHENYL PHENYL ETHER  |           | 1         |           |
| 4-CHLORO-3-METHYLPHENOL     |           | 1         |           |
| 4-CHLOROANILINE             |           | -1        |           |
| 4-CHLOROPHENYL PHENYL ETHER |           | 1         |           |
| 4-NITROANILINE              |           | 1         |           |
| 4-NITROPHENOL               |           | 1         |           |
| ACETOPHENONE                |           | 1         |           |
| ANILINE                     |           | 1         |           |
| ATRAZINE                    |           | 1         |           |
| AZOBENZENE                  |           | -         |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           | 1         |           |
| BENZYL ALCOHOL              |           | -         |           |
| BIS(2-CHLOROETHOXY)METHANE  |           | -         |           |
| BIS(2-CHLOROETHYL)ETHER     |           | -         |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  |           | -         |           |
| BUTYL BENZYL PHTHALATE      |           | -         |           |
| CAPROLACTAM                 |           | -         |           |
| CARBAZOLE                   |           | -         |           |
| DIBENZOFURAN                |           |           |           |
| DIETHYL PHTHALATE           |           | -         |           |
| DIMETHYL PHTHALATE          |           |           |           |
| DI-N-BUTYL PHTHALATE        |           |           |           |
| DI-N-OCTYL PHTHALATE        |           |           |           |
| HEXACHLOROBENZENE           |           |           |           |
| HEXACHLOROBUTADIENE         |           |           |           |
| HEXACHLOROCYCLOPENTADIENE   |           |           |           |

| SOIL                           |           |           |           |
|--------------------------------|-----------|-----------|-----------|
| LOCATION                       | SB-236    | SB-237    | SB-237    |
| SAMPLE ID                      | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE                    | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| HEXACHLOROETHANE               |           |           |           |
| ISOPHORONE                     |           |           |           |
| NITROBENZENE                   |           |           |           |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     |           |           |           |
| N-NITROSODIPHENYLAMINE         |           |           |           |
| PENTACHLOROPHENOL              |           |           |           |
| PHENOL                         |           |           |           |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              |           |           |           |
| 1,1,1,2-TETRACHLOROETHANE      |           |           |           |
| 1,1,1-TRICHLOROETHANE          |           |           |           |
| 1,1,2,2-TETRACHLOROETHANE      |           |           |           |
| 1,1,2-TRICHLOROETHANE          |           |           |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |           |           |           |
| 1,1-DICHLOROETHANE             |           |           |           |
| 1,1-DICHLOROETHENE             |           |           |           |
| 1,1-DICHLOROPROPENE            |           |           |           |
| 1,2,3-TRICHLOROBENZENE         |           |           |           |
| 1,2,3-TRICHLOROPROPANE         |           |           |           |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         |           |           |           |
| 1,2,4-TRIMETHYLBENZENE         |           |           |           |
| 1,2-DIBROMO-3-CHLOROPROPANE    |           |           |           |
| 1,2-DIBROMOETHANE              |           |           |           |
| 1,2-DICHLOROBENZENE            |           |           |           |
| 1,2-DICHLOROETHANE             |           |           |           |
| 1,2-DICHLOROPROPANE            |           |           |           |
| 1,3,5-TRIMETHYLBENZENE         |           |           |           |
| 1,3-DICHLOROBENZENE            |           |           |           |
| 1,3-DICHLOROPROPANE            |           |           |           |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            |           |           |           |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            |           |           |           |
| 2-BUTANONE                     |           |           |           |
| 2-DOTANONE                     |           |           |           |
| 2-CHLOROETHYL VINYL ETHER      |           |           |           |

| LOCATION                | SB-236    | SB-237    | SB-237    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE             | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |           |           |           |
| 4-CHLOROTOLUENE         |           |           |           |
| 4-ISOPROPYLTOLUENE      |           |           |           |
| 4-METHYL-2-PENTANONE    |           |           |           |
| ACETONE                 |           |           |           |
| BENZENE                 |           |           |           |
| BROMOBENZENE            |           |           |           |
| BROMOCHLOROMETHANE      |           |           |           |
| BROMODICHLOROMETHANE    |           |           |           |
| BROMOFORM               |           |           |           |
| BROMOMETHANE            |           |           |           |
| CARBON DISULFIDE        |           |           |           |
| CARBON TETRACHLORIDE    |           |           |           |
| CHLOROBENZENE           |           |           |           |
| CHLORODIBROMOMETHANE    |           |           |           |
| CHLOROETHANE            |           |           |           |
| CHLOROFORM              |           |           |           |
| CHLOROMETHANE           |           |           |           |
| CIS-1,2-DICHLOROETHENE  |           |           |           |
| CIS-1,3-DICHLOROPROPENE |           |           |           |
| DIBROMOMETHANE          |           |           |           |
| DICHLORODIFLUOROMETHANE |           |           |           |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            |           |           |           |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        |           |           |           |
| M+P-XYLENES             |           |           |           |
| METHYL TERT-BUTYL ETHER |           |           |           |
| METHYLENE CHLORIDE      |           |           |           |
| NAPHTHALENE             |           |           |           |
| N-BUTYLBENZENE          |           |           |           |
| N-PROPYLBENZENE         |           |           |           |
| O-XYLENE                |           |           |           |
| SEC-BUTYLBENZENE        |           |           |           |
| STYRENE                 |           |           |           |
| TERT-AMYL METHYL ETHER  |           |           |           |

C3-PHENANTHRENES/ANTHRACENES

# SOIL

|                                          |           | T         | T         |
|------------------------------------------|-----------|-----------|-----------|
| LOCATION                                 | SB-236    | SB-237    | SB-237    |
| SAMPLE ID                                | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE                              | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| TERT-BUTYLBENZENE                        |           |           |           |
| TERTIARY-BUTYL ALCOHOL                   |           |           |           |
| TETRACHLOROETHENE                        |           |           |           |
| TOLUENE                                  |           |           |           |
| TOTAL 1,2-DICHLOROETHENE                 |           |           |           |
| TOTAL XYLENES                            |           |           |           |
| TRANS-1,2-DICHLOROETHENE                 |           |           |           |
| TRANS-1,3-DICHLOROPROPENE                |           |           |           |
| TRICHLOROETHENE                          |           |           |           |
| TRICHLOROFLUOROMETHANE                   |           |           |           |
| VINYL ACETATE                            |           |           |           |
| VINYL CHLORIDE                           |           |           |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |           |           |           |
| 1-METHYLNAPHTHALENE                      |           |           |           |
| 2-METHYLNAPHTHALENE                      |           |           |           |
| ACENAPHTHENE                             |           |           |           |
| ACENAPHTHYLENE                           |           |           |           |
| ANTHRACENE                               |           |           |           |
| BAP EQUIVALENT-HALFND                    |           |           |           |
| BAP EQUIVALENT-POS                       |           |           |           |
| BAP EQUIVALENT-UCL                       |           |           |           |
| BENZO(A)ANTHRACENE                       |           |           |           |
| BENZO(A)PYRENE                           |           |           |           |
| BENZO(B)FLUORANTHENE                     |           |           |           |
| BENZO(G,H,I)PERYLENE                     |           |           |           |
| BENZO(K)FLUORANTHENE                     |           |           |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C1-FLUORANTHENES/PYRENES                 |           |           |           |
| C1-FLUORENES                             |           |           |           |
| C1-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C2-FLUORENES                             |           |           |           |
| C2-NAPHTHALENES                          |           |           |           |
| C2-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C3-FLUORENES                             |           |           |           |
| C3-NAPHTHALENES                          |           |           |           |
|                                          |           | †         |           |

February 2013 Page A-313

---

---

| SOIL                             |           |           |           |
|----------------------------------|-----------|-----------|-----------|
| LOCATION                         | SB-236    | SB-237    | SB-237    |
| SAMPLE ID                        | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE                      | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         |           |           |           |
| DIBENZO(A,H)ANTHRACENE           |           |           |           |
| FLUORANTHENE                     |           |           |           |
| FLUORENE                         |           |           |           |
| INDENO(1,2,3-CD)PYRENE           |           |           |           |
| NAPHTHALENE                      |           |           |           |
| PHENANTHRENE                     |           |           |           |
| PYRENE                           |           |           |           |
| TOTAL PAHS                       |           |           |           |
| PESTICIDES/PCBS (UG/KG)          |           |           | •         |
| 4,4'-DDD                         |           |           |           |
| 4,4'-DDE                         |           |           |           |
| 4,4'-DDT                         |           |           |           |
| ALDRIN                           |           |           |           |
| ALPHA-BHC                        |           |           |           |
| ALPHA-CHLORDANE                  |           |           |           |
| AROCLOR-1016                     |           |           |           |
| AROCLOR-1221                     |           |           |           |
| AROCLOR-1232                     |           |           |           |
| AROCLOR-1242                     |           |           |           |
| AROCLOR-1248                     |           |           |           |
| AROCLOR-1254                     |           |           |           |
| AROCLOR-1260                     |           |           |           |
| BETA-BHC                         |           |           |           |
| DELTA-BHC                        |           |           |           |
| DIELDRIN                         |           |           |           |
| ENDOSULFAN I                     |           |           |           |
| ENDOSULFAN II                    |           |           |           |
| ENDOSULFAN SULFATE               |           |           |           |
| ENDRIN                           |           |           |           |
| ENDRIN ALDEHYDE                  |           |           |           |
| ENDRIN KETONE                    |           |           |           |
| GAMMA-BHC (LINDANE)              |           |           |           |
| GAMMA-CHLORDANE                  |           |           |           |
| GAIVIIVIA-CI ILONDANE            |           |           |           |

February 2013 Page A-314

| LOCATION           | SB-236    | SB-237    | SB-237    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-236-SS | SB-237-01 | SB-237-05 |
| SAMPLE DATE        | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| HEPTACHLOR EPOXIDE |           |           |           |
| METHOXYCHLOR       | 1         |           |           |
| TOTAL AROCLOR      | 1         |           |           |
| TOTAL DDT POS      |           |           |           |
| TOXAPHENE          |           |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-237            | SB-238            | SB-238            |
|------------------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                    | SB-237-SS         | SB-238-01         | SB-238-05         |
| SAMPLE DATE                  | 5/9/2005          | 5/17/2005         | 5/17/2005         |
| METALS (MG/KG)               | •                 | •                 |                   |
| ANTIMONY                     | 0.4 L [MDL=0.3]   | 0.3 UL [MDL=0.3]  | 0.30 L [MDL=0.3]  |
| ARSENIC                      | 3 B [MDL=0.6]     | 3.0 [MDL=0.7]     | 3.0 [MDL=0.6]     |
| BARIUM                       | 42 [MDL=0.3]      | 41.0 [MDL=0.3]    | 24.0 [MDL=0.3]    |
| BERYLLIUM                    | 1.6 [MDL=0.04]    | 1.8 [MDL=0.05]    | 2.0 [MDL=0.04]    |
| CADMIUM                      | 0.4 [MDL=0.05]    | 0.60 [MDL=0.06]   | 0.50 [MDL=0.05]   |
| CHROMIUM                     | 19.8 [MDL=0.2]    | 27.4 [MDL=0.2]    | 23.9 [MDL=0.2]    |
| COBALT                       | 5.6 [MDL=0.08]    | 8.4 [MDL=0.09]    | 14.8 [MDL=0.09]   |
| COPPER                       | 12 [MDL=0.3]      | 16.0 [MDL=0.3]    | 14.0 [MDL=0.3]    |
| LEAD                         | 8 B [MDL=0.3]     | 30.0 [MDL=0.3]    | 14.0 [MDL=0.3]    |
| MERCURY                      | 0.06 []           | 0.08 []           | 0.07 []           |
| MOLYBDENUM                   | 0.6 B [MDL=0.5]   | 0.80 B [MDL=0.6]  | 0.70 B [MDL=0.5]  |
| NICKEL                       | 12 [MDL=0.09]     | 22.0 [MDL=0.1]    | 27.0 [MDL=0.1]    |
| SELENIUM                     | 2 [MDL=2]         | 2.0 U [MDL=2]     | 2.0 U [MDL=2]     |
| SILVER                       | 0.05 U [MDL=0.05] | 0.06 U [MDL=0.06] | 0.05 U [MDL=0.05] |
| THALLIUM                     | 0.9 U [MDL=0.9]   | 1.0 U [MDL=1]     | 1.0 U [MDL=1]     |
| VANADIUM                     | 31 [MDL=0.2]      | 35.9 [MDL=0.2]    | 34.1 [MDL=0.2]    |
| ZINC                         | 28 [MDL=0.2]      | 54.0 [MDL=0.2]    | 57.0 [MDL=0.2]    |
| MISCELLANEOUS PARAMETERS     |                   |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             |                   |                   |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |                   | 0.36 U [MDL=0.4]  | 0.36 U [MDL=0.4]  |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        |                   |                   |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       |                   | 203 U [MDL=60]    | 206 U [MDL=60]    |
| 1,2-DICHLOROBENZENE          |                   | 203 U [MDL=30]    | 206 U [MDL=40]    |
| 1,3-DICHLOROBENZENE          |                   | 203 U [MDL=30]    | 206 U [MDL=30]    |
| 1,4-DICHLOROBENZENE          |                   | 203 U [MDL=30]    | 206 U [MDL=30]    |
| 1,4-DIOXANE                  |                   | 395 U [MDL=80.2]  | 400 U [MDL=81.2]  |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                   | 120 U [MDL=40]    | 121 U [MDL=40]    |
| 2,4,5-TRICHLOROPHENOL        |                   | 407 U [MDL=40]    | 412 U [MDL=40]    |
| 2,4,6-TRICHLOROPHENOL        |                   | 407 U [MDL=40]    | 412 U [MDL=40]    |
| 2,4-DICHLOROPHENOL           |                   | 407 U [MDL=30]    | 412 U [MDL=30]    |
| 2,4-DIMETHYLPHENOL           |                   | 407 U [MDL=40]    | 68 J [MDL=40]     |
| 2,4-DINITROPHENOL            |                   | 598 U [MDL=60]    | 606 U [MDL=60]    |

| LOCATION                    | SB-237    | SB-238           | SB-238           |
|-----------------------------|-----------|------------------|------------------|
| SAMPLE ID                   | SB-237-SS | SB-238-01        | SB-238-05        |
| SAMPLE DATE                 | 5/9/2005  | 5/17/2005        | 5/17/2005        |
| 2,4-DINITROTOLUENE          |           | 84 U [MDL=30]    | 85 U [MDL=30]    |
| 2,6-DINITROTOLUENE          |           | 84 U [MDL=40]    | 85 U [MDL=40]    |
| 2-CHLORONAPHTHALENE         |           | 203 U [MDL=30]   | 206 U [MDL=30]   |
| 2-CHLOROPHENOL              |           | 407 U [MDL=20]   | 412 U [MDL=20]   |
| 2-METHYLPHENOL              |           | 407 U [MDL=40]   | 412 U [MDL=40]   |
| 2-NITROANILINE              |           | 203 U [MDL=70]   | 206 U [MDL=70]   |
| 2-NITROPHENOL               |           | 407 U [MDL=30]   | 412 U [MDL=30]   |
| 3&4-METHYLPHENOL            |           | 802 U [MDL=30]   | 812 U [MDL=30]   |
| 3,3'-DICHLOROBENZIDINE      |           | 203 U [MDL=80]   | 206 U [MDL=80]   |
| 3-NITROANILINE              |           | 407 U [MDL=70]   | 412 U [MDL=70]   |
| 4,6-DINITRO-2-METHYLPHENOL  |           | 407 U [MDL=10]   | 412 U [MDL=10]   |
| 4-BROMOPHENYL PHENYL ETHER  |           | 120 U [MDL=40]   | 121 U [MDL=40]   |
| 4-CHLORO-3-METHYLPHENOL     |           | 407 U [MDL=40]   | 412 U [MDL=40]   |
| 4-CHLOROANILINE             |           | 407 U [MDL=50]   | 412 U [MDL=50]   |
| 4-CHLOROPHENYL PHENYL ETHER |           | 203 U [MDL=30]   | 206 U [MDL=30]   |
| 4-NITROANILINE              |           | 120 U [MDL=60]   | 121 U [MDL=60]   |
| 4-NITROPHENOL               |           | 407 U [MDL=40]   | 412 U [MDL=40]   |
| ACETOPHENONE                |           |                  |                  |
| ANILINE                     |           | 407 U [MDL=53.8] | 412 U [MDL=54.6] |
| ATRAZINE                    |           |                  |                  |
| AZOBENZENE                  |           | 203 U [MDL=22.7] | 206 U [MDL=23]   |
| BENZIDINE                   |           | 802 UR [MDL=251] | 812 UR [MDL=255] |
| BENZOIC ACID                |           | 802 U [MDL=34.7] | 812 U [MDL=35.2] |
| BENZYL ALCOHOL              |           | 407 U [MDL=33.5] | 412 U [MDL=33.9] |
| BIS(2-CHLOROETHOXY)METHANE  |           | 120 U [MDL=40]   | 121 U [MDL=40]   |
| BIS(2-CHLOROETHYL)ETHER     |           | 120 U [MDL=30]   | 121 U [MDL=30]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |           | 84 U [MDL=30]    | 85 U [MDL=30]    |
| BUTYL BENZYL PHTHALATE      |           | 203 U [MDL=20]   | 206 U [MDL=20]   |
| CAPROLACTAM                 |           |                  |                  |
| CARBAZOLE                   |           | 203 U [MDL=30]   | 5690 [MDL=300]   |
| DIBENZOFURAN                |           | 120 U [MDL=20]   | 3980 [MDL=20]    |
| DIETHYL PHTHALATE           |           | 407 U [MDL=20]   | 412 U [MDL=20]   |
| DIMETHYL PHTHALATE          |           | 407 U [MDL=20]   | 412 U [MDL=20]   |
| DI-N-BUTYL PHTHALATE        |           | 203 U [MDL=30]   | 206 U [MDL=30]   |
| DI-N-OCTYL PHTHALATE        |           | 203 U [MDL=20]   | 206 U [MDL=20]   |
| HEXACHLOROBENZENE           |           | 84 U [MDL=30]    | 85 U [MDL=30]    |
| HEXACHLOROBUTADIENE         |           | 203 U [MDL=40]   | 206 U [MDL=40]   |
| HEXACHLOROCYCLOPENTADIENE   |           | 407 U [MDL=30]   | 412 U [MDL=30]   |

2-CHLOROTOLUENE

| LOCATION                       | SB-237    | SB-238             | SB-238               |
|--------------------------------|-----------|--------------------|----------------------|
| SAMPLE ID                      | SB-237-SS | SB-238-01          | SB-238-05            |
| SAMPLE DATE                    | 5/9/2005  | 5/17/2005          | 5/17/2005            |
| HEXACHLOROETHANE               |           | 203 U [MDL=30]     | 206 U [MDL=40]       |
| ISOPHORONE                     |           | 120 U [MDL=30]     | 121 U [MDL=30]       |
| NITROBENZENE                   |           | 203 U [MDL=60]     | 206 U [MDL=70]       |
| N-NITROSODIMETHYLAMINE         |           | 120 U [MDL=45.5]   | 121 U [MDL=46.1]     |
| N-NITROSO-DI-N-PROPYLAMINE     |           | 120 U [MDL=40]     | 121 U [MDL=40]       |
| N-NITROSODIPHENYLAMINE         |           | 120 U [MDL=20]     | 81 J [MDL=20]        |
| PENTACHLOROPHENOL              |           | 1000 U [MDL=50]    | 1020 U [MDL=50]      |
| PHENOL                         |           | 407 U [MDL=50]     | 412 U [MDL=50]       |
| PYRIDINE                       |           | 407 U [MDL=50.2]   | 412 U [MDL=50.9]     |
| VOLATILES (UG/KG)              |           |                    |                      |
| 1,1,1,2-TETRACHLOROETHANE      |           | 2.2 U [MDL=0.5]    | 259 U [MDL=100]      |
| 1,1,1-TRICHLOROETHANE          |           | 2.2 U [MDL=0.3]    | 259 U [MDL=80]       |
| 1,1,2,2-TETRACHLOROETHANE      |           | 2.2 U [MDL=0.8]    | 259 U [MDL=100]      |
| 1,1,2-TRICHLOROETHANE          |           | 2.2 U [MDL=0.5]    | 259 U [MDL=100]      |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |           | 2.2 U [MDL=0.4]    | 259 U [MDL=100]      |
| 1,1-DICHLOROETHANE             |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]       |
| 1,1-DICHLOROETHENE             |           | 2.2 U [MDL=0.4]    | 259 U [MDL=100]      |
| 1,1-DICHLOROPROPENE            |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]       |
| 1,2,3-TRICHLOROBENZENE         |           | 2.2 U [MDL=0.7]    | 518 U [MDL=100]      |
| 1,2,3-TRICHLOROPROPANE         |           | 2.2 U [MDL=0.9]    | 518 U [MDL=200]      |
| 1,2,3-TRIMETHYLBENZENE         |           |                    |                      |
| 1,2,4-TRICHLOROBENZENE         |           | 2.2 U [MDL=0.9]    | 518 U [MDL=200]      |
| 1,2,4-TRIMETHYLBENZENE         |           | 2.2 U [MDL=0.5]    | 658 [MDL=100]        |
| 1,2-DIBROMO-3-CHLOROPROPANE    |           | 4.4 U [MDL=2]      | 1300 U [MDL=800]     |
| 1,2-DIBROMOETHANE              |           | 2.2 U [MDL=0.4]    | 259 U [MDL=100]      |
| 1,2-DICHLOROBENZENE            |           | 2.2 U [MDL=0.7]    | 259 U [MDL=80]       |
| 1,2-DICHLOROETHANE             |           | 2.2 U [MDL=0.7]    | 259 U [MDL=100]      |
| 1,2-DICHLOROPROPANE            |           | 2.2 U [MDL=0.5]    | 259 U [MDL=80]       |
| 1,3,5-TRIMETHYLBENZENE         |           | 2.19 U [MDL=0.765] | 139 J [MDL=100]      |
| 1,3-DICHLOROBENZENE            |           | 2.2 U [MDL=0.5]    | 259 U [MDL=100]      |
| 1,3-DICHLOROPROPANE            |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]       |
| 1,3-DICHLOROPROPENE            |           | 4.37 U [MDL=2.19]  | 518 U [MDL=80]       |
| 1,4-DICHLOROBENZENE            |           | 2.2 U [MDL=0.7]    | 259 U [MDL=80]       |
| 1,4-DIOXANE                    |           | 109 UR [MDL=30]    | 51800 UR [MDL=10000] |
| 2,2-DICHLOROPROPANE            |           | 2.2 U [MDL=0.5]    | 259 U [MDL=80]       |
| 2-BUTANONE                     |           | 2.87 J [MDL=2.19]  | 2590 U [MDL=500]     |
| 2-CHLOROETHYL VINYL ETHER      |           | 2.2 UR [MDL=0.1]   | 518 UR [MDL=100]     |

February 2013 Page A-318

---

---

| LOCATION                | SB-237    | SB-238             | SB-238            |
|-------------------------|-----------|--------------------|-------------------|
| SAMPLE ID               | SB-237-SS | SB-238-01          | SB-238-05         |
| SAMPLE DATE             | 5/9/2005  | 5/17/2005          | 5/17/2005         |
| 2-HEXANONE              |           | 8.75 U [MDL=2.19]  | 2590 U [MDL=500]  |
| 4-CHLOROTOLUENE         |           | 2.19 U [MDL=0.437] | 259 U [MDL=100]   |
| 4-ISOPROPYLTOLUENE      |           | 2.2 U [MDL=0.5]    | 165 J [MDL=100]   |
| 4-METHYL-2-PENTANONE    |           | 8.7 U [MDL=1]      | 1040 U [MDL=300]  |
| ACETONE                 |           | 27.2 J [MDL=3]     | 2590 UR [MDL=500] |
| BENZENE                 |           | 2.19 U [MDL=0.437] | 259 U [MDL=50]    |
| BROMOBENZENE            |           | 2.2 U [MDL=0.7]    | 259 U [MDL=100]   |
| BROMOCHLOROMETHANE      |           | 2.2 U [MDL=0.8]    | 259 U [MDL=100]   |
| BROMODICHLOROMETHANE    |           | 2.2 U [MDL=0.5]    | 259 U [MDL=100]   |
| BROMOFORM               |           | 2.2 U [MDL=0.9]    | 259 U [MDL=100]   |
| BROMOMETHANE            |           | 2.2 U [MDL=0.9]    | 259 U [MDL=100]   |
| CARBON DISULFIDE        |           | 0.72 J [MDL=0.5]   | 259 U [MDL=80]    |
| CARBON TETRACHLORIDE    |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]    |
| CHLOROBENZENE           |           | 2.2 U [MDL=0.7]    | 259 U [MDL=80]    |
| CHLORODIBROMOMETHANE    |           | 2.2 U [MDL=0.3]    | 259 U [MDL=80]    |
| CHLOROETHANE            |           | 2.2 U [MDL=0.8]    | 259 U [MDL=100]   |
| CHLOROFORM              |           | 2.2 U [MDL=0.5]    | 259 U [MDL=80]    |
| CHLOROMETHANE           |           | 2.2 U [MDL=0.9]    | 259 U [MDL=80]    |
| CIS-1,2-DICHLOROETHENE  |           | 2.2 U [MDL=0.5]    | 259 U [MDL=80]    |
| CIS-1,3-DICHLOROPROPENE |           | 2.2 U [MDL=0.5]    | 259 U [MDL=50]    |
| DIBROMOMETHANE          |           | 2.2 U [MDL=0.7]    | 259 U [MDL=100]   |
| DICHLORODIFLUOROMETHANE |           | 2.2 U [MDL=0.7]    | 259 U [MDL=100]   |
| DIISOPROPYL ETHER       |           | 2.2 U [MDL=0.4]    | 259 U [MDL=50]    |
| ETHYL TERT-BUTYL ETHER  |           | 2.2 U [MDL=0.3]    | 259 U [MDL=80]    |
| ETHYLBENZENE            |           | 2.2 U [MDL=0.3]    | 394 [MDL=80]      |
| FLUORODICHLOROMETHANE   |           | 2.2 U [MDL=0.8]    | 259 U [MDL=100]   |
| HEXACHLOROBUTADIENE     |           | 2.2 U [MDL=0.8]    | 777 U [MDL=500]   |
| ISOPROPYLBENZENE        |           | 2.2 U [MDL=0.5]    | 83.1 J [MDL=50]   |
| M+P-XYLENES             |           | 4.4 U [MDL=0.8]    | 270 J [MDL=200]   |
| METHYL TERT-BUTYL ETHER |           | 2.2 U [MDL=0.4]    | 259 U [MDL=50]    |
| METHYLENE CHLORIDE      |           | 3.3 J [MDL=2]      | 147 J [MDL=100]   |
| NAPHTHALENE             |           | 2.2 U [MDL=0.5]    | 159000 [MDL=2000] |
| N-BUTYLBENZENE          |           | 2.2 U [MDL=0.7]    | 125 J [MDL=100]   |
| N-PROPYLBENZENE         |           | 2.2 U [MDL=0.4]    | 259 U [MDL=100]   |
| O-XYLENE                |           | 2.2 U [MDL=0.4]    | 186 J [MDL=80]    |
| SEC-BUTYLBENZENE        |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]    |
| STYRENE                 |           | 2.2 U [MDL=0.4]    | 259 U [MDL=80]    |
| TERT-AMYL METHYL ETHER  |           | 2.2 U [MDL=0.4]    | 259 U [MDL=50]    |

| LOCATION                                 | SB-237    | SB-238              | SB-238            |
|------------------------------------------|-----------|---------------------|-------------------|
| SAMPLE ID                                | SB-237-SS | SB-238-01           | SB-238-05         |
| SAMPLE DATE                              | 5/9/2005  | 5/17/2005           | 5/17/2005         |
| TERT-BUTYLBENZENE                        |           | 2.2 U [MDL=0.7]     | 518 U [MDL=200]   |
| TERTIARY-BUTYL ALCOHOL                   |           | 9 U [MDL=2]         | 3890 U [MDL=1000] |
| TETRACHLOROETHENE                        |           | 2.2 U [MDL=0.5]     | 259 U [MDL=80]    |
| TOLUENE                                  |           | 1.9 J [MDL=0.9]     | 259 U [MDL=80]    |
| TOTAL 1,2-DICHLOROETHENE                 |           |                     |                   |
| TOTAL XYLENES                            |           | 6.6 U [MDL=1]       | 456 J [MDL=200]   |
| TRANS-1,2-DICHLOROETHENE                 |           | 2.2 U [MDL=0.7]     | 259 U [MDL=80]    |
| TRANS-1,3-DICHLOROPROPENE                |           | 2.2 U [MDL=0.8]     | 259 U [MDL=80]    |
| TRICHLOROETHENE                          |           | 2.2 U [MDL=0.5]     | 259 U [MDL=80]    |
| TRICHLOROFLUOROMETHANE                   |           | 2.2 U [MDL=0.4]     | 259 U [MDL=100]   |
| VINYL ACETATE                            |           | 2.2 U [MDL=0.4]     | 518 U [MDL=100]   |
| VINYL CHLORIDE                           |           | 2.2 U [MDL=0.5]     | 259 UJ [MDL=80]   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |           |                     |                   |
| 1-METHYLNAPHTHALENE                      |           | 83.7 U [MDL=26.3]   | 3420 [MDL=26.7]   |
| 2-METHYLNAPHTHALENE                      |           | 84 U [MDL=30]       | 6900 [MDL=300]    |
| ACENAPHTHENE                             |           | 84 U [MDL=30]       | 6960 [MDL=300]    |
| ACENAPHTHYLENE                           |           | 84 U [MDL=30]       | 69 J [MDL=30]     |
| ANTHRACENE                               |           | 84 U [MDL=20]       | 2510 [MDL=20]     |
| BAP EQUIVALENT-HALFND                    |           | 140.162 [MDL=30]    | 2962.9 [MDL=30]   |
| BAP EQUIVALENT-POS                       |           | 98.162 [MDL=30]     | 2962.9 [MDL=30]   |
| BAP EQUIVALENT-UCL                       |           | 137.587452 [MDL=30] | 2962.9 [MDL=30]   |
| BENZO(A)ANTHRACENE                       |           | 75 J [MDL=20]       | 2700 [MDL=20]     |
| BENZO(A)PYRENE                           |           | 74 J [MDL=30]       | 1960 [MDL=30]     |
| BENZO(B)FLUORANTHENE                     |           | 90 [MDL=30]         | 2080 [MDL=30]     |
| BENZO(G,H,I)PERYLENE                     |           | 75 J [MDL=40]       | 1240 J [MDL=40]   |
| BENZO(K)FLUORANTHENE                     |           | 87 [MDL=30]         | 2010 [MDL=30]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |                     |                   |
| C1-FLUORANTHENES/PYRENES                 |           |                     |                   |
| C1-FLUORENES                             |           |                     |                   |
| C1-PHENANTHRENES/ANTHRACENES             |           |                     |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |                     |                   |
| C2-FLUORENES                             |           |                     |                   |
| C2-NAPHTHALENES                          |           |                     |                   |
| C2-PHENANTHRENES/ANTHRACENES             |           |                     |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |                     |                   |
| C3-FLUORENES                             |           |                     |                   |
| C3-NAPHTHALENES                          |           |                     |                   |
| C3-PHENANTHRENES/ANTHRACENES             |           |                     |                   |

February 2013 Page A-320

HEPTACHLOR

| OOIL                             |           |                  |                  |
|----------------------------------|-----------|------------------|------------------|
| LOCATION                         | SB-237    | SB-238           | SB-238           |
| SAMPLE ID                        | SB-237-SS | SB-238-01        | SB-238-05        |
| SAMPLE DATE                      | 5/9/2005  | 5/17/2005        | 5/17/2005        |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |                  |                  |
| C4-NAPHTHALENES                  |           |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES     |           |                  |                  |
| CHRYSENE                         |           | 92 [MDL=20]      | 1800 [MDL=20]    |
| DIBENZO(A,H)ANTHRACENE           |           | 84 U [MDL=30]    | 392 J [MDL=30]   |
| FLUORANTHENE                     |           | 142 [MDL=30]     | 10000 [MDL=300]  |
| FLUORENE                         |           | 84 U [MDL=20]    | 6330 [MDL=200]   |
| INDENO(1,2,3-CD)PYRENE           |           | 67 J [MDL=40]    | 1110 J [MDL=40]  |
| NAPHTHALENE                      |           | 84 U [MDL=30]    | 31000 [MDL=2000] |
| PHENANTHRENE                     |           | 58 J [MDL=20]    | 18600 [MDL=200]  |
| PYRENE                           |           | 120 [MDL=20]     | 7570 [MDL=200]   |
| TOTAL PAHS                       |           | 880 [MDL=30]     | 103231 [MDL=30]  |
| PESTICIDES/PCBS (UG/KG)          | •         |                  |                  |
| 4,4'-DDD                         |           |                  |                  |
| 4,4'-DDE                         |           |                  |                  |
| 4,4'-DDT                         |           |                  |                  |
| ALDRIN                           |           |                  |                  |
| ALPHA-BHC                        |           |                  |                  |
| ALPHA-CHLORDANE                  |           |                  |                  |
| AROCLOR-1016                     |           | 39 U [MDL=0.01]  | 39 U [MDL=0.01]  |
| AROCLOR-1221                     |           | 39 U [MDL=0.007] | 39 U [MDL=0.007] |
| AROCLOR-1232                     |           | 39 U [MDL=0.01]  | 39 U [MDL=0.01]  |
| AROCLOR-1242                     |           | 39 U [MDL=0.007] | 39 U [MDL=0.007] |
| AROCLOR-1248                     |           | 39 U [MDL=0.01]  | 39 U [MDL=0.009] |
| AROCLOR-1254                     |           | 39 U [MDL=0.01]  | 39 U [MDL=0.009] |
| AROCLOR-1260                     |           | 39 U [MDL=0.007] | 39 U [MDL=0.007] |
| BETA-BHC                         |           |                  |                  |
| DELTA-BHC                        |           |                  |                  |
| DIELDRIN                         |           |                  |                  |
| ENDOSULFAN I                     |           |                  |                  |
| ENDOSULFAN II                    |           |                  |                  |
| ENDOSULFAN SULFATE               |           |                  |                  |
| ENDRIN                           |           |                  |                  |
| ENDRIN ALDEHYDE                  |           |                  |                  |
| ENDRIN KETONE                    |           |                  |                  |
| GAMMA-BHC (LINDANE)              |           |                  |                  |
| GAMMA-CHLORDANE                  |           |                  |                  |
|                                  |           |                  |                  |

February 2013 Page A-321

--

---

| LOCATION           | SB-237    | SB-238         | SB-238         |
|--------------------|-----------|----------------|----------------|
| SAMPLE ID          | SB-237-SS | SB-238-01      | SB-238-05      |
| SAMPLE DATE        | 5/9/2005  | 5/17/2005      | 5/17/2005      |
| HEPTACHLOR EPOXIDE |           |                |                |
| METHOXYCHLOR       | -         | -              |                |
| TOTAL AROCLOR      | -         | 0 U [MDL=0.01] | 0 U [MDL=0.01] |
| TOTAL DDT POS      | -         | -              |                |
| TOXAPHENE          | -         |                |                |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |             | 55700 [MDL=0.6]    | 881000 [MDL=10]  |
|-------------------------|-------------|--------------------|------------------|
| GASOLINE RANGE ORGANICS |             | 10300 U [MDL=3000] | 21200 [MDL=4000] |
| TPH (C09-C36)           | <del></del> |                    |                  |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-238            | SB-250            | SB-250            |
|------------------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                    | SB-238-SS         | SB-250-02         | SB-250-SS         |
| SAMPLE DATE                  | 5/17/2005         | 5/9/2005          | 5/9/2005          |
| METALS (MG/KG)               | •                 |                   |                   |
| ANTIMONY                     | 1.0 L [MDL=0.3]   | 0.6 L [MDL=0.3]   | 0.8 L [MDL=0.3]   |
| ARSENIC                      | 3.0 [MDL=0.7]     | 3 B [MDL=0.7]     | 1 B [MDL=0.6]     |
| BARIUM                       | 86.0 [MDL=0.3]    | 30 [MDL=0.3]      | 37 [MDL=0.3]      |
| BERYLLIUM                    | 1.3 [MDL=0.04]    | 1 [MDL=0.05]      | 0.7 [MDL=0.04]    |
| CADMIUM                      | 2.0 [MDL=0.06]    | 0.2 B [MDL=0.06]  | 0.2 B [MDL=0.05]  |
| CHROMIUM                     | 36.4 [MDL=0.2]    | 15.5 [MDL=0.2]    | 11.8 [MDL=0.2]    |
| COBALT                       | 6.4 [MDL=0.09]    | 2.8 [MDL=0.09]    | 5.8 [MDL=0.08]    |
| COPPER                       | 23.0 [MDL=0.3]    | 10 [MDL=0.3]      | 6 [MDL=0.3]       |
| LEAD                         | 148 [MDL=0.3]     | 5 B [MDL=0.3]     | 17 [MDL=0.3]      |
| MERCURY                      | 0.24 []           | 0.03 []           | 0.04 []           |
| MOLYBDENUM                   | 1.0 B [MDL=0.6]   | 0.6 B [MDL=0.6]   | 0.5 B [MDL=0.5]   |
| NICKEL                       | 21.0 [MDL=0.1]    | 6 B [MDL=0.1]     | 8 [MDL=0.1]       |
| SELENIUM                     | 2.0 U [MDL=2]     | 2 U [MDL=2]       | 2 [MDL=2]         |
| SILVER                       | 0.06 U [MDL=0.06] | 0.06 U [MDL=0.06] | 0.05 B [MDL=0.05] |
| THALLIUM                     | 1.0 U [MDL=1]     | 1 U [MDL=1]       | 1 U [MDL=1]       |
| VANADIUM                     | 49.0 [MDL=0.2]    | 27.2 [MDL=0.2]    | 20.5 [MDL=0.2]    |
| ZINC                         | 167 [MDL=0.2]     | 25 [MDL=0.2]      | 32 [MDL=0.2]      |
| MISCELLANEOUS PARAMETERS     | <u>.</u>          |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             |                   |                   |                   |
| HEXAVALENT CHROMIUM (MG/KG)  | 0.49 [MDL=0.3]    |                   |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        |                   |                   |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       | 191 U [MDL=60]    |                   |                   |
| 1,2-DICHLOROBENZENE          | 191 U [MDL=30]    |                   |                   |
| 1,3-DICHLOROBENZENE          | 191 U [MDL=20]    |                   |                   |
| 1,4-DICHLOROBENZENE          | 191 U [MDL=20]    |                   |                   |
| 1,4-DIOXANE                  | 371 U [MDL=75.2]  |                   |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 112 U [MDL=40]    |                   |                   |
| 2,4,5-TRICHLOROPHENOL        | 382 UJ [MDL=30]   |                   |                   |
| 2,4,6-TRICHLOROPHENOL        | 382 UJ [MDL=40]   |                   |                   |
| 2,4-DICHLOROPHENOL           | 382 U [MDL=30]    |                   |                   |
| 2,4-DIMETHYLPHENOL           | 382 U [MDL=40]    |                   |                   |
| 2,4-DINITROPHENOL            | 562 UJ [MDL=60]   |                   |                   |

| LOCATION                    | SB-238           | SB-250    | SB-250    |
|-----------------------------|------------------|-----------|-----------|
| SAMPLE ID                   | SB-238-SS        | SB-250-02 | SB-250-SS |
| SAMPLE DATE                 | 5/17/2005        | 5/9/2005  | 5/9/2005  |
| 2,4-DINITROTOLUENE          | 79 UJ [MDL=20]   |           |           |
| 2,6-DINITROTOLUENE          | 79 UJ [MDL=30]   |           |           |
| 2-CHLORONAPHTHALENE         | 191 UJ [MDL=20]  |           |           |
| 2-CHLOROPHENOL              | 382 U [MDL=20]   |           |           |
| 2-METHYLPHENOL              | 382 U [MDL=30]   |           |           |
| 2-NITROANILINE              | 191 UJ [MDL=60]  |           |           |
| 2-NITROPHENOL               | 382 U [MDL=30]   |           |           |
| 3&4-METHYLPHENOL            | 752 U [MDL=30]   |           |           |
| 3,3'-DICHLOROBENZIDINE      | 191 UJ [MDL=80]  |           |           |
| 3-NITROANILINE              | 382 UJ [MDL=60]  |           |           |
| 4,6-DINITRO-2-METHYLPHENOL  | 382 U [MDL=10]   |           |           |
| 4-BROMOPHENYL PHENYL ETHER  | 112 U [MDL=40]   |           |           |
| 4-CHLORO-3-METHYLPHENOL     | 382 U [MDL=30]   |           |           |
| 4-CHLOROANILINE             | 382 U [MDL=50]   |           |           |
| 4-CHLOROPHENYL PHENYL ETHER | 191 UJ [MDL=20]  |           |           |
| 4-NITROANILINE              | 112 UJ [MDL=50]  |           |           |
| 4-NITROPHENOL               | 382 UJ [MDL=40]  |           |           |
| ACETOPHENONE                |                  |           |           |
| ANILINE                     | 382 U [MDL=50.5] |           |           |
| ATRAZINE                    |                  |           |           |
| AZOBENZENE                  | 191 U [MDL=21.3] |           |           |
| BENZIDINE                   | 752 UR [MDL=236] |           |           |
| BENZOIC ACID                | 752 U [MDL=32.6] |           |           |
| BENZYL ALCOHOL              | 382 U [MDL=31.4] |           |           |
| BIS(2-CHLOROETHOXY)METHANE  | 112 U [MDL=40]   |           |           |
| BIS(2-CHLOROETHYL)ETHER     | 112 U [MDL=30]   |           |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 79 UJ [MDL=30]   |           |           |
| BUTYL BENZYL PHTHALATE      | 191 UJ [MDL=20]  |           |           |
| CAPROLACTAM                 |                  |           |           |
| CARBAZOLE                   | 40 J [MDL=20]    |           |           |
| DIBENZOFURAN                | 112 UJ [MDL=20]  |           |           |
| DIETHYL PHTHALATE           | 382 UJ [MDL=20]  |           |           |
| DIMETHYL PHTHALATE          | 382 UJ [MDL=20]  |           |           |
| DI-N-BUTYL PHTHALATE        | 191 U [MDL=30]   |           |           |
| DI-N-OCTYL PHTHALATE        | 191 UJ [MDL=20]  |           |           |
| HEXACHLOROBENZENE           | 79 U [MDL=20]    |           |           |
| HEXACHLOROBUTADIENE         | 191 U [MDL=40]   |           |           |
| HEXACHLOROCYCLOPENTADIENE   | 382 UJ [MDL=30]  |           |           |

2-CHLOROTOLUENE

| LOCATION                       | SB-238             | SB-250      | SB-250    |
|--------------------------------|--------------------|-------------|-----------|
| SAMPLE ID                      | SB-238-SS          | SB-250-02   | SB-250-SS |
| SAMPLE DATE                    | 5/17/2005          | 5/9/2005    | 5/9/2005  |
| HEXACHLOROETHANE               | 191 U [MDL=30]     |             |           |
| ISOPHORONE                     | 112 U [MDL=30]     |             |           |
| NITROBENZENE                   | 191 U [MDL=60]     |             |           |
| N-NITROSODIMETHYLAMINE         | 112 U [MDL=42.7]   |             |           |
| N-NITROSO-DI-N-PROPYLAMINE     | 112 U [MDL=30]     |             |           |
| N-NITROSODIPHENYLAMINE         | 112 U [MDL=20]     |             |           |
| PENTACHLOROPHENOL              | 943 U [MDL=50]     |             |           |
| PHENOL                         | 382 U [MDL=40]     |             |           |
| PYRIDINE                       | 382 U [MDL=47.2]   |             |           |
| VOLATILES (UG/KG)              | •                  |             |           |
| 1,1,1,2-TETRACHLOROETHANE      | 2.6 U [MDL=0.6]    |             |           |
| 1,1,1-TRICHLOROETHANE          | 2.6 U [MDL=0.4]    |             |           |
| 1,1,2,2-TETRACHLOROETHANE      | 2.6 U [MDL=0.9]    |             |           |
| 1,1,2-TRICHLOROETHANE          | 2.6 U [MDL=0.6]    |             |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 2.6 U [MDL=0.5]    |             |           |
| 1,1-DICHLOROETHANE             | 2.6 U [MDL=0.5]    |             |           |
| 1,1-DICHLOROETHENE             | 2.6 U [MDL=0.5]    |             |           |
| 1,1-DICHLOROPROPENE            | 2.6 U [MDL=0.5]    |             |           |
| 1,2,3-TRICHLOROBENZENE         | 2.6 U [MDL=0.8]    |             |           |
| 1,2,3-TRICHLOROPROPANE         | 2.6 U [MDL=1]      |             |           |
| 1,2,3-TRIMETHYLBENZENE         |                    |             |           |
| 1,2,4-TRICHLOROBENZENE         | 2.6 U [MDL=1]      |             |           |
| 1,2,4-TRIMETHYLBENZENE         | 2.6 U [MDL=0.6]    |             |           |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 5.2 U [MDL=3]      | <del></del> |           |
| 1,2-DIBROMOETHANE              | 2.6 U [MDL=0.5]    | <del></del> |           |
| 1,2-DICHLOROBENZENE            | 2.6 U [MDL=0.8]    | <del></del> |           |
| 1,2-DICHLOROETHANE             | 2.6 U [MDL=0.8]    | <del></del> |           |
| 1,2-DICHLOROPROPANE            | 2.6 U [MDL=0.6]    | <del></del> |           |
| 1,3,5-TRIMETHYLBENZENE         | 2.59 U [MDL=0.906] | <del></del> |           |
| 1,3-DICHLOROBENZENE            | 2.6 U [MDL=0.6]    | <del></del> |           |
| 1,3-DICHLOROPROPANE            | 2.6 U [MDL=0.5]    | <del></del> |           |
| 1,3-DICHLOROPROPENE            | 5.18 U [MDL=2.59]  |             |           |
| 1,4-DICHLOROBENZENE            | 2.6 U [MDL=0.8]    |             |           |
| 1,4-DIOXANE                    | 129 UR [MDL=40]    |             |           |
| 2,2-DICHLOROPROPANE            | 2.6 U [MDL=0.6]    |             |           |
| 2-BUTANONE                     | 3.14 J [MDL=2.59]  |             |           |
| 2-CHLOROETHYL VINYL ETHER      | 2.6 UR [MDL=0.1]   |             |           |
| ·                              | -                  |             |           |

February 2013 Page A-325

---

---

| LOCATION                | SB-238             | SB-250      | SB-250    |
|-------------------------|--------------------|-------------|-----------|
| SAMPLE ID               | SB-238-SS          | SB-250-02   | SB-250-SS |
| SAMPLE DATE             | 5/17/2005          | 5/9/2005    | 5/9/2005  |
| 2-HEXANONE              | 10.4 U [MDL=2.59]  |             |           |
| 4-CHLOROTOLUENE         | 2.59 U [MDL=0.518] |             |           |
| 4-ISOPROPYLTOLUENE      | 2.6 U [MDL=0.6]    |             |           |
| 4-METHYL-2-PENTANONE    | 10.4 U [MDL=1]     |             |           |
| ACETONE                 | 31 J [MDL=4]       |             |           |
| BENZENE                 | 2.59 U [MDL=0.518] |             |           |
| BROMOBENZENE            | 2.6 U [MDL=0.8]    |             |           |
| BROMOCHLOROMETHANE      | 2.6 U [MDL=0.9]    |             |           |
| BROMODICHLOROMETHANE    | 2.6 U [MDL=0.6]    |             |           |
| BROMOFORM               | 2.6 U [MDL=1]      |             |           |
| BROMOMETHANE            | 2.6 U [MDL=1]      |             |           |
| CARBON DISULFIDE        | 7.1 [MDL=0.6]      |             |           |
| CARBON TETRACHLORIDE    | 2.6 U [MDL=0.5]    |             |           |
| CHLOROBENZENE           | 2.6 U [MDL=0.8]    |             |           |
| CHLORODIBROMOMETHANE    | 2.6 U [MDL=0.4]    |             |           |
| CHLOROETHANE            | 2.6 U [MDL=0.9]    |             |           |
| CHLOROFORM              | 2.6 U [MDL=0.6]    |             |           |
| CHLOROMETHANE           | 2.6 U [MDL=1]      |             |           |
| CIS-1,2-DICHLOROETHENE  | 2.6 U [MDL=0.6]    |             |           |
| CIS-1,3-DICHLOROPROPENE | 2.6 U [MDL=0.6]    |             |           |
| DIBROMOMETHANE          | 2.6 U [MDL=0.8]    |             |           |
| DICHLORODIFLUOROMETHANE | 2.6 U [MDL=0.8]    |             |           |
| DIISOPROPYL ETHER       | 2.6 U [MDL=0.5]    |             |           |
| ETHYL TERT-BUTYL ETHER  | 2.6 U [MDL=0.4]    |             |           |
| ETHYLBENZENE            | 2.6 U [MDL=0.4]    |             |           |
| FLUORODICHLOROMETHANE   | 2.6 U [MDL=0.9]    |             |           |
| HEXACHLOROBUTADIENE     | 2.6 U [MDL=0.9]    |             |           |
| ISOPROPYLBENZENE        | 2.6 U [MDL=0.6]    | <del></del> |           |
| M+P-XYLENES             | 5.2 U [MDL=0.9]    |             |           |
| METHYL TERT-BUTYL ETHER | 2.6 U [MDL=0.5]    |             |           |
| METHYLENE CHLORIDE      | 5.2 U [MDL=3]      |             |           |
| NAPHTHALENE             | 2.6 U [MDL=0.6]    |             |           |
| N-BUTYLBENZENE          | 2.6 U [MDL=0.8]    |             |           |
| N-PROPYLBENZENE         | 2.6 U [MDL=0.5]    |             |           |
| O-XYLENE                | 2.6 U [MDL=0.5]    |             |           |
| SEC-BUTYLBENZENE        | 2.6 U [MDL=0.5]    |             |           |
| STYRENE                 | 2.6 U [MDL=0.5]    | <del></del> |           |
| TERT-AMYL METHYL ETHER  | 2.6 U [MDL=0.5]    |             |           |

| LOCATION                                 | SB-238            | SB-250    | SB-250    |
|------------------------------------------|-------------------|-----------|-----------|
| SAMPLE ID                                | SB-238-SS         | SB-250-02 | SB-250-SS |
| SAMPLE DATE                              | 5/17/2005         | 5/9/2005  | 5/9/2005  |
| TERT-BUTYLBENZENE                        | 2.6 U [MDL=0.8]   |           |           |
| TERTIARY-BUTYL ALCOHOL                   | 10 U [MDL=3]      |           |           |
| TETRACHLOROETHENE                        | 2.6 U [MDL=0.6]   |           |           |
| TOLUENE                                  | 1.2 J [MDL=1]     |           |           |
| TOTAL 1,2-DICHLOROETHENE                 |                   |           |           |
| TOTAL XYLENES                            | 7.8 U [MDL=1]     |           |           |
| TRANS-1,2-DICHLOROETHENE                 | 2.6 U [MDL=0.8]   |           |           |
| TRANS-1,3-DICHLOROPROPENE                | 2.6 U [MDL=0.9]   |           |           |
| TRICHLOROETHENE                          | 2.6 U [MDL=0.6]   |           |           |
| TRICHLOROFLUOROMETHANE                   | 2.6 U [MDL=0.5]   |           |           |
| VINYL ACETATE                            | 2.6 U [MDL=0.5]   |           |           |
| VINYL CHLORIDE                           | 2.6 U [MDL=0.6]   |           |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |           |           |
| 1-METHYLNAPHTHALENE                      | 78.6 U [MDL=24.7] |           |           |
| 2-METHYLNAPHTHALENE                      | 79 U [MDL=30]     |           |           |
| ACENAPHTHENE                             | 79 UJ [MDL=30]    |           |           |
| ACENAPHTHYLENE                           | 79 UJ [MDL=30]    |           |           |
| ANTHRACENE                               | 54 J [MDL=20]     |           |           |
| BAP EQUIVALENT-HALFND                    | 424.437 [MDL=30]  |           |           |
| BAP EQUIVALENT-POS                       | 424.437 [MDL=30]  |           |           |
| BAP EQUIVALENT-UCL                       | 424.437 [MDL=30]  |           |           |
| BENZO(A)ANTHRACENE                       | 241 J [MDL=20]    |           |           |
| BENZO(A)PYRENE                           | 245 J [MDL=30]    |           |           |
| BENZO(B)FLUORANTHENE                     | 254 J [MDL=30]    |           |           |
| BENZO(G,H,I)PERYLENE                     | 344 J [MDL=40]    |           |           |
| BENZO(K)FLUORANTHENE                     | 225 J [MDL=20]    |           |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |           |           |
| C1-FLUORANTHENES/PYRENES                 |                   |           |           |
| C1-FLUORENES                             |                   |           |           |
| C1-PHENANTHRENES/ANTHRACENES             |                   |           |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |           |           |
| C2-FLUORENES                             |                   |           |           |
| C2-NAPHTHALENES                          |                   |           |           |
| C2-PHENANTHRENES/ANTHRACENES             |                   |           |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |           |           |
| C3-FLUORENES                             |                   |           |           |
| C3-NAPHTHALENES                          |                   |           |           |
| C3-PHENANTHRENES/ANTHRACENES             |                   |           |           |

| OOL                              |                  |             |           |
|----------------------------------|------------------|-------------|-----------|
| LOCATION                         | SB-238           | SB-250      | SB-250    |
| SAMPLE ID                        | SB-238-SS        | SB-250-02   | SB-250-SS |
| SAMPLE DATE                      | 5/17/2005        | 5/9/2005    | 5/9/2005  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |             |           |
| C4-NAPHTHALENES                  |                  |             |           |
| C4-PHENANTHRENES/ANTHRACENES     |                  |             |           |
| CHRYSENE                         | 287 J [MDL=20]   |             |           |
| DIBENZO(A,H)ANTHRACENE           | 100 J [MDL=30]   |             |           |
| FLUORANTHENE                     | 546 [MDL=30]     |             |           |
| FLUORENE                         | 79 UJ [MDL=20]   |             |           |
| INDENO(1,2,3-CD)PYRENE           | 274 J [MDL=30]   |             |           |
| NAPHTHALENE                      | 79 U [MDL=30]    |             |           |
| PHENANTHRENE                     | 249 [MDL=20]     |             |           |
| PYRENE                           | 685 J [MDL=20]   |             |           |
| TOTAL PAHS                       | 3504 [MDL=30]    |             |           |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>         |             |           |
| 4,4'-DDD                         |                  |             |           |
| 4,4'-DDE                         |                  |             |           |
| 4,4'-DDT                         |                  |             |           |
| ALDRIN                           |                  |             |           |
| ALPHA-BHC                        |                  |             |           |
| ALPHA-CHLORDANE                  |                  |             |           |
| AROCLOR-1016                     | 37 U [MDL=0.01]  |             |           |
| AROCLOR-1221                     | 37 U [MDL=0.007] |             |           |
| AROCLOR-1232                     | 37 U [MDL=0.01]  |             |           |
| AROCLOR-1242                     | 37 U [MDL=0.007] |             |           |
| AROCLOR-1248                     | 37 U [MDL=0.009] |             |           |
| AROCLOR-1254                     | 37 U [MDL=0.009] |             |           |
| AROCLOR-1260                     | 154 [MDL=0.007]  |             |           |
| BETA-BHC                         |                  |             |           |
| DELTA-BHC                        |                  |             |           |
| DIELDRIN                         |                  |             |           |
| ENDOSULFAN I                     |                  |             |           |
| ENDOSULFAN II                    |                  |             |           |
| ENDOSULFAN SULFATE               |                  |             |           |
| ENDRIN                           |                  |             |           |
| ENDRIN ALDEHYDE                  |                  |             |           |
| ENDRIN KETONE                    |                  |             |           |
| GAMMA-BHC (LINDANE)              |                  |             |           |
| GAMMA-CHLORDANE                  |                  |             |           |
| HEPTACHLOR                       |                  | <del></del> |           |

February 2013 Page A-328

| LOCATION           | SB-238         | SB-250    | SB-250    |
|--------------------|----------------|-----------|-----------|
| SAMPLE ID          | SB-238-SS      | SB-250-02 | SB-250-SS |
| SAMPLE DATE        | 5/17/2005      | 5/9/2005  | 5/9/2005  |
| HEPTACHLOR EPOXIDE |                |           |           |
| METHOXYCHLOR       | 1              |           |           |
| TOTAL AROCLOR      | 154 [MDL=0.01] |           |           |
| TOTAL DDT POS      | 1              |           |           |
| TOXAPHENE          |                |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 271000 [MDL=6]    | <br> |
|-------------------------|-------------------|------|
| GASOLINE RANGE ORGANICS | 13.1 U [MDL=4000] | <br> |
| TPH (C09-C36)           |                   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-251            | SB-251            | SB-252            |
|------------------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                    | SB-251-02         | SB-251-SS         | SB-252-02         |
| SAMPLE DATE                  | 5/9/2005          | 5/9/2005          | 5/9/2005          |
| METALS (MG/KG)               | •                 |                   |                   |
| ANTIMONY                     | 0.9 L [MDL=0.3]   | 1 L [MDL=0.3]     | 0.8 L [MDL=0.3]   |
| ARSENIC                      | 5 [MDL=0.6]       | 3 B [MDL=0.7]     | 4 [MDL=0.6]       |
| BARIUM                       | 40 [MDL=0.3]      | 40 [MDL=0.3]      | 27 [MDL=0.3]      |
| BERYLLIUM                    | 1 [MDL=0.04]      | 0.7 [MDL=0.05]    | 0.5 [MDL=0.04]    |
| CADMIUM                      | 0.1 B [MDL=0.05]  | 0.2 B [MDL=0.06]  | 0.2 B [MDL=0.05]  |
| CHROMIUM                     | 20.8 [MDL=0.2]    | 15.8 [MDL=0.2]    | 15.6 [MDL=0.2]    |
| COBALT                       | 7.1 [MDL=0.09]    | 5.9 [MDL=0.09]    | 3.5 [MDL=0.08]    |
| COPPER                       | 10 [MDL=0.3]      | 6 [MDL=0.3]       | 7 [MDL=0.3]       |
| LEAD                         | 7 B [MDL=0.3]     | 7 B [MDL=0.3]     | 6 B [MDL=0.3]     |
| MERCURY                      | 0.01 []           | 0.02 []           | 0.04 []           |
| MOLYBDENUM                   | 0.5 B [MDL=0.5]   | 0.6 U [MDL=0.6]   | 0.7 B [MDL=0.5]   |
| NICKEL                       | 9 [MDL=0.1]       | 9 B [MDL=0.1]     | 6 B [MDL=0.1]     |
| SELENIUM                     | 3 [MDL=2]         | 2 U [MDL=2]       | 2 U [MDL=2]       |
| SILVER                       | 0.05 U [MDL=0.05] | 0.06 U [MDL=0.06] | 0.05 U [MDL=0.05] |
| THALLIUM                     | 1 U [MDL=1]       | 1 U [MDL=1]       | 1 U [MDL=1]       |
| VANADIUM                     | 35.6 [MDL=0.2]    | 24.8 [MDL=0.2]    | 27.9 [MDL=0.2]    |
| ZINC                         | 34 [MDL=0.2]      | 29 [MDL=0.2]      | 24 [MDL=0.2]      |
| MISCELLANEOUS PARAMETERS     |                   |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             |                   |                   |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |                   |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        |                   |                   |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       |                   | -                 |                   |
| 1,2-DICHLOROBENZENE          |                   |                   |                   |
| 1,3-DICHLOROBENZENE          |                   |                   | <del></del>       |
| 1,4-DICHLOROBENZENE          |                   |                   |                   |
| 1,4-DIOXANE                  |                   |                   |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                   |                   |                   |
| 2,4,5-TRICHLOROPHENOL        |                   |                   | <del></del>       |
| 2,4,6-TRICHLOROPHENOL        |                   |                   |                   |
| 2,4-DICHLOROPHENOL           |                   |                   |                   |
| 2,4-DIMETHYLPHENOL           |                   |                   |                   |
| 2,4-DINITROPHENOL            |                   |                   |                   |

| LOCATION                    | SB-251    | SB-251    | SB-252    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-251-02 | SB-251-SS | SB-252-02 |
| SAMPLE DATE                 | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| 2,4-DINITROTOLUENE          |           |           |           |
| 2,6-DINITROTOLUENE          |           |           |           |
| 2-CHLORONAPHTHALENE         |           |           |           |
| 2-CHLOROPHENOL              |           |           |           |
| 2-METHYLPHENOL              |           |           |           |
| 2-NITROANILINE              |           |           |           |
| 2-NITROPHENOL               |           |           |           |
| 3&4-METHYLPHENOL            |           |           |           |
| 3,3'-DICHLOROBENZIDINE      |           |           |           |
| 3-NITROANILINE              |           |           |           |
| 4,6-DINITRO-2-METHYLPHENOL  |           |           |           |
| 4-BROMOPHENYL PHENYL ETHER  |           |           |           |
| 4-CHLORO-3-METHYLPHENOL     |           |           |           |
| 4-CHLOROANILINE             |           |           |           |
| 4-CHLOROPHENYL PHENYL ETHER |           |           |           |
| 4-NITROANILINE              |           |           |           |
| 4-NITROPHENOL               |           |           |           |
| ACETOPHENONE                |           | 1         |           |
| ANILINE                     |           | 1         |           |
| ATRAZINE                    |           | 1         |           |
| AZOBENZENE                  |           | 1         |           |
| BENZIDINE                   |           | -         |           |
| BENZOIC ACID                |           | 1         |           |
| BENZYL ALCOHOL              |           | -         |           |
| BIS(2-CHLOROETHOXY)METHANE  |           | 1         |           |
| BIS(2-CHLOROETHYL)ETHER     |           | 1         |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  |           | -         |           |
| BUTYL BENZYL PHTHALATE      |           | -         |           |
| CAPROLACTAM                 |           | -         |           |
| CARBAZOLE                   |           | -         |           |
| DIBENZOFURAN                |           | -         |           |
| DIETHYL PHTHALATE           |           | -         |           |
| DIMETHYL PHTHALATE          |           |           |           |
| DI-N-BUTYL PHTHALATE        |           |           |           |
| DI-N-OCTYL PHTHALATE        |           |           |           |
| HEXACHLOROBENZENE           |           |           |           |
| HEXACHLOROBUTADIENE         |           |           |           |
| HEXACHLOROCYCLOPENTADIENE   |           |           |           |

| LOCATION                       | SB-251    | SB-251    | SB-252    |
|--------------------------------|-----------|-----------|-----------|
| SAMPLE ID                      | SB-251-02 | SB-251-SS | SB-252-02 |
| SAMPLE DATE                    | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| HEXACHLOROETHANE               |           |           |           |
| ISOPHORONE                     |           |           |           |
| NITROBENZENE                   |           |           |           |
| N-NITROSODIMETHYLAMINE         |           |           |           |
| N-NITROSO-DI-N-PROPYLAMINE     |           |           |           |
| N-NITROSODIPHENYLAMINE         |           |           |           |
| PENTACHLOROPHENOL              |           |           |           |
| PHENOL                         |           |           |           |
| PYRIDINE                       |           |           |           |
| VOLATILES (UG/KG)              |           |           |           |
| 1,1,1,2-TETRACHLOROETHANE      |           |           |           |
| 1,1,1-TRICHLOROETHANE          |           |           |           |
| 1,1,2,2-TETRACHLOROETHANE      |           |           |           |
| 1,1,2-TRICHLOROETHANE          |           |           |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |           |           |           |
| 1,1-DICHLOROETHANE             |           |           |           |
| 1,1-DICHLOROETHENE             |           |           |           |
| 1,1-DICHLOROPROPENE            |           |           |           |
| 1,2,3-TRICHLOROBENZENE         |           |           |           |
| 1,2,3-TRICHLOROPROPANE         |           |           |           |
| 1,2,3-TRIMETHYLBENZENE         |           |           |           |
| 1,2,4-TRICHLOROBENZENE         |           |           |           |
| 1,2,4-TRIMETHYLBENZENE         |           |           |           |
| 1,2-DIBROMO-3-CHLOROPROPANE    |           |           |           |
| 1,2-DIBROMOETHANE              |           |           |           |
| 1,2-DICHLOROBENZENE            |           |           |           |
| 1,2-DICHLOROETHANE             |           |           |           |
| 1,2-DICHLOROPROPANE            |           |           |           |
| 1,3,5-TRIMETHYLBENZENE         |           |           |           |
| 1,3-DICHLOROBENZENE            |           |           |           |
| 1,3-DICHLOROPROPANE            |           |           |           |
| 1,3-DICHLOROPROPENE            |           |           |           |
| 1,4-DICHLOROBENZENE            |           |           |           |
| 1,4-DIOXANE                    |           |           |           |
| 2,2-DICHLOROPROPANE            |           |           |           |
| 2-BUTANONE                     |           |           |           |
| 2-CHLOROETHYL VINYL ETHER      |           |           |           |
| 2-CHLOROTOLUENE                |           |           |           |
| <u></u>                        |           |           |           |

February 2013 Page A-332

| LOCATION                | SB-251      | SB-251    | SB-252    |
|-------------------------|-------------|-----------|-----------|
| SAMPLE ID               | SB-251-02   | SB-251-SS | SB-252-02 |
| SAMPLE DATE             | 5/9/2005    | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |             |           |           |
| 4-CHLOROTOLUENE         |             |           |           |
| 4-ISOPROPYLTOLUENE      |             |           |           |
| 4-METHYL-2-PENTANONE    |             |           |           |
| ACETONE                 |             |           |           |
| BENZENE                 |             |           |           |
| BROMOBENZENE            |             |           |           |
| BROMOCHLOROMETHANE      |             |           |           |
| BROMODICHLOROMETHANE    |             |           |           |
| BROMOFORM               |             |           |           |
| BROMOMETHANE            |             |           |           |
| CARBON DISULFIDE        |             |           |           |
| CARBON TETRACHLORIDE    |             |           |           |
| CHLOROBENZENE           |             |           |           |
| CHLORODIBROMOMETHANE    |             |           |           |
| CHLOROETHANE            |             |           |           |
| CHLOROFORM              |             |           |           |
| CHLOROMETHANE           |             |           |           |
| CIS-1,2-DICHLOROETHENE  |             |           |           |
| CIS-1,3-DICHLOROPROPENE |             |           |           |
| DIBROMOMETHANE          |             |           |           |
| DICHLORODIFLUOROMETHANE |             |           |           |
| DIISOPROPYL ETHER       |             |           |           |
| ETHYL TERT-BUTYL ETHER  |             |           |           |
| ETHYLBENZENE            |             |           |           |
| FLUORODICHLOROMETHANE   |             |           |           |
| HEXACHLOROBUTADIENE     |             |           |           |
| ISOPROPYLBENZENE        |             |           |           |
| M+P-XYLENES             | 1           |           |           |
| METHYL TERT-BUTYL ETHER | 1           |           |           |
| METHYLENE CHLORIDE      |             |           |           |
| NAPHTHALENE             | <del></del> |           |           |
| N-BUTYLBENZENE          |             |           |           |
| N-PROPYLBENZENE         |             |           |           |
| O-XYLENE                |             |           |           |
| SEC-BUTYLBENZENE        |             |           |           |
| STYRENE                 |             |           |           |
| TERT-AMYL METHYL ETHER  |             |           |           |

| LOCATION                                 | SB-251    | SB-251    | SB-252    |
|------------------------------------------|-----------|-----------|-----------|
| SAMPLE ID                                | SB-251-02 | SB-251-SS | SB-252-02 |
| SAMPLE DATE                              | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| TERT-BUTYLBENZENE                        |           |           |           |
| TERTIARY-BUTYL ALCOHOL                   |           |           |           |
| TETRACHLOROETHENE                        |           |           |           |
| TOLUENE                                  |           |           |           |
| TOTAL 1,2-DICHLOROETHENE                 |           |           |           |
| TOTAL XYLENES                            |           |           |           |
| TRANS-1,2-DICHLOROETHENE                 |           |           |           |
| TRANS-1,3-DICHLOROPROPENE                |           |           |           |
| TRICHLOROETHENE                          |           |           |           |
| TRICHLOROFLUOROMETHANE                   |           |           |           |
| VINYL ACETATE                            |           |           |           |
| VINYL CHLORIDE                           |           |           |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |           |           |           |
| 1-METHYLNAPHTHALENE                      |           |           |           |
| 2-METHYLNAPHTHALENE                      |           |           |           |
| ACENAPHTHENE                             |           |           |           |
| ACENAPHTHYLENE                           |           |           |           |
| ANTHRACENE                               |           |           |           |
| BAP EQUIVALENT-HALFND                    |           |           |           |
| BAP EQUIVALENT-POS                       |           |           |           |
| BAP EQUIVALENT-UCL                       |           |           |           |
| BENZO(A)ANTHRACENE                       |           |           |           |
| BENZO(A)PYRENE                           |           |           |           |
| BENZO(B)FLUORANTHENE                     |           |           |           |
| BENZO(G,H,I)PERYLENE                     |           |           |           |
| BENZO(K)FLUORANTHENE                     |           |           |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C1-FLUORANTHENES/PYRENES                 |           |           |           |
| C1-FLUORENES                             |           |           |           |
| C1-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C2-FLUORENES                             |           |           |           |
| C2-NAPHTHALENES                          |           |           |           |
| C2-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C3-FLUORENES                             |           |           |           |
| C3-NAPHTHALENES                          |           |           |           |
| C3-PHENANTHRENES/ANTHRACENES             |           |           |           |

HEPTACHLOR

| SOIL                             |           |           |           |
|----------------------------------|-----------|-----------|-----------|
| LOCATION                         | SB-251    | SB-251    | SB-252    |
| SAMPLE ID                        | SB-251-02 | SB-251-SS | SB-252-02 |
| SAMPLE DATE                      | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         |           |           |           |
| DIBENZO(A,H)ANTHRACENE           |           |           |           |
| FLUORANTHENE                     |           |           |           |
| FLUORENE                         |           |           |           |
| INDENO(1,2,3-CD)PYRENE           |           |           |           |
| NAPHTHALENE                      |           |           |           |
| PHENANTHRENE                     |           |           |           |
| PYRENE                           |           |           |           |
| TOTAL PAHS                       |           |           |           |
| PESTICIDES/PCBS (UG/KG)          | <u>.</u>  |           | •         |
| 4,4'-DDD                         |           |           |           |
| 4,4'-DDE                         |           |           |           |
| 4,4'-DDT                         |           |           |           |
| ALDRIN                           |           |           |           |
| ALPHA-BHC                        |           |           |           |
| ALPHA-CHLORDANE                  |           |           |           |
| AROCLOR-1016                     |           |           |           |
| AROCLOR-1221                     |           |           |           |
| AROCLOR-1232                     |           |           |           |
| AROCLOR-1242                     |           |           |           |
| AROCLOR-1248                     |           |           |           |
| AROCLOR-1254                     |           |           |           |
| AROCLOR-1260                     |           |           |           |
| BETA-BHC                         |           |           |           |
| DELTA-BHC                        |           |           |           |
| DIELDRIN                         |           |           |           |
| ENDOSULFAN I                     |           |           |           |
| ENDOSULFAN II                    |           |           |           |
| ENDOSULFAN SULFATE               |           |           |           |
| ENDRIN                           |           |           |           |
| ENDRIN ALDEHYDE                  |           |           |           |
| ENDRIN KETONE                    |           |           |           |
| GAMMA-BHC (LINDANE)              |           |           |           |
| GAMMA-CHLORDANE                  |           |           |           |
|                                  |           |           |           |

February 2013 Page A-335

--

--

| LOCATION           | SB-251    | SB-251    | SB-252    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-251-02 | SB-251-SS | SB-252-02 |
| SAMPLE DATE        | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| HEPTACHLOR EPOXIDE |           |           |           |
| METHOXYCHLOR       |           |           |           |
| TOTAL AROCLOR      |           |           |           |
| TOTAL DDT POS      |           |           |           |
| TOXAPHENE          |           |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

U = The chemical was not detected.

L = The chemical result was positively detected and biased low.

UR = The chemical was nondetected and rejected.

UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.

 $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$ 

UL = The chemical was nondetected and the concentration reported is an biased low.

B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-252            | SB-253            | SB-253           |
|------------------------------|-------------------|-------------------|------------------|
| SAMPLE ID                    | SB-252-SS         | SB-253-02         | SB-253-SS        |
| SAMPLE DATE                  | 5/9/2005          | 5/9/2005          | 5/9/2005         |
| METALS (MG/KG)               | •                 |                   |                  |
| ANTIMONY                     | 0.7 L [MDL=0.3]   | 0.9 L [MDL=0.3]   | 1 L [MDL=0.3]    |
| ARSENIC                      | 2 B [MDL=0.5]     | 3 B [MDL=0.6]     | 3 B [MDL=0.6]    |
| BARIUM                       | 31 [MDL=0.3]      | 36 [MDL=0.3]      | 49 [MDL=0.3]     |
| BERYLLIUM                    | 0.6 [MDL=0.03]    | 0.7 [MDL=0.04]    | 0.6 [MDL=0.04]   |
| CADMIUM                      | 0.1 B [MDL=0.04]  | 0.09 B [MDL=0.05] | 0.4 [MDL=0.05]   |
| CHROMIUM                     | 11.8 [MDL=0.2]    | 14 [MDL=0.2]      | 14.4 [MDL=0.2]   |
| COBALT                       | 3.6 [MDL=0.07]    | 4 [MDL=0.08]      | 4.9 [MDL=0.09]   |
| COPPER                       | 4 [MDL=0.3]       | 5 [MDL=0.3]       | 9 [MDL=0.3]      |
| LEAD                         | 10 [MDL=0.3]      | 5 B [MDL=0.3]     | 31 [MDL=0.3]     |
| MERCURY                      | 0.04 []           | 0.03 []           | 0.07 []          |
| MOLYBDENUM                   | 0.4 U [MDL=0.4]   | 0.5 B [MDL=0.5]   | 0.5 U [MDL=0.5]  |
| NICKEL                       | 6 B [MDL=0.08]    | 5 B [MDL=0.09]    | 8 B [MDL=0.1]    |
| SELENIUM                     | 2 U [MDL=2]       | 3 [MDL=2]         | 2 U [MDL=2]      |
| SILVER                       | 0.04 U [MDL=0.04] | 0.2 B [MDL=0.05]  | 0.2 B [MDL=0.05] |
| THALLIUM                     | 0.8 U [MDL=0.8]   | 0.9 U [MDL=0.9]   | 1 U [MDL=1]      |
| VANADIUM                     | 20.3 [MDL=0.2]    | 25.5 [MDL=0.2]    | 29.5 [MDL=0.2]   |
| ZINC                         | 25 [MDL=0.2]      | 20 [MDL=0.2]      | 39 [MDL=0.2]     |
| MISCELLANEOUS PARAMETERS     |                   |                   |                  |
| PERCENT SOLIDS (%)           |                   |                   |                  |
| TOTAL SOLIDS (%)             |                   |                   |                  |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |                   |                  |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                  |
| PH (S.U.)                    |                   |                   |                  |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                  |
| SEMIVOLATILES (UG/KG)        |                   |                   |                  |
| 1,1-BIPHENYL                 |                   |                   |                  |
| 1,2,4-TRICHLOROBENZENE       |                   |                   |                  |
| 1,2-DICHLOROBENZENE          |                   |                   |                  |
| 1,3-DICHLOROBENZENE          |                   |                   |                  |
| 1,4-DICHLOROBENZENE          |                   |                   |                  |
| 1,4-DIOXANE                  |                   |                   |                  |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                   |                   |                  |
| 2,4,5-TRICHLOROPHENOL        |                   |                   |                  |
| 2,4,6-TRICHLOROPHENOL        |                   |                   |                  |
| 2,4-DICHLOROPHENOL           |                   |                   |                  |
| 2,4-DIMETHYLPHENOL           |                   |                   |                  |
| 2,4-DINITROPHENOL            |                   |                   |                  |

| LOCATION                    | SB-252    | SB-253    | SB-253    |
|-----------------------------|-----------|-----------|-----------|
| SAMPLE ID                   | SB-252-SS | SB-253-02 | SB-253-SS |
| SAMPLE DATE                 | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| 2,4-DINITROTOLUENE          |           |           |           |
| 2,6-DINITROTOLUENE          |           |           |           |
| 2-CHLORONAPHTHALENE         |           |           |           |
| 2-CHLOROPHENOL              |           |           |           |
| 2-METHYLPHENOL              |           |           |           |
| 2-NITROANILINE              |           |           |           |
| 2-NITROPHENOL               |           |           |           |
| 3&4-METHYLPHENOL            |           |           |           |
| 3,3'-DICHLOROBENZIDINE      |           |           |           |
| 3-NITROANILINE              |           |           |           |
| 4,6-DINITRO-2-METHYLPHENOL  |           |           |           |
| 4-BROMOPHENYL PHENYL ETHER  |           |           |           |
| 4-CHLORO-3-METHYLPHENOL     |           |           |           |
| 4-CHLOROANILINE             |           |           |           |
| 4-CHLOROPHENYL PHENYL ETHER |           |           |           |
| 4-NITROANILINE              |           |           |           |
| 4-NITROPHENOL               |           |           |           |
| ACETOPHENONE                |           |           |           |
| ANILINE                     |           |           |           |
| ATRAZINE                    |           |           |           |
| AZOBENZENE                  |           |           |           |
| BENZIDINE                   |           |           |           |
| BENZOIC ACID                |           |           |           |
| BENZYL ALCOHOL              |           |           |           |
| BIS(2-CHLOROETHOXY)METHANE  |           |           |           |
| BIS(2-CHLOROETHYL)ETHER     |           |           |           |
| BIS(2-ETHYLHEXYL)PHTHALATE  |           |           |           |
| BUTYL BENZYL PHTHALATE      |           |           |           |
| CAPROLACTAM                 |           |           |           |
| CARBAZOLE                   |           |           |           |
| DIBENZOFURAN                |           |           |           |
| DIETHYL PHTHALATE           |           |           |           |
| DIMETHYL PHTHALATE          |           |           |           |
| DI-N-BUTYL PHTHALATE        |           |           |           |
| DI-N-OCTYL PHTHALATE        |           |           |           |
| HEXACHLOROBENZENE           |           |           |           |
| HEXACHLOROBUTADIENE         |           |           |           |
| HEXACHLOROCYCLOPENTADIENE   |           |           |           |

| LOCATION SAMPLE ID SAMPLE DATE HEXACHLOROETHANE ISOPHORONE NITROBENZENE | SB-252<br>SB-252-SS<br>5/9/2005<br> | SB-253<br>SB-253-02<br>5/9/2005 | SB-253<br>SB-253-SS<br>5/9/2005 |
|-------------------------------------------------------------------------|-------------------------------------|---------------------------------|---------------------------------|
| SAMPLE DATE HEXACHLOROETHANE ISOPHORONE                                 | 5/9/2005<br>                        | 5/9/2005                        |                                 |
| HEXACHLOROETHANE<br>ISOPHORONE                                          |                                     |                                 | 5/9/2005                        |
| ISOPHORONE                                                              |                                     |                                 | •                               |
|                                                                         | <del></del>                         | i e                             |                                 |
| NITPORENZENE                                                            |                                     |                                 |                                 |
| INTRODENZENE                                                            |                                     |                                 |                                 |
| N-NITROSODIMETHYLAMINE                                                  |                                     |                                 |                                 |
| N-NITROSO-DI-N-PROPYLAMINE                                              |                                     |                                 |                                 |
| N-NITROSODIPHENYLAMINE                                                  |                                     |                                 |                                 |
| PENTACHLOROPHENOL                                                       |                                     |                                 |                                 |
| PHENOL                                                                  |                                     |                                 |                                 |
| PYRIDINE                                                                |                                     |                                 |                                 |
| VOLATILES (UG/KG)                                                       |                                     |                                 |                                 |
| 1,1,1,2-TETRACHLOROETHANE                                               |                                     |                                 |                                 |
| 1,1,1-TRICHLOROETHANE                                                   |                                     |                                 |                                 |
| 1,1,2,2-TETRACHLOROETHANE                                               |                                     |                                 |                                 |
| 1,1,2-TRICHLOROETHANE                                                   |                                     |                                 |                                 |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                          |                                     |                                 |                                 |
| 1,1-DICHLOROETHANE                                                      |                                     |                                 |                                 |
| 1,1-DICHLOROETHENE                                                      |                                     |                                 |                                 |
| 1,1-DICHLOROPROPENE                                                     |                                     |                                 |                                 |
| 1,2,3-TRICHLOROBENZENE                                                  |                                     |                                 |                                 |
| 1,2,3-TRICHLOROPROPANE                                                  |                                     |                                 |                                 |
| 1,2,3-TRIMETHYLBENZENE                                                  |                                     |                                 |                                 |
| 1,2,4-TRICHLOROBENZENE                                                  |                                     |                                 |                                 |
| 1,2,4-TRIMETHYLBENZENE                                                  |                                     |                                 |                                 |
| 1,2-DIBROMO-3-CHLOROPROPANE                                             |                                     |                                 |                                 |
| 1,2-DIBROMOETHANE                                                       |                                     |                                 |                                 |
| 1,2-DICHLOROBENZENE                                                     |                                     |                                 |                                 |
| 1,2-DICHLOROETHANE                                                      |                                     |                                 |                                 |
| 1,2-DICHLOROPROPANE                                                     |                                     |                                 |                                 |
| 1,3,5-TRIMETHYLBENZENE                                                  |                                     |                                 |                                 |
| 1,3-DICHLOROBENZENE                                                     |                                     |                                 |                                 |
| 1,3-DICHLOROPROPANE                                                     |                                     |                                 |                                 |
| 1,3-DICHLOROPROPENE                                                     |                                     |                                 |                                 |
| 1,4-DICHLOROBENZENE                                                     | <del></del>                         |                                 |                                 |
| 1,4-DIOXANE                                                             | <del></del>                         |                                 |                                 |
| 2,2-DICHLOROPROPANE                                                     | <del></del>                         |                                 |                                 |
| 2-BUTANONE                                                              |                                     |                                 |                                 |
| 2-CHLOROETHYL VINYL ETHER                                               |                                     |                                 |                                 |
| 2-CHLOROTOLUENE                                                         |                                     |                                 |                                 |

| LOCATION                | SB-252    | SB-253    | SB-253    |
|-------------------------|-----------|-----------|-----------|
| SAMPLE ID               | SB-252-SS | SB-253-02 | SB-253-SS |
| SAMPLE DATE             | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |           |           |           |
| 4-CHLOROTOLUENE         |           |           |           |
| 4-ISOPROPYLTOLUENE      |           |           |           |
| 4-METHYL-2-PENTANONE    |           |           |           |
| ACETONE                 |           |           |           |
| BENZENE                 |           |           |           |
| BROMOBENZENE            |           |           |           |
| BROMOCHLOROMETHANE      |           |           |           |
| BROMODICHLOROMETHANE    |           |           |           |
| BROMOFORM               |           |           |           |
| BROMOMETHANE            |           |           |           |
| CARBON DISULFIDE        |           |           |           |
| CARBON TETRACHLORIDE    |           |           |           |
| CHLOROBENZENE           |           |           |           |
| CHLORODIBROMOMETHANE    |           |           |           |
| CHLOROETHANE            |           |           |           |
| CHLOROFORM              |           |           |           |
| CHLOROMETHANE           |           |           |           |
| CIS-1,2-DICHLOROETHENE  |           |           |           |
| CIS-1,3-DICHLOROPROPENE |           |           |           |
| DIBROMOMETHANE          |           |           |           |
| DICHLORODIFLUOROMETHANE |           |           |           |
| DIISOPROPYL ETHER       |           |           |           |
| ETHYL TERT-BUTYL ETHER  |           |           |           |
| ETHYLBENZENE            |           |           |           |
| FLUORODICHLOROMETHANE   |           |           |           |
| HEXACHLOROBUTADIENE     |           |           |           |
| ISOPROPYLBENZENE        |           |           |           |
| M+P-XYLENES             |           |           |           |
| METHYL TERT-BUTYL ETHER |           |           |           |
| METHYLENE CHLORIDE      |           |           |           |
| NAPHTHALENE             |           |           |           |
| N-BUTYLBENZENE          |           |           |           |
| N-PROPYLBENZENE         |           |           |           |
| O-XYLENE                |           |           |           |
| SEC-BUTYLBENZENE        |           |           |           |
| STYRENE                 |           |           |           |
| TERT-AMYL METHYL ETHER  |           |           |           |

| LOCATION                                 | SB-252    | SB-253    | SB-253    |
|------------------------------------------|-----------|-----------|-----------|
| SAMPLE ID                                | SB-252-SS | SB-253-02 | SB-253-SS |
| SAMPLE DATE                              | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| TERT-BUTYLBENZENE                        |           |           |           |
| TERTIARY-BUTYL ALCOHOL                   |           |           |           |
| TETRACHLOROETHENE                        |           |           |           |
| TOLUENE                                  |           |           |           |
| TOTAL 1,2-DICHLOROETHENE                 |           |           |           |
| TOTAL XYLENES                            |           |           |           |
| TRANS-1,2-DICHLOROETHENE                 |           |           |           |
| TRANS-1,3-DICHLOROPROPENE                |           |           |           |
| TRICHLOROETHENE                          |           |           |           |
| TRICHLOROFLUOROMETHANE                   |           |           |           |
| VINYL ACETATE                            |           |           |           |
| VINYL CHLORIDE                           |           |           |           |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •         | •         |           |
| 1-METHYLNAPHTHALENE                      |           |           |           |
| 2-METHYLNAPHTHALENE                      |           |           |           |
| ACENAPHTHENE                             |           |           |           |
| ACENAPHTHYLENE                           |           |           |           |
| ANTHRACENE                               |           |           |           |
| BAP EQUIVALENT-HALFND                    |           |           |           |
| BAP EQUIVALENT-POS                       |           |           |           |
| BAP EQUIVALENT-UCL                       |           |           |           |
| BENZO(A)ANTHRACENE                       |           |           |           |
| BENZO(A)PYRENE                           |           |           |           |
| BENZO(B)FLUORANTHENE                     |           |           |           |
| BENZO(G,H,I)PERYLENE                     |           |           |           |
| BENZO(K)FLUORANTHENE                     |           |           |           |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C1-FLUORANTHENES/PYRENES                 |           |           |           |
| C1-FLUORENES                             |           |           |           |
| C1-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C2-FLUORENES                             |           |           |           |
| C2-NAPHTHALENES                          |           |           |           |
| C2-PHENANTHRENES/ANTHRACENES             |           |           |           |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |           |           |           |
| C3-FLUORENES                             |           |           |           |
| C3-NAPHTHALENES                          |           |           |           |
| C3-PHENANTHRENES/ANTHRACENES             |           |           |           |

February 2013 Page A-341

HEPTACHLOR

| SOIL                             |           |           |           |
|----------------------------------|-----------|-----------|-----------|
| LOCATION                         | SB-252    | SB-253    | SB-253    |
| SAMPLE ID                        | SB-252-SS | SB-253-02 | SB-253-SS |
| SAMPLE DATE                      | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |           |           |           |
| C4-NAPHTHALENES                  |           |           |           |
| C4-PHENANTHRENES/ANTHRACENES     |           |           |           |
| CHRYSENE                         |           |           |           |
| DIBENZO(A,H)ANTHRACENE           |           |           |           |
| FLUORANTHENE                     |           |           |           |
| FLUORENE                         |           |           |           |
| INDENO(1,2,3-CD)PYRENE           |           |           |           |
| NAPHTHALENE                      |           |           |           |
| PHENANTHRENE                     |           |           |           |
| PYRENE                           |           |           |           |
| TOTAL PAHS                       |           |           |           |
| PESTICIDES/PCBS (UG/KG)          | ·         |           |           |
| 4,4'-DDD                         |           |           |           |
| 4,4'-DDE                         |           |           |           |
| 4,4'-DDT                         |           |           |           |
| ALDRIN                           |           |           |           |
| ALPHA-BHC                        |           |           |           |
| ALPHA-CHLORDANE                  |           |           |           |
| AROCLOR-1016                     |           |           |           |
| AROCLOR-1221                     |           |           |           |
| AROCLOR-1232                     |           |           |           |
| AROCLOR-1242                     |           |           |           |
| AROCLOR-1248                     |           |           |           |
| AROCLOR-1254                     |           |           |           |
| AROCLOR-1260                     |           |           |           |
| BETA-BHC                         |           |           |           |
| DELTA-BHC                        |           |           |           |
| DIELDRIN                         |           |           |           |
| ENDOSULFAN I                     |           |           |           |
| ENDOSULFAN II                    |           |           |           |
| ENDOSULFAN SULFATE               |           |           |           |
| ENDRIN                           |           |           |           |
| ENDRIN ALDEHYDE                  |           |           |           |
| ENDRIN KETONE                    |           |           |           |
| GAMMA-BHC (LINDANE)              |           |           |           |
| GAMMA-CHLORDANE                  |           |           |           |
|                                  |           |           |           |

February 2013 Page A-342

--

---

| LOCATION           | SB-252    | SB-253    | SB-253    |
|--------------------|-----------|-----------|-----------|
| SAMPLE ID          | SB-252-SS | SB-253-02 | SB-253-SS |
| SAMPLE DATE        | 5/9/2005  | 5/9/2005  | 5/9/2005  |
| HEPTACHLOR EPOXIDE |           |           |           |
| METHOXYCHLOR       | 1         |           |           |
| TOTAL AROCLOR      | 1         |           |           |
| TOTAL DDT POS      | 1         |           |           |
| TOXAPHENE          | -1        |           |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-265         | SB-265           | SB-265       |
|------------------------------|----------------|------------------|--------------|
| SAMPLE ID                    | SB-265-02      | SB-265-SS        | F-SB-265RE-3 |
| SAMPLE DATE                  | 5/9/2005       | 5/9/2005         | 9/21/2009    |
| METALS (MG/KG)               | <u>.</u>       |                  |              |
| ANTIMONY                     |                | 0.50 [MDL=0.3]   |              |
| ARSENIC                      |                | 5.0 [MDL=0.6]    |              |
| BARIUM                       |                | 29.0 [MDL=0.3]   |              |
| BERYLLIUM                    |                | 1.3 [MDL=0.04]   |              |
| CADMIUM                      |                | 0.80 [MDL=0.05]  |              |
| CHROMIUM                     |                | 55.8 [MDL=0.2]   |              |
| COBALT                       |                | 8.9 [MDL=0.08]   |              |
| COPPER                       |                | 17.0 [MDL=0.3]   |              |
| LEAD                         |                | 20.0 [MDL=0.3]   |              |
| MERCURY                      |                | 0.09 []          |              |
| MOLYBDENUM                   |                | 2.0 B [MDL=0.5]  |              |
| NICKEL                       |                | 20.0 [MDL=0.1]   |              |
| SELENIUM                     |                | 2.0 U [MDL=2]    |              |
| SILVER                       |                | 1.1 [MDL=0.05]   |              |
| THALLIUM                     |                | 1.0 U [MDL=1]    |              |
| VANADIUM                     |                | 46.2 [MDL=0.2]   |              |
| ZINC                         |                | 50.0 [MDL=0.2]   |              |
| MISCELLANEOUS PARAMETERS     | •              | •                |              |
| PERCENT SOLIDS (%)           |                |                  |              |
| TOTAL SOLIDS (%)             |                |                  |              |
| HEXAVALENT CHROMIUM (MG/KG)  |                | 3.6 [MDL=0.3]    |              |
| TOTAL ORGANIC CARBON (MG/KG) |                |                  |              |
| PH (S.U.)                    | 8.4 []         | 8.3 []           |              |
| MERCURY (METHYL) (UG/KG)     |                |                  |              |
| SEMIVOLATILES (UG/KG)        |                |                  |              |
| 1,1-BIPHENYL                 |                |                  |              |
| 1,2,4-TRICHLOROBENZENE       | 188 U [MDL=60] | 184 U [MDL=50]   |              |
| 1,2-DICHLOROBENZENE          | 188 U [MDL=30] | 184 U [MDL=30]   |              |
| 1,3-DICHLOROBENZENE          | 188 U [MDL=20] | 184 U [MDL=20]   |              |
| 1,4-DICHLOROBENZENE          | 188 U [MDL=20] | 184 U [MDL=20]   |              |
| 1,4-DIOXANE                  | 364 U [MDL=74] | 358 U [MDL=72.7] |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 110 U [MDL=40] | 109 U [MDL=40]   |              |
| 2,4,5-TRICHLOROPHENOL        | 375 U [MDL=30] | 369 U [MDL=30]   |              |
| 2,4,6-TRICHLOROPHENOL        | 375 U [MDL=40] | 369 U [MDL=30]   |              |
| 2,4-DICHLOROPHENOL           | 375 U [MDL=30] | 369 U [MDL=20]   |              |
| 2,4-DIMETHYLPHENOL           | 375 U [MDL=40] | 369 U [MDL=40]   |              |
| 2,4-DINITROPHENOL            | 552 U [MDL=60] | 543 U [MDL=50]   |              |

| LOCATION                    | SB-265           | SB-265           | SB-265       |
|-----------------------------|------------------|------------------|--------------|
| SAMPLE ID                   | SB-265-02        | SB-265-SS        | F-SB-265RE-3 |
| SAMPLE DATE                 | 5/9/2005         | 5/9/2005         | 9/21/2009    |
| 2,4-DINITROTOLUENE          | 77 U [MDL=20]    | 76 U [MDL=20]    |              |
| 2,6-DINITROTOLUENE          | 77 U [MDL=30]    | 76 U [MDL=30]    |              |
| 2-CHLORONAPHTHALENE         | 188 U [MDL=20]   | 184 U [MDL=20]   |              |
| 2-CHLOROPHENOL              | 375 U [MDL=20]   | 369 U [MDL=20]   |              |
| 2-METHYLPHENOL              | 375 U [MDL=30]   | 369 U [MDL=30]   |              |
| 2-NITROANILINE              | 188 U [MDL=60]   | 184 U [MDL=60]   |              |
| 2-NITROPHENOL               | 375 U [MDL=30]   | 369 U [MDL=30]   |              |
| 3&4-METHYLPHENOL            | 740 U [MDL=30]   | 727 U [MDL=30]   |              |
| 3,3'-DICHLOROBENZIDINE      | 188 U [MDL=80]   | 184 U [MDL=70]   |              |
| 3-NITROANILINE              | 375 U [MDL=60]   | 369 U [MDL=60]   |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 375 U [MDL=10]   | 369 U [MDL=10]   |              |
| 4-BROMOPHENYL PHENYL ETHER  | 110 U [MDL=40]   | 109 U [MDL=40]   |              |
| 4-CHLORO-3-METHYLPHENOL     | 375 U [MDL=30]   | 369 U [MDL=30]   |              |
| 4-CHLOROANILINE             | 375 U [MDL=50]   | 369 U [MDL=50]   |              |
| 4-CHLOROPHENYL PHENYL ETHER | 188 U [MDL=20]   | 184 U [MDL=20]   |              |
| 4-NITROANILINE              | 110 U [MDL=50]   | 109 U [MDL=50]   |              |
| 4-NITROPHENOL               | 375 U [MDL=40]   | 369 U [MDL=40]   |              |
| ACETOPHENONE                |                  |                  |              |
| ANILINE                     | 375 U [MDL=49.7] | 369 U [MDL=48.8] |              |
| ATRAZINE                    |                  |                  |              |
| AZOBENZENE                  | 188 U [MDL=21]   | 184 U [MDL=20.6] |              |
| BENZIDINE                   | 740 U [MDL=232]  | 727 U [MDL=228]  |              |
| BENZOIC ACID                | 740 U [MDL=32]   | 152 J [MDL=31.5] |              |
| BENZYL ALCOHOL              | 375 U [MDL=30.9] | 369 U [MDL=30.4] |              |
| BIS(2-CHLOROETHOXY)METHANE  | 110 U [MDL=40]   | 109 U [MDL=40]   |              |
| BIS(2-CHLOROETHYL)ETHER     | 110 U [MDL=30]   | 109 U [MDL=30]   |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 77 U [MDL=30]    | 40 J [MDL=30]    |              |
| BUTYL BENZYL PHTHALATE      | 188 U [MDL=20]   | 25 J [MDL=20]    |              |
| CAPROLACTAM                 |                  |                  |              |
| CARBAZOLE                   | 43 J [MDL=20]    | 242 [MDL=20]     |              |
| DIBENZOFURAN                | 110 U [MDL=20]   | 86 J [MDL=20]    |              |
| DIETHYL PHTHALATE           | 375 U [MDL=20]   | 369 U [MDL=20]   |              |
| DIMETHYL PHTHALATE          | 375 U [MDL=20]   | 369 U [MDL=20]   |              |
| DI-N-BUTYL PHTHALATE        | 32 J [MDL=30]    | 37 J [MDL=30]    |              |
| DI-N-OCTYL PHTHALATE        | 188 U [MDL=20]   | 184 U [MDL=20]   |              |
| HEXACHLOROBENZENE           | 77 U [MDL=20]    | 76 U [MDL=20]    |              |
| HEXACHLOROBUTADIENE         | 188 U [MDL=40]   | 184 U [MDL=40]   |              |
| HEXACHLOROCYCLOPENTADIENE   | 375 U [MDL=30]   | 369 U [MDL=20]   |              |

| LOCATION                       | SB-265           | SB-265           | SB-265       |
|--------------------------------|------------------|------------------|--------------|
| SAMPLE ID                      | SB-265-02        | SB-265-SS        | F-SB-265RE-3 |
| SAMPLE DATE                    | 5/9/2005         | 5/9/2005         | 9/21/2009    |
| HEXACHLOROETHANE               | 188 U [MDL=30]   | 184 U [MDL=30]   |              |
| ISOPHORONE                     | 110 U [MDL=30]   | 109 U [MDL=30]   |              |
| NITROBENZENE                   | 188 U [MDL=60]   | 184 U [MDL=60]   |              |
| N-NITROSODIMETHYLAMINE         | 110 U [MDL=42]   | 109 U [MDL=41.2] |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 110 U [MDL=30]   | 109 U [MDL=30]   |              |
| N-NITROSODIPHENYLAMINE         | 110 U [MDL=20]   | 109 U [MDL=20]   |              |
| PENTACHLOROPHENOL              | 928 U [MDL=50]   | 911 U [MDL=40]   |              |
| PHENOL                         | 375 U [MDL=40]   | 369 U [MDL=40]   |              |
| PYRIDINE                       | 375 U [MDL=46.4] | 369 U [MDL=45.6] |              |
| VOLATILES (UG/KG)              |                  |                  |              |
| 1,1,1,2-TETRACHLOROETHANE      |                  |                  |              |
| 1,1,1-TRICHLOROETHANE          |                  |                  |              |
| 1,1,2,2-TETRACHLOROETHANE      |                  |                  |              |
| 1,1,2-TRICHLOROETHANE          |                  |                  |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                  |                  |              |
| 1,1-DICHLOROETHANE             |                  |                  |              |
| 1,1-DICHLOROETHENE             |                  |                  |              |
| 1,1-DICHLOROPROPENE            |                  |                  |              |
| 1,2,3-TRICHLOROBENZENE         |                  |                  |              |
| 1,2,3-TRICHLOROPROPANE         |                  |                  |              |
| 1,2,3-TRIMETHYLBENZENE         |                  |                  |              |
| 1,2,4-TRICHLOROBENZENE         |                  |                  |              |
| 1,2,4-TRIMETHYLBENZENE         |                  |                  |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                  |                  |              |
| 1,2-DIBROMOETHANE              |                  |                  |              |
| 1,2-DICHLOROBENZENE            |                  |                  |              |
| 1,2-DICHLOROETHANE             |                  |                  |              |
| 1,2-DICHLOROPROPANE            |                  |                  |              |
| 1,3,5-TRIMETHYLBENZENE         |                  |                  |              |
| 1,3-DICHLOROBENZENE            |                  |                  |              |
| 1,3-DICHLOROPROPANE            |                  |                  |              |
| 1,3-DICHLOROPROPENE            |                  |                  |              |
| 1,4-DICHLOROBENZENE            |                  |                  |              |
| 1,4-DIOXANE                    |                  |                  |              |
| 2,2-DICHLOROPROPANE            |                  |                  |              |
| 2-BUTANONE                     |                  |                  |              |
| 2-CHLOROETHYL VINYL ETHER      |                  |                  |              |
| 2-CHLOROTOLUENE                |                  |                  |              |

February 2013 Page A-346

| LOCATION                | SB-265    | SB-265    | SB-265       |
|-------------------------|-----------|-----------|--------------|
| SAMPLE ID               | SB-265-02 | SB-265-SS | F-SB-265RE-3 |
| SAMPLE DATE             | 5/9/2005  | 5/9/2005  | 9/21/2009    |
| 2-HEXANONE              |           |           |              |
| 4-CHLOROTOLUENE         |           |           |              |
| 4-ISOPROPYLTOLUENE      |           |           |              |
| 4-METHYL-2-PENTANONE    |           |           |              |
| ACETONE                 |           |           |              |
| BENZENE                 |           |           |              |
| BROMOBENZENE            |           |           |              |
| BROMOCHLOROMETHANE      |           |           |              |
| BROMODICHLOROMETHANE    |           |           |              |
| BROMOFORM               |           |           |              |
| BROMOMETHANE            |           |           |              |
| CARBON DISULFIDE        |           |           |              |
| CARBON TETRACHLORIDE    |           |           |              |
| CHLOROBENZENE           |           |           |              |
| CHLORODIBROMOMETHANE    |           |           |              |
| CHLOROETHANE            |           |           |              |
| CHLOROFORM              |           |           |              |
| CHLOROMETHANE           |           |           |              |
| CIS-1,2-DICHLOROETHENE  |           |           |              |
| CIS-1,3-DICHLOROPROPENE |           |           |              |
| DIBROMOMETHANE          |           |           |              |
| DICHLORODIFLUOROMETHANE |           |           |              |
| DIISOPROPYL ETHER       |           |           |              |
| ETHYL TERT-BUTYL ETHER  |           |           |              |
| ETHYLBENZENE            |           |           |              |
| FLUORODICHLOROMETHANE   |           |           |              |
| HEXACHLOROBUTADIENE     |           |           |              |
| ISOPROPYLBENZENE        |           |           |              |
| M+P-XYLENES             |           |           |              |
| METHYL TERT-BUTYL ETHER |           |           |              |
| METHYLENE CHLORIDE      |           |           |              |
| NAPHTHALENE             |           |           |              |
| N-BUTYLBENZENE          |           |           |              |
| N-PROPYLBENZENE         |           |           |              |
| O-XYLENE                |           |           |              |
| SEC-BUTYLBENZENE        |           |           |              |
| STYRENE                 |           |           |              |
| TERT-AMYL METHYL ETHER  |           |           |              |

| SOIL                                     |                   |                  |                  |
|------------------------------------------|-------------------|------------------|------------------|
| LOCATION                                 | SB-265            | SB-265           | SB-265           |
| SAMPLE ID                                | SB-265-02         | SB-265-SS        | F-SB-265RE-3     |
| SAMPLE DATE                              | 5/9/2005          | 5/9/2005         | 9/21/2009        |
| TERT-BUTYLBENZENE                        |                   |                  |                  |
| TERTIARY-BUTYL ALCOHOL                   |                   |                  |                  |
| TETRACHLOROETHENE                        |                   |                  |                  |
| TOLUENE                                  |                   |                  |                  |
| TOTAL 1,2-DICHLOROETHENE                 |                   |                  |                  |
| TOTAL XYLENES                            |                   |                  |                  |
| TRANS-1,2-DICHLOROETHENE                 |                   |                  |                  |
| TRANS-1,3-DICHLOROPROPENE                |                   |                  |                  |
| TRICHLOROETHENE                          |                   |                  |                  |
| TRICHLOROFLUOROMETHANE                   |                   |                  |                  |
| VINYL ACETATE                            |                   |                  |                  |
| VINYL CHLORIDE                           |                   |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u> </u>          |                  |                  |
| 1-METHYLNAPHTHALENE                      | 77.3 U [MDL=24.3] | 76 U [MDL=23.9]  |                  |
| 2-METHYLNAPHTHALENE                      | 77 U [MDL=30]     | 76 U [MDL=30]    |                  |
| ACENAPHTHENE                             | 77 U [MDL=30]     | 174 [MDL=30]     |                  |
| ACENAPHTHYLENE                           | 77 U [MDL=30]     | 135 [MDL=30]     |                  |
| ANTHRACENE                               | 109 [MDL=20]      | 870 [MDL=20]     |                  |
| BAP EQUIVALENT-HALFND                    | 601.611 [MDL=30]  | 2544.69 [MDL=30] | 36.368 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 601.611 [MDL=30]  | 2544.69 [MDL=30] | 35.568 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       | 601.611 [MDL=30]  | 2544.69 [MDL=30] |                  |
| BENZO(A)ANTHRACENE                       | 432 [MDL=20]      | 1980 [MDL=20]    | 24 [MDL=1.2]     |
| BENZO(A)PYRENE                           | 401 [MDL=30]      | 1800 [MDL=30]    | 26 [MDL=1.6]     |
| BENZO(B)FLUORANTHENE                     | 374 [MDL=30]      | 2300 [MDL=30]    | 41 [MDL=1.5]     |
| BENZO(G,H,I)PERYLENE                     | 260 J [MDL=40]    | 450 J [MDL=40]   |                  |
| BENZO(K)FLUORANTHENE                     | 405 [MDL=20]      | 1910 [MDL=20]    | 14 [MDL=2.1]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |                   |                  |                  |
| C1-FLUORENES                             |                   |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                  |                  |
| C2-FLUORENES                             |                   |                  |                  |
| C2-NAPHTHALENES                          |                   |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                  |                  |
| C3-FLUORENES                             |                   |                  |                  |
| C3-NAPHTHALENES                          |                   |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                  |                  |

HEPTACHLOR

| 3012                             |               |                  |                      |
|----------------------------------|---------------|------------------|----------------------|
| LOCATION                         | SB-265        | SB-265           | SB-265               |
| SAMPLE ID                        | SB-265-02     | SB-265-SS        | F-SB-265RE-3         |
| SAMPLE DATE                      | 5/9/2005      | 5/9/2005         | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |                  |                      |
| C4-NAPHTHALENES                  |               |                  |                      |
| C4-PHENANTHRENES/ANTHRACENES     |               |                  |                      |
| CHRYSENE                         | 461 [MDL=20]  | 2090 [MDL=20]    | 28 [MDL=1.1]         |
| DIBENZO(A,H)ANTHRACENE           | 86 [MDL=30]   | 232 [MDL=30]     | 1.600000 U [MDL=1.6] |
| FLUORANTHENE                     | 802 [MDL=30]  | 4020 [MDL=30]    |                      |
| FLUORENE                         | 32 J [MDL=20] | 213 [MDL=20]     |                      |
| INDENO(1,2,3-CD)PYRENE           | 295 [MDL=30]  | 635 [MDL=30]     | 29 [MDL=1.9]         |
| NAPHTHALENE                      | 77 U [MDL=30] | 36 J [MDL=30]    |                      |
| PHENANTHRENE                     | 417 [MDL=20]  | 2740 [MDL=20]    |                      |
| PYRENE                           | 637 [MDL=20]  | 2570 [MDL=20]    |                      |
| TOTAL PAHS                       | 4711 [MDL=30] | 22155 [MDL=30]   | 162 [MDL=1.6]        |
| PESTICIDES/PCBS (UG/KG)          | •             |                  | •                    |
| 4,4'-DDD                         |               |                  |                      |
| 4,4'-DDE                         |               |                  |                      |
| 4,4'-DDT                         |               |                  |                      |
| ALDRIN                           |               |                  |                      |
| ALPHA-BHC                        |               |                  |                      |
| ALPHA-CHLORDANE                  |               |                  |                      |
| AROCLOR-1016                     |               | 36 U [MDL=0.01]  |                      |
| AROCLOR-1221                     |               | 36 U [MDL=0.007] |                      |
| AROCLOR-1232                     |               | 36 U [MDL=0.01]  |                      |
| AROCLOR-1242                     |               | 36 U [MDL=0.007] |                      |
| AROCLOR-1248                     |               | 36 U [MDL=0.009] |                      |
| AROCLOR-1254                     |               | 36 U [MDL=0.009] |                      |
| AROCLOR-1260                     |               | 119 [MDL=0.007]  |                      |
| BETA-BHC                         |               |                  |                      |
| DELTA-BHC                        |               |                  |                      |
| DIELDRIN                         |               |                  |                      |
| ENDOSULFAN I                     |               |                  |                      |
| ENDOSULFAN II                    |               |                  |                      |
| ENDOSULFAN SULFATE               |               |                  |                      |
| ENDRIN                           |               |                  |                      |
| ENDRIN ALDEHYDE                  |               |                  |                      |
| ENDRIN KETONE                    |               |                  |                      |
| GAMMA-BHC (LINDANE)              |               |                  |                      |
| GAMMA-CHLORDANE                  |               |                  |                      |
|                                  |               |                  | 1                    |

February 2013 Page A-349

--

---

| LOCATION           | SB-265    | SB-265         | SB-265       |
|--------------------|-----------|----------------|--------------|
| SAMPLE ID          | SB-265-02 | SB-265-SS      | F-SB-265RE-3 |
| SAMPLE DATE        | 5/9/2005  | 5/9/2005       | 9/21/2009    |
| HEPTACHLOR EPOXIDE |           |                |              |
| METHOXYCHLOR       |           | 1              |              |
| TOTAL AROCLOR      |           | 119 [MDL=0.01] |              |
| TOTAL DDT POS      |           | 1              |              |
| TOXAPHENE          |           |                |              |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-265       | SB-266           | SB-266           |
|------------------------------|--------------|------------------|------------------|
| SAMPLE ID                    | F-SB-265RE-4 | SB-266-02        | SB-266-SS        |
| SAMPLE DATE                  | 9/21/2009    | 5/9/2005         | 5/9/2005         |
| METALS (MG/KG)               | <u>.</u>     |                  | •                |
| ANTIMONY                     |              |                  | 1.0 [MDL=0.3]    |
| ARSENIC                      |              |                  | 3.0 B [MDL=0.6]  |
| BARIUM                       |              |                  | 44.0 [MDL=0.3]   |
| BERYLLIUM                    |              |                  | 0.80 [MDL=0.04]  |
| CADMIUM                      |              |                  | 1.8 [MDL=0.05]   |
| CHROMIUM                     |              |                  | 31.3 [MDL=0.2]   |
| COBALT                       |              |                  | 8.5 [MDL=0.08]   |
| COPPER                       |              |                  | 16.0 [MDL=0.3]   |
| LEAD                         |              |                  | 43.0 [MDL=0.3]   |
| MERCURY                      |              |                  | 0.51 []          |
| MOLYBDENUM                   |              |                  | 0.60 B [MDL=0.5] |
| NICKEL                       |              |                  | 14.0 [MDL=0.1]   |
| SELENIUM                     |              |                  | 3.0 [MDL=2]      |
| SILVER                       |              |                  | 1.1 [MDL=0.05]   |
| THALLIUM                     |              |                  | 1.0 U [MDL=1]    |
| VANADIUM                     |              |                  | 33.4 [MDL=0.2]   |
| ZINC                         |              |                  | 85.0 [MDL=0.2]   |
| MISCELLANEOUS PARAMETERS     |              |                  |                  |
| PERCENT SOLIDS (%)           |              |                  |                  |
| TOTAL SOLIDS (%)             |              |                  |                  |
| HEXAVALENT CHROMIUM (MG/KG)  |              |                  | 2.0 [MDL=0.3]    |
| TOTAL ORGANIC CARBON (MG/KG) |              |                  |                  |
| PH (S.U.)                    |              |                  |                  |
| MERCURY (METHYL) (UG/KG)     |              |                  | 0.63 [MDL=0.018] |
| SEMIVOLATILES (UG/KG)        |              |                  |                  |
| 1,1-BIPHENYL                 |              |                  |                  |
| 1,2,4-TRICHLOROBENZENE       |              | 199 U [MDL=60]   | 188 U [MDL=60]   |
| 1,2-DICHLOROBENZENE          |              | 199 U [MDL=30]   | 188 U [MDL=30]   |
| 1,3-DICHLOROBENZENE          |              | 199 U [MDL=20]   | 188 U [MDL=20]   |
| 1,4-DICHLOROBENZENE          |              | 199 U [MDL=30]   | 188 U [MDL=20]   |
| 1,4-DIOXANE                  |              | 386 U [MDL=78.4] | 366 U [MDL=74.3] |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              | 117 U [MDL=40]   | 111 U [MDL=40]   |
| 2,4,5-TRICHLOROPHENOL        |              | 398 U [MDL=40]   | 377 U [MDL=30]   |
| 2,4,6-TRICHLOROPHENOL        |              | 398 U [MDL=40]   | 377 U [MDL=40]   |
| 2,4-DICHLOROPHENOL           |              | 398 U [MDL=30]   | 377 U [MDL=30]   |
| 2,4-DIMETHYLPHENOL           |              | 398 U [MDL=40]   | 377 U [MDL=40]   |
| 2,4-DINITROPHENOL            |              | 585 U [MDL=60]   | 554 U [MDL=60]   |

| LOCATION                    | SB-265       | SB-266           | SB-266           |
|-----------------------------|--------------|------------------|------------------|
| SAMPLE ID                   | F-SB-265RE-4 | SB-266-02        | SB-266-SS        |
| SAMPLE DATE                 | 9/21/2009    | 5/9/2005         | 5/9/2005         |
| 2,4-DINITROTOLUENE          |              | 82 U [MDL=20]    | 78 U [MDL=20]    |
| 2,6-DINITROTOLUENE          |              | 82 U [MDL=40]    | 78 U [MDL=30]    |
| 2-CHLORONAPHTHALENE         |              | 199 U [MDL=20]   | 188 U [MDL=20]   |
| 2-CHLOROPHENOL              |              | 398 U [MDL=20]   | 377 U [MDL=20]   |
| 2-METHYLPHENOL              |              | 398 U [MDL=40]   | 377 U [MDL=30]   |
| 2-NITROANILINE              |              | 199 U [MDL=70]   | 188 U [MDL=60]   |
| 2-NITROPHENOL               |              | 398 U [MDL=30]   | 377 U [MDL=30]   |
| 3&4-METHYLPHENOL            |              | 784 U [MDL=30]   | 743 U [MDL=30]   |
| 3,3'-DICHLOROBENZIDINE      |              | 199 U [MDL=80]   | 188 U [MDL=80]   |
| 3-NITROANILINE              |              | 398 U [MDL=70]   | 377 U [MDL=60]   |
| 4,6-DINITRO-2-METHYLPHENOL  |              | 398 U [MDL=10]   | 377 U [MDL=10]   |
| 4-BROMOPHENYL PHENYL ETHER  |              | 117 U [MDL=40]   | 111 U [MDL=40]   |
| 4-CHLORO-3-METHYLPHENOL     |              | 398 U [MDL=40]   | 377 U [MDL=30]   |
| 4-CHLOROANILINE             |              | 398 U [MDL=50]   | 377 U [MDL=50]   |
| 4-CHLOROPHENYL PHENYL ETHER |              | 199 U [MDL=30]   | 188 U [MDL=20]   |
| 4-NITROANILINE              |              | 117 U [MDL=50]   | 111 U [MDL=50]   |
| 4-NITROPHENOL               |              | 398 U [MDL=40]   | 377 U [MDL=40]   |
| ACETOPHENONE                |              |                  |                  |
| ANILINE                     |              | 398 U [MDL=52.7] | 377 U [MDL=49.9] |
| ATRAZINE                    |              |                  |                  |
| AZOBENZENE                  |              | 199 U [MDL=22.2] | 188 U [MDL=21.1] |
| BENZIDINE                   |              | 784 U [MDL=246]  | 743 U [MDL=233]  |
| BENZOIC ACID                |              | 784 U [MDL=33.9] | 157 J [MDL=32.1] |
| BENZYL ALCOHOL              |              | 398 U [MDL=32.8] | 377 U [MDL=31]   |
| BIS(2-CHLOROETHOXY)METHANE  |              | 117 U [MDL=40]   | 111 U [MDL=40]   |
| BIS(2-CHLOROETHYL)ETHER     |              | 117 U [MDL=30]   | 111 U [MDL=30]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              | 82 U [MDL=30]    | 78 U [MDL=30]    |
| BUTYL BENZYL PHTHALATE      |              | 199 U [MDL=20]   | 188 U [MDL=20]   |
| CAPROLACTAM                 |              |                  |                  |
| CARBAZOLE                   |              | 199 U [MDL=30]   | 158 J [MDL=20]   |
| DIBENZOFURAN                |              | 117 U [MDL=20]   | 43 J [MDL=20]    |
| DIETHYL PHTHALATE           |              | 398 U [MDL=20]   | 377 U [MDL=20]   |
| DIMETHYL PHTHALATE          |              | 398 U [MDL=20]   | 377 U [MDL=20]   |
| DI-N-BUTYL PHTHALATE        |              | 199 U [MDL=30]   | 38 J [MDL=30]    |
| DI-N-OCTYL PHTHALATE        |              | 199 U [MDL=20]   | 188 U [MDL=20]   |
| HEXACHLOROBENZENE           |              | 82 U [MDL=30]    | 78 U [MDL=20]    |
| HEXACHLOROBUTADIENE         |              | 199 U [MDL=40]   | 188 U [MDL=40]   |
| HEXACHLOROCYCLOPENTADIENE   |              | 398 U [MDL=30]   | 377 U [MDL=30]   |

| SOIL                           | 1            | T                | <u> </u>         |
|--------------------------------|--------------|------------------|------------------|
| LOCATION                       | SB-265       | SB-266           | SB-266           |
| SAMPLE ID                      | F-SB-265RE-4 | SB-266-02        | SB-266-SS        |
| SAMPLE DATE                    | 9/21/2009    | 5/9/2005         | 5/9/2005         |
| HEXACHLOROETHANE               |              | 199 U [MDL=30]   | 188 U [MDL=30]   |
| ISOPHORONE                     |              | 117 U [MDL=30]   | 111 U [MDL=30]   |
| NITROBENZENE                   |              | 199 U [MDL=60]   | 188 U [MDL=60]   |
| N-NITROSODIMETHYLAMINE         |              | 117 U [MDL=44.5] | 111 U [MDL=42.1] |
| N-NITROSO-DI-N-PROPYLAMINE     |              | 117 U [MDL=40]   | 111 U [MDL=30]   |
| N-NITROSODIPHENYLAMINE         |              | 117 U [MDL=20]   | 111 U [MDL=20]   |
| PENTACHLOROPHENOL              |              | 983 U [MDL=50]   | 931 U [MDL=50]   |
| PHENOL                         |              | 398 U [MDL=50]   | 377 U [MDL=40]   |
| PYRIDINE                       |              | 398 U [MDL=49.1] | 377 U [MDL=46.5] |
| VOLATILES (UG/KG)              | ·            |                  |                  |
| 1,1,1,2-TETRACHLOROETHANE      |              |                  |                  |
| 1,1,1-TRICHLOROETHANE          |              |                  |                  |
| 1,1,2,2-TETRACHLOROETHANE      |              |                  |                  |
| 1,1,2-TRICHLOROETHANE          |              |                  |                  |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |                  |                  |
| 1,1-DICHLOROETHANE             |              |                  |                  |
| 1,1-DICHLOROETHENE             |              |                  |                  |
| 1,1-DICHLOROPROPENE            |              |                  |                  |
| 1,2,3-TRICHLOROBENZENE         |              |                  |                  |
| 1,2,3-TRICHLOROPROPANE         |              |                  |                  |
| 1,2,3-TRIMETHYLBENZENE         |              |                  |                  |
| 1,2,4-TRICHLOROBENZENE         |              |                  |                  |
| 1,2,4-TRIMETHYLBENZENE         |              |                  |                  |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |                  |                  |
| 1,2-DIBROMOETHANE              |              |                  |                  |
| 1,2-DICHLOROBENZENE            |              |                  |                  |
| 1,2-DICHLOROETHANE             |              |                  |                  |
| 1,2-DICHLOROPROPANE            |              |                  |                  |
| 1,3,5-TRIMETHYLBENZENE         |              |                  |                  |
| 1,3-DICHLOROBENZENE            |              |                  |                  |
| 1,3-DICHLOROPROPANE            |              |                  |                  |
| 1,3-DICHLOROPROPENE            |              |                  |                  |
| 1,4-DICHLOROBENZENE            |              |                  |                  |
| 1,4-DIOXANE                    |              |                  |                  |
| 2,2-DICHLOROPROPANE            |              |                  |                  |
| 2-BUTANONE                     |              |                  |                  |
| 2-CHLOROETHYL VINYL ETHER      |              |                  |                  |
| 2-CHLOROTOLUENE                |              |                  |                  |

February 2013 Page A-353

| LOCATION                | SB-265       | SB-266    | SB-266    |
|-------------------------|--------------|-----------|-----------|
| SAMPLE ID               | F-SB-265RE-4 | SB-266-02 | SB-266-SS |
| SAMPLE DATE             | 9/21/2009    | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |              |           |           |
| 4-CHLOROTOLUENE         |              |           |           |
| 4-ISOPROPYLTOLUENE      |              |           |           |
| 4-METHYL-2-PENTANONE    |              |           |           |
| ACETONE                 |              |           |           |
| BENZENE                 |              |           |           |
| BROMOBENZENE            |              |           |           |
| BROMOCHLOROMETHANE      |              |           |           |
| BROMODICHLOROMETHANE    |              |           |           |
| BROMOFORM               |              |           |           |
| BROMOMETHANE            |              |           |           |
| CARBON DISULFIDE        |              |           |           |
| CARBON TETRACHLORIDE    |              |           |           |
| CHLOROBENZENE           |              |           |           |
| CHLORODIBROMOMETHANE    |              |           |           |
| CHLOROETHANE            |              |           |           |
| CHLOROFORM              |              |           |           |
| CHLOROMETHANE           |              |           |           |
| CIS-1,2-DICHLOROETHENE  |              |           |           |
| CIS-1,3-DICHLOROPROPENE |              |           |           |
| DIBROMOMETHANE          |              |           |           |
| DICHLORODIFLUOROMETHANE |              |           |           |
| DIISOPROPYL ETHER       |              |           |           |
| ETHYL TERT-BUTYL ETHER  |              |           |           |
| ETHYLBENZENE            |              |           |           |
| FLUORODICHLOROMETHANE   |              |           |           |
| HEXACHLOROBUTADIENE     |              |           |           |
| ISOPROPYLBENZENE        |              |           |           |
| M+P-XYLENES             |              |           |           |
| METHYL TERT-BUTYL ETHER |              |           |           |
| METHYLENE CHLORIDE      |              |           |           |
| NAPHTHALENE             |              |           |           |
| N-BUTYLBENZENE          |              |           |           |
| N-PROPYLBENZENE         |              |           |           |
| O-XYLENE                |              |           |           |
| SEC-BUTYLBENZENE        |              |           |           |
| STYRENE                 |              |           |           |
| TERT-AMYL METHYL ETHER  |              |           |           |

| LOCATION                                 | SB-265               | SB-266              | SB-266            |
|------------------------------------------|----------------------|---------------------|-------------------|
| SAMPLE ID                                | F-SB-265RE-4         | SB-266-02           | SB-266-SS         |
| SAMPLE DATE                              | 9/21/2009            | 5/9/2005            | 5/9/2005          |
| TERT-BUTYLBENZENE                        |                      |                     |                   |
| TERTIARY-BUTYL ALCOHOL                   |                      |                     |                   |
| TETRACHLOROETHENE                        |                      |                     |                   |
| TOLUENE                                  |                      |                     |                   |
| TOTAL 1,2-DICHLOROETHENE                 |                      |                     |                   |
| TOTAL XYLENES                            |                      |                     |                   |
| TRANS-1,2-DICHLOROETHENE                 |                      |                     |                   |
| TRANS-1,3-DICHLOROPROPENE                |                      |                     |                   |
| TRICHLOROETHENE                          |                      |                     |                   |
| TRICHLOROFLUOROMETHANE                   |                      |                     |                   |
| VINYL ACETATE                            |                      |                     |                   |
| VINYL CHLORIDE                           |                      |                     |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                    |                     |                   |
| 1-METHYLNAPHTHALENE                      |                      | 81.9 U [MDL=25.7]   | 77.6 U [MDL=24.4] |
| 2-METHYLNAPHTHALENE                      |                      | 82 U [MDL=30]       | 78 U [MDL=30]     |
| ACENAPHTHENE                             |                      | 82 U [MDL=30]       | 98 [MDL=30]       |
| ACENAPHTHYLENE                           |                      | 82 U [MDL=30]       | 44 J [MDL=30]     |
| ANTHRACENE                               |                      | 30 J [MDL=20]       | 291 [MDL=20]      |
| BAP EQUIVALENT-HALFND                    | 1.7 U [MDL=1.7]      | 192.445 [MDL=30]    | 1343.73 [MDL=30]  |
| BAP EQUIVALENT-POS                       | 1.7 U [MDL=1.7]      | 151.445 [MDL=30]    | 1343.73 [MDL=30]  |
| BAP EQUIVALENT-UCL                       |                      | 218.614693 [MDL=30] | 1343.73 [MDL=30]  |
| BENZO(A)ANTHRACENE                       | 1.200000 U [MDL=1.2] | 121 [MDL=20]        | 947 [MDL=20]      |
| BENZO(A)PYRENE                           | 1.700000 U [MDL=1.7] | 116 [MDL=30]        | 977 [MDL=30]      |
| BENZO(B)FLUORANTHENE                     | 1.500000 U [MDL=1.5] | 129 [MDL=30]        | 1090 [MDL=30]     |
| BENZO(G,H,I)PERYLENE                     |                      | 85 J [MDL=40]       | 253 J [MDL=40]    |
| BENZO(K)FLUORANTHENE                     | 2.200000 U [MDL=2.2] | 111 [MDL=20]        | 1100 [MDL=20]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                     |                   |
| C1-FLUORANTHENES/PYRENES                 |                      |                     |                   |
| C1-FLUORENES                             |                      |                     |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                      |                     |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                     |                   |
| C2-FLUORENES                             |                      |                     |                   |
| C2-NAPHTHALENES                          |                      |                     |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                      |                     |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                     |                   |
| C3-FLUORENES                             |                      |                     |                   |
| C3-NAPHTHALENES                          |                      |                     |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                      |                     |                   |

HEPTACHLOR

| SOIL                             |                      |                |                  |
|----------------------------------|----------------------|----------------|------------------|
| LOCATION                         | SB-265               | SB-266         | SB-266           |
| SAMPLE ID                        | F-SB-265RE-4         | SB-266-02      | SB-266-SS        |
| SAMPLE DATE                      | 9/21/2009            | 5/9/2005       | 5/9/2005         |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                |                  |
| C4-NAPHTHALENES                  |                      |                |                  |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                |                  |
| CHRYSENE                         | 1.100000 U [MDL=1.1] | 135 [MDL=20]   | 1030 [MDL=20]    |
| DIBENZO(A,H)ANTHRACENE           | 1.700000 U [MDL=1.7] | 82 UJ [MDL=30] | 117 [MDL=30]     |
| FLUORANTHENE                     |                      | 245 [MDL=30]   | 1940 [MDL=30]    |
| FLUORENE                         |                      | 82 U [MDL=20]  | 94 [MDL=20]      |
| INDENO(1,2,3-CD)PYRENE           | 1.900000 U [MDL=1.9] | 92 J [MDL=40]  | 340 [MDL=30]     |
| NAPHTHALENE                      |                      | 82 U [MDL=30]  | 78 U [MDL=30]    |
| PHENANTHRENE                     |                      | 127 [MDL=20]   | 1090 [MDL=20]    |
| PYRENE                           |                      | 178 [MDL=20]   | 1380 [MDL=20]    |
| TOTAL PAHS                       | 0 U [MDL=1.7]        | 1369 [MDL=30]  | 10791 [MDL=30]   |
| PESTICIDES/PCBS (UG/KG)          | •                    |                | •                |
| 4,4'-DDD                         |                      |                |                  |
| 4,4'-DDE                         |                      |                |                  |
| 4,4'-DDT                         |                      |                |                  |
| ALDRIN                           |                      |                |                  |
| ALPHA-BHC                        |                      |                |                  |
| ALPHA-CHLORDANE                  |                      |                |                  |
| AROCLOR-1016                     |                      |                | 36 U [MDL=0.01]  |
| AROCLOR-1221                     |                      |                | 36 U [MDL=0.007] |
| AROCLOR-1232                     |                      |                | 36 U [MDL=0.01]  |
| AROCLOR-1242                     |                      |                | 36 U [MDL=0.007] |
| AROCLOR-1248                     |                      |                | 36 U [MDL=0.009] |
| AROCLOR-1254                     |                      |                | 36 U [MDL=0.009] |
| AROCLOR-1260                     |                      |                | 756 [MDL=0.007]  |
| BETA-BHC                         |                      |                |                  |
| DELTA-BHC                        |                      |                |                  |
| DIELDRIN                         |                      |                |                  |
| ENDOSULFAN I                     |                      |                |                  |
| ENDOSULFAN II                    |                      |                |                  |
| ENDOSULFAN SULFATE               |                      |                |                  |
| ENDRIN                           |                      |                |                  |
| ENDRIN ALDEHYDE                  |                      |                |                  |
| ENDRIN KETONE                    |                      |                |                  |
| GAMMA-BHC (LINDANE)              |                      |                |                  |
| GAMMA-CHLORDANE                  |                      |                |                  |
|                                  |                      |                |                  |

February 2013 Page A-356

--

--

| LOCATION           | SB-265                                | SB-266                                | SB-266                                |
|--------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| SAMPLE ID          | F-SB-265RE-4                          | SB-266-02                             | SB-266-SS                             |
| SAMPLE DATE        | 9/21/2009                             | 5/9/2005                              | 5/9/2005                              |
| HEPTACHLOR EPOXIDE |                                       |                                       |                                       |
| METHOXYCHLOR       |                                       |                                       |                                       |
| TOTAL AROCLOR      | 1                                     |                                       | 756 [MDL=0.01]                        |
| TOTAL DDT POS      |                                       |                                       |                                       |
| TOXAPHENE          |                                       |                                       |                                       |
|                    | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |                  |
|------------------------------|--------------|--------------|------------------|
| LOCATION                     | SB-266       | SB-266       | SB-267           |
| SAMPLE ID                    | F-SB-266RE-3 | F-SB-266RE-4 | SB-267-02        |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| METALS (MG/KG)               |              |              |                  |
| ANTIMONY                     |              |              |                  |
| ARSENIC                      |              |              |                  |
| BARIUM                       |              |              |                  |
| BERYLLIUM                    |              |              |                  |
| CADMIUM                      |              |              |                  |
| CHROMIUM                     |              |              |                  |
| COBALT                       |              |              |                  |
| COPPER                       |              |              |                  |
| LEAD                         |              |              |                  |
| MERCURY                      |              |              |                  |
| MOLYBDENUM                   |              |              |                  |
| NICKEL                       |              |              |                  |
| SELENIUM                     |              |              |                  |
| SILVER                       |              |              |                  |
| THALLIUM                     |              |              |                  |
| VANADIUM                     |              |              |                  |
| ZINC                         |              |              |                  |
| MISCELLANEOUS PARAMETERS     | <u> </u>     | •            |                  |
| PERCENT SOLIDS (%)           |              |              |                  |
| TOTAL SOLIDS (%)             |              |              |                  |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |                  |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |                  |
| PH (S.U.)                    |              |              |                  |
| MERCURY (METHYL) (UG/KG)     |              |              |                  |
| SEMIVOLATILES (UG/KG)        | <u>.</u>     |              |                  |
| 1,1-BIPHENYL                 |              |              |                  |
| 1,2,4-TRICHLOROBENZENE       |              |              | 199 U [MDL=60]   |
| 1,2-DICHLOROBENZENE          |              |              | 199 U [MDL=30]   |
| 1,3-DICHLOROBENZENE          |              |              | 199 U [MDL=20]   |
| 1,4-DICHLOROBENZENE          |              |              | 199 U [MDL=30]   |
| 1,4-DIOXANE                  |              |              | 387 U [MDL=78.5] |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              | 117 U [MDL=40]   |
| 2,4,5-TRICHLOROPHENOL        |              |              | 399 U [MDL=40]   |
| 2,4,6-TRICHLOROPHENOL        |              |              | 399 U [MDL=40]   |
| 2,4-DICHLOROPHENOL           |              |              | 399 U [MDL=30]   |
| 2,4-DIMETHYLPHENOL           |              |              | 399 U [MDL=40]   |
| 2,4-DINITROPHENOL            |              |              | 586 U [MDL=60]   |

| LOCATION                    | SB-266       | SB-266       | SB-267           |
|-----------------------------|--------------|--------------|------------------|
| SAMPLE ID                   | F-SB-266RE-3 | F-SB-266RE-4 | SB-267-02        |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| 2,4-DINITROTOLUENE          |              |              | 82 U [MDL=20]    |
| 2,6-DINITROTOLUENE          |              |              | 82 U [MDL=40]    |
| 2-CHLORONAPHTHALENE         |              |              | 199 U [MDL=20]   |
| 2-CHLOROPHENOL              |              |              | 399 U [MDL=20]   |
| 2-METHYLPHENOL              |              |              | 399 U [MDL=40]   |
| 2-NITROANILINE              |              |              | 199 U [MDL=70]   |
| 2-NITROPHENOL               |              |              | 399 U [MDL=30]   |
| 3&4-METHYLPHENOL            |              |              | 785 U [MDL=30]   |
| 3,3'-DICHLOROBENZIDINE      |              |              | 199 U [MDL=80]   |
| 3-NITROANILINE              |              |              | 399 U [MDL=70]   |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              | 399 U [MDL=10]   |
| 4-BROMOPHENYL PHENYL ETHER  |              |              | 117 U [MDL=40]   |
| 4-CHLORO-3-METHYLPHENOL     |              |              | 399 U [MDL=40]   |
| 4-CHLOROANILINE             |              |              | 399 U [MDL=50]   |
| 4-CHLOROPHENYL PHENYL ETHER |              |              | 199 U [MDL=30]   |
| 4-NITROANILINE              |              |              | 117 U [MDL=50]   |
| 4-NITROPHENOL               |              |              | 399 U [MDL=40]   |
| ACETOPHENONE                |              |              |                  |
| ANILINE                     |              |              | 399 U [MDL=52.8] |
| ATRAZINE                    |              |              |                  |
| AZOBENZENE                  |              |              | 199 U [MDL=22.3] |
| BENZIDINE                   |              |              | 785 U [MDL=246]  |
| BENZOIC ACID                |              |              | 333 J [MDL=34]   |
| BENZYL ALCOHOL              |              |              | 399 U [MDL=32.8] |
| BIS(2-CHLOROETHOXY)METHANE  |              |              | 117 U [MDL=40]   |
| BIS(2-CHLOROETHYL)ETHER     |              |              | 117 U [MDL=30]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              | 82 U [MDL=30]    |
| BUTYL BENZYL PHTHALATE      |              |              | 199 U [MDL=20]   |
| CAPROLACTAM                 |              |              |                  |
| CARBAZOLE                   |              |              | 199 U [MDL=30]   |
| DIBENZOFURAN                |              |              | 117 U [MDL=20]   |
| DIETHYL PHTHALATE           |              |              | 399 U [MDL=20]   |
| DIMETHYL PHTHALATE          |              |              | 399 U [MDL=20]   |
| DI-N-BUTYL PHTHALATE        |              |              | 199 U [MDL=30]   |
| DI-N-OCTYL PHTHALATE        |              |              | 199 U [MDL=20]   |
| HEXACHLOROBENZENE           |              |              | 82 U [MDL=30]    |
| HEXACHLOROBUTADIENE         |              |              | 199 U [MDL=40]   |
| HEXACHLOROCYCLOPENTADIENE   |              |              | 399 U [MDL=30]   |

| SAMPLE IO         F-SB-268RE-3 (97/2009)         F-SB-260RE-4 (97/2009)         SW2005           MEXAGLOROETHANE         1         -         189 U MML-30]           ISOPHORONE         -         -         117 U MML-30]           NITCOSENZENE         -         -         117 U MML-30]           NITCOSODIETHYLAMINE         -         -         117 U MML-40]           N-NITROSODIEHNYLAMINE         -         -         -         117 U MML-40]           PHENOL         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATION                       | SB-266       | SB-266       | SB-267           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------|------------------|
| HEXAPLICROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE ID                      | F-SB-266RE-3 | F-SB-266RE-4 | SB-267-02        |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| NITROSENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEXACHLOROETHANE               |              |              | 199 U [MDL=30]   |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISOPHORONE                     |              |              | 117 U [MDL=30]   |
| NITITGOSO.DH-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NITROBENZENE                   |              |              | 199 U [MDL=60]   |
| N-NITROSOIPHENYLAMME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-NITROSODIMETHYLAMINE         |              |              | 117 U [MDL=44.5] |
| PERTOCHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |              |              | 117 U [MDL=40]   |
| PHENDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |              |              | 117 U [MDL=20]   |
| VOLAILES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PENTACHLOROPHENOL              |              |              | 985 U [MDL=50]   |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHENOL                         |              |              | 399 U [MDL=50]   |
| 1,1,2,TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PYRIDINE                       |              |              | 399 U [MDL=49.2] |
| 1.1.1-TRICHLOROETHANE       -       -       -         1.1.2-TRICHLOROETHANE       -       -       -         1.1.2-TRICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHENE       -       -       -         1.1-DICHLOROETHENE       -       -       -         1.1-DICHLOROENZENE       -       -       -         1.2.3-TRICHLOROENZENE       -       -       -         1.2.3-TRIMETHYLBENZENE       -       -       -         1.2.4-TRICHLOROENZENE       -       -       -         1.2.4-TRIMETHYLBENZENE       -       -       -         1.2.2-DICHLOROENZENE       -       -       -         1.2-DIBROMO-3-CHLOROPROPANE       -       -       -         1.2-DICHLOROENZENE       -       -       -         1.2-DICHLOROENZENE       -       -       -         1.2-DICHLOROEROPANE       -       -       -         1.3-DICHLOROEROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VOLATILES (UG/KG)              |              | •            |                  |
| 1.1.2.7 TERRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1,2-TETRACHLOROETHANE      |              |              |                  |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |              |              |                  |
| 1.1.2-TRICHLOROTRIFLUOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,2,2-TETRACHLOROETHANE      |              |              |                  |
| 1,1-DICHLOROETHENE       -       -       -         1,1-DICHLOROETHENE       -       -       -         1,2-DICHLOROPROPENE       -       -       -         1,2,3-TRICHLOROBENZENE       -       -       -         1,2,3-TRICHLOROPROPANE       -       -       -         1,2,4-TRIMETHYLBENZENE       -       -       -         1,2,4-TRIMETHYLBENZENE       -       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROPROPANE       -       -       -         1,3-DICHLOROPROPANE       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-TRICHLOROETHANE          |              |              |                  |
| 1.1-DICHLOROPENDENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |                  |
| 1.1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-DICHLOROETHANE             |              |              |                  |
| 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROPROPANE 1.2.3-TRIMETHYLBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRIMETHYLBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DIBROMO-3-CHLOROBENZENE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLORO | 1,1-DICHLOROETHENE             |              |              |                  |
| 1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROPROPENE            1,4-DICHLOROPROPENE            1,4-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-DICHLOROPROPENE            |              |              |                  |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2-BUTANONE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3-TRICHLOROBENZENE         |              |              |                  |
| 1.2.4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |              |              |                  |
| 1,2.4-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRIMETHYLBENZENE         |              |              |                  |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-TRICHLOROBENZENE         |              |              |                  |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |              |              |                  |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |                  |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-DIBROMOETHANE              |              |              |                  |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROBENZENE            |              |              |                  |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROETHANE             |              |              |                  |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DICHLOROPROPANE            |              |              |                  |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |              |              |                  |
| 1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3-DICHLOROBENZENE            |              |              |                  |
| 1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROPROPANE            |              |              | 1                |
| 1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-DICHLOROPROPENE            |              |              |                  |
| 2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,4-DICHLOROBENZENE            |              |              |                  |
| 2-BUTANONE              2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,4-DIOXANE                    |              |              | 1                |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |              |              |                  |
| 2 CHI ODOTOLLIENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-CHLOROETHYL VINYL ETHER      |              |              |                  |
| Z-UNLUKUTULUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |              |              |                  |

February 2013 Page A-360

| LOCATION                | SB-266       | SB-266       | SB-267    |
|-------------------------|--------------|--------------|-----------|
| SAMPLE ID               | F-SB-266RE-3 | F-SB-266RE-4 | SB-267-02 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 5/9/2005  |
| 2-HEXANONE              |              |              |           |
| 4-CHLOROTOLUENE         |              |              |           |
| 4-ISOPROPYLTOLUENE      |              |              |           |
| 4-METHYL-2-PENTANONE    |              |              |           |
| ACETONE                 |              |              |           |
| BENZENE                 |              |              |           |
| BROMOBENZENE            |              |              |           |
| BROMOCHLOROMETHANE      |              |              |           |
| BROMODICHLOROMETHANE    |              |              |           |
| BROMOFORM               |              |              |           |
| BROMOMETHANE            |              |              |           |
| CARBON DISULFIDE        |              |              |           |
| CARBON TETRACHLORIDE    |              |              |           |
| CHLOROBENZENE           |              |              |           |
| CHLORODIBROMOMETHANE    |              |              |           |
| CHLOROETHANE            |              |              |           |
| CHLOROFORM              |              |              |           |
| CHLOROMETHANE           |              |              |           |
| CIS-1,2-DICHLOROETHENE  |              |              |           |
| CIS-1,3-DICHLOROPROPENE |              |              |           |
| DIBROMOMETHANE          |              |              |           |
| DICHLORODIFLUOROMETHANE |              |              |           |
| DIISOPROPYL ETHER       |              |              |           |
| ETHYL TERT-BUTYL ETHER  |              |              |           |
| ETHYLBENZENE            |              |              |           |
| FLUORODICHLOROMETHANE   |              |              |           |
| HEXACHLOROBUTADIENE     |              |              |           |
| ISOPROPYLBENZENE        |              |              |           |
| M+P-XYLENES             |              |              |           |
| METHYL TERT-BUTYL ETHER |              |              |           |
| METHYLENE CHLORIDE      |              |              |           |
| NAPHTHALENE             |              |              |           |
| N-BUTYLBENZENE          |              |              |           |
| N-PROPYLBENZENE         |              |              |           |
| O-XYLENE                |              |              |           |
| SEC-BUTYLBENZENE        |              |              |           |
| STYRENE                 |              |              |           |
| TERT-AMYL METHYL ETHER  |              |              |           |

| SAMPLE ID TE         F-SB-268RE-4 (92/2009)         SP-2600S         SP-260S           SAMPLE DATE         9/2/2009         9/2/2009         5/9/2009           TERT-BY-BUTTY, LECKNEK         -         -         -           TERT-BAY-BUTTY, LECKNEK         -         -         -           TOTAL S, DICHLOROETHENE         -         -         -           TOTAL S, DICHLOROETHENE         -         -         -           TOTAL S, DICHLOROETHENE         -         -         -           TRANS-1, S, DICHLOROETHENE         -         -         -           TROSLAGARDA         -         -         -           TOLORIDE         -         -         -           TOLORO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCATION                                 | SB-266               | SB-266               | SB-267              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|----------------------|---------------------|
| TERTSHYLBENKENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                                | F-SB-266RE-3         | F-SB-266RE-4         | SB-267-02           |
| TERTIARY BUTYL ALCOHOL   TERTACHURORETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                              | 9/21/2009            | 9/21/2009            | 5/9/2005            |
| TETRACHIOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        |                      |                      |                     |
| TOLUENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL YLVENES TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRICHLOROETHENE | TERTIARY-BUTYL ALCOHOL                   |                      |                      |                     |
| TOTAL X1ENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TETRACHLOROETHENE                        |                      |                      |                     |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                      |                      |                     |
| TRANS-12-DICHLOROPTROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL 1,2-DICHLOROETHENE                 |                      |                      |                     |
| TRANS-1,3-DICHLOROPROPENE TRICH-LOROETHENE TRICH-LOROETHE | TOTAL XYLENES                            |                      |                      |                     |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,2-DICHLOROETHENE                 |                      |                      |                     |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,3-DICHLOROPROPENE                |                      |                      |                     |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                      |                      |                     |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROFLUOROMETHANE                   |                      |                      |                     |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)  1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VINYL ACETATE                            |                      |                      |                     |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           |                      |                      |                     |
| 2-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                      |                      |                     |
| ACENAPHTHENE  ACENAPHTHYLENE   ACENAPHTHYLENE   ACENAPHTHYLENE   ACENAPHTHYLENE    B2 U [MDL=30]  ACENAPHTHYLENE   B32 U [MDL=30]  ACENAPHTHYLENE   B32 U [MDL=30]  ACENAPHTHYLENE   B32 U [MDL=30]  ACENAPHTHYLENE   B32 U [MDL=30]  B32 EQUIVALENT-HALFND  2.52555 [MDL=1.5]  1.5 U [MDL=1.5]  1.5 U [MDL=1.5]  1.5 U [MDL=30]  1.5 U [M                                     | 1-METHYLNAPHTHALENE                      |                      |                      | 82.1 U [MDL=25.8]   |
| ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-METHYLNAPHTHALENE                      |                      |                      | 82 U [MDL=30]       |
| ANTHRACENE BAP EQUIVALENT-HALFND 2.52555 [MDL=1.5] 1.5 U [MDL=1.5] 1.5 U [MDL=1.5] 1.5 U [MDL=30] BAP EQUIVALENT-POS  BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACENAPHTHENE                             |                      |                      | 82 U [MDL=30]       |
| BAP EQUIVALENT-HALFND   2.52555 [MDL=1.5]   1.5 U [MDL=1.5]   144.582 [MDL=30]   BAP EQUIVALENT-POS   0.87 [MDL=1.5]   1.5 U [MDL=1.5]   103.582 [MDL=30]   BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACENAPHTHYLENE                           |                      |                      | 82 U [MDL=30]       |
| BAP EQUIVALENT-POS   0.87 [MDL=1.5]   1.5 U [MDL=1.5]   103.582 [MDL=30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANTHRACENE                               |                      |                      | 82 U [MDL=20]       |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 2.52555 [MDL=1.5]    | 1.5 U [MDL=1.5]      | 144.582 [MDL=30]    |
| BENZO(A)ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-POS                       | 0.87 [MDL=1.5]       | 1.5 U [MDL=1.5]      | 103.582 [MDL=30]    |
| BENZO(A)PYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BAP EQUIVALENT-UCL                       |                      |                      | 187.147034 [MDL=30] |
| BENZO(B)FLUORANTHENE   8.7 [MDL=1.4]   1.40000 U [MDL=1.4]   83 [MDL=30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENZO(A)ANTHRACENE                       | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] | 81 J [MDL=20]       |
| BENZO(G,H,I)PERYLENE 59 J [MDL=40] BENZO(K)FLUORANTHENE 2.00000 U [MDL=2] 1.90000 U [MDL=1.9] 90 [MDL=20] C1-CHRYSENES/BENZO(A)ANTHRACENES C1-FLUORANTHENES/PYRENES C1-FLUORENES C1-PHENANTHRENES/ANTHRACENES C2-CHRYSENES/BENZO(A)ANTHRACENES C2-FLUORENES C2-PHENANTHRENES/ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-FLUORENES C3-FLUORENES C3-NAPHTHALENES C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BENZO(A)PYRENE                           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 80 J [MDL=30]       |
| BENZO(K)FLUORANTHENE   2.00000 U [MDL=2]   1.90000 U [MDL=1.9]   90 [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BENZO(B)FLUORANTHENE                     | 8.7 [MDL=1.4]        | 1.400000 U [MDL=1.4] | 83 [MDL=30]         |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-PHENANTHRENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(G,H,I)PERYLENE                     |                      |                      | 59 J [MDL=40]       |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BENZO(K)FLUORANTHENE                     | 2.000000 U [MDL=2]   | 1.900000 U [MDL=1.9] | 90 [MDL=20]         |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES            C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                      |                      |                     |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                      |                      |                     |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                      |                      |                     |
| C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                      |                      |                     |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                      |                      |                     |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                      |                      |                     |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                      |                      |                     |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                      |                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                      |                      | -                   |

| LOCATION                         | SB-266               | SB-266               | SB-267         |
|----------------------------------|----------------------|----------------------|----------------|
| SAMPLE ID                        | F-SB-266RE-3         | F-SB-266RE-4         | SB-267-02      |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 5/9/2005       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                |
| C4-NAPHTHALENES                  |                      |                      |                |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                |
| CHRYSENE                         | 1.100000 U [MDL=1.1] | 1.000000 U [MDL=1]   | 82 J [MDL=20]  |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 82 UJ [MDL=30] |
| FLUORANTHENE                     |                      |                      | 173 [MDL=30]   |
| FLUORENE                         |                      |                      | 82 U [MDL=20]  |
| INDENO(1,2,3-CD)PYRENE           | 1.800000 U [MDL=1.8] | 1.700000 U [MDL=1.7] | 62 J [MDL=40]  |
| NAPHTHALENE                      |                      |                      | 82 U [MDL=30]  |
| PHENANTHRENE                     |                      |                      | 47 J [MDL=20]  |
| PYRENE                           |                      |                      | 110 [MDL=20]   |
| TOTAL PAHS                       | 8.7 [MDL=1.5]        | 0 U [MDL=1.5]        | 867 [MDL=30]   |
| PESTICIDES/PCBS (UG/KG)          |                      |                      |                |
| 4,4'-DDD                         |                      |                      |                |
| 4,4'-DDE                         |                      |                      |                |
| 4,4'-DDT                         |                      |                      |                |
| ALDRIN                           |                      |                      |                |
| ALPHA-BHC                        |                      |                      |                |
| ALPHA-CHLORDANE                  |                      |                      |                |
| AROCLOR-1016                     | 25.000000 U [MDL=25] | 24.000000 U [MDL=24] |                |
| AROCLOR-1221                     | 19.000000 U [MDL=19] | 18.000000 U [MDL=18] |                |
| AROCLOR-1232                     | 17.000000 U [MDL=17] | 16.000000 U [MDL=16] |                |
| AROCLOR-1242                     | 15.000000 U [MDL=15] | 15.000000 U [MDL=15] |                |
| AROCLOR-1248                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] |                |
| AROCLOR-1254                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] |                |
| AROCLOR-1260                     | 20.000000 U [MDL=20] | 19.000000 U [MDL=19] |                |
| BETA-BHC                         |                      |                      |                |
| DELTA-BHC                        |                      |                      |                |
| DIELDRIN                         |                      |                      |                |
| ENDOSULFAN I                     |                      |                      |                |
| ENDOSULFAN II                    |                      |                      |                |
| ENDOSULFAN SULFATE               |                      |                      |                |
| ENDRIN                           |                      |                      |                |
| ENDRIN ALDEHYDE                  |                      |                      |                |
| ENDRIN KETONE                    |                      |                      |                |
| GAMMA-BHC (LINDANE)              |                      |                      |                |
| GAMMA-CHLORDANE                  |                      |                      |                |
| HEPTACHLOR                       |                      |                      |                |

February 2013 Page A-363

| LOCATION           | SB-266       | SB-266       | SB-267    |
|--------------------|--------------|--------------|-----------|
| SAMPLE ID          | F-SB-266RE-3 | F-SB-266RE-4 | SB-267-02 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 5/9/2005  |
| HEPTACHLOR EPOXIDE |              |              |           |
| METHOXYCHLOR       |              |              |           |
| TOTAL AROCLOR      | 0 U [MDL=25] | 0 U [MDL=24] |           |
| TOTAL DDT POS      |              |              |           |
| TOXAPHENE          | -            | 1            |           |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | <br> |  |
|-------------------------|------|--|
| GASOLINE RANGE ORGANICS | <br> |  |
| TPH (C09-C36)           | <br> |  |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-267            | SB-267       | SB-267       |
|------------------------------|-------------------|--------------|--------------|
| SAMPLE ID                    | SB-267-SS         | F-SB-267RE-3 | F-SB-267RE-4 |
| SAMPLE DATE                  | 5/9/2005          | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               |                   |              |              |
| ANTIMONY                     | 1.0 [MDL=0.3]     |              |              |
| ARSENIC                      | 3.0 B [MDL=0.7]   |              |              |
| BARIUM                       | 79.0 [MDL=0.3]    |              |              |
| BERYLLIUM                    | 0.80 [MDL=0.04]   |              |              |
| CADMIUM                      | 0.70 [MDL=0.06]   |              |              |
| CHROMIUM                     | 16.4 [MDL=0.2]    |              |              |
| COBALT                       | 6.0 [MDL=0.09]    |              |              |
| COPPER                       | 16.0 [MDL=0.3]    |              |              |
| LEAD                         | 91.0 [MDL=0.3]    |              |              |
| MERCURY                      | 0.07 []           |              |              |
| MOLYBDENUM                   | 0.60 U [MDL=0.6]  |              |              |
| NICKEL                       | 9.0 [MDL=0.1]     |              |              |
| SELENIUM                     | 3.0 [MDL=2]       |              |              |
| SILVER                       | 0.06 B [MDL=0.06] |              |              |
| THALLIUM                     | 1.0 U [MDL=1]     |              |              |
| VANADIUM                     | 21.6 [MDL=0.2]    |              |              |
| ZINC                         | 287 [MDL=0.2]     |              |              |
| MISCELLANEOUS PARAMETERS     |                   |              |              |
| PERCENT SOLIDS (%)           |                   |              |              |
| TOTAL SOLIDS (%)             |                   |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |                   |              |              |
| PH (S.U.)                    |                   |              |              |
| MERCURY (METHYL) (UG/KG)     |                   |              |              |
| SEMIVOLATILES (UG/KG)        |                   |              |              |
| 1,1-BIPHENYL                 |                   |              |              |
| 1,2,4-TRICHLOROBENZENE       | 193 U [MDL=60]    |              |              |
| 1,2-DICHLOROBENZENE          | 193 U [MDL=30]    |              |              |
| 1,3-DICHLOROBENZENE          | 193 U [MDL=20]    |              |              |
| 1,4-DICHLOROBENZENE          | 193 U [MDL=20]    |              |              |
| 1,4-DIOXANE                  | 375 U [MDL=76.1]  |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 114 U [MDL=40]    |              |              |
| 2,4,5-TRICHLOROPHENOL        | 386 U [MDL=30]    |              |              |
| 2,4,6-TRICHLOROPHENOL        | 386 U [MDL=40]    |              |              |
| 2,4-DICHLOROPHENOL           | 386 U [MDL=30]    |              |              |
| 2,4-DIMETHYLPHENOL           | 386 U [MDL=40]    |              |              |
| 2,4-DINITROPHENOL            | 568 U [MDL=60]    |              |              |

| LOCATION                    | SB-267           | SB-267       | SB-267       |
|-----------------------------|------------------|--------------|--------------|
| SAMPLE ID                   | SB-267-SS        | F-SB-267RE-3 | F-SB-267RE-4 |
| SAMPLE DATE                 | 5/9/2005         | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          | 80 U [MDL=20]    |              |              |
| 2,6-DINITROTOLUENE          | 80 U [MDL=30]    |              |              |
| 2-CHLORONAPHTHALENE         | 193 U [MDL=20]   |              |              |
| 2-CHLOROPHENOL              | 386 U [MDL=20]   |              |              |
| 2-METHYLPHENOL              | 386 U [MDL=40]   |              |              |
| 2-NITROANILINE              | 193 U [MDL=60]   |              |              |
| 2-NITROPHENOL               | 386 U [MDL=30]   |              |              |
| 3&4-METHYLPHENOL            | 761 U [MDL=30]   |              |              |
| 3,3'-DICHLOROBENZIDINE      | 193 U [MDL=80]   |              |              |
| 3-NITROANILINE              | 386 U [MDL=60]   |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 386 U [MDL=10]   |              |              |
| 4-BROMOPHENYL PHENYL ETHER  | 114 U [MDL=40]   |              |              |
| 4-CHLORO-3-METHYLPHENOL     | 386 U [MDL=30]   |              |              |
| 4-CHLOROANILINE             | 386 U [MDL=50]   |              |              |
| 4-CHLOROPHENYL PHENYL ETHER | 193 U [MDL=20]   |              |              |
| 4-NITROANILINE              | 114 U [MDL=50]   |              |              |
| 4-NITROPHENOL               | 386 U [MDL=40]   |              |              |
| ACETOPHENONE                |                  |              |              |
| ANILINE                     | 386 U [MDL=51.1] |              |              |
| ATRAZINE                    |                  |              |              |
| AZOBENZENE                  | 193 U [MDL=21.6] |              |              |
| BENZIDINE                   | 761 U [MDL=239]  |              |              |
| BENZOIC ACID                | 925 [MDL=33]     |              |              |
| BENZYL ALCOHOL              | 386 U [MDL=31.8] |              |              |
| BIS(2-CHLOROETHOXY)METHANE  | 114 U [MDL=40]   |              |              |
| BIS(2-CHLOROETHYL)ETHER     | 114 U [MDL=30]   |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 80 U [MDL=30]    |              |              |
| BUTYL BENZYL PHTHALATE      | 193 U [MDL=20]   |              |              |
| CAPROLACTAM                 |                  |              |              |
| CARBAZOLE                   | 193 U [MDL=20]   |              |              |
| DIBENZOFURAN                | 114 U [MDL=20]   |              |              |
| DIETHYL PHTHALATE           | 386 U [MDL=20]   |              |              |
| DIMETHYL PHTHALATE          | 386 U [MDL=20]   |              |              |
| DI-N-BUTYL PHTHALATE        | 193 U [MDL=30]   |              |              |
| DI-N-OCTYL PHTHALATE        | 193 U [MDL=20]   |              |              |
| HEXACHLOROBENZENE           | 80 U [MDL=20]    |              |              |
| HEXACHLOROBUTADIENE         | 193 U [MDL=40]   |              |              |
| HEXACHLOROCYCLOPENTADIENE   | 386 U [MDL=30]   |              |              |

| LOCATION                       | SB-267           | SB-267       | SB-267       |
|--------------------------------|------------------|--------------|--------------|
| SAMPLE ID                      | SB-267-SS        | F-SB-267RE-3 | F-SB-267RE-4 |
| SAMPLE DATE                    | 5/9/2005         | 9/21/2009    | 9/21/2009    |
| HEXACHLOROETHANE               | 193 U [MDL=30]   |              |              |
| ISOPHORONE                     | 114 U [MDL=30]   |              |              |
| NITROBENZENE                   | 193 U [MDL=60]   |              |              |
| N-NITROSODIMETHYLAMINE         | 114 U [MDL=43.2] |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 114 U [MDL=30]   |              |              |
| N-NITROSODIPHENYLAMINE         | 114 U [MDL=20]   |              |              |
| PENTACHLOROPHENOL              | 955 U [MDL=50]   |              |              |
| PHENOL                         | 386 U [MDL=40]   |              |              |
| PYRIDINE                       | 386 U [MDL=47.7] |              |              |
| VOLATILES (UG/KG)              | •                |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |                  |              |              |
| 1,1,1-TRICHLOROETHANE          |                  |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |                  |              |              |
| 1,1,2-TRICHLOROETHANE          |                  |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                  |              |              |
| 1,1-DICHLOROETHANE             |                  |              |              |
| 1,1-DICHLOROETHENE             |                  |              |              |
| 1,1-DICHLOROPROPENE            |                  |              |              |
| 1,2,3-TRICHLOROBENZENE         |                  |              |              |
| 1,2,3-TRICHLOROPROPANE         |                  |              |              |
| 1,2,3-TRIMETHYLBENZENE         |                  |              |              |
| 1,2,4-TRICHLOROBENZENE         |                  |              |              |
| 1,2,4-TRIMETHYLBENZENE         |                  |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                  |              |              |
| 1,2-DIBROMOETHANE              |                  |              |              |
| 1,2-DICHLOROBENZENE            |                  |              |              |
| 1,2-DICHLOROETHANE             |                  |              |              |
| 1,2-DICHLOROPROPANE            |                  |              |              |
| 1,3,5-TRIMETHYLBENZENE         |                  |              |              |
| 1,3-DICHLOROBENZENE            |                  |              |              |
| 1,3-DICHLOROPROPANE            |                  |              |              |
| 1,3-DICHLOROPROPENE            |                  |              |              |
| 1,4-DICHLOROBENZENE            |                  |              |              |
| 1,4-DIOXANE                    |                  |              |              |
| 2,2-DICHLOROPROPANE            |                  |              |              |
| 2-BUTANONE                     |                  |              |              |
| 2-CHLOROETHYL VINYL ETHER      |                  |              |              |
| 2-CHLOROTOLUENE                |                  |              |              |

February 2013 Page A-367

| LOCATION                | SB-267    | SB-267       | SB-267       |
|-------------------------|-----------|--------------|--------------|
| SAMPLE ID               | SB-267-SS | F-SB-267RE-3 | F-SB-267RE-4 |
| SAMPLE DATE             | 5/9/2005  | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |           |              |              |
| 4-CHLOROTOLUENE         |           |              |              |
| 4-ISOPROPYLTOLUENE      |           |              |              |
| 4-METHYL-2-PENTANONE    |           |              |              |
| ACETONE                 |           |              |              |
| BENZENE                 |           |              |              |
| BROMOBENZENE            |           |              |              |
| BROMOCHLOROMETHANE      |           |              |              |
| BROMODICHLOROMETHANE    |           |              |              |
| BROMOFORM               |           |              |              |
| BROMOMETHANE            |           |              |              |
| CARBON DISULFIDE        |           |              |              |
| CARBON TETRACHLORIDE    |           |              |              |
| CHLOROBENZENE           |           |              |              |
| CHLORODIBROMOMETHANE    |           |              |              |
| CHLOROETHANE            |           |              |              |
| CHLOROFORM              |           |              |              |
| CHLOROMETHANE           |           |              |              |
| CIS-1,2-DICHLOROETHENE  |           |              |              |
| CIS-1,3-DICHLOROPROPENE |           |              |              |
| DIBROMOMETHANE          |           |              |              |
| DICHLORODIFLUOROMETHANE |           |              |              |
| DIISOPROPYL ETHER       |           |              |              |
| ETHYL TERT-BUTYL ETHER  |           |              |              |
| ETHYLBENZENE            |           |              |              |
| FLUORODICHLOROMETHANE   |           |              |              |
| HEXACHLOROBUTADIENE     |           |              |              |
| ISOPROPYLBENZENE        |           |              |              |
| M+P-XYLENES             |           |              |              |
| METHYL TERT-BUTYL ETHER |           |              |              |
| METHYLENE CHLORIDE      |           |              |              |
| NAPHTHALENE             |           |              |              |
| N-BUTYLBENZENE          |           |              |              |
| N-PROPYLBENZENE         |           |              |              |
| O-XYLENE                |           |              |              |
| SEC-BUTYLBENZENE        |           |              |              |
| STYRENE                 |           |              |              |
| TERT-AMYL METHYL ETHER  |           |              |              |

| LOCATION                                 | SB-267           | SB-267               | SB-267               |
|------------------------------------------|------------------|----------------------|----------------------|
| SAMPLE ID                                | SB-267-SS        | F-SB-267RE-3         | F-SB-267RE-4         |
| SAMPLE DATE                              | 5/9/2005         | 9/21/2009            | 9/21/2009            |
| TERT-BUTYLBENZENE                        |                  |                      |                      |
| TERTIARY-BUTYL ALCOHOL                   |                  |                      |                      |
| TETRACHLOROETHENE                        |                  |                      |                      |
| TOLUENE                                  |                  |                      |                      |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                      |                      |
| TOTAL XYLENES                            |                  |                      |                      |
| TRANS-1,2-DICHLOROETHENE                 |                  |                      |                      |
| TRANS-1,3-DICHLOROPROPENE                |                  |                      |                      |
| TRICHLOROETHENE                          |                  |                      |                      |
| TRICHLOROFLUOROMETHANE                   |                  |                      |                      |
| VINYL ACETATE                            |                  |                      |                      |
| VINYL CHLORIDE                           |                  |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                |                      |                      |
| 1-METHYLNAPHTHALENE                      | 79.5 U [MDL=25]  |                      |                      |
| 2-METHYLNAPHTHALENE                      | 80 U [MDL=30]    |                      |                      |
| ACENAPHTHENE                             | 80 U [MDL=30]    |                      |                      |
| ACENAPHTHYLENE                           | 80 U [MDL=30]    |                      |                      |
| ANTHRACENE                               | 41 J [MDL=20]    |                      |                      |
| BAP EQUIVALENT-HALFND                    | 313.239 [MDL=30] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS                       | 313.239 [MDL=30] | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL                       | 313.239 [MDL=30] |                      |                      |
| BENZO(A)ANTHRACENE                       | 209 [MDL=20]     | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 212 [MDL=30]     | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 229 [MDL=30]     | 1.400000 U [MDL=1.4] | 1.400000 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     | 113 J [MDL=40]   |                      |                      |
| BENZO(K)FLUORANTHENE                     | 241 [MDL=20]     | 1.900000 U [MDL=1.9] | 2.000000 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C1-FLUORANTHENES/PYRENES                 |                  |                      |                      |
| C1-FLUORENES                             |                  |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C2-FLUORENES                             |                  |                      |                      |
| C2-NAPHTHALENES                          |                  |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                      |                      |
| C3-FLUORENES                             |                  |                      |                      |
| C3-NAPHTHALENES                          |                  |                      |                      |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                      |                      |

HEPTACHLOR

| OOIL                             |                  |                      |                      |
|----------------------------------|------------------|----------------------|----------------------|
| LOCATION                         | SB-267           | SB-267               | SB-267               |
| SAMPLE ID                        | SB-267-SS        | F-SB-267RE-3         | F-SB-267RE-4         |
| SAMPLE DATE                      | 5/9/2005         | 9/21/2009            | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                      |                      |
| C4-NAPHTHALENES                  |                  |                      |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                      |                      |
| CHRYSENE                         | 229 [MDL=20]     | 1.000000 U [MDL=1]   | 1.100000 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 41 J [MDL=30]    | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     | 395 [MDL=30]     |                      |                      |
| FLUORENE                         | 80 U [MDL=20]    |                      |                      |
| NDENO(1,2,3-CD)PYRENE            | 138 J [MDL=30]   | 1.700000 U [MDL=1.7] | 1.800000 U [MDL=1.8] |
| NAPHTHALENE                      | 80 U [MDL=30]    |                      |                      |
| PHENANTHRENE                     | 163 [MDL=20]     |                      |                      |
| PYRENE                           | 286 [MDL=20]     |                      |                      |
| TOTAL PAHS                       | 2297 [MDL=30]    | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          | 1                |                      |                      |
| 4,4'-DDD                         |                  |                      |                      |
| 4,4'-DDE                         |                  |                      |                      |
| 4,4'-DDT                         |                  |                      |                      |
| ALDRIN                           |                  |                      |                      |
| ALPHA-BHC                        |                  |                      |                      |
| ALPHA-CHLORDANE                  |                  |                      |                      |
| AROCLOR-1016                     | 38 U [MDL=0.01]  |                      |                      |
| AROCLOR-1221                     | 38 U [MDL=0.007] |                      |                      |
| AROCLOR-1232                     | 38 U [MDL=0.01]  |                      |                      |
| AROCLOR-1242                     | 38 U [MDL=0.007] |                      |                      |
| AROCLOR-1248                     | 38 U [MDL=0.009] |                      |                      |
| AROCLOR-1254                     | 96 [MDL=0.009]   |                      |                      |
| AROCLOR-1260                     | 73 J [MDL=0.007] |                      |                      |
| BETA-BHC                         |                  |                      |                      |
| DELTA-BHC                        |                  |                      |                      |
| DIELDRIN                         |                  |                      |                      |
| ENDOSULFAN I                     |                  |                      |                      |
| ENDOSULFAN II                    |                  |                      |                      |
| ENDOSULFAN SULFATE               |                  |                      |                      |
| ENDRIN                           |                  |                      |                      |
| ENDRIN ALDEHYDE                  |                  |                      |                      |
| ENDRIN KETONE                    |                  |                      |                      |
| GAMMA-BHC (LINDANE)              |                  |                      |                      |
| GAMMA-CHLORDANE                  |                  |                      |                      |
|                                  | <b>•</b>         |                      |                      |

February 2013 Page A-370

--

---

| LOCATION           | SB-267         | SB-267       | SB-267       |
|--------------------|----------------|--------------|--------------|
| SAMPLE ID          | SB-267-SS      | F-SB-267RE-3 | F-SB-267RE-4 |
| SAMPLE DATE        | 5/9/2005       | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |                |              |              |
| METHOXYCHLOR       | 1              |              |              |
| TOTAL AROCLOR      | 169 [MDL=0.01] |              |              |
| TOTAL DDT POS      |                |              |              |
| TOXAPHENE          |                |              |              |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | î | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | - | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

U = The chemical was not detected.

L = The chemical result was positively detected and biased low.

UR = The chemical was nondetected and rejected.

UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.

K = The chemical result was positively detected and biased high.

UL = The chemical was nondetected and the concentration reported is an biased low.

B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-268           | SB-268             | SB-268       |
|------------------------------|------------------|--------------------|--------------|
| SAMPLE ID                    | SB-268-02        | SB-268-SS          | F-SB-268RE-3 |
| SAMPLE DATE                  | 5/9/2005         | 5/9/2005           | 9/21/2009    |
| METALS (MG/KG)               | •                | -                  |              |
| ANTIMONY                     |                  | 2 L [MDL=0.3]      |              |
| ARSENIC                      |                  | 5 [MDL=0.7]        |              |
| BARIUM                       |                  | 207 [MDL=0.3]      |              |
| BERYLLIUM                    |                  | 1.4 [MDL=0.04]     |              |
| CADMIUM                      |                  | 3 [MDL=0.06]       |              |
| CHROMIUM                     |                  | 31.8 [MDL=0.2]     |              |
| COBALT                       |                  | 11.7 [MDL=0.09]    |              |
| COPPER                       |                  | 50 [MDL=0.3]       |              |
| LEAD                         |                  | 447 [MDL=0.3]      |              |
| MERCURY                      |                  | 0.49 []            |              |
| MOLYBDENUM                   |                  | 1 B [MDL=0.6]      |              |
| NICKEL                       |                  | 14 [MDL=0.1]       |              |
| SELENIUM                     |                  | 2 U [MDL=2]        |              |
| SILVER                       |                  | 0.3 B [MDL=0.06]   |              |
| THALLIUM                     |                  | 1 U [MDL=1]        |              |
| VANADIUM                     |                  | 35.8 [MDL=0.2]     |              |
| ZINC                         |                  | 289 [MDL=0.2]      |              |
| MISCELLANEOUS PARAMETERS     | •                | -                  |              |
| PERCENT SOLIDS (%)           |                  |                    |              |
| TOTAL SOLIDS (%)             |                  |                    |              |
| HEXAVALENT CHROMIUM (MG/KG)  |                  | 3.6 [MDL=0.4]      |              |
| TOTAL ORGANIC CARBON (MG/KG) |                  |                    | <del></del>  |
| PH (S.U.)                    |                  |                    | <del></del>  |
| MERCURY (METHYL) (UG/KG)     |                  |                    | <del></del>  |
| SEMIVOLATILES (UG/KG)        |                  |                    |              |
| 1,1-BIPHENYL                 |                  |                    |              |
| 1,2,4-TRICHLOROBENZENE       | 203 U [MDL=60]   | 4050 U [MDL=1000]  | <del></del>  |
| 1,2-DICHLOROBENZENE          | 203 U [MDL=30]   | 4050 U [MDL=700]   |              |
| 1,3-DICHLOROBENZENE          | 203 U [MDL=30]   | 4050 U [MDL=500]   | <del></del>  |
| 1,4-DICHLOROBENZENE          | 203 U [MDL=30]   | 4050 U [MDL=500]   | <del></del>  |
| 1,4-DIOXANE                  | 393 U [MDL=79.8] | 7870 U [MDL=1600]  | <del></del>  |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 119 U [MDL=40]   | 2380 U [MDL=900]   |              |
| 2,4,5-TRICHLOROPHENOL        | 405 U [MDL=40]   | 8110 U [MDL=700]   | <del></del>  |
| 2,4,6-TRICHLOROPHENOL        | 405 U [MDL=40]   | 8110 U [MDL=800]   |              |
| 2,4-DICHLOROPHENOL           | 405 U [MDL=30]   | 8110 U [MDL=500]   | <del></del>  |
| 2,4-DIMETHYLPHENOL           | 405 U [MDL=40]   | 8110 U [MDL=800]   | <del></del>  |
| 2,4-DINITROPHENOL            | 596 U [MDL=60]   | 11900 U [MDL=1000] |              |

| LOCATION                    | SB-268           | SB-268             | SB-268       |
|-----------------------------|------------------|--------------------|--------------|
| SAMPLE ID                   | SB-268-02        | SB-268-SS          | F-SB-268RE-3 |
| SAMPLE DATE                 | 5/9/2005         | 5/9/2005           | 9/21/2009    |
| 2,4-DINITROTOLUENE          | 83 U [MDL=30]    | 1670 U [MDL=500]   |              |
| 2,6-DINITROTOLUENE          | 83 U [MDL=40]    | 1670 U [MDL=700]   |              |
| 2-CHLORONAPHTHALENE         | 203 U [MDL=30]   | 4050 U [MDL=500]   |              |
| 2-CHLOROPHENOL              | 405 U [MDL=20]   | 8110 U [MDL=400]   |              |
| 2-METHYLPHENOL              | 405 U [MDL=40]   | 8110 U [MDL=700]   |              |
| 2-NITROANILINE              | 203 U [MDL=70]   | 4050 U [MDL=1000]  |              |
| 2-NITROPHENOL               | 405 U [MDL=30]   | 8110 U [MDL=700]   |              |
| 3&4-METHYLPHENOL            | 798 U [MDL=30]   | 16000 U [MDL=600]  |              |
| 3,3'-DICHLOROBENZIDINE      | 203 U [MDL=80]   | 4050 U [MDL=2000]  |              |
| 3-NITROANILINE              | 405 U [MDL=70]   | 8110 U [MDL=1000]  |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 405 U [MDL=10]   | 8110 U [MDL=300]   |              |
| 4-BROMOPHENYL PHENYL ETHER  | 119 U [MDL=40]   | 2380 U [MDL=800]   |              |
| 4-CHLORO-3-METHYLPHENOL     | 405 U [MDL=40]   | 8110 U [MDL=700]   |              |
| 4-CHLOROANILINE             | 405 U [MDL=50]   | 8110 U [MDL=1000]  |              |
| 4-CHLOROPHENYL PHENYL ETHER | 203 U [MDL=30]   | 4050 U [MDL=500]   |              |
| 4-NITROANILINE              | 119 U [MDL=50]   | 2380 U [MDL=1000]  |              |
| 4-NITROPHENOL               | 405 U [MDL=40]   | 8110 U [MDL=800]   |              |
| ACETOPHENONE                |                  |                    |              |
| ANILINE                     | 405 U [MDL=53.6] | 8110 U [MDL=1070]  |              |
| ATRAZINE                    |                  |                    |              |
| AZOBENZENE                  | 203 U [MDL=22.6] | 4050 U [MDL=453]   |              |
| BENZIDINE                   | 798 U [MDL=250]  | 16000 U [MDL=5010] |              |
| BENZOIC ACID                | 180 J [MDL=34.5] | 16000 U [MDL=692]  |              |
| BENZYL ALCOHOL              | 405 U [MDL=33.4] | 8110 U [MDL=668]   |              |
| BIS(2-CHLOROETHOXY)METHANE  | 119 U [MDL=40]   | 2380 U [MDL=800]   |              |
| BIS(2-CHLOROETHYL)ETHER     | 119 U [MDL=30]   | 2380 U [MDL=700]   |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 83 U [MDL=30]    | 1670 U [MDL=700]   |              |
| BUTYL BENZYL PHTHALATE      | 203 U [MDL=20]   | 4050 U [MDL=500]   |              |
| CAPROLACTAM                 |                  |                    |              |
| CARBAZOLE                   | 448 [MDL=30]     | 4640 [MDL=500]     |              |
| DIBENZOFURAN                | 140 [MDL=20]     | 1650 J [MDL=500]   |              |
| DIETHYL PHTHALATE           | 405 U [MDL=20]   | 8110 U [MDL=400]   |              |
| DIMETHYL PHTHALATE          | 405 U [MDL=20]   | 8110 U [MDL=400]   |              |
| DI-N-BUTYL PHTHALATE        | 37 J [MDL=30]    | 4050 U [MDL=600]   |              |
| DI-N-OCTYL PHTHALATE        | 203 U [MDL=20]   | 4050 U [MDL=500]   |              |
| HEXACHLOROBENZENE           | 83 U [MDL=30]    | 1670 U [MDL=500]   |              |
| HEXACHLOROBUTADIENE         | 203 U [MDL=40]   | 4050 U [MDL=900]   |              |
| HEXACHLOROCYCLOPENTADIENE   | 405 U [MDL=30]   | 8110 U [MDL=500]   |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-268           | SB-268             | SB-268       |
|--------------------------------|------------------|--------------------|--------------|
| SAMPLE ID                      | SB-268-02        | SB-268-SS          | F-SB-268RE-3 |
| SAMPLE DATE                    | 5/9/2005         | 5/9/2005           | 9/21/2009    |
| HEXACHLOROETHANE               | 203 U [MDL=30]   | 4050 U [MDL=700]   |              |
| ISOPHORONE                     | 119 U [MDL=30]   | 2380 U [MDL=600]   |              |
| NITROBENZENE                   | 203 U [MDL=60]   | 4050 U [MDL=1000]  |              |
| N-NITROSODIMETHYLAMINE         | 119 U [MDL=45.3] | 2380 U [MDL=906]   |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 119 U [MDL=40]   | 2380 U [MDL=700]   |              |
| N-NITROSODIPHENYLAMINE         | 119 U [MDL=20]   | 2380 U [MDL=300]   |              |
| PENTACHLOROPHENOL              | 1000 U [MDL=50]  | 20000 U [MDL=1000] |              |
| PHENOL                         | 405 U [MDL=50]   | 8110 U [MDL=900]   |              |
| PYRIDINE                       | 405 U [MDL=50]   | 8110 U [MDL=1000]  |              |
| VOLATILES (UG/KG)              |                  |                    |              |
| 1,1,1,2-TETRACHLOROETHANE      |                  | 1                  |              |
| 1,1,1-TRICHLOROETHANE          |                  | 1                  |              |
| 1,1,2,2-TETRACHLOROETHANE      |                  | 1                  |              |
| 1,1,2-TRICHLOROETHANE          |                  | 1                  |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                  | 1                  |              |
| 1,1-DICHLOROETHANE             |                  | 1                  |              |
| 1,1-DICHLOROETHENE             |                  | 1                  |              |
| 1,1-DICHLOROPROPENE            |                  | 1                  |              |
| 1,2,3-TRICHLOROBENZENE         |                  | 1                  |              |
| 1,2,3-TRICHLOROPROPANE         |                  | 1                  |              |
| 1,2,3-TRIMETHYLBENZENE         |                  |                    |              |
| 1,2,4-TRICHLOROBENZENE         |                  |                    |              |
| 1,2,4-TRIMETHYLBENZENE         |                  | -                  |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                  | -                  |              |
| 1,2-DIBROMOETHANE              |                  | -                  |              |
| 1,2-DICHLOROBENZENE            |                  | -                  |              |
| 1,2-DICHLOROETHANE             |                  | -                  |              |
| 1,2-DICHLOROPROPANE            |                  | -                  |              |
| 1,3,5-TRIMETHYLBENZENE         |                  |                    |              |
| 1,3-DICHLOROBENZENE            |                  |                    |              |
| 1,3-DICHLOROPROPANE            |                  | -                  |              |
| 1,3-DICHLOROPROPENE            |                  |                    |              |
| 1,4-DICHLOROBENZENE            |                  |                    |              |
| 1,4-DIOXANE                    |                  |                    |              |
| 2,2-DICHLOROPROPANE            |                  |                    |              |
| 2-BUTANONE                     |                  |                    |              |
| 2-CHLOROETHYL VINYL ETHER      |                  |                    |              |

February 2013 Page A-374

---

---

| LOCATION                | SB-268    | SB-268    | SB-268       |
|-------------------------|-----------|-----------|--------------|
| SAMPLE ID               | SB-268-02 | SB-268-SS | F-SB-268RE-3 |
| SAMPLE DATE             | 5/9/2005  | 5/9/2005  | 9/21/2009    |
| 2-HEXANONE              |           |           |              |
| 4-CHLOROTOLUENE         |           |           |              |
| 4-ISOPROPYLTOLUENE      |           |           |              |
| 4-METHYL-2-PENTANONE    |           |           |              |
| ACETONE                 |           |           |              |
| BENZENE                 |           |           |              |
| BROMOBENZENE            |           |           |              |
| BROMOCHLOROMETHANE      |           |           |              |
| BROMODICHLOROMETHANE    |           |           |              |
| BROMOFORM               |           |           |              |
| BROMOMETHANE            |           |           |              |
| CARBON DISULFIDE        |           |           |              |
| CARBON TETRACHLORIDE    |           |           |              |
| CHLOROBENZENE           |           |           |              |
| CHLORODIBROMOMETHANE    |           |           |              |
| CHLOROETHANE            |           |           |              |
| CHLOROFORM              |           |           |              |
| CHLOROMETHANE           |           |           |              |
| CIS-1,2-DICHLOROETHENE  |           |           |              |
| CIS-1,3-DICHLOROPROPENE |           |           |              |
| DIBROMOMETHANE          |           |           |              |
| DICHLORODIFLUOROMETHANE |           |           |              |
| DIISOPROPYL ETHER       |           |           |              |
| ETHYL TERT-BUTYL ETHER  |           |           |              |
| ETHYLBENZENE            |           |           |              |
| FLUORODICHLOROMETHANE   |           |           |              |
| HEXACHLOROBUTADIENE     |           |           |              |
| ISOPROPYLBENZENE        |           |           |              |
| M+P-XYLENES             |           |           |              |
| METHYL TERT-BUTYL ETHER |           |           |              |
| METHYLENE CHLORIDE      |           |           |              |
| NAPHTHALENE             |           |           |              |
| N-BUTYLBENZENE          |           |           |              |
| N-PROPYLBENZENE         |           |           |              |
| O-XYLENE                |           |           |              |
| SEC-BUTYLBENZENE        |           |           |              |
| STYRENE                 |           |           |              |
| TERT-AMYL METHYL ETHER  |           |           |              |

| SAMPLE IO DATE         SB-288PZ         SB-288RS         F-SB-288RE-3           SAMPLE DATE         6702006         5022009         92120090           TERT BLY BUTYLLEDNENE         -         -         -         -         -           TERTACH-LORDETHENE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCATION                                 | SB-268            | SB-268            | SB-268           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-------------------|------------------|
| TERT BUTYLEPAZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID                                | SB-268-02         | SB-268-SS         | F-SB-268RE-3     |
| TERTIARY-BUTYL ALCOHOL TERTACHUR OFFITHER TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TOTAL 1,2-DICHLOROETHENE TRANSH 3,2-DICHLOROETHENE TRANSH 3,2-DICHLOROETHENE TRANSH 3,2-DICHLOROETHENE TRICHLOROETHENE TO THE THY THE TOTAL TH | SAMPLE DATE                              | 5/9/2005          | 5/9/2005          | 9/21/2009        |
| TETRACH, ORDETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TERT-BUTYLBENZENE                        |                   |                   |                  |
| TOTAL 12-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERTIARY-BUTYL ALCOHOL                   |                   |                   |                  |
| TOTAL X7LENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TETRACHLOROETHENE                        |                   |                   |                  |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  |                   |                   |                  |
| TRANS-12-DICHLOROFITEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL 1,2-DICHLOROETHENE                 |                   |                   |                  |
| TRANS-1,3-DICHLOROPORPOPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHORY TR | TOTAL XYLENES                            |                   |                   |                  |
| TRICHLOROFLINGETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS-1,2-DICHLOROETHENE                 |                   |                   |                  |
| TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRANS-1,3-DICHLOROPROPENE                |                   |                   |                  |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROETHENE                          |                   |                   |                  |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROFLUOROMETHANE                   |                   |                   |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)   1.METHYLINAPHTHALLENE   36.5 J [MDL=26.2]   1670 U [MDL=525]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VINYL ACETATE                            |                   |                   |                  |
| 1-METHYLNAPHTHALENE 36.5 J (MDL=26.2] 1670 U (MDL=525]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VINYL CHLORIDE                           |                   |                   |                  |
| 2-METHYLNAPHTHALENE 32 J [MDL=30] 1670 U [MDL=600] ACENAPHTHENE 350 [MDL=30] 3620 [MDL=600] ACENAPHTHYLENE 49 J J [MDL=500] ACENAPHTHYLENE 49 J J [MDL=500] ANTHRACENE 1000 [MDL=20] 9420 [MDL=500] ANTHRACENE 1000 [MDL=20] 9420 [MDL=500] BAP EQUIVALENT-HALFND 4262.03 [MDL=30] 38098.4 [MDL=600] 7604.4 [MDL=9.8] BAP EQUIVALENT-POS 4262.03 [MDL=30] 38098.4 [MDL=600] 7604.4 [MDL=9.8] BAP EQUIVALENT-UCL 4262.03 [MDL=30] 38098.4 [MDL=600] 7604.4 [MDL=9.8] BAP EQUIVALENT-UCL 4262.03 [MDL=30] 38098.4 [MDL=600] 7604.4 [MDL=9.8] BENZO(A)ANTHRACENE 2890 [MDL=20] 28700 [MDL=600] 5700 [MDL=9.8] BENZO(B)FLUORANTHENE 3130 [MDL=30] 25600 [MDL=600] 5700 [MDL=9.8] BENZO(B)FLUORANTHENE 4000 [MDL=500] 26700 [MDL=600] 5000 [MDL=9.8] BENZO(B)FLUORANTHENE 500 [MDL=9.8] 13200 J [MDL=600] 5600 [MDL=9.8] BENZO(B)FLUORANTHENE 500 [MDL=600] 5600 [MDL=9.8] 5600                    | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                 |                   | •                |
| ACENAPHTHENE  ACENAPHTHYLENE  49 J[MDL=30]  ACENAPHTHYLENE  49 J[MDL=30]  ACENAPHTHYLENE  49 J[MDL=30]  ACENAPHTHYLENE  49 J[MDL=30]  BAP EQUIVALENT-HALFND  426.03 [MDL=30]  BAP EQUIVALENT-HALFND  426.03 [MDL=30]  BAP EQUIVALENT-POS  426.03 [MDL=30]  BAP EQUIVALENT-UCL  426.03 [MDL=30]  BAP EQUIVALENT-UCL  426.03 [MDL=30]  BAP EQUIVALENT-WICL  426.03 [MDL=30]  BENZO(A)ANTHRACENE  BENZO(A)ANTHRACENE  2280 [MDL=20]  BENZO(A)PYRENE  3130 [MDL=30]  BENZO(B)FLUORANTHENE  4000 [MDL=30]  4 | 1-METHYLNAPHTHALENE                      | 36.5 J [MDL=26.2] | 1670 U [MDL=525]  |                  |
| ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-METHYLNAPHTHALENE                      | 32 J [MDL=30]     | 1670 U [MDL=600]  |                  |
| ANTHRACENE 1000 [MDL=20] 9420 [MDL=500]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACENAPHTHENE                             | 350 [MDL=30]      | 3620 [MDL=600]    |                  |
| ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACENAPHTHYLENE                           | 49 J [MDL=30]     | 1670 U [MDL=600]  |                  |
| BAP EQUIVALENT-POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTHRACENE                               | 1000 [MDL=20]     | 9420 [MDL=500]    |                  |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAP EQUIVALENT-HALFND                    | 4262.03 [MDL=30]  | 38098.4 [MDL=600] | 7604.4 [MDL=9.8] |
| BENZO(A)ANTHRACENE   2980 [MDL=20]   28700 [MDL=400]   5700 [MDL=7.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BAP EQUIVALENT-POS                       | 4262.03 [MDL=30]  | 38098.4 [MDL=600] | 7604.4 [MDL=9.8] |
| BENZO(A)PYRENE   3130 [MDL=30]   25600 [MDL=600]   5200 [MDL=9.8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BAP EQUIVALENT-UCL                       | 4262.03 [MDL=30]  | 38098.4 [MDL=600] |                  |
| BENZO(B)FLUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)ANTHRACENE                       | 2980 [MDL=20]     | 28700 [MDL=400]   | 5700 [MDL=7.2]   |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BENZO(A)PYRENE                           | 3130 [MDL=30]     | 25600 [MDL=600]   | 5200 [MDL=9.8]   |
| BENZO(K)FLUORANTHENE         2930 [MDL=30]         23000 [MDL=500]         2900 [MDL=13]           C1-CHRYSENES/BENZO(A)ANTHRACENES              C1-FLUORANTHENES/PYRENES              C1-FLUORENES              C1-PHENANTHRENES/ANTHRACENES              C2-CHRYSENES/BENZO(A)ANTHRACENES              C2-FLUORENES               C2-NAPHTHALENES               C2-PHENANTHRENES/ANTHRACENES               C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES                C3-NAPHTHALENES                C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BENZO(B)FLUORANTHENE                     | 4000 [MDL=30]     | 26700 [MDL=600]   | 6500 [MDL=9.1]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES            C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BENZO(G,H,I)PERYLENE                     | 650 J [MDL=40]    | 13200 J [MDL=800] |                  |
| C1-FLUORANTHENES/PYRENES            C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BENZO(K)FLUORANTHENE                     | 2930 [MDL=30]     | 23000 [MDL=500]   | 2900 [MDL=13]    |
| C1-FLUORENES            C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES             C2-NAPHTHALENES             C2-PHENANTHRENES/ANTHRACENES             C3-CHRYSENES/BENZO(A)ANTHRACENES             C3-FLUORENES              C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                  |
| C1-PHENANTHRENES/ANTHRACENES            C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1-FLUORANTHENES/PYRENES                 |                   |                   |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1-FLUORENES                             |                   |                   |                  |
| C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                  |
| C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                  |
| C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-FLUORENES                             |                   |                   |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2-NAPHTHALENES                          |                   |                   |                  |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                  |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                   |                   |                  |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                   |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                  |

HEPTACHLOR

| SOIL                             |                |                  |                 |
|----------------------------------|----------------|------------------|-----------------|
| LOCATION                         | SB-268         | SB-268           | SB-268          |
| SAMPLE ID                        | SB-268-02      | SB-268-SS        | F-SB-268RE-3    |
| SAMPLE DATE                      | 5/9/2005       | 5/9/2005         | 9/21/2009       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                  |                 |
| C4-NAPHTHALENES                  |                |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                |                  |                 |
| CHRYSENE                         | 2930 [MDL=20]  | 28400 [MDL=400]  | 5400 [MDL=6.8]  |
| DIBENZO(A,H)ANTHRACENE           | 307 [MDL=30]   | 5250 [MDL=600]   | 860 [MDL=9.8]   |
| FLUORANTHENE                     | 8780 [MDL=600] | 63200 [MDL=600]  |                 |
| FLUORENE                         | 331 [MDL=20]   | 3580 [MDL=400]   |                 |
| INDENO(1,2,3-CD)PYRENE           | 948 [MDL=40]   | 14500 [MDL=700]  | 2900 [MDL=11]   |
| NAPHTHALENE                      | 57 J [MDL=30]  | 1670 U [MDL=700] |                 |
| PHENANTHRENE                     | 3450 [MDL=20]  | 36100 [MDL=400]  |                 |
| PYRENE                           | 4530 [MDL=20]  | 45200 [MDL=500]  |                 |
| TOTAL PAHS                       | 36454 [MDL=30] | 326470 [MDL=600] | 29460 [MDL=9.8] |
| PESTICIDES/PCBS (UG/KG)          | •              |                  |                 |
| 4,4'-DDD                         |                |                  |                 |
| 4,4'-DDE                         |                |                  |                 |
| 4,4'-DDT                         |                |                  |                 |
| ALDRIN                           |                |                  |                 |
| ALPHA-BHC                        |                |                  |                 |
| ALPHA-CHLORDANE                  |                |                  |                 |
| AROCLOR-1016                     |                | 39 U [MDL=0.01]  |                 |
| AROCLOR-1221                     |                | 39 U [MDL=0.007] |                 |
| AROCLOR-1232                     |                | 39 U [MDL=0.01]  |                 |
| AROCLOR-1242                     |                | 39 U [MDL=0.007] |                 |
| AROCLOR-1248                     |                | 39 U [MDL=0.009] |                 |
| AROCLOR-1254                     |                | 39 U [MDL=0.009] |                 |
| AROCLOR-1260                     |                | 63 [MDL=0.007]   |                 |
| BETA-BHC                         |                |                  |                 |
| DELTA-BHC                        |                |                  |                 |
| DIELDRIN                         |                |                  |                 |
| ENDOSULFAN I                     |                |                  |                 |
| ENDOSULFAN II                    |                |                  |                 |
| ENDOSULFAN SULFATE               |                |                  |                 |
| ENDRIN                           |                |                  |                 |
| ENDRIN ALDEHYDE                  |                |                  |                 |
| ENDRIN KETONE                    |                |                  |                 |
| GAMMA-BHC (LINDANE)              |                |                  |                 |
|                                  |                |                  |                 |
| GAMMA-CHLORDANE                  |                |                  |                 |

February 2013 Page A-377

--

---

| LOCATION           | SB-268    | SB-268        | SB-268       |
|--------------------|-----------|---------------|--------------|
| SAMPLE ID          | SB-268-02 | SB-268-SS     | F-SB-268RE-3 |
| SAMPLE DATE        | 5/9/2005  | 5/9/2005      | 9/21/2009    |
| HEPTACHLOR EPOXIDE |           |               |              |
| METHOXYCHLOR       |           |               |              |
| TOTAL AROCLOR      |           | 63 [MDL=0.01] |              |
| TOTAL DDT POS      |           | 1             |              |
| TOXAPHENE          |           |               |              |

### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-268       | SB-268       | SB-268       |
|------------------------------|--------------|--------------|--------------|
| SAMPLE ID                    | F-SB-268RE-4 | F-SB-268RE-5 | F-SB-268RE-6 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               | •            |              |              |
| ANTIMONY                     |              |              |              |
| ARSENIC                      |              |              |              |
| BARIUM                       |              |              |              |
| BERYLLIUM                    |              |              |              |
| CADMIUM                      |              |              |              |
| CHROMIUM                     |              |              |              |
| COBALT                       |              |              |              |
| COPPER                       |              |              |              |
| LEAD                         |              |              |              |
| MERCURY                      |              |              |              |
| MOLYBDENUM                   |              |              |              |
| NICKEL                       |              |              |              |
| SELENIUM                     |              |              |              |
| SILVER                       |              |              |              |
| THALLIUM                     |              |              |              |
| VANADIUM                     |              |              |              |
| ZINC                         |              |              |              |
| MISCELLANEOUS PARAMETERS     |              |              |              |
| PERCENT SOLIDS (%)           |              |              |              |
| TOTAL SOLIDS (%)             |              |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |              |
| PH (S.U.)                    |              |              |              |
| MERCURY (METHYL) (UG/KG)     |              |              |              |
| SEMIVOLATILES (UG/KG)        |              |              |              |
| 1,1-BIPHENYL                 |              |              |              |
| 1,2,4-TRICHLOROBENZENE       |              |              |              |
| 1,2-DICHLOROBENZENE          |              |              |              |
| 1,3-DICHLOROBENZENE          |              |              |              |
| 1,4-DICHLOROBENZENE          |              |              |              |
| 1,4-DIOXANE                  |              |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |              |
| 2,4,5-TRICHLOROPHENOL        |              |              |              |
| 2,4,6-TRICHLOROPHENOL        |              |              |              |
| 2,4-DICHLOROPHENOL           |              |              |              |
| 2,4-DIMETHYLPHENOL           |              |              |              |
| 1 /                          |              |              |              |

| LOCATION                    | SB-268       | SB-268       | SB-268       |
|-----------------------------|--------------|--------------|--------------|
| SAMPLE ID                   | F-SB-268RE-4 | F-SB-268RE-5 | F-SB-268RE-6 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |              |              |              |
| 2,6-DINITROTOLUENE          |              |              |              |
| 2-CHLORONAPHTHALENE         |              |              |              |
| 2-CHLOROPHENOL              |              |              |              |
| 2-METHYLPHENOL              |              |              |              |
| 2-NITROANILINE              |              |              |              |
| 2-NITROPHENOL               |              |              |              |
| 3&4-METHYLPHENOL            |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |
| 3-NITROANILINE              |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |
| 4-CHLOROANILINE             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |
| 4-NITROANILINE              |              |              |              |
| 4-NITROPHENOL               |              |              |              |
| ACETOPHENONE                |              |              |              |
| ANILINE                     |              |              |              |
| ATRAZINE                    |              |              |              |
| AZOBENZENE                  |              |              |              |
| BENZIDINE                   |              |              |              |
| BENZOIC ACID                |              |              |              |
| BENZYL ALCOHOL              |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |              |
| CAPROLACTAM                 |              |              |              |
| CARBAZOLE                   |              |              |              |
| DIBENZOFURAN                |              |              |              |
| DIETHYL PHTHALATE           |              |              |              |
| DIMETHYL PHTHALATE          |              |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |              |
| HEXACHLOROBENZENE           |              |              |              |
| HEXACHLOROBUTADIENE         |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |

2-CHLOROTOLUENE

| SB-268       | SB-268                 | SB-268                 |
|--------------|------------------------|------------------------|
| F-SB-268RE-4 | F-SB-268RE-5           | F-SB-268RE-6           |
| 9/21/2009    | 9/21/2009              | 9/21/2009              |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              | •                      |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              | F-SB-268RE-4 9/21/2009 | F-SB-268RE-4 9/21/2009 |

February 2013 Page A-381

--

--

| LOCATION                | SB-268       | SB-268       | SB-268       |
|-------------------------|--------------|--------------|--------------|
| SAMPLE ID               | F-SB-268RE-4 | F-SB-268RE-5 | F-SB-268RE-6 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |              |              |              |
| 4-CHLOROTOLUENE         |              |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |              |
| 4-METHYL-2-PENTANONE    |              |              |              |
| ACETONE                 |              |              |              |
| BENZENE                 |              |              |              |
| BROMOBENZENE            |              |              |              |
| BROMOCHLOROMETHANE      |              |              |              |
| BROMODICHLOROMETHANE    |              |              |              |
| BROMOFORM               |              |              |              |
| BROMOMETHANE            |              |              |              |
| CARBON DISULFIDE        |              |              |              |
| CARBON TETRACHLORIDE    |              |              |              |
| CHLOROBENZENE           |              |              |              |
| CHLORODIBROMOMETHANE    |              |              |              |
| CHLOROETHANE            |              |              |              |
| CHLOROFORM              |              |              |              |
| CHLOROMETHANE           |              |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |              |
| DIBROMOMETHANE          |              |              |              |
| DICHLORODIFLUOROMETHANE |              |              |              |
| DIISOPROPYL ETHER       |              |              |              |
| ETHYL TERT-BUTYL ETHER  |              |              |              |
| ETHYLBENZENE            |              |              |              |
| FLUORODICHLOROMETHANE   |              |              |              |
| HEXACHLOROBUTADIENE     |              |              |              |
| ISOPROPYLBENZENE        |              |              |              |
| M+P-XYLENES             |              |              |              |
| METHYL TERT-BUTYL ETHER |              |              |              |
| METHYLENE CHLORIDE      |              |              |              |
| NAPHTHALENE             |              |              |              |
| N-BUTYLBENZENE          |              |              |              |
| N-PROPYLBENZENE         |              |              |              |
| O-XYLENE                |              |              |              |
| SEC-BUTYLBENZENE        |              |              |              |
| STYRENE                 |              |              |              |
| TERT-AMYL METHYL ETHER  |              |              |              |

| LOCATION                                 | SB-268           | SB-268           | SB-268            |
|------------------------------------------|------------------|------------------|-------------------|
| SAMPLE ID                                | F-SB-268RE-4     | F-SB-268RE-5     | F-SB-268RE-6      |
| SAMPLE DATE                              | 9/21/2009        | 9/21/2009        | 9/21/2009         |
| TERT-BUTYLBENZENE                        |                  |                  |                   |
| TERTIARY-BUTYL ALCOHOL                   |                  |                  |                   |
| TETRACHLOROETHENE                        |                  |                  |                   |
| TOLUENE                                  |                  |                  |                   |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                  |                   |
| TOTAL XYLENES                            |                  |                  |                   |
| TRANS-1,2-DICHLOROETHENE                 |                  |                  |                   |
| TRANS-1,3-DICHLOROPROPENE                |                  |                  |                   |
| TRICHLOROETHENE                          |                  |                  |                   |
| TRICHLOROFLUOROMETHANE                   |                  |                  |                   |
| VINYL ACETATE                            |                  |                  |                   |
| VINYL CHLORIDE                           |                  |                  |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                  |                   |
| 1-METHYLNAPHTHALENE                      |                  |                  |                   |
| 2-METHYLNAPHTHALENE                      |                  |                  |                   |
| ACENAPHTHENE                             |                  |                  |                   |
| ACENAPHTHYLENE                           |                  |                  |                   |
| ANTHRACENE                               |                  |                  |                   |
| BAP EQUIVALENT-HALFND                    | 744.98 [MDL=1.5] | 298.31 [MDL=1.6] | 1375.85 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 744.98 [MDL=1.5] | 298.31 [MDL=1.6] | 1375.85 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                  |                   |
| BENZO(A)ANTHRACENE                       | 550 [MDL=1.1]    | 220 [MDL=1.2]    | 1000 [MDL=1.1]    |
| BENZO(A)PYRENE                           | 520 [MDL=1.5]    | 210 [MDL=1.6]    | 980 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 580 [MDL=1.4]    | 280 [MDL=1.5]    | 1200 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE                     |                  |                  |                   |
| BENZO(K)FLUORANTHENE                     | 350 [MDL=2]      | 110 [MDL=2.1]    | 600 [MDL=1.9]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                   |
| C1-FLUORANTHENES/PYRENES                 |                  |                  |                   |
| C1-FLUORENES                             |                  |                  |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                  |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                   |
| C2-FLUORENES                             |                  |                  |                   |
| C2-NAPHTHALENES                          |                  |                  |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                  |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                   |
| C3-FLUORENES                             |                  |                  |                   |
| C3-NAPHTHALENES                          |                  |                  |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                  |                   |

February 2013 Page A-383

HEPTACHLOR

| SOIL                             |                |                |                |
|----------------------------------|----------------|----------------|----------------|
| LOCATION                         | SB-268         | SB-268         | SB-268         |
| SAMPLE ID                        | F-SB-268RE-4   | F-SB-268RE-5   | F-SB-268RE-6   |
| SAMPLE DATE                      | 9/21/2009      | 9/21/2009      | 9/21/2009      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |
| C4-NAPHTHALENES                  |                |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |                |
| CHRYSENE                         | 480 [MDL=1]    | 210 [MDL=1.1]  | 850 [MDL=1]    |
| DIBENZO(A,H)ANTHRACENE           | 79 [MDL=1.5]   | 26 [MDL=1.6]   | 120 [MDL=1.5]  |
| FLUORANTHENE                     |                |                |                |
| FLUORENE                         |                |                |                |
| INDENO(1,2,3-CD)PYRENE           | 290 [MDL=1.7]  | 110 [MDL=1.8]  | 490 [MDL=1.7]  |
| NAPHTHALENE                      |                |                |                |
| PHENANTHRENE                     |                |                |                |
| PYRENE                           |                |                |                |
| TOTAL PAHS                       | 2849 [MDL=1.5] | 1166 [MDL=1.6] | 5240 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          | •              |                |                |
| 4,4'-DDD                         |                |                |                |
| 4,4'-DDE                         |                |                |                |
| 4,4'-DDT                         |                |                |                |
| ALDRIN                           |                |                |                |
| ALPHA-BHC                        |                |                |                |
| ALPHA-CHLORDANE                  |                |                |                |
| AROCLOR-1016                     |                |                |                |
| AROCLOR-1221                     |                |                |                |
| AROCLOR-1232                     |                |                |                |
| AROCLOR-1242                     |                |                |                |
| AROCLOR-1248                     |                |                |                |
| AROCLOR-1254                     |                |                |                |
| AROCLOR-1260                     |                |                |                |
| BETA-BHC                         |                |                |                |
| DELTA-BHC                        |                |                |                |
| DIELDRIN                         |                |                |                |
| ENDOSULFAN I                     |                |                |                |
| ENDOSULFAN II                    |                |                |                |
| ENDOSULFAN SULFATE               |                |                |                |
| ENDRIN                           |                |                |                |
| ENDRIN ALDEHYDE                  |                |                |                |
| ENDRIN KETONE                    |                |                |                |
| GAMMA-BHC (LINDANE)              |                |                |                |
| GAMMA-CHLORDANE                  |                |                |                |
|                                  |                |                |                |

February 2013 Page A-384

--

--

| LOCATION           | SB-268       | SB-268       | SB-268       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | F-SB-268RE-4 | F-SB-268RE-5 | F-SB-268RE-6 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      |              |              |              |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |
| -                  | •            | •            | ·            |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SB-268       | SB-268                 | SB-268                 |
|--------------|------------------------|------------------------|
| F-SB-268RE-7 | F-SB-268RE-7-D         | F-SB-268RE-10          |
| 9/21/2009    | 9/21/2009              | 10/6/2009              |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              | •                      | •                      |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              |                        |                        |
|              | F-SB-268RE-7 9/21/2009 | F-SB-268RE-7 9/21/2009 |

| LOCATION                    | SB-268       | SB-268         | SB-268        |
|-----------------------------|--------------|----------------|---------------|
| SAMPLE ID                   | F-SB-268RE-7 | F-SB-268RE-7-D | F-SB-268RE-10 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009      | 10/6/2009     |
| 2,4-DINITROTOLUENE          |              |                |               |
| 2,6-DINITROTOLUENE          |              |                |               |
| 2-CHLORONAPHTHALENE         |              |                |               |
| 2-CHLOROPHENOL              |              |                |               |
| 2-METHYLPHENOL              |              |                |               |
| 2-NITROANILINE              |              |                |               |
| 2-NITROPHENOL               |              |                |               |
| 3&4-METHYLPHENOL            |              |                |               |
| 3,3'-DICHLOROBENZIDINE      |              |                |               |
| 3-NITROANILINE              |              |                |               |
| 4,6-DINITRO-2-METHYLPHENOL  |              |                |               |
| 4-BROMOPHENYL PHENYL ETHER  |              |                |               |
| 4-CHLORO-3-METHYLPHENOL     |              |                |               |
| 4-CHLOROANILINE             |              |                |               |
| 4-CHLOROPHENYL PHENYL ETHER |              |                |               |
| 4-NITROANILINE              |              |                |               |
| 4-NITROPHENOL               |              |                |               |
| ACETOPHENONE                |              |                |               |
| ANILINE                     |              |                |               |
| ATRAZINE                    |              |                |               |
| AZOBENZENE                  |              |                |               |
| BENZIDINE                   |              |                |               |
| BENZOIC ACID                |              |                |               |
| BENZYL ALCOHOL              |              |                |               |
| BIS(2-CHLOROETHOXY)METHANE  |              |                |               |
| BIS(2-CHLOROETHYL)ETHER     |              |                |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |                |               |
| BUTYL BENZYL PHTHALATE      |              |                |               |
| CAPROLACTAM                 |              |                |               |
| CARBAZOLE                   |              |                |               |
| DIBENZOFURAN                |              |                |               |
| DIETHYL PHTHALATE           |              |                |               |
| DIMETHYL PHTHALATE          |              |                |               |
| DI-N-BUTYL PHTHALATE        |              |                |               |
| DI-N-OCTYL PHTHALATE        |              |                |               |
| HEXACHLOROBENZENE           |              |                |               |
| HEXACHLOROBUTADIENE         |              |                |               |
| HEXACHLOROCYCLOPENTADIENE   |              |                |               |

| LOCATION                       | SB-268       | SB-268         | SB-268        |
|--------------------------------|--------------|----------------|---------------|
| SAMPLE ID                      | F-SB-268RE-7 | F-SB-268RE-7-D | F-SB-268RE-10 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009      | 10/6/2009     |
| HEXACHLOROETHANE               |              |                |               |
| ISOPHORONE                     |              |                |               |
| NITROBENZENE                   |              |                |               |
| N-NITROSODIMETHYLAMINE         |              |                |               |
| N-NITROSO-DI-N-PROPYLAMINE     |              |                |               |
| N-NITROSODIPHENYLAMINE         |              |                |               |
| PENTACHLOROPHENOL              |              |                |               |
| PHENOL                         |              |                |               |
| PYRIDINE                       |              |                |               |
| VOLATILES (UG/KG)              | •            |                |               |
| 1,1,1,2-TETRACHLOROETHANE      |              |                |               |
| 1,1,1-TRICHLOROETHANE          |              |                |               |
| 1,1,2,2-TETRACHLOROETHANE      |              |                |               |
| 1,1,2-TRICHLOROETHANE          |              |                |               |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |                |               |
| 1,1-DICHLOROETHANE             |              |                |               |
| 1,1-DICHLOROETHENE             |              |                |               |
| 1,1-DICHLOROPROPENE            |              |                |               |
| 1,2,3-TRICHLOROBENZENE         |              |                |               |
| 1,2,3-TRICHLOROPROPANE         |              |                |               |
| 1,2,3-TRIMETHYLBENZENE         |              |                |               |
| 1,2,4-TRICHLOROBENZENE         |              |                |               |
| 1,2,4-TRIMETHYLBENZENE         |              |                |               |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |                |               |
| 1,2-DIBROMOETHANE              |              |                |               |
| 1,2-DICHLOROBENZENE            |              |                |               |
| 1,2-DICHLOROETHANE             |              |                |               |
| 1,2-DICHLOROPROPANE            |              |                |               |
| 1,3,5-TRIMETHYLBENZENE         |              |                |               |
| 1,3-DICHLOROBENZENE            |              |                |               |
| 1,3-DICHLOROPROPANE            |              |                |               |
| 1,3-DICHLOROPROPENE            |              |                |               |
| 1,4-DICHLOROBENZENE            |              |                |               |
| 1,4-DIOXANE                    |              |                |               |
| 2,2-DICHLOROPROPANE            |              |                |               |
| 2-BUTANONE                     |              |                |               |
| 2-CHLOROETHYL VINYL ETHER      |              |                |               |
| 2-CHLOROTOLUENE                |              |                |               |

February 2013 Page A-388

| LOCATION                | SB-268       | SB-268         | SB-268        |
|-------------------------|--------------|----------------|---------------|
| SAMPLE ID               | F-SB-268RE-7 | F-SB-268RE-7-D | F-SB-268RE-10 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009      | 10/6/2009     |
| 2-HEXANONE              |              |                |               |
| 4-CHLOROTOLUENE         |              |                |               |
| 4-ISOPROPYLTOLUENE      |              |                |               |
| 4-METHYL-2-PENTANONE    |              |                |               |
| ACETONE                 |              |                |               |
| BENZENE                 |              |                |               |
| BROMOBENZENE            |              |                |               |
| BROMOCHLOROMETHANE      |              |                |               |
| BROMODICHLOROMETHANE    |              |                |               |
| BROMOFORM               |              |                |               |
| BROMOMETHANE            |              |                |               |
| CARBON DISULFIDE        |              |                |               |
| CARBON TETRACHLORIDE    |              |                |               |
| CHLOROBENZENE           |              |                |               |
| CHLORODIBROMOMETHANE    |              |                |               |
| CHLOROETHANE            |              |                |               |
| CHLOROFORM              |              |                |               |
| CHLOROMETHANE           |              |                |               |
| CIS-1,2-DICHLOROETHENE  |              |                |               |
| CIS-1,3-DICHLOROPROPENE |              |                |               |
| DIBROMOMETHANE          |              |                |               |
| DICHLORODIFLUOROMETHANE |              |                |               |
| DIISOPROPYL ETHER       |              |                |               |
| ETHYL TERT-BUTYL ETHER  |              |                |               |
| ETHYLBENZENE            |              |                |               |
| FLUORODICHLOROMETHANE   |              |                |               |
| HEXACHLOROBUTADIENE     |              |                |               |
| ISOPROPYLBENZENE        |              |                |               |
| M+P-XYLENES             |              |                |               |
| METHYL TERT-BUTYL ETHER |              |                |               |
| METHYLENE CHLORIDE      |              |                |               |
| NAPHTHALENE             |              |                |               |
| N-BUTYLBENZENE          |              |                |               |
| N-PROPYLBENZENE         |              |                |               |
| O-XYLENE                |              |                |               |
| SEC-BUTYLBENZENE        |              |                |               |
| STYRENE                 |              |                |               |
| TERT-AMYL METHYL ETHER  |              |                |               |

| SOIL                                     |                 |                  | 1 22 222          |
|------------------------------------------|-----------------|------------------|-------------------|
| LOCATION                                 | SB-268          | SB-268           | SB-268            |
| SAMPLE ID                                | F-SB-268RE-7    | F-SB-268RE-7-D   | F-SB-268RE-10     |
| SAMPLE DATE                              | 9/21/2009       | 9/21/2009        | 10/6/2009         |
| TERT-BUTYLBENZENE                        |                 |                  |                   |
| TERTIARY-BUTYL ALCOHOL                   |                 |                  |                   |
| TETRACHLOROETHENE                        |                 |                  |                   |
| TOLUENE                                  |                 |                  |                   |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                  |                   |
| TOTAL XYLENES                            |                 |                  |                   |
| TRANS-1,2-DICHLOROETHENE                 |                 |                  |                   |
| TRANS-1,3-DICHLOROPROPENE                |                 |                  |                   |
| TRICHLOROETHENE                          |                 |                  |                   |
| TRICHLOROFLUOROMETHANE                   | <del></del>     |                  |                   |
| VINYL ACETATE                            |                 |                  |                   |
| VINYL CHLORIDE                           |                 |                  |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                  |                   |
| 1-METHYLNAPHTHALENE                      |                 |                  |                   |
| 2-METHYLNAPHTHALENE                      |                 |                  |                   |
| ACENAPHTHENE                             |                 |                  |                   |
| ACENAPHTHYLENE                           |                 |                  |                   |
| ANTHRACENE                               |                 | <del></del>      |                   |
| BAP EQUIVALENT-HALFND                    | 708.9 [MDL=1.5] | 3043 [MDL=3.8]   | 441.3315 [MDL=11] |
| BAP EQUIVALENT-POS                       | 708.9 [MDL=1.5] | 3043 [MDL=3.8]   | 441.29 [MDL=11]   |
| BAP EQUIVALENT-UCL                       |                 |                  |                   |
| BENZO(A)ANTHRACENE                       | 490 J [MDL=1.1] | 2300 J [MDL=2.8] | 340 [MDL=6.3]     |
| BENZO(A)PYRENE                           | 510 J [MDL=1.5] | 2100 J [MDL=3.8] | 280 [MDL=11]      |
| BENZO(B)FLUORANTHENE                     | 590 J [MDL=1.4] | 2600 J [MDL=3.5] | 450 [MDL=8]       |
| BENZO(G,H,I)PERYLENE                     |                 |                  |                   |
| BENZO(K)FLUORANTHENE                     | 340 J [MDL=2]   | 1100 J [MDL=5]   | 8.3 U [MDL=8.3]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                   |
| C1-FLUORANTHENES/PYRENES                 |                 |                  |                   |
| C1-FLUORENES                             |                 |                  |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                  |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                   |
| C2-FLUORENES                             |                 |                  |                   |
| C2-NAPHTHALENES                          |                 |                  |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                  |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                   |
| C3-FLUORENES                             |                 |                  |                   |
| C3-NAPHTHALENES                          |                 |                  |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                  |                   |

HEPTACHLOR

| SOIL                             |                 |                  |               |
|----------------------------------|-----------------|------------------|---------------|
| LOCATION                         | SB-268          | SB-268           | SB-268        |
| SAMPLE ID                        | F-SB-268RE-7    | F-SB-268RE-7-D   | F-SB-268RE-10 |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009        | 10/6/2009     |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                  |               |
| C4-NAPHTHALENES                  |                 |                  |               |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                  |               |
| CHRYSENE                         | 500 J [MDL=1]   | 2000 J [MDL=2.6] | 290 [MDL=6.9] |
| DIBENZO(A,H)ANTHRACENE           | 61 J [MDL=1.5]  | 320 J [MDL=3.8]  | 62 [MDL=8.7]  |
| FLUORANTHENE                     |                 |                  |               |
| FLUORENE                         |                 |                  |               |
| INDENO(1,2,3-CD)PYRENE           | 260 J [MDL=1.7] | 1200 J [MDL=4.4] | 200 [MDL=2.2] |
| NAPHTHALENE                      |                 |                  |               |
| PHENANTHRENE                     |                 |                  |               |
| PYRENE                           |                 |                  |               |
| TOTAL PAHS                       | 2751 [MDL=1.5]  | 11620 [MDL=3.8]  | 1622 [MDL=11] |
| PESTICIDES/PCBS (UG/KG)          |                 |                  |               |
| 4,4'-DDD                         |                 |                  |               |
| 4,4'-DDE                         |                 |                  |               |
| 4,4'-DDT                         |                 |                  |               |
| ALDRIN                           |                 |                  |               |
| ALPHA-BHC                        |                 |                  |               |
| ALPHA-CHLORDANE                  |                 |                  |               |
| AROCLOR-1016                     |                 |                  |               |
| AROCLOR-1221                     |                 |                  |               |
| AROCLOR-1232                     |                 |                  |               |
| AROCLOR-1242                     |                 |                  |               |
| AROCLOR-1248                     |                 |                  |               |
| AROCLOR-1254                     |                 |                  |               |
| AROCLOR-1260                     |                 |                  |               |
| BETA-BHC                         |                 |                  |               |
| DELTA-BHC                        |                 |                  |               |
| DIELDRIN                         |                 |                  |               |
| ENDOSULFAN I                     |                 |                  |               |
| ENDOSULFAN II                    |                 |                  |               |
| ENDOSULFAN SULFATE               |                 |                  |               |
| ENDRIN                           |                 |                  |               |
| ENDRIN ALDEHYDE                  |                 |                  |               |
| ENDRIN KETONE                    |                 |                  |               |
| GAMMA-BHC (LINDANE)              |                 |                  |               |
| GAMMA-CHLORDANE                  |                 |                  |               |
|                                  |                 |                  |               |

February 2013 Page A-391

--

---

| LOCATION           | SB-268       | SB-268         | SB-268        |
|--------------------|--------------|----------------|---------------|
| SAMPLE ID          | F-SB-268RE-7 | F-SB-268RE-7-D | F-SB-268RE-10 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009      | 10/6/2009     |
| HEPTACHLOR EPOXIDE |              |                |               |
| METHOXYCHLOR       |              |                |               |
| TOTAL AROCLOR      |              |                |               |
| TOTAL DDT POS      |              |                |               |
| TOXAPHENE          |              |                |               |
|                    |              |                |               |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |               |              |              |
|------------------------------|---------------|--------------|--------------|
| LOCATION                     | SB-268        | SB-268       | SB-268       |
| SAMPLE ID                    | F-SB-268RE-11 | F-SB-268RE-8 | F-SB-268RE-9 |
| SAMPLE DATE                  | 10/6/2009     | 10/6/2009    | 10/6/2009    |
| METALS (MG/KG)               | •             |              | •            |
| ANTIMONY                     |               |              |              |
| ARSENIC                      |               |              |              |
| BARIUM                       |               |              |              |
| BERYLLIUM                    |               |              |              |
| CADMIUM                      |               |              |              |
| CHROMIUM                     |               |              |              |
| COBALT                       |               |              |              |
| COPPER                       |               |              |              |
| LEAD                         |               |              |              |
| MERCURY                      |               |              |              |
| MOLYBDENUM                   |               |              |              |
| NICKEL                       |               |              |              |
| SELENIUM                     |               |              |              |
| SILVER                       |               |              |              |
| THALLIUM                     |               |              |              |
| VANADIUM                     |               |              |              |
| ZINC                         |               |              |              |
| MISCELLANEOUS PARAMETERS     |               |              |              |
| PERCENT SOLIDS (%)           |               |              |              |
| TOTAL SOLIDS (%)             |               |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |               |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |               |              |              |
| PH (S.U.)                    |               |              |              |
| MERCURY (METHYL) (UG/KG)     |               |              |              |
| SEMIVOLATILES (UG/KG)        |               |              |              |
| 1,1-BIPHENYL                 |               |              |              |
| 1,2,4-TRICHLOROBENZENE       |               |              |              |
| 1,2-DICHLOROBENZENE          |               |              |              |
| 1,3-DICHLOROBENZENE          |               |              |              |
| 1,4-DICHLOROBENZENE          |               |              |              |
| 1,4-DIOXANE                  |               |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |              |              |
| 2,4,5-TRICHLOROPHENOL        |               |              |              |
| 2,4,6-TRICHLOROPHENOL        |               |              |              |
| 2,4-DICHLOROPHENOL           |               |              |              |
| 2,4-DIMETHYLPHENOL           |               |              |              |
| 2,4-DINITROPHENOL            |               |              |              |

| LOCATION                    | SB-268        | SB-268       | SB-268       |
|-----------------------------|---------------|--------------|--------------|
| SAMPLE ID                   | F-SB-268RE-11 | F-SB-268RE-8 | F-SB-268RE-9 |
| SAMPLE DATE                 | 10/6/2009     | 10/6/2009    | 10/6/2009    |
| 2,4-DINITROTOLUENE          |               |              |              |
| 2,6-DINITROTOLUENE          |               |              |              |
| 2-CHLORONAPHTHALENE         |               |              |              |
| 2-CHLOROPHENOL              |               |              |              |
| 2-METHYLPHENOL              |               |              |              |
| 2-NITROANILINE              |               |              |              |
| 2-NITROPHENOL               |               |              |              |
| 3&4-METHYLPHENOL            |               |              |              |
| 3,3'-DICHLOROBENZIDINE      |               | 1            |              |
| 3-NITROANILINE              |               | 1            |              |
| 4,6-DINITRO-2-METHYLPHENOL  |               | 1            |              |
| 4-BROMOPHENYL PHENYL ETHER  |               |              |              |
| 4-CHLORO-3-METHYLPHENOL     |               | 1            |              |
| 4-CHLOROANILINE             |               | 1            |              |
| 4-CHLOROPHENYL PHENYL ETHER |               | 1            |              |
| 4-NITROANILINE              |               | 1            |              |
| 4-NITROPHENOL               |               | 1            |              |
| ACETOPHENONE                |               |              |              |
| ANILINE                     |               |              |              |
| ATRAZINE                    |               |              |              |
| AZOBENZENE                  |               | -            |              |
| BENZIDINE                   |               | -            |              |
| BENZOIC ACID                |               |              |              |
| BENZYL ALCOHOL              |               |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |               |              |              |
| BIS(2-CHLOROETHYL)ETHER     |               |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |              |              |
| BUTYL BENZYL PHTHALATE      |               |              |              |
| CAPROLACTAM                 |               |              |              |
| CARBAZOLE                   |               |              |              |
| DIBENZOFURAN                |               |              |              |
| DIETHYL PHTHALATE           |               |              |              |
| DIMETHYL PHTHALATE          |               |              |              |
| DI-N-BUTYL PHTHALATE        |               |              |              |
| DI-N-OCTYL PHTHALATE        |               |              |              |
| HEXACHLOROBENZENE           |               |              |              |
| HEXACHLOROBUTADIENE         |               |              |              |
| HEXACHLOROCYCLOPENTADIENE   |               |              |              |

| 30IL                           |               |              |              |
|--------------------------------|---------------|--------------|--------------|
| LOCATION                       | SB-268        | SB-268       | SB-268       |
| SAMPLE ID                      | F-SB-268RE-11 | F-SB-268RE-8 | F-SB-268RE-9 |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009    | 10/6/2009    |
| HEXACHLOROETHANE               |               |              |              |
| ISOPHORONE                     |               |              |              |
| NITROBENZENE                   |               |              |              |
| N-NITROSODIMETHYLAMINE         |               |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |               |              |              |
| N-NITROSODIPHENYLAMINE         |               |              |              |
| PENTACHLOROPHENOL              |               |              |              |
| PHENOL                         |               |              |              |
| PYRIDINE                       |               |              |              |
| VOLATILES (UG/KG)              | ·             |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |               |              |              |
| 1,1,1-TRICHLOROETHANE          |               |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |               |              |              |
| 1,1,2-TRICHLOROETHANE          |               |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |               |              |              |
| 1,1-DICHLOROETHANE             |               |              |              |
| 1,1-DICHLOROETHENE             |               |              |              |
| 1,1-DICHLOROPROPENE            |               |              |              |
| 1,2,3-TRICHLOROBENZENE         |               |              |              |
| 1,2,3-TRICHLOROPROPANE         |               |              |              |
| 1,2,3-TRIMETHYLBENZENE         |               |              |              |
| 1,2,4-TRICHLOROBENZENE         |               |              |              |
| 1,2,4-TRIMETHYLBENZENE         |               |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |               |              |              |
| 1,2-DIBROMOETHANE              |               |              |              |
| 1,2-DICHLOROBENZENE            |               |              |              |
| 1,2-DICHLOROETHANE             |               |              |              |
| 1,2-DICHLOROPROPANE            |               |              |              |
| 1,3,5-TRIMETHYLBENZENE         |               |              |              |
| 1,3-DICHLOROBENZENE            |               |              |              |
| 1,3-DICHLOROPROPANE            |               |              |              |
| 1,3-DICHLOROPROPENE            |               |              |              |
| 1,4-DICHLOROBENZENE            |               |              |              |
| 1,4-DIOXANE                    |               |              |              |
| 2,2-DICHLOROPROPANE            |               |              |              |
| 2-BUTANONE                     |               |              |              |
| 2-CHLOROETHYL VINYL ETHER      |               |              |              |
| 2-CHLOROTOLUENE                |               |              |              |

| LOCATION                | SB-268        | SB-268       | SB-268       |
|-------------------------|---------------|--------------|--------------|
| SAMPLE ID               | F-SB-268RE-11 | F-SB-268RE-8 | F-SB-268RE-9 |
| SAMPLE DATE             | 10/6/2009     | 10/6/2009    | 10/6/2009    |
| 2-HEXANONE              |               |              |              |
| 4-CHLOROTOLUENE         |               |              |              |
| 4-ISOPROPYLTOLUENE      |               |              |              |
| 4-METHYL-2-PENTANONE    |               |              |              |
| ACETONE                 |               |              |              |
| BENZENE                 |               |              |              |
| BROMOBENZENE            |               |              |              |
| BROMOCHLOROMETHANE      |               |              |              |
| BROMODICHLOROMETHANE    |               |              |              |
| BROMOFORM               |               |              |              |
| BROMOMETHANE            |               |              |              |
| CARBON DISULFIDE        |               |              |              |
| CARBON TETRACHLORIDE    |               |              |              |
| CHLOROBENZENE           |               |              |              |
| CHLORODIBROMOMETHANE    |               |              |              |
| CHLOROETHANE            |               |              |              |
| CHLOROFORM              |               |              |              |
| CHLOROMETHANE           |               |              |              |
| CIS-1,2-DICHLOROETHENE  |               |              |              |
| CIS-1,3-DICHLOROPROPENE |               |              |              |
| DIBROMOMETHANE          |               |              |              |
| DICHLORODIFLUOROMETHANE |               |              |              |
| DIISOPROPYL ETHER       |               |              |              |
| ETHYL TERT-BUTYL ETHER  |               |              |              |
| ETHYLBENZENE            |               |              |              |
| FLUORODICHLOROMETHANE   |               |              |              |
| HEXACHLOROBUTADIENE     |               |              |              |
| ISOPROPYLBENZENE        |               |              |              |
| M+P-XYLENES             |               |              |              |
| METHYL TERT-BUTYL ETHER |               |              |              |
| METHYLENE CHLORIDE      |               |              |              |
| NAPHTHALENE             |               |              |              |
| N-BUTYLBENZENE          |               |              |              |
| N-PROPYLBENZENE         |               |              |              |
| O-XYLENE                |               |              |              |
| SEC-BUTYLBENZENE        |               |              |              |
| STYRENE                 |               |              |              |
| TERT-AMYL METHYL ETHER  |               |              |              |

| LOCATION                                     | SB-268           | SB-268           | SB-268            |
|----------------------------------------------|------------------|------------------|-------------------|
| SAMPLE ID                                    | F-SB-268RE-11    | F-SB-268RE-8     | F-SB-268RE-9      |
| SAMPLE DATE                                  | 10/6/2009        | 10/6/2009        | 10/6/2009         |
| TERT-BUTYLBENZENE                            |                  |                  |                   |
| TERTIARY-BUTYL ALCOHOL                       |                  |                  |                   |
| TETRACHLOROETHENE                            |                  |                  |                   |
| TOLUENE                                      |                  |                  |                   |
| TOTAL 1,2-DICHLOROETHENE                     |                  |                  |                   |
| TOTAL XYLENES                                |                  |                  |                   |
| TRANS-1,2-DICHLOROETHENE                     |                  |                  |                   |
| TRANS-1,3-DICHLOROPROPENE                    |                  |                  |                   |
| TRICHLOROETHENE                              |                  |                  |                   |
| TRICHLOROFLUOROMETHANE                       |                  |                  |                   |
| VINYL ACETATE                                |                  |                  |                   |
| VINYL CHLORIDE                               |                  |                  |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)     |                  |                  |                   |
| 1-METHYLNAPHTHALENE                          |                  |                  |                   |
| 2-METHYLNAPHTHALENE                          |                  |                  |                   |
| ACENAPHTHENE                                 |                  |                  |                   |
| ACENAPHTHYLENE                               |                  |                  |                   |
| ANTHRACENE                                   |                  |                  |                   |
| BAP EQUIVALENT-HALFND                        | 94.266 [MDL=2.2] | 4.8109 [MDL=2.2] | 115.678 [MDL=2.2] |
| BAP EQUIVALENT-POS                           | 94.258 [MDL=2.2] | 3.9529 [MDL=2.2] | 115.67 [MDL=2.2]  |
| BAP EQUIVALENT-UCL                           |                  |                  |                   |
| BENZO(A)ANTHRACENE                           | 67 [MDL=1.2]     | 3.4 J [MDL=1.2]  | 87 [MDL=1.3]      |
| BENZO(A)PYRENE                               | 62 [MDL=2.2]     | 3.1 J [MDL=2.2]  | 75 [MDL=2.2]      |
| BENZO(B)FLUORANTHENE                         | 93 [MDL=1.6]     | 3.2 J [MDL=1.6]  | 110 [MDL=1.6]     |
| BENZO(G,H,I)PERYLENE                         |                  |                  |                   |
| BENZO(K)FLUORANTHENE                         | 1.6 U [MDL=1.6]  | 1.6 U [MDL=1.6]  | 1.6 U [MDL=1.6]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES             |                  |                  |                   |
| C1-FLUORANTHENES/PYRENES                     |                  |                  |                   |
| C1-FLUORENES                                 |                  |                  |                   |
| C1-PHENANTHRENES/ANTHRACENES                 |                  |                  |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES             |                  |                  |                   |
| C2-FLUORENES                                 |                  |                  |                   |
| C2-NAPHTHALENES                              |                  |                  |                   |
| C2-PHENANTHRENES/ANTHRACENES                 |                  |                  |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES             |                  |                  |                   |
| C3-FLUORENES                                 |                  |                  | ==                |
| CO-1 EUORENEO                                |                  |                  |                   |
| C3-NAPHTHALENES C3-PHENANTHRENES/ANTHRACENES |                  |                  |                   |

HEPTACHLOR

| <b>Ξ-9</b> |
|------------|
| -          |
| 1          |
| *          |
|            |
|            |
|            |
| .4]        |
| .7]        |
|            |
|            |
| .43]       |
|            |
|            |
|            |
| 2.2]       |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |
|            |

February 2013 Page A-398

--

--

| LOCATION           | SB-268        | SB-268       | SB-268       |
|--------------------|---------------|--------------|--------------|
| SAMPLE ID          | F-SB-268RE-11 | F-SB-268RE-8 | F-SB-268RE-9 |
| SAMPLE DATE        | 10/6/2009     | 10/6/2009    | 10/6/2009    |
| HEPTACHLOR EPOXIDE |               |              |              |
| METHOXYCHLOR       |               |              |              |
| TOTAL AROCLOR      |               |              |              |
| TOTAL DDT POS      |               |              |              |
| TOXAPHENE          |               |              |              |
|                    |               |              |              |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |               |               |               |
|------------------------------|---------------|---------------|---------------|
| LOCATION                     | SB-268        | SB-268        | SB-268        |
| SAMPLE ID                    | F-SB-268RE-12 | F-SB-268RE-13 | F-SB-268RE-14 |
| SAMPLE DATE                  | 10/19/2009    | 10/19/2009    | 10/19/2009    |
| METALS (MG/KG)               |               | •             | -             |
| ANTIMONY                     |               |               |               |
| ARSENIC                      |               |               |               |
| BARIUM                       |               |               |               |
| BERYLLIUM                    |               |               |               |
| CADMIUM                      |               |               |               |
| CHROMIUM                     |               |               |               |
| COBALT                       |               |               |               |
| COPPER                       |               |               |               |
| LEAD                         |               |               |               |
| MERCURY                      |               |               |               |
| MOLYBDENUM                   | -             |               |               |
| NICKEL                       |               |               |               |
| SELENIUM                     | -             |               |               |
| SILVER                       |               |               |               |
| THALLIUM                     | -             |               |               |
| VANADIUM                     |               |               |               |
| ZINC                         |               |               |               |
| MISCELLANEOUS PARAMETERS     | <u> </u>      |               | •             |
| PERCENT SOLIDS (%)           |               |               |               |
| TOTAL SOLIDS (%)             |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |
| PH (S.U.)                    |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |
| SEMIVOLATILES (UG/KG)        | <u>.</u>      |               |               |
| 1,1-BIPHENYL                 |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |
| 1,4-DIOXANE                  |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |

| LOCATION                    | SB-268        | SB-268        | SB-268        |
|-----------------------------|---------------|---------------|---------------|
| SAMPLE ID                   | F-SB-268RE-12 | F-SB-268RE-13 | F-SB-268RE-14 |
| SAMPLE DATE                 | 10/19/2009    | 10/19/2009    | 10/19/2009    |
| 2,4-DINITROTOLUENE          |               |               |               |
| 2,6-DINITROTOLUENE          |               |               |               |
| 2-CHLORONAPHTHALENE         |               |               |               |
| 2-CHLOROPHENOL              |               |               |               |
| 2-METHYLPHENOL              |               |               |               |
| 2-NITROANILINE              |               |               |               |
| 2-NITROPHENOL               |               |               |               |
| 3&4-METHYLPHENOL            |               |               |               |
| 3,3'-DICHLOROBENZIDINE      |               |               |               |
| 3-NITROANILINE              |               |               |               |
| 4,6-DINITRO-2-METHYLPHENOL  |               |               |               |
| 4-BROMOPHENYL PHENYL ETHER  |               |               |               |
| 4-CHLORO-3-METHYLPHENOL     |               |               |               |
| 4-CHLOROANILINE             |               |               |               |
| 4-CHLOROPHENYL PHENYL ETHER |               |               |               |
| 4-NITROANILINE              |               |               |               |
| 4-NITROPHENOL               |               |               |               |
| ACETOPHENONE                |               |               |               |
| ANILINE                     |               |               |               |
| ATRAZINE                    |               |               |               |
| AZOBENZENE                  |               |               |               |
| BENZIDINE                   |               |               |               |
| BENZOIC ACID                |               |               |               |
| BENZYL ALCOHOL              |               |               |               |
| BIS(2-CHLOROETHOXY)METHANE  |               |               |               |
| BIS(2-CHLOROETHYL)ETHER     |               |               |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |               |               |
| BUTYL BENZYL PHTHALATE      |               |               |               |
| CAPROLACTAM                 |               |               |               |
| CARBAZOLE                   |               |               |               |
| DIBENZOFURAN                |               |               |               |
| DIETHYL PHTHALATE           |               |               |               |
| DIMETHYL PHTHALATE          |               |               |               |
| DI-N-BUTYL PHTHALATE        |               |               |               |
| DI-N-OCTYL PHTHALATE        |               |               |               |
| HEXACHLOROBENZENE           |               |               |               |
| HEXACHLOROBUTADIENE         |               |               |               |
| HEXACHLOROCYCLOPENTADIENE   |               |               |               |

| F.SB.268RE-12   F.SB.268RE-13   F.SB.268RE-14     SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOCATION                       | SB-268        | SB-268        | SB-268        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|---------------|---------------|
| HEXACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE ID                      | F-SB-268RE-12 | F-SB-268RE-13 | F-SB-268RE-14 |
| SOPPORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE DATE                    | 10/19/2009    | 10/19/2009    | 10/19/2009    |
| NTROSENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEXACHLOROETHANE               |               |               |               |
| NATIFOSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISOPHORONE                     |               |               |               |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NITROBENZENE                   |               |               |               |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIMETHYLAMINE         |               |               |               |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |               |               |               |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |               |               |               |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |               |               |               |
| VOLATILES (UG/KG)   1.1,1.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PHENOL                         |               |               |               |
| 1.1,1,2-TETRACHLOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                             | PYRIDINE                       |               |               |               |
| 1.1.1-TRICHLOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                  | VOLATILES (UG/KG)              | •             |               |               |
| 1.1,2,2-TETRACHLOROETHANE       -       -       -         1.1,2-TRICHLOROTRIFLUOROETHANE       -       -       -         1,1-DICHLOROETHANE       -       -       -         1,1-DICHLOROPROPENE       -       -       -         1,2-3-TRICHLOROPROPENE       -       -       -         1,2,3-TRICHLOROPROPANE       -       -       -         1,2,3-TRIMETHYLBENZENE       -       -       -         1,2,3-TRIMETHYLBENZENE       -       -       -         1,2,4-TRIMELOROBENZENE       -       -       -         1,2,4-TRIMETHYLBENZENE       -       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROBENZENE       -       -       -         1,2-DICHLOROPROPANE       -       -       -         1,3-DICHLOROPROPANE       -       -       - <td>1,1,1,2-TETRACHLOROETHANE</td> <td></td> <td></td> <td></td> | 1,1,1,2-TETRACHLOROETHANE      |               |               |               |
| 1,1,2-TRICHLOROETHANE            1,1-2-TRICHLOROTRIFLUOROETHANE            1,1-DICHLOROETHANE            1,1-DICHLOROPROPENE            1,2,3-TRICHLOROBENZENE            1,2,3-TRIMETHYLBENZENE             1,2,4-TRIMETHYLBENZENE                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,1-TRICHLOROETHANE          |               |               |               |
| 1,12-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2,2-TETRACHLOROETHANE      |               |               |               |
| 1.1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |               |               |               |
| 1.1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-TRICHLOROTRIFLUOROETHANE |               |               |               |
| 1,1-DICHLOROPROPENE            1,2,3-TRICHLOROBENZENE            1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIGHLOROBENZENE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE <t< td=""><td>1,1-DICHLOROETHANE</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1-DICHLOROETHANE             |               |               |               |
| 1,2,3-TRICHLOROBENZENE            1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1-DICHLOROETHENE             |               |               |               |
| 1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-DICHLOROPROPENE            |               |               |               |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |               |               |               |
| 1,2,4-TRICHLOROBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,3-TRICHLOROPROPANE         |               |               |               |
| 1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3-TRIMETHYLBENZENE         |               |               |               |
| 1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRICHLOROBENZENE         |               |               |               |
| 1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,4-TRIMETHYLBENZENE         |               |               |               |
| 1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE             1,3-DICHLOROBENZENE              1,3-DICHLOROPROPANE <t< td=""><td>1,2-DIBROMO-3-CHLOROPROPANE</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DIBROMO-3-CHLOROPROPANE    |               |               |               |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-DIBROMOETHANE              |               |               |               |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROBENZENE            |               |               |               |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE             1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-DICHLOROETHANE             |               |               |               |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DICHLOROPROPANE            |               |               |               |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3,5-TRIMETHYLBENZENE         |               |               |               |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |               |               |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPENE            |               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-DICHLOROBENZENE            |               |               |               |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-DIOXANE                    |               |               |               |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,2-DICHLOROPROPANE            |               |               |               |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |               |               |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-CHLOROETHYL VINYL ETHER      |               |               |               |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |               |               |               |

February 2013 Page A-402

| LOCATION                | SB-268        | SB-268        | SB-268        |
|-------------------------|---------------|---------------|---------------|
| SAMPLE ID               | F-SB-268RE-12 | F-SB-268RE-13 | F-SB-268RE-14 |
| SAMPLE DATE             | 10/19/2009    | 10/19/2009    | 10/19/2009    |
| 2-HEXANONE              |               |               |               |
| 4-CHLOROTOLUENE         |               |               |               |
| 4-ISOPROPYLTOLUENE      |               |               |               |
| 4-METHYL-2-PENTANONE    |               |               |               |
| ACETONE                 |               |               |               |
| BENZENE                 |               |               |               |
| BROMOBENZENE            |               |               |               |
| BROMOCHLOROMETHANE      |               |               |               |
| BROMODICHLOROMETHANE    |               |               |               |
| BROMOFORM               |               |               |               |
| BROMOMETHANE            |               |               |               |
| CARBON DISULFIDE        |               |               |               |
| CARBON TETRACHLORIDE    |               |               |               |
| CHLOROBENZENE           |               |               |               |
| CHLORODIBROMOMETHANE    |               |               |               |
| CHLOROETHANE            |               |               |               |
| CHLOROFORM              |               |               |               |
| CHLOROMETHANE           |               |               |               |
| CIS-1,2-DICHLOROETHENE  |               |               |               |
| CIS-1,3-DICHLOROPROPENE |               |               |               |
| DIBROMOMETHANE          |               |               |               |
| DICHLORODIFLUOROMETHANE |               |               |               |
| DIISOPROPYL ETHER       |               |               |               |
| ETHYL TERT-BUTYL ETHER  |               |               |               |
| ETHYLBENZENE            |               |               |               |
| FLUORODICHLOROMETHANE   |               |               |               |
| HEXACHLOROBUTADIENE     |               |               |               |
| ISOPROPYLBENZENE        |               |               |               |
| M+P-XYLENES             |               |               |               |
| METHYL TERT-BUTYL ETHER |               |               |               |
| METHYLENE CHLORIDE      |               |               |               |
| NAPHTHALENE             |               |               |               |
| N-BUTYLBENZENE          |               |               |               |
| N-PROPYLBENZENE         |               |               |               |
| O-XYLENE                |               |               |               |
| SEC-BUTYLBENZENE        |               |               |               |
| STYRENE                 |               |               |               |
| TERT-AMYL METHYL ETHER  |               |               |               |

| LOCATION                                 | SB-268          | SB-268           | SB-268           |
|------------------------------------------|-----------------|------------------|------------------|
| SAMPLE ID                                | F-SB-268RE-12   | F-SB-268RE-13    | F-SB-268RE-14    |
| SAMPLE DATE                              | 10/19/2009      | 10/19/2009       | 10/19/2009       |
| TERT-BUTYLBENZENE                        |                 |                  |                  |
| TERTIARY-BUTYL ALCOHOL                   |                 |                  |                  |
| TETRACHLOROETHENE                        |                 |                  |                  |
| TOLUENE                                  |                 |                  |                  |
| TOTAL 1,2-DICHLOROETHENE                 |                 |                  |                  |
| TOTAL XYLENES                            |                 |                  |                  |
| TRANS-1,2-DICHLOROETHENE                 |                 |                  |                  |
| TRANS-1,3-DICHLOROPROPENE                |                 |                  |                  |
| TRICHLOROETHENE                          |                 |                  |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                  |                  |
| VINYL ACETATE                            |                 |                  |                  |
| VINYL CHLORIDE                           |                 |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                  |                  |
| 1-METHYLNAPHTHALENE                      |                 |                  |                  |
| 2-METHYLNAPHTHALENE                      |                 |                  |                  |
| ACENAPHTHENE                             |                 |                  |                  |
| ACENAPHTHYLENE                           |                 |                  |                  |
| ANTHRACENE                               |                 |                  |                  |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 6440.9 [MDL=6.2] | 14.264 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 6440.9 [MDL=6.2] | 13.414 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                  |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 4500 [MDL=4.6]   | 11 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 4400 [MDL=6.2]   | 11 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 5600 [MDL=5.8]   | 13 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     |                 |                  |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2700 [MDL=8.2]   | 2.0 U [MDL=2]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                  |                  |
| C1-FLUORENES                             |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |
| C2-FLUORENES                             |                 |                  |                  |
| C2-NAPHTHALENES                          |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |
| C3-FLUORENES                             |                 |                  |                  |
| C3-NAPHTHALENES                          |                 |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |
| ·                                        |                 |                  |                  |

| SUIL                             | <b>-</b>        | T               |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-268          | SB-268          | SB-268          |
| SAMPLE ID                        | F-SB-268RE-12   | F-SB-268RE-13   | F-SB-268RE-14   |
| SAMPLE DATE                      | 10/19/2009      | 10/19/2009      | 10/19/2009      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 | 1               |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 1.0 U [MDL=1]   | 3900 [MDL=4.3]  | 14 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 720 [MDL=6.2]   | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.7 U [MDL=1.7] | 2800 [MDL=7.2]  | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |
| PYRENE                           |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 24620 [MDL=6.2] | 49 [MDL=1.5]    |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        | -               |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |
| AROCLOR-1260                     |                 |                 | <del></del>     |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 | <del></del>     |
| ENDRIN ALDEHYDE                  |                 |                 | <del></del>     |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 | <del></del>     |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-405

| SB-268        | SB-268                                  | SB-268                                            |
|---------------|-----------------------------------------|---------------------------------------------------|
| F-SB-268RE-12 | F-SB-268RE-13                           | F-SB-268RE-14                                     |
| 10/19/2009    | 10/19/2009                              | 10/19/2009                                        |
|               |                                         |                                                   |
| 1             | -                                       |                                                   |
| 1             | -                                       |                                                   |
| 1             | -                                       |                                                   |
|               |                                         |                                                   |
|               | F-SB-268RE-12<br>10/19/2009<br><br><br> | F-SB-268RE-12 F-SB-268RE-13 10/19/2009 10/19/2009 |

## PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |               |                  |                   |
|------------------------------|---------------|------------------|-------------------|
| LOCATION                     | SB-268        | SB-269           | SB-269            |
| SAMPLE ID                    | F-SB-268RE-15 | SB-269-02        | SB-269-SS         |
| SAMPLE DATE                  | 10/19/2009    | 5/9/2005         | 5/9/2005          |
| METALS (MG/KG)               |               |                  |                   |
| ANTIMONY                     |               |                  | 1 L [MDL=0.3]     |
| ARSENIC                      |               |                  | 6 [MDL=0.7]       |
| BARIUM                       |               |                  | 103 [MDL=0.3]     |
| BERYLLIUM                    |               |                  | 1.7 [MDL=0.04]    |
| CADMIUM                      |               |                  | 0.7 [MDL=0.06]    |
| CHROMIUM                     |               |                  | 26.1 [MDL=0.2]    |
| COBALT                       |               |                  | 6.6 [MDL=0.09]    |
| COPPER                       |               |                  | 15 [MDL=0.3]      |
| LEAD                         |               |                  | 56 [MDL=0.3]      |
| MERCURY                      |               |                  | 0.18 []           |
| MOLYBDENUM                   |               |                  | 1 B [MDL=0.6]     |
| NICKEL                       |               |                  | 13 [MDL=0.1]      |
| SELENIUM                     |               |                  | 3 [MDL=2]         |
| SILVER                       |               |                  | 0.06 U [MDL=0.06] |
| THALLIUM                     |               |                  | 1 U [MDL=1]       |
| VANADIUM                     |               |                  | 42.8 [MDL=0.2]    |
| ZINC                         |               |                  | 74 [MDL=0.2]      |
| MISCELLANEOUS PARAMETERS     | <u> </u>      |                  | -                 |
| PERCENT SOLIDS (%)           |               |                  |                   |
| TOTAL SOLIDS (%)             |               |                  |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |               |                  | 0.51 [MDL=0.3]    |
| TOTAL ORGANIC CARBON (MG/KG) |               |                  |                   |
| PH (S.U.)                    |               |                  |                   |
| MERCURY (METHYL) (UG/KG)     |               |                  |                   |
| SEMIVOLATILES (UG/KG)        | <u> </u>      |                  | •                 |
| 1,1-BIPHENYL                 |               |                  |                   |
| 1,2,4-TRICHLOROBENZENE       |               | 199 U [MDL=60]   | 194 UJ [MDL=60]   |
| 1,2-DICHLOROBENZENE          |               | 199 U [MDL=30]   | 194 UJ [MDL=30]   |
| 1,3-DICHLOROBENZENE          |               | 199 U [MDL=20]   | 194 UJ [MDL=20]   |
| 1,4-DICHLOROBENZENE          |               | 199 U [MDL=30]   | 194 UJ [MDL=30]   |
| 1,4-DIOXANE                  |               | 387 U [MDL=78.6] | 377 UJ [MDL=76.5] |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               | 117 U [MDL=40]   | 114 UJ [MDL=40]   |
| 2,4,5-TRICHLOROPHENOL        |               | 399 U [MDL=40]   | 388 UJ [MDL=30]   |
| 2,4,6-TRICHLOROPHENOL        |               | 399 U [MDL=40]   | 388 UJ [MDL=40]   |
| 2,4-DICHLOROPHENOL           |               | 399 U [MDL=30]   | 388 UJ [MDL=30]   |
| 2,4-DIMETHYLPHENOL           |               | 399 U [MDL=40]   | 388 UJ [MDL=40]   |
| 2,4-DINITROPHENOL            |               | 586 U [MDL=60]   | 571 UJ [MDL=60]   |

| LOCATION                    | SB-268        | SB-269            | SB-269            |
|-----------------------------|---------------|-------------------|-------------------|
| SAMPLE ID                   | F-SB-268RE-15 | SB-269-02         | SB-269-SS         |
| SAMPLE DATE                 | 10/19/2009    | 5/9/2005          | 5/9/2005          |
| 2,4-DINITROTOLUENE          |               | 82 U [MDL=20]     | 80 UJ [MDL=20]    |
| 2,6-DINITROTOLUENE          |               | 82 U [MDL=40]     | 80 UJ [MDL=30]    |
| 2-CHLORONAPHTHALENE         |               | 199 U [MDL=20]    | 194 UJ [MDL=20]   |
| 2-CHLOROPHENOL              |               | 399 U [MDL=20]    | 388 UJ [MDL=20]   |
| 2-METHYLPHENOL              |               | 399 U [MDL=40]    | 388 UJ [MDL=40]   |
| 2-NITROANILINE              |               | 199 U [MDL=70]    | 194 UJ [MDL=60]   |
| 2-NITROPHENOL               |               | 399 U [MDL=30]    | 388 UJ [MDL=30]   |
| 3&4-METHYLPHENOL            |               | 786 U [MDL=30]    | 765 UJ [MDL=30]   |
| 3,3'-DICHLOROBENZIDINE      |               | 199 U [MDL=80]    | 194 UJ [MDL=80]   |
| 3-NITROANILINE              |               | 399 U [MDL=70]    | 388 UJ [MDL=70]   |
| 4,6-DINITRO-2-METHYLPHENOL  |               | 399 U [MDL=10]    | 388 UJ [MDL=10]   |
| 4-BROMOPHENYL PHENYL ETHER  |               | 117 U [MDL=40]    | 114 UJ [MDL=40]   |
| 4-CHLORO-3-METHYLPHENOL     |               | 399 U [MDL=40]    | 388 UJ [MDL=30]   |
| 4-CHLOROANILINE             |               | 399 U [MDL=50]    | 388 UJ [MDL=50]   |
| 4-CHLOROPHENYL PHENYL ETHER |               | 199 U [MDL=30]    | 194 UJ [MDL=30]   |
| 4-NITROANILINE              |               | 117 U [MDL=50]    | 114 UJ [MDL=50]   |
| 4-NITROPHENOL               |               | 399 U [MDL=40]    | 388 UJ [MDL=40]   |
| ACETOPHENONE                |               |                   |                   |
| ANILINE                     |               | 399 U [MDL=52.8]  | 388 UJ [MDL=51.4] |
| ATRAZINE                    |               |                   |                   |
| AZOBENZENE                  |               | 199 U [MDL=22.3]  | 194 UJ [MDL=21.7] |
| BENZIDINE                   |               | 786 U [MDL=246]   | 765 UJ [MDL=240]  |
| BENZOIC ACID                |               | 786 U [MDL=34]    | 765 UJ [MDL=33.1] |
| BENZYL ALCOHOL              |               | 47.5 J [MDL=32.8] | 388 UJ [MDL=32]   |
| BIS(2-CHLOROETHOXY)METHANE  |               | 117 U [MDL=40]    | 114 UJ [MDL=40]   |
| BIS(2-CHLOROETHYL)ETHER     |               | 117 U [MDL=30]    | 114 UJ [MDL=30]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               | 82 U [MDL=30]     | 80 UJ [MDL=30]    |
| BUTYL BENZYL PHTHALATE      |               | 199 U [MDL=20]    | 194 UJ [MDL=20]   |
| CAPROLACTAM                 |               |                   |                   |
| CARBAZOLE                   |               | 199 U [MDL=30]    | 123 J [MDL=30]    |
| DIBENZOFURAN                |               | 117 U [MDL=20]    | 27 J [MDL=20]     |
| DIETHYL PHTHALATE           |               | 399 U [MDL=20]    | 388 UJ [MDL=20]   |
| DIMETHYL PHTHALATE          |               | 399 U [MDL=20]    | 388 UJ [MDL=20]   |
| DI-N-BUTYL PHTHALATE        |               | 199 U [MDL=30]    | 194 UJ [MDL=30]   |
| DI-N-OCTYL PHTHALATE        |               | 199 U [MDL=20]    | 194 UJ [MDL=20]   |
| HEXACHLOROBENZENE           |               | 82 U [MDL=30]     | 80 UJ [MDL=30]    |
| HEXACHLOROBUTADIENE         |               | 199 U [MDL=40]    | 194 UJ [MDL=40]   |
| HEXACHLOROCYCLOPENTADIENE   |               | 399 U [MDL=30]    | 388 UJ [MDL=30]   |

| SAMPLE DATE   1982-208   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58-269-82   58- | LOCATION                       | SB-268        | SB-269           | SB-269            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------------|-------------------|
| HEXAPLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID                      | F-SB-268RE-15 | SB-269-02        | SB-269-SS         |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE DATE                    | 10/19/2009    | 5/9/2005         | 5/9/2005          |
| NITROSENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEXACHLOROETHANE               |               | 199 U [MDL=30]   | 194 UJ [MDL=30]   |
| N-NITROSODIMETHYLAIMIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISOPHORONE                     |               | 117 U [MDL=30]   | 114 UJ [MDL=30]   |
| NNITIOSO-DIN-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NITROBENZENE                   |               | 199 U [MDL=60]   | 194 UJ [MDL=60]   |
| N-NTROSOPIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-NITROSODIMETHYLAMINE         |               | 117 U [MDL=44.6] | 114 UJ [MDL=43.4] |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-NITROSO-DI-N-PROPYLAMINE     |               | 117 U [MDL=40]   | 114 UJ [MDL=30]   |
| PHENDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-NITROSODIPHENYLAMINE         |               | 117 U [MDL=20]   | 114 UJ [MDL=20]   |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PENTACHLOROPHENOL              |               | 985 U [MDL=50]   | 959 UJ [MDL=50]   |
| 1,1,1,2TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PHENOL                         |               | 399 U [MDL=50]   | 388 UJ [MDL=40]   |
| 1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYRIDINE                       |               | 399 U [MDL=49.3] | 388 UJ [MDL=48]   |
| 1.1.1-TRICHLOROETHANE       -       -       -         1.1.2-TERCHLOROETHANE       -       -       -         1.1.2-TRICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROETHENE       -       -       -         1.1-DICHLOROETHANE       -       -       -         1.1-DICHLOROERNEE       -       -       -         1.1-DICHLOROERNEE       -       -       -         1.1-DICHLOROERNEENE       -       -       -         1.2-3-TRICHLOROERNEENE       -       -       -         1.2-3-TRIMETHYLBENZENE       -       -       -         1.2-4-TRIMETHYLBENZENE       -       -       -         1.2-4-TRIMETHYLBENZENE       -       -       -         1.2-DICHLOROFROPANE       -       -       -         1.2-DICHLOROERNEAME       -       -       -         1.2-DICHLOROERNEAME       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLOROPROPANE       -       -       -         1.3-DICHLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VOLATILES (UG/KG)              | -             |                  |                   |
| 1.1.2.2 TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,1,2-TETRACHLOROETHANE      |               |                  |                   |
| 1.1.2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1-TRICHLOROETHANE          |               |                  |                   |
| 1.1.2-TRICHLOROTRIFLUOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,2,2-TETRACHLOROETHANE      |               |                  |                   |
| 1,1-DICHLOROETHENE            1,1-DICHLOROPROPENE            1,2,3-TRICHLOROBENZENE            1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-LIBROMO-3-CHLOROPROPANE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DICHLOROBENZENE            1,2-DICHLOROBENZENE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2-TRICHLOROETHANE          |               |                  |                   |
| 1.1-DICHLOROPENDENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,2-TRICHLOROTRIFLUOROETHANE |               |                  |                   |
| 1.1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1-DICHLOROETHANE             |               |                  |                   |
| 1.2.3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-DICHLOROETHENE             |               |                  |                   |
| 1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE </td <td>1,1-DICHLOROPROPENE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-DICHLOROPROPENE            |               |                  |                   |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,4-DICHLOROBENZENE            1,4-DIOKANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3-TRICHLOROBENZENE         |               |                  |                   |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,3-TRICHLOROPROPANE         |               |                  |                   |
| 1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3-TRIMETHYLBENZENE         |               |                  |                   |
| 1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROBENZENE            1,4-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2,4-TRICHLOROBENZENE         |               |                  |                   |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,4-TRIMETHYLBENZENE         |               |                  |                   |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DIBROMO-3-CHLOROPROPANE    |               |                  |                   |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |               |                  |                   |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-DICHLOROBENZENE            |               |                  |                   |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DICHLOROETHANE             |               |                  |                   |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |               |                  |                   |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3,5-TRIMETHYLBENZENE         |               |                  |                   |
| 1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-DICHLOROBENZENE            |               |                  |                   |
| 1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-DICHLOROPROPANE            |               |                  |                   |
| 1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-DICHLOROPROPENE            |               |                  |                   |
| 2,2-DICHLOROPROPANE            2-BUTANONE             2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,4-DICHLOROBENZENE            |               |                  |                   |
| 2-BUTANONE               2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-DIOXANE                    |               |                  |                   |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2-DICHLOROPROPANE            |               |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BUTANONE                     |               |                  |                   |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-CHLOROETHYL VINYL ETHER      |               |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-CHLOROTOLUENE                |               |                  |                   |

February 2013 Page A-409

| LOCATION                | SB-268        | SB-269    | SB-269    |
|-------------------------|---------------|-----------|-----------|
| SAMPLE ID               | F-SB-268RE-15 | SB-269-02 | SB-269-SS |
| SAMPLE DATE             | 10/19/2009    | 5/9/2005  | 5/9/2005  |
| 2-HEXANONE              |               |           |           |
| 4-CHLOROTOLUENE         |               |           |           |
| 4-ISOPROPYLTOLUENE      |               |           |           |
| 4-METHYL-2-PENTANONE    |               |           |           |
| ACETONE                 |               |           |           |
| BENZENE                 |               |           |           |
| BROMOBENZENE            |               |           |           |
| BROMOCHLOROMETHANE      |               |           |           |
| BROMODICHLOROMETHANE    |               |           |           |
| BROMOFORM               |               |           |           |
| BROMOMETHANE            |               |           |           |
| CARBON DISULFIDE        |               |           |           |
| CARBON TETRACHLORIDE    |               |           |           |
| CHLOROBENZENE           |               |           |           |
| CHLORODIBROMOMETHANE    |               |           |           |
| CHLOROETHANE            |               |           |           |
| CHLOROFORM              |               |           |           |
| CHLOROMETHANE           |               |           |           |
| CIS-1,2-DICHLOROETHENE  |               |           |           |
| CIS-1,3-DICHLOROPROPENE |               |           |           |
| DIBROMOMETHANE          |               |           |           |
| DICHLORODIFLUOROMETHANE |               |           |           |
| DIISOPROPYL ETHER       |               |           |           |
| ETHYL TERT-BUTYL ETHER  |               |           |           |
| ETHYLBENZENE            |               |           |           |
| FLUORODICHLOROMETHANE   |               |           |           |
| HEXACHLOROBUTADIENE     |               |           |           |
| ISOPROPYLBENZENE        |               |           |           |
| M+P-XYLENES             |               |           |           |
| METHYL TERT-BUTYL ETHER |               |           |           |
| METHYLENE CHLORIDE      |               |           |           |
| NAPHTHALENE             |               |           |           |
| N-BUTYLBENZENE          |               |           |           |
| N-PROPYLBENZENE         |               |           |           |
| O-XYLENE                |               |           |           |
| SEC-BUTYLBENZENE        |               |           |           |
| STYRENE                 |               |           |           |
| TERT-AMYL METHYL ETHER  |               |           |           |

| 30IL                                     |                  | ,                   |                    |
|------------------------------------------|------------------|---------------------|--------------------|
| LOCATION                                 | SB-268           | SB-269              | SB-269             |
| SAMPLE ID                                | F-SB-268RE-15    | SB-269-02           | SB-269-SS          |
| SAMPLE DATE                              | 10/19/2009       | 5/9/2005            | 5/9/2005           |
| TERT-BUTYLBENZENE                        |                  |                     |                    |
| TERTIARY-BUTYL ALCOHOL                   |                  |                     |                    |
| TETRACHLOROETHENE                        |                  |                     |                    |
| TOLUENE                                  |                  |                     |                    |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                     |                    |
| TOTAL XYLENES                            |                  |                     |                    |
| TRANS-1,2-DICHLOROETHENE                 |                  |                     |                    |
| TRANS-1,3-DICHLOROPROPENE                |                  |                     |                    |
| TRICHLOROETHENE                          |                  |                     |                    |
| TRICHLOROFLUOROMETHANE                   |                  |                     |                    |
| VINYL ACETATE                            |                  |                     |                    |
| VINYL CHLORIDE                           |                  |                     |                    |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                     |                    |
| 1-METHYLNAPHTHALENE                      |                  | 82.1 U [MDL=25.8]   | 79.9 UJ [MDL=25.1] |
| 2-METHYLNAPHTHALENE                      |                  | 82 U [MDL=30]       | 80 UJ [MDL=30]     |
| ACENAPHTHENE                             |                  | 82 U [MDL=30]       | 79 J [MDL=30]      |
| ACENAPHTHYLENE                           |                  | 82 U [MDL=30]       | 80 UJ [MDL=30]     |
| ANTHRACENE                               |                  | 82 U [MDL=20]       | 256 J [MDL=20]     |
| BAP EQUIVALENT-HALFND                    | 22.616 [MDL=1.6] | 82 U [MDL=30]       | 1883.35 [MDL=30]   |
| BAP EQUIVALENT-POS                       | 21.816 [MDL=1.6] | 82 U [MDL=30]       | 1883.35 [MDL=30]   |
| BAP EQUIVALENT-UCL                       |                  | 168.218442 [MDL=30] | 1883.35 [MDL=30]   |
| BENZO(A)ANTHRACENE                       | 17 [MDL=1.2]     | 82 U [MDL=20]       | 1260 J [MDL=20]    |
| BENZO(A)PYRENE                           | 17 [MDL=1.6]     | 82 U [MDL=30]       | 1310 J [MDL=30]    |
| BENZO(B)FLUORANTHENE                     | 20 [MDL=1.5]     | 82 U [MDL=30]       | 1520 J [MDL=30]    |
| BENZO(G,H,I)PERYLENE                     |                  | 82 UJ [MDL=40]      | 662 J [MDL=40]     |
| BENZO(K)FLUORANTHENE                     | 11 [MDL=2.1]     | 82 U [MDL=20]       | 1360 J [MDL=20]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                     |                    |
| C1-FLUORANTHENES/PYRENES                 |                  |                     |                    |
| C1-FLUORENES                             |                  |                     |                    |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                     |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                     |                    |
| C2-FLUORENES                             |                  |                     |                    |
| C2-NAPHTHALENES                          |                  |                     |                    |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                     |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                     |                    |
| C3-FLUORENES                             |                  |                     |                    |
| C3-NAPHTHALENES                          |                  |                     |                    |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                     |                    |

| SOIL                             |                 | 1             |                  |
|----------------------------------|-----------------|---------------|------------------|
| LOCATION                         | SB-268          | SB-269        | SB-269           |
| SAMPLE ID                        | F-SB-268RE-15   | SB-269-02     | SB-269-SS        |
| SAMPLE DATE                      | 10/19/2009      | 5/9/2005      | 5/9/2005         |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |               |                  |
| C4-NAPHTHALENES                  |                 |               |                  |
| C4-PHENANTHRENES/ANTHRACENES     |                 |               |                  |
| CHRYSENE                         | 16 [MDL=1.1]    | 82 U [MDL=20] | 1250 J [MDL=20]  |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 82 U [MDL=30] | 206 J [MDL=30]   |
| FLUORANTHENE                     |                 | 82 U [MDL=30] | 2720 J [MDL=30]  |
| FLUORENE                         |                 | 82 U [MDL=20] | 68 J [MDL=20]    |
| INDENO(1,2,3-CD)PYRENE           | 9.9 [MDL=1.8]   | 82 U [MDL=40] | 745 J [MDL=30]   |
| NAPHTHALENE                      |                 | 82 U [MDL=30] | 80 UJ [MDL=30]   |
| PHENANTHRENE                     |                 | 82 U [MDL=20] | 987 J [MDL=20]   |
| PYRENE                           |                 | 28 J [MDL=20] | 1740 J [MDL=20]  |
| TOTAL PAHS                       | 90.9 [MDL=1.6]  | 28 [MDL=30]   | 14163 [MDL=30]   |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |               | -                |
| 4,4'-DDD                         |                 |               |                  |
| 4,4'-DDE                         |                 |               |                  |
| 4,4'-DDT                         |                 |               |                  |
| ALDRIN                           |                 |               |                  |
| ALPHA-BHC                        |                 |               |                  |
| ALPHA-CHLORDANE                  |                 |               |                  |
| AROCLOR-1016                     |                 |               | 37 U [MDL=0.01]  |
| AROCLOR-1221                     |                 |               | 37 U [MDL=0.007] |
| AROCLOR-1232                     |                 |               | 37 U [MDL=0.01]  |
| AROCLOR-1242                     |                 |               | 37 U [MDL=0.007] |
| AROCLOR-1248                     |                 |               | 37 U [MDL=0.009] |
| AROCLOR-1254                     |                 |               | 37 U [MDL=0.009] |
| AROCLOR-1260                     |                 |               | 95 [MDL=0.007]   |
| BETA-BHC                         |                 |               |                  |
| DELTA-BHC                        |                 |               |                  |
| DIELDRIN                         |                 |               |                  |
| ENDOSULFAN I                     |                 |               |                  |
| ENDOSULFAN II                    |                 |               |                  |
| ENDOSULFAN SULFATE               |                 |               |                  |
| ENDRIN                           |                 |               |                  |
| ENDRIN ALDEHYDE                  |                 |               |                  |
| ENDRIN KETONE                    |                 |               |                  |
| GAMMA-BHC (LINDANE)              |                 |               |                  |
| GAMMA-CHLORDANE                  |                 |               |                  |
| HEPTACHLOR                       |                 |               |                  |

February 2013 Page A-412

| LOCATION           | SB-268        | SB-269    | SB-269        |
|--------------------|---------------|-----------|---------------|
| SAMPLE ID          | F-SB-268RE-15 | SB-269-02 | SB-269-SS     |
| SAMPLE DATE        | 10/19/2009    | 5/9/2005  | 5/9/2005      |
| HEPTACHLOR EPOXIDE |               |           |               |
| METHOXYCHLOR       |               |           |               |
| TOTAL AROCLOR      |               |           | 95 [MDL=0.01] |
| TOTAL DDT POS      |               |           |               |
| TOXAPHENE          |               |           |               |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |                  |
|------------------------------|--------------|--------------|------------------|
| LOCATION                     | SB-269       | SB-269       | SB-270           |
| SAMPLE ID                    | F-SB-269RE-3 | F-SB-269RE-4 | SB-270-02        |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| METALS (MG/KG)               | <u>.</u>     |              |                  |
| ANTIMONY                     |              |              |                  |
| ARSENIC                      |              |              |                  |
| BARIUM                       |              |              |                  |
| BERYLLIUM                    |              |              |                  |
| CADMIUM                      |              |              |                  |
| CHROMIUM                     |              |              |                  |
| COBALT                       |              |              |                  |
| COPPER                       |              |              |                  |
| LEAD                         |              |              |                  |
| MERCURY                      |              |              |                  |
| MOLYBDENUM                   |              |              |                  |
| NICKEL                       |              |              |                  |
| SELENIUM                     |              |              |                  |
| SILVER                       |              |              |                  |
| THALLIUM                     |              |              |                  |
| VANADIUM                     |              |              |                  |
| ZINC                         |              |              |                  |
| MISCELLANEOUS PARAMETERS     | <u> </u>     | •            |                  |
| PERCENT SOLIDS (%)           |              |              |                  |
| TOTAL SOLIDS (%)             |              |              |                  |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |                  |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |                  |
| PH (S.U.)                    |              |              |                  |
| MERCURY (METHYL) (UG/KG)     |              |              |                  |
| SEMIVOLATILES (UG/KG)        | <u>.</u>     |              |                  |
| 1,1-BIPHENYL                 |              |              |                  |
| 1,2,4-TRICHLOROBENZENE       |              |              | 204 U [MDL=60]   |
| 1,2-DICHLOROBENZENE          |              |              | 204 U [MDL=30]   |
| 1,3-DICHLOROBENZENE          |              |              | 204 U [MDL=30]   |
| 1,4-DICHLOROBENZENE          |              |              | 204 U [MDL=30]   |
| 1,4-DIOXANE                  |              |              | 396 U [MDL=80.3] |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              | 120 U [MDL=40]   |
| 2,4,5-TRICHLOROPHENOL        |              |              | 408 U [MDL=40]   |
| 2,4,6-TRICHLOROPHENOL        |              |              | 408 U [MDL=40]   |
| 2,4-DICHLOROPHENOL           | -            |              | 408 U [MDL=30]   |
| 2,4-DIMETHYLPHENOL           | -            |              | 408 U [MDL=40]   |
| 2,4-DINITROPHENOL            |              |              | 600 U [MDL=60]   |

| LOCATION                    | SB-269       | SB-269       | SB-270           |
|-----------------------------|--------------|--------------|------------------|
| SAMPLE ID                   | F-SB-269RE-3 | F-SB-269RE-4 | SB-270-02        |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| 2,4-DINITROTOLUENE          |              |              | 84 U [MDL=30]    |
| 2,6-DINITROTOLUENE          |              |              | 84 U [MDL=40]    |
| 2-CHLORONAPHTHALENE         |              |              | 204 U [MDL=30]   |
| 2-CHLOROPHENOL              |              |              | 408 U [MDL=20]   |
| 2-METHYLPHENOL              |              |              | 408 U [MDL=40]   |
| 2-NITROANILINE              |              |              | 204 U [MDL=70]   |
| 2-NITROPHENOL               |              |              | 408 U [MDL=30]   |
| 3&4-METHYLPHENOL            |              |              | 803 U [MDL=30]   |
| 3,3'-DICHLOROBENZIDINE      |              |              | 204 U [MDL=80]   |
| 3-NITROANILINE              |              |              | 408 U [MDL=70]   |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              | 408 U [MDL=10]   |
| 4-BROMOPHENYL PHENYL ETHER  |              |              | 120 U [MDL=40]   |
| 4-CHLORO-3-METHYLPHENOL     |              |              | 408 U [MDL=40]   |
| 4-CHLOROANILINE             |              |              | 408 U [MDL=50]   |
| 4-CHLOROPHENYL PHENYL ETHER |              |              | 204 U [MDL=30]   |
| 4-NITROANILINE              |              |              | 120 U [MDL=60]   |
| 4-NITROPHENOL               |              |              | 408 U [MDL=40]   |
| ACETOPHENONE                |              |              |                  |
| ANILINE                     |              |              | 408 U [MDL=54]   |
| ATRAZINE                    |              |              |                  |
| AZOBENZENE                  |              |              | 204 U [MDL=22.8] |
| BENZIDINE                   |              |              | 803 UR [MDL=252] |
| BENZOIC ACID                |              |              | 217 J [MDL=34.8] |
| BENZYL ALCOHOL              |              |              | 408 U [MDL=33.6] |
| BIS(2-CHLOROETHOXY)METHANE  |              |              | 120 U [MDL=40]   |
| BIS(2-CHLOROETHYL)ETHER     |              |              | 120 U [MDL=30]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              | 84 U [MDL=30]    |
| BUTYL BENZYL PHTHALATE      |              |              | 204 U [MDL=20]   |
| CAPROLACTAM                 |              |              |                  |
| CARBAZOLE                   |              |              | 204 U [MDL=30]   |
| DIBENZOFURAN                |              |              | 120 U [MDL=20]   |
| DIETHYL PHTHALATE           |              |              | 408 U [MDL=20]   |
| DIMETHYL PHTHALATE          |              |              | 408 U [MDL=20]   |
| DI-N-BUTYL PHTHALATE        |              |              | 204 U [MDL=30]   |
| DI-N-OCTYL PHTHALATE        |              |              | 204 U [MDL=20]   |
| HEXACHLOROBENZENE           |              |              | 84 U [MDL=30]    |
| HEXACHLOROBUTADIENE         |              |              | 204 U [MDL=40]   |
| HEXACHLOROCYCLOPENTADIENE   |              |              | 408 U [MDL=30]   |

| LOCATION                       | SB-269       | SB-269       | SB-270           |
|--------------------------------|--------------|--------------|------------------|
| SAMPLE ID                      | F-SB-269RE-3 | F-SB-269RE-4 | SB-270-02        |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 5/9/2005         |
| HEXACHLOROETHANE               |              |              | 204 U [MDL=30]   |
| ISOPHORONE                     |              |              | 120 U [MDL=30]   |
| NITROBENZENE                   |              |              | 204 U [MDL=60]   |
| N-NITROSODIMETHYLAMINE         |              |              | 120 U [MDL=45.6] |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              | 120 U [MDL=40]   |
| N-NITROSODIPHENYLAMINE         |              |              | 120 U [MDL=20]   |
| PENTACHLOROPHENOL              |              |              | 1010 U [MDL=50]  |
| PHENOL                         |              |              | 408 U [MDL=50]   |
| PYRIDINE                       |              |              | 408 U [MDL=50.4] |
| VOLATILES (UG/KG)              |              |              |                  |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |                  |
| 1,1,1-TRICHLOROETHANE          |              |              |                  |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |                  |
| 1,1,2-TRICHLOROETHANE          |              |              |                  |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |                  |
| 1,1-DICHLOROETHANE             |              |              |                  |
| 1,1-DICHLOROETHENE             |              |              |                  |
| 1,1-DICHLOROPROPENE            |              |              |                  |
| 1,2,3-TRICHLOROBENZENE         |              |              |                  |
| 1,2,3-TRICHLOROPROPANE         |              |              |                  |
| 1,2,3-TRIMETHYLBENZENE         |              |              |                  |
| 1,2,4-TRICHLOROBENZENE         |              |              |                  |
| 1,2,4-TRIMETHYLBENZENE         |              |              |                  |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |                  |
| 1,2-DIBROMOETHANE              |              |              |                  |
| 1,2-DICHLOROBENZENE            |              |              |                  |
| 1,2-DICHLOROETHANE             |              |              |                  |
| 1,2-DICHLOROPROPANE            |              |              |                  |
| 1,3,5-TRIMETHYLBENZENE         |              |              |                  |
| 1,3-DICHLOROBENZENE            |              |              |                  |
| 1,3-DICHLOROPROPANE            |              |              |                  |
| 1,3-DICHLOROPROPENE            |              |              |                  |
| 1,4-DICHLOROBENZENE            |              |              |                  |
| 1,4-DIOXANE                    |              |              |                  |
| 2,2-DICHLOROPROPANE            |              |              |                  |
| 2-BUTANONE                     |              |              |                  |
| 2-CHLOROETHYL VINYL ETHER      |              |              |                  |
| 2-CHLOROTOLUENE                | <del></del>  |              |                  |

February 2013 Page A-416

| LOCATION                | SB-269       | SB-269       | SB-270    |
|-------------------------|--------------|--------------|-----------|
| SAMPLE ID               | F-SB-269RE-3 | F-SB-269RE-4 | SB-270-02 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 5/9/2005  |
| 2-HEXANONE              |              |              |           |
| 4-CHLOROTOLUENE         |              |              |           |
| 4-ISOPROPYLTOLUENE      |              |              |           |
| 4-METHYL-2-PENTANONE    |              |              |           |
| ACETONE                 |              |              |           |
| BENZENE                 |              |              |           |
| BROMOBENZENE            |              |              |           |
| BROMOCHLOROMETHANE      |              |              |           |
| BROMODICHLOROMETHANE    |              |              |           |
| BROMOFORM               |              |              |           |
| BROMOMETHANE            |              |              |           |
| CARBON DISULFIDE        |              |              |           |
| CARBON TETRACHLORIDE    |              |              |           |
| CHLOROBENZENE           |              |              |           |
| CHLORODIBROMOMETHANE    |              |              |           |
| CHLOROETHANE            |              |              |           |
| CHLOROFORM              |              |              |           |
| CHLOROMETHANE           |              |              |           |
| CIS-1,2-DICHLOROETHENE  |              |              |           |
| CIS-1,3-DICHLOROPROPENE |              |              |           |
| DIBROMOMETHANE          |              |              |           |
| DICHLORODIFLUOROMETHANE |              |              |           |
| DIISOPROPYL ETHER       |              |              |           |
| ETHYL TERT-BUTYL ETHER  |              |              |           |
| ETHYLBENZENE            |              |              |           |
| FLUORODICHLOROMETHANE   |              |              |           |
| HEXACHLOROBUTADIENE     |              |              |           |
| ISOPROPYLBENZENE        |              |              |           |
| M+P-XYLENES             |              |              |           |
| METHYL TERT-BUTYL ETHER |              |              |           |
| METHYLENE CHLORIDE      |              |              |           |
| NAPHTHALENE             |              |              |           |
| N-BUTYLBENZENE          |              |              |           |
| N-PROPYLBENZENE         |              |              |           |
| O-XYLENE                |              |              |           |
| SEC-BUTYLBENZENE        |              |              |           |
| STYRENE                 |              |              |           |
| TERT-AMYL METHYL ETHER  |              |              |           |

| SOIL                                     |                      |                      | -                   |
|------------------------------------------|----------------------|----------------------|---------------------|
| LOCATION                                 | SB-269               | SB-269               | SB-270              |
| SAMPLE ID                                | F-SB-269RE-3         | F-SB-269RE-4         | SB-270-02           |
| SAMPLE DATE                              | 9/21/2009            | 9/21/2009            | 5/9/2005            |
| TERT-BUTYLBENZENE                        |                      |                      |                     |
| TERTIARY-BUTYL ALCOHOL                   |                      |                      |                     |
| TETRACHLOROETHENE                        |                      |                      |                     |
| TOLUENE                                  |                      |                      |                     |
| TOTAL 1,2-DICHLOROETHENE                 |                      |                      |                     |
| TOTAL XYLENES                            |                      |                      |                     |
| TRANS-1,2-DICHLOROETHENE                 |                      |                      |                     |
| TRANS-1,3-DICHLOROPROPENE                |                      |                      |                     |
| TRICHLOROETHENE                          |                      |                      |                     |
| TRICHLOROFLUOROMETHANE                   |                      |                      |                     |
| VINYL ACETATE                            |                      |                      |                     |
| VINYL CHLORIDE                           |                      |                      |                     |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u>.</u>             |                      |                     |
| 1-METHYLNAPHTHALENE                      |                      |                      | 83.9 U [MDL=26.4]   |
| 2-METHYLNAPHTHALENE                      |                      |                      | 84 U [MDL=30]       |
| ACENAPHTHENE                             |                      |                      | 84 U [MDL=30]       |
| ACENAPHTHYLENE                           |                      |                      | 84 U [MDL=30]       |
| ANTHRACENE                               |                      |                      | 84 U [MDL=20]       |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6]      | 1.5 U [MDL=1.5]      | 123.389 [MDL=30]    |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6]      | 1.5 U [MDL=1.5]      | 80.969 [MDL=30]     |
| BAP EQUIVALENT-UCL                       |                      |                      | 168.415267 [MDL=30] |
| BENZO(A)ANTHRACENE                       | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] | 73 J [MDL=20]       |
| BENZO(A)PYRENE                           | 1.600000 U [MDL=1.6] | 1.500000 U [MDL=1.5] | 62 J [MDL=30]       |
| BENZO(B)FLUORANTHENE                     | 1.400000 U [MDL=1.4] | 1.400000 U [MDL=1.4] | 65 J [MDL=30]       |
| BENZO(G,H,I)PERYLENE                     |                      |                      | 48 J [MDL=40]       |
| BENZO(K)FLUORANTHENE                     | 2.000000 U [MDL=2]   | 1.900000 U [MDL=1.9] | 84 U [MDL=30]       |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
| C1-FLUORANTHENES/PYRENES                 |                      |                      |                     |
| C1-FLUORENES                             |                      |                      |                     |
| C1-PHENANTHRENES/ANTHRACENES             |                      |                      |                     |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
| C2-FLUORENES                             |                      |                      |                     |
| C2-NAPHTHALENES                          |                      |                      |                     |
| C2-PHENANTHRENES/ANTHRACENES             |                      |                      |                     |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                      |                      |                     |
| C3-FLUORENES                             |                      |                      |                     |
| C3-NAPHTHALENES                          |                      |                      |                     |
| C3-PHENANTHRENES/ANTHRACENES             |                      |                      |                     |

HEPTACHLOR

| SOIL                             |                      |                      |                |
|----------------------------------|----------------------|----------------------|----------------|
| LOCATION                         | SB-269               | SB-269               | SB-270         |
| SAMPLE ID                        | F-SB-269RE-3         | F-SB-269RE-4         | SB-270-02      |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 5/9/2005       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                |
| C4-NAPHTHALENES                  |                      |                      |                |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                |
| CHRYSENE                         | 1.100000 U [MDL=1.1] | 1.000000 U [MDL=1]   | 69 J [MDL=20]  |
| DIBENZO(A,H)ANTHRACENE           | 1.600000 U [MDL=1.6] | 1.500000 U [MDL=1.5] | 84 UJ [MDL=30] |
| FLUORANTHENE                     |                      |                      | 163 [MDL=30]   |
| FLUORENE                         |                      |                      | 84 U [MDL=20]  |
| INDENO(1,2,3-CD)PYRENE           | 1.800000 U [MDL=1.8] | 1.700000 U [MDL=1.7] | 51 J [MDL=40]  |
| NAPHTHALENE                      |                      |                      | 84 U [MDL=30]  |
| PHENANTHRENE                     |                      |                      | 81 J [MDL=20]  |
| PYRENE                           |                      |                      | 113 [MDL=20]   |
| TOTAL PAHS                       | 0 U [MDL=1.6]        | 0 U [MDL=1.5]        | 725 [MDL=30]   |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>             |                      |                |
| 4,4'-DDD                         |                      |                      |                |
| 4,4'-DDE                         |                      |                      |                |
| 4,4'-DDT                         |                      |                      |                |
| ALDRIN                           |                      |                      |                |
| ALPHA-BHC                        |                      |                      |                |
| ALPHA-CHLORDANE                  |                      |                      |                |
| AROCLOR-1016                     |                      |                      |                |
| AROCLOR-1221                     |                      |                      |                |
| AROCLOR-1232                     |                      |                      |                |
| AROCLOR-1242                     |                      |                      |                |
| AROCLOR-1248                     |                      |                      |                |
| AROCLOR-1254                     |                      |                      |                |
| AROCLOR-1260                     |                      |                      |                |
| BETA-BHC                         |                      |                      |                |
| DELTA-BHC                        |                      |                      |                |
| DIELDRIN                         |                      |                      |                |
| ENDOSULFAN I                     |                      |                      |                |
| ENDOSULFAN II                    |                      |                      |                |
| ENDOSULFAN SULFATE               |                      |                      |                |
| ENDRIN                           |                      |                      |                |
| ENDRIN ALDEHYDE                  |                      |                      |                |
| ENDRIN KETONE                    |                      |                      |                |
| GAMMA-BHC (LINDANE)              |                      |                      |                |
| GAMMA-CHLORDANE                  |                      |                      |                |
|                                  |                      | 1                    | 1              |

February 2013 Page A-419

--

---

--

| LOCATION           | SB-269       | SB-269       | SB-270    |
|--------------------|--------------|--------------|-----------|
| SAMPLE ID          | F-SB-269RE-3 | F-SB-269RE-4 | SB-270-02 |
| SAMPLE DATE        | 9/21/2009    | 9/21/2009    | 5/9/2005  |
| HEPTACHLOR EPOXIDE |              |              |           |
| METHOXYCHLOR       |              |              |           |
| TOTAL AROCLOR      |              |              |           |
| TOTAL DDT POS      |              |              |           |
| TOXAPHENE          |              |              |           |
|                    |              |              | -         |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-270            | SB-270       | SB-270       |
|------------------------------|-------------------|--------------|--------------|
| SAMPLE ID                    | SB-270-SS         | F-SB-270RE-3 | F-SB-270RE-4 |
| SAMPLE DATE                  | 5/9/2005          | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               |                   |              | •            |
| ANTIMONY                     | 1 L [MDL=0.4]     |              |              |
| ARSENIC                      | 3 B [MDL=0.7]     |              |              |
| BARIUM                       | 64 [MDL=0.4]      |              |              |
| BERYLLIUM                    | 1.1 [MDL=0.05]    |              |              |
| CADMIUM                      | 0.3 B [MDL=0.06]  |              |              |
| CHROMIUM                     | 15.3 [MDL=0.2]    |              |              |
| COBALT                       | 5.4 [MDL=0.09]    |              |              |
| COPPER                       | 12 [MDL=0.4]      |              |              |
| LEAD                         | 64 [MDL=0.4]      |              |              |
| MERCURY                      | 0.11 []           |              |              |
| MOLYBDENUM                   | 0.6 B [MDL=0.6]   |              |              |
| NICKEL                       | 8 B [MDL=0.1]     |              |              |
| SELENIUM                     | 2 U [MDL=2]       |              |              |
| SILVER                       | 0.06 U [MDL=0.06] |              |              |
| THALLIUM                     | 1 U [MDL=1]       |              |              |
| VANADIUM                     | 26.2 [MDL=0.2]    |              |              |
| ZINC                         | 51 [MDL=0.2]      |              |              |
| MISCELLANEOUS PARAMETERS     |                   |              |              |
| PERCENT SOLIDS (%)           |                   |              |              |
| TOTAL SOLIDS (%)             |                   |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  | 0.64 [MDL=0.4]    |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |                   |              |              |
| PH (S.U.)                    |                   |              |              |
| MERCURY (METHYL) (UG/KG)     |                   |              |              |
| SEMIVOLATILES (UG/KG)        | <u> </u>          |              |              |
| 1,1-BIPHENYL                 |                   |              |              |
| 1,2,4-TRICHLOROBENZENE       | 200 U [MDL=60]    |              |              |
| 1,2-DICHLOROBENZENE          | 200 U [MDL=30]    |              |              |
| 1,3-DICHLOROBENZENE          | 200 U [MDL=20]    |              |              |
| 1,4-DICHLOROBENZENE          | 200 U [MDL=30]    |              |              |
| 1,4-DIOXANE                  | 389 U [MDL=79]    |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 118 U [MDL=40]    |              |              |
| 2,4,5-TRICHLOROPHENOL        | 401 U [MDL=40]    |              |              |
| 2,4,6-TRICHLOROPHENOL        | 401 U [MDL=40]    |              |              |
| 2,4-DICHLOROPHENOL           | 401 U [MDL=30]    |              |              |
| 2,4-DIMETHYLPHENOL           | 401 U [MDL=40]    |              |              |
| 2,4-DINITROPHENOL            | 589 U [MDL=60]    |              |              |

| LOCATION                    | SB-270           | SB-270       | SB-270       |
|-----------------------------|------------------|--------------|--------------|
| SAMPLE ID                   | SB-270-SS        | F-SB-270RE-3 | F-SB-270RE-4 |
| SAMPLE DATE                 | 5/9/2005         | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          | 83 U [MDL=20]    |              |              |
| 2,6-DINITROTOLUENE          | 83 U [MDL=40]    |              |              |
| 2-CHLORONAPHTHALENE         | 200 U [MDL=20]   |              |              |
| 2-CHLOROPHENOL              | 401 U [MDL=20]   |              |              |
| 2-METHYLPHENOL              | 401 U [MDL=40]   |              |              |
| 2-NITROANILINE              | 200 U [MDL=70]   |              |              |
| 2-NITROPHENOL               | 401 U [MDL=30]   |              |              |
| 3&4-METHYLPHENOL            | 790 U [MDL=30]   |              |              |
| 3,3'-DICHLOROBENZIDINE      | 200 U [MDL=80]   |              |              |
| 3-NITROANILINE              | 401 U [MDL=70]   |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  | 401 U [MDL=10]   |              |              |
| 4-BROMOPHENYL PHENYL ETHER  | 118 U [MDL=40]   |              |              |
| 4-CHLORO-3-METHYLPHENOL     | 401 U [MDL=40]   |              |              |
| 4-CHLOROANILINE             | 401 U [MDL=50]   |              |              |
| 4-CHLOROPHENYL PHENYL ETHER | 200 U [MDL=30]   |              |              |
| 4-NITROANILINE              | 118 U [MDL=50]   |              |              |
| 4-NITROPHENOL               | 401 U [MDL=40]   |              |              |
| ACETOPHENONE                |                  |              |              |
| ANILINE                     | 401 U [MDL=53.1] |              |              |
| ATRAZINE                    |                  |              |              |
| AZOBENZENE                  | 200 U [MDL=22.4] |              |              |
| BENZIDINE                   | 790 U [MDL=248]  |              |              |
| BENZOIC ACID                | 189 J [MDL=34.2] |              |              |
| BENZYL ALCOHOL              | 401 U [MDL=33]   |              |              |
| BIS(2-CHLOROETHOXY)METHANE  | 118 U [MDL=40]   |              |              |
| BIS(2-CHLOROETHYL)ETHER     | 118 U [MDL=30]   |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 83 U [MDL=30]    |              |              |
| BUTYL BENZYL PHTHALATE      | 200 U [MDL=20]   |              |              |
| CAPROLACTAM                 |                  |              |              |
| CARBAZOLE                   | 32 J [MDL=30]    |              |              |
| DIBENZOFURAN                | 118 U [MDL=20]   |              |              |
| DIETHYL PHTHALATE           | 401 U [MDL=20]   |              |              |
| DIMETHYL PHTHALATE          | 401 U [MDL=20]   |              |              |
| DI-N-BUTYL PHTHALATE        | 200 U [MDL=30]   |              |              |
| DI-N-OCTYL PHTHALATE        | 200 U [MDL=20]   |              |              |
| HEXACHLOROBENZENE           | 83 U [MDL=30]    |              |              |
| HEXACHLOROBUTADIENE         | 200 U [MDL=40]   |              |              |
| HEXACHLOROCYCLOPENTADIENE   | 401 U [MDL=30]   |              |              |

2-CHLOROTOLUENE

| LOCATION                       | SB-270           | SB-270       | SB-270       |
|--------------------------------|------------------|--------------|--------------|
| SAMPLE ID                      | SB-270-SS        | F-SB-270RE-3 | F-SB-270RE-4 |
| SAMPLE DATE                    | 5/9/2005         | 9/21/2009    | 9/21/2009    |
| HEXACHLOROETHANE               | 200 U [MDL=30]   |              |              |
| ISOPHORONE                     | 118 U [MDL=30]   |              |              |
| NITROBENZENE                   | 200 U [MDL=60]   |              |              |
| N-NITROSODIMETHYLAMINE         | 118 U [MDL=44.8] |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     | 118 U [MDL=40]   |              |              |
| N-NITROSODIPHENYLAMINE         | 118 U [MDL=20]   |              |              |
| PENTACHLOROPHENOL              | 990 U [MDL=50]   |              |              |
| PHENOL                         | 401 U [MDL=50]   |              |              |
| PYRIDINE                       | 401 U [MDL=49.5] |              |              |
| VOLATILES (UG/KG)              |                  |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |                  |              |              |
| 1,1,1-TRICHLOROETHANE          |                  |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |                  |              |              |
| 1,1,2-TRICHLOROETHANE          |                  |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |                  |              |              |
| 1,1-DICHLOROETHANE             |                  |              |              |
| 1,1-DICHLOROETHENE             |                  |              |              |
| 1,1-DICHLOROPROPENE            |                  |              |              |
| 1,2,3-TRICHLOROBENZENE         |                  |              |              |
| 1,2,3-TRICHLOROPROPANE         |                  |              |              |
| 1,2,3-TRIMETHYLBENZENE         |                  |              |              |
| 1,2,4-TRICHLOROBENZENE         |                  |              |              |
| 1,2,4-TRIMETHYLBENZENE         |                  |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |                  |              |              |
| 1,2-DIBROMOETHANE              |                  |              |              |
| 1,2-DICHLOROBENZENE            |                  |              |              |
| 1,2-DICHLOROETHANE             |                  |              |              |
| 1,2-DICHLOROPROPANE            |                  |              |              |
| 1,3,5-TRIMETHYLBENZENE         |                  |              |              |
| 1,3-DICHLOROBENZENE            |                  |              |              |
| 1,3-DICHLOROPROPANE            |                  |              |              |
| 1,3-DICHLOROPROPENE            |                  |              |              |
| 1,4-DICHLOROBENZENE            |                  |              |              |
| 1,4-DIOXANE                    |                  |              |              |
| 2,2-DICHLOROPROPANE            |                  |              |              |
| 2-BUTANONE                     |                  |              |              |
| 2-CHLOROETHYL VINYL ETHER      |                  |              |              |

February 2013 Page A-423

--

---

--

| LOCATION                | SB-270    | SB-270       | SB-270       |
|-------------------------|-----------|--------------|--------------|
| SAMPLE ID               | SB-270-SS | F-SB-270RE-3 | F-SB-270RE-4 |
| SAMPLE DATE             | 5/9/2005  | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |           |              |              |
| 4-CHLOROTOLUENE         |           |              |              |
| 4-ISOPROPYLTOLUENE      |           |              |              |
| 4-METHYL-2-PENTANONE    |           |              |              |
| ACETONE                 |           |              |              |
| BENZENE                 |           |              |              |
| BROMOBENZENE            |           |              |              |
| BROMOCHLOROMETHANE      |           |              |              |
| BROMODICHLOROMETHANE    |           |              |              |
| BROMOFORM               |           |              |              |
| BROMOMETHANE            |           |              |              |
| CARBON DISULFIDE        |           |              |              |
| CARBON TETRACHLORIDE    |           |              |              |
| CHLOROBENZENE           |           |              |              |
| CHLORODIBROMOMETHANE    |           |              |              |
| CHLOROETHANE            |           |              |              |
| CHLOROFORM              |           |              |              |
| CHLOROMETHANE           |           |              |              |
| CIS-1,2-DICHLOROETHENE  | 1         |              |              |
| CIS-1,3-DICHLOROPROPENE |           |              |              |
| DIBROMOMETHANE          | -         |              |              |
| DICHLORODIFLUOROMETHANE | -         |              |              |
| DIISOPROPYL ETHER       | -         |              |              |
| ETHYL TERT-BUTYL ETHER  | -         |              |              |
| ETHYLBENZENE            | -         |              |              |
| FLUORODICHLOROMETHANE   | -         |              |              |
| HEXACHLOROBUTADIENE     |           |              |              |
| ISOPROPYLBENZENE        |           |              |              |
| M+P-XYLENES             |           |              |              |
| METHYL TERT-BUTYL ETHER |           |              |              |
| METHYLENE CHLORIDE      |           |              |              |
| NAPHTHALENE             |           |              |              |
| N-BUTYLBENZENE          |           |              |              |
| N-PROPYLBENZENE         |           |              |              |
| O-XYLENE                |           |              |              |
| SEC-BUTYLBENZENE        |           |              |              |
| STYRENE                 |           |              |              |
| TERT-AMYL METHYL ETHER  |           |              |              |

| SOIL                                     |                   |                      |                      |
|------------------------------------------|-------------------|----------------------|----------------------|
| LOCATION                                 | SB-270            | SB-270               | SB-270               |
| SAMPLE ID                                | SB-270-SS         | F-SB-270RE-3         | F-SB-270RE-4         |
| SAMPLE DATE                              | 5/9/2005          | 9/21/2009            | 9/21/2009            |
| TERT-BUTYLBENZENE                        |                   |                      |                      |
| TERTIARY-BUTYL ALCOHOL                   |                   |                      |                      |
| TETRACHLOROETHENE                        |                   |                      |                      |
| TOLUENE                                  |                   |                      |                      |
| TOTAL 1,2-DICHLOROETHENE                 |                   |                      |                      |
| TOTAL XYLENES                            |                   |                      |                      |
| TRANS-1,2-DICHLOROETHENE                 |                   |                      |                      |
| TRANS-1,3-DICHLOROPROPENE                |                   |                      |                      |
| TRICHLOROETHENE                          |                   |                      |                      |
| TRICHLOROFLUOROMETHANE                   |                   |                      |                      |
| VINYL ACETATE                            |                   |                      |                      |
| VINYL CHLORIDE                           |                   |                      |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                 | •                    |                      |
| 1-METHYLNAPHTHALENE                      | 82.5 U [MDL=25.9] |                      |                      |
| 2-METHYLNAPHTHALENE                      | 83 U [MDL=30]     |                      |                      |
| ACENAPHTHENE                             | 83 U [MDL=30]     |                      |                      |
| ACENAPHTHYLENE                           | 83 U [MDL=30]     |                      |                      |
| ANTHRACENE                               | 66 J [MDL=20]     |                      |                      |
| BAP EQUIVALENT-HALFND                    | 369.109 [MDL=30]  | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS                       | 369.109 [MDL=30]  | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL                       | 369.109 [MDL=30]  |                      |                      |
| BENZO(A)ANTHRACENE                       | 239 [MDL=20]      | 1.100000 U [MDL=1.1] | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 258 [MDL=30]      | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 250 [MDL=30]      | 1.300000 U [MDL=1.3] | 1.300000 U [MDL=1.3] |
| BENZO(G,H,I)PERYLENE                     | 175 J [MDL=40]    |                      |                      |
| BENZO(K)FLUORANTHENE                     | 244 [MDL=20]      | 1.900000 U [MDL=1.9] | 1.900000 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C1-FLUORANTHENES/PYRENES                 |                   |                      |                      |
| C1-FLUORENES                             |                   |                      |                      |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C2-FLUORENES                             |                   |                      |                      |
| C2-NAPHTHALENES                          |                   |                      |                      |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                      |                      |
| C3-FLUORENES                             |                   |                      |                      |
| C3-NAPHTHALENES                          |                   |                      |                      |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                      |                      |

| LOCATION                         | SB-270           | SB-270               | SB-270               |
|----------------------------------|------------------|----------------------|----------------------|
| SAMPLE ID                        | SB-270-SS        | F-SB-270RE-3         | F-SB-270RE-4         |
| SAMPLE DATE                      | 5/9/2005         | 9/21/2009            | 9/21/2009            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                      |                      |
| C4-NAPHTHALENES                  |                  |                      |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                      |                      |
| CHRYSENE                         | 269 [MDL=20]     | 1.000000 U [MDL=1]   | 1.000000 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 46 J [MDL=30]    | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     | 600 [MDL=30]     |                      |                      |
| FLUORENE                         | 83 U [MDL=20]    |                      |                      |
| INDENO(1,2,3-CD)PYRENE           | 135 J [MDL=40]   | 1.700000 U [MDL=1.7] | 1.700000 U [MDL=1.7] |
| NAPHTHALENE                      | 83 U [MDL=30]    |                      |                      |
| PHENANTHRENE                     | 265 [MDL=20]     |                      |                      |
| PYRENE                           | 371 [MDL=20]     |                      |                      |
| TOTAL PAHS                       | 2918 [MDL=30]    | 0 U [MDL=1.5]        | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          |                  |                      |                      |
| 4,4'-DDD                         |                  |                      |                      |
| 4,4'-DDE                         |                  |                      |                      |
| 4,4'-DDT                         |                  |                      |                      |
| ALDRIN                           |                  |                      |                      |
| ALPHA-BHC                        |                  |                      |                      |
| ALPHA-CHLORDANE                  |                  |                      |                      |
| AROCLOR-1016                     | 38 U [MDL=0.01]  |                      |                      |
| AROCLOR-1221                     | 38 U [MDL=0.007] |                      |                      |
| AROCLOR-1232                     | 38 U [MDL=0.01]  |                      |                      |
| AROCLOR-1242                     | 38 U [MDL=0.007] |                      |                      |
| AROCLOR-1248                     | 38 U [MDL=0.009] |                      |                      |
| AROCLOR-1254                     | 38 U [MDL=0.009] |                      |                      |
| AROCLOR-1260                     | 29 J [MDL=0.007] |                      |                      |
| BETA-BHC                         |                  |                      |                      |
| DELTA-BHC                        |                  |                      |                      |
| DIELDRIN                         |                  |                      |                      |
| ENDOSULFAN I                     |                  |                      |                      |
| ENDOSULFAN II                    |                  |                      |                      |
| ENDOSULFAN SULFATE               |                  |                      |                      |
| ENDRIN                           |                  |                      |                      |
| ENDRIN ALDEHYDE                  |                  |                      |                      |
| ENDRIN KETONE                    |                  |                      |                      |
| GAMMA-BHC (LINDANE)              |                  |                      |                      |
| GAMMA-CHLORDANE                  |                  |                      |                      |
| HEPTACHLOR                       |                  |                      |                      |

February 2013 Page A-426

| LOCATION           | SB-270        | SB-270       | SB-270       |
|--------------------|---------------|--------------|--------------|
| SAMPLE ID          | SB-270-SS     | F-SB-270RE-3 | F-SB-270RE-4 |
| SAMPLE DATE        | 5/9/2005      | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR EPOXIDE |               |              |              |
| METHOXYCHLOR       |               | -            |              |
| TOTAL AROCLOR      | 29 [MDL=0.01] | -            |              |
| TOTAL DDT POS      |               | -            |              |
| TOXAPHENE          |               |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | - | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-295            | SB-295            | SB-296            |
|------------------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                    | SB-295-0405       | SB-295-0910       | SB-296-0405       |
| SAMPLE DATE                  | 11/1/2005         | 11/1/2005         | 10/28/2005        |
| METALS (MG/KG)               | ·                 |                   |                   |
| ANTIMONY                     | 0.67 U [MDL=0.67] | 0.78 U [MDL=0.78] | 0.91 U [MDL=0.91] |
| ARSENIC                      | 4.6 [MDL=0.57]    | 2.9 K [MDL=0.65]  | 5.7 [MDL=0.77]    |
| BARIUM                       | 22.8 [MDL=0.1]    | 15.1 [MDL=0.11]   | 14.5 [MDL=0.13]   |
| BERYLLIUM                    | 0.96 [MDL=0.02]   | 3.2 [MDL=0.03]    | 3.6 [MDL=0.03]    |
| CADMIUM                      | 0.36 U [MDL=0.36] | 0.41 U [MDL=0.41] | 0.48 U [MDL=0.48] |
| CHROMIUM                     | 25.1 [MDL=0.17]   | 29.0 [MDL=0.19]   | 38.7 [MDL=0.22]   |
| COBALT                       | 3.2 B [MDL=0.5]   | 8.5 K [MDL=0.58]  | 32.3 [MDL=0.68]   |
| COPPER                       | 14.6 [MDL=0.47]   | 17.5 [MDL=0.54]   | 40.4 [MDL=0.64]   |
| LEAD                         | 8.0 [MDL=0.27]    | 8.7 [MDL=0.31]    | 9.9 [MDL=0.37]    |
| MERCURY                      | 0.01 [MDL=0.01]   | 0.01 U [MDL=0.01] | 0.02 [MDL=0.01]   |
| MOLYBDENUM                   | 0.41 K [MDL=0.33] | 0.44 K [MDL=0.38] | 0.55 K [MDL=0.44] |
| NICKEL                       | 9.7 [MDL=0.96]    | 24.3 [MDL=1.11]   | 31.4 [MDL=1.3]    |
| SELENIUM                     | 0.59 U [MDL=0.59] | 0.68 U [MDL=0.68] | 0.80 U [MDL=0.8]  |
| SILVER                       | 0.72 [MDL=0.72]   | 0.99 [MDL=0.83]   | 1.6 [MDL=0.98]    |
| THALLIUM                     | 1.0 U [MDL=1]     | 1.16 U [MDL=1.16] | 1.36 U [MDL=1.36] |
| VANADIUM                     | 40.4 [MDL=0.8]    | 32.5 [MDL=0.92]   | 61.6 [MDL=1.08]   |
| ZINC                         | 27.1 [MDL=0.29]   | 32.2 [MDL=0.33]   | 58.0 [MDL=0.39]   |
| MISCELLANEOUS PARAMETERS     | ·                 |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             | 81 []             | 84 []             | 80 []             |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |                   |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        | •                 |                   |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       | 400 U [MDL=54]    | 390 U [MDL=52]    | 410 U [MDL=54]    |
| 1,2-DICHLOROBENZENE          | 400 U [MDL=52]    | 390 U [MDL=51]    | 410 U [MDL=53]    |
| 1,3-DICHLOROBENZENE          | 400 U [MDL=65]    | 390 U [MDL=63]    | 410 U [MDL=66]    |
| 1,4-DICHLOROBENZENE          | 400 U [MDL=31]    | 390 U [MDL=30]    | 410 U [MDL=31]    |
| 1,4-DIOXANE                  | 400 U [MDL=200]   | 390 U [MDL=200]   | 410 U [MDL=200]   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 400 U [MDL=38]    | 390 U [MDL=36]    | 410 U [MDL=38]    |
| 2,4,5-TRICHLOROPHENOL        | 1000 U [MDL=220]  | 980 U [MDL=210]   | 1000 U [MDL=220]  |
| 2,4,6-TRICHLOROPHENOL        | 400 U [MDL=140]   | 390 U [MDL=140]   | 410 U [MDL=140]   |
| 2,4-DICHLOROPHENOL           | 400 U [MDL=160]   | 390 U [MDL=160]   | 410 U [MDL=170]   |
| 2,4-DIMETHYLPHENOL           | 400 U [MDL=140]   | 390 U [MDL=140]   | 410 U [MDL=140]   |
| 2,4-DINITROPHENOL            | 1000 U [MDL=76]   | 980 U [MDL=74]    | 1000 U [MDL=77]   |

| LOCATION                    | SB-295           | SB-295          | SB-296           |
|-----------------------------|------------------|-----------------|------------------|
| SAMPLE ID                   | SB-295-0405      | SB-295-0910     | SB-296-0405      |
| SAMPLE DATE                 | 11/1/2005        | 11/1/2005       | 10/28/2005       |
| 2,4-DINITROTOLUENE          | 400 U [MDL=120]  | 390 U [MDL=120] | 410 U [MDL=120]  |
| 2,6-DINITROTOLUENE          | 400 U [MDL=95]   | 390 U [MDL=92]  | 410 U [MDL=96]   |
| 2-CHLORONAPHTHALENE         | 400 U [MDL=59]   | 390 U [MDL=58]  | 410 U [MDL=60]   |
| 2-CHLOROPHENOL              | 400 U [MDL=110]  | 390 U [MDL=110] | 410 U [MDL=110]  |
| 2-METHYLPHENOL              | 400 U [MDL=170]  | 390 U [MDL=160] | 410 U [MDL=170]  |
| 2-NITROANILINE              | 1000 U [MDL=92]  | 980 U [MDL=89]  | 1000 U [MDL=93]  |
| 2-NITROPHENOL               | 400 U [MDL=130]  | 390 U [MDL=130] | 410 U [MDL=130]  |
| 3&4-METHYLPHENOL            | 400 U [MDL=180]  | 390 U [MDL=180] | 410 U [MDL=190]  |
| 3,3'-DICHLOROBENZIDINE      | 400 U [MDL=160]  | 390 U [MDL=160] | 410 U [MDL=160]  |
| 3-NITROANILINE              | 1000 U [MDL=88]  | 980 U [MDL=85]  | 1000 U [MDL=89]  |
| 4,6-DINITRO-2-METHYLPHENOL  | 1000 U [MDL=250] | 980 U [MDL=250] | 1000 U [MDL=260] |
| 4-BROMOPHENYL PHENYL ETHER  | 400 U [MDL=68]   | 390 U [MDL=66]  | 410 U [MDL=69]   |
| 4-CHLORO-3-METHYLPHENOL     | 400 U [MDL=140]  | 390 U [MDL=140] | 410 U [MDL=150]  |
| 4-CHLOROANILINE             | 400 U [MDL=66]   | 390 U [MDL=64]  | 410 U [MDL=66]   |
| 4-CHLOROPHENYL PHENYL ETHER | 400 U [MDL=62]   | 390 U [MDL=60]  | 410 U [MDL=63]   |
| 4-NITROANILINE              | 1000 U [MDL=100] | 980 U [MDL=100] | 1000 U [MDL=110] |
| 4-NITROPHENOL               | 1000 U [MDL=190] | 980 U [MDL=180] | 1000 U [MDL=190] |
| ACETOPHENONE                |                  |                 |                  |
| ANILINE                     | 400 U [MDL=200]  | 390 U [MDL=200] | 410 U [MDL=200]  |
| ATRAZINE                    |                  |                 |                  |
| AZOBENZENE                  | 400 U [MDL=200]  | 390 U [MDL=200] | 410 U [MDL=200]  |
| BENZIDINE                   | 1000 U [MDL=500] | 980 U [MDL=490] | 1000 U [MDL=510] |
| BENZOIC ACID                | 1000 U [MDL=500] | 980 U [MDL=490] | 1000 U [MDL=510] |
| BENZYL ALCOHOL              | 400 U [MDL=38]   | 390 U [MDL=36]  | 410 U [MDL=38]   |
| BIS(2-CHLOROETHOXY)METHANE  | 400 U [MDL=64]   | 390 U [MDL=62]  | 410 U [MDL=65]   |
| BIS(2-CHLOROETHYL)ETHER     | 400 U [MDL=40]   | 390 U [MDL=39]  | 410 U [MDL=41]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 400 U [MDL=91]   | 390 U [MDL=89]  | 410 U [MDL=92]   |
| BUTYL BENZYL PHTHALATE      | 400 U [MDL=84]   | 390 U [MDL=81]  | 410 U [MDL=84]   |
| CAPROLACTAM                 |                  |                 |                  |
| CARBAZOLE                   | 400 U [MDL=74]   | 390 U [MDL=72]  | 410 U [MDL=75]   |
| DIBENZOFURAN                | 400 U [MDL=76]   | 390 U [MDL=74]  | 410 U [MDL=77]   |
| DIETHYL PHTHALATE           | 400 U [MDL=130]  | 390 U [MDL=120] | 410 U [MDL=130]  |
| DIMETHYL PHTHALATE          | 400 U [MDL=77]   | 390 U [MDL=74]  | 410 U [MDL=78]   |
| DI-N-BUTYL PHTHALATE        | 400 U [MDL=100]  | 390 U [MDL=100] | 410 U [MDL=100]  |
| DI-N-OCTYL PHTHALATE        | 400 U [MDL=90]   | 390 U [MDL=88]  | 410 U [MDL=92]   |
| HEXACHLOROBENZENE           | 400 U [MDL=290]  | 390 U [MDL=280] | 410 U [MDL=290]  |
| HEXACHLOROBUTADIENE         | 400 U [MDL=54]   | 390 U [MDL=52]  | 410 U [MDL=54]   |
| HEXACHLOROCYCLOPENTADIENE   | 400 U [MDL=92]   | 390 U [MDL=89]  | 410 U [MDL=93]   |

2-CHLOROTOLUENE

| LOCATION                       | SB-295           | SB-295                                  | SB-296           |
|--------------------------------|------------------|-----------------------------------------|------------------|
| SAMPLE ID                      | SB-295-0405      | SB-295-0910                             | SB-296-0405      |
| SAMPLE DATE                    | 11/1/2005        | 11/1/2005                               | 10/28/2005       |
| HEXACHLOROETHANE               | 400 U [MDL=74]   | 390 U [MDL=72]                          | 410 U [MDL=75]   |
| ISOPHORONE                     | 400 U [MDL=64]   | 390 U [MDL=62]                          | 410 U [MDL=65]   |
| NITROBENZENE                   | 400 U [MDL=91]   | 390 U [MDL=89]                          | 410 U [MDL=92]   |
| N-NITROSODIMETHYLAMINE         | 400 U [MDL=200]  | 390 U [MDL=200]                         | 410 U [MDL=200]  |
| N-NITROSO-DI-N-PROPYLAMINE     | 400 U [MDL=69]   | 390 U [MDL=67]                          | 410 U [MDL=70]   |
| N-NITROSODIPHENYLAMINE         | 400 U [MDL=88]   | 390 U [MDL=86]                          | 410 U [MDL=90]   |
| PENTACHLOROPHENOL              | 1000 U [MDL=170] | 980 U [MDL=170]                         | 1000 U [MDL=170] |
| PHENOL                         | 400 U [MDL=110]  | 390 U [MDL=110]                         | 410 U [MDL=110]  |
| PYRIDINE                       | 400 U [MDL=200]  | 390 U [MDL=200]                         | 410 U [MDL=200]  |
| VOLATILES (UG/KG)              | •                | •                                       | •                |
| 1,1,1,2-TETRACHLOROETHANE      | 6 UJ [MDL=0.6]   | 6 U [MDL=0.6]                           | 6 UJ [MDL=0.6]   |
| 1,1,1-TRICHLOROETHANE          | 6 UJ [MDL=2]     | 6 U [MDL=2]                             | 6 UJ [MDL=2]     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| 1,1,2-TRICHLOROETHANE          |                  |                                         |                  |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 UJ [MDL=2]     | 6 U [MDL=2]                             | 6 UJ [MDL=2]     |
| 1,1-DICHLOROETHANE             | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| 1,1-DICHLOROETHENE             | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| 1,1-DICHLOROPROPENE            | 6 UJ [MDL=2]     | 6 U [MDL=2]                             | 6 UJ [MDL=2]     |
| 1,2,3-TRICHLOROBENZENE         | 6 UJ [MDL=2]     | 6 U [MDL=2]                             | 6 UJ [MDL=2]     |
| 1,2,3-TRICHLOROPROPANE         | 6 UJ [MDL=0.9]   | 6 U [MDL=0.9]                           | 6 UJ [MDL=0.9]   |
| 1,2,3-TRIMETHYLBENZENE         | 6 UJ [MDL=0.4]   | 6 U [MDL=0.4]                           | 6 UJ [MDL=0.4]   |
| 1,2,4-TRICHLOROBENZENE         | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| 1,2,4-TRIMETHYLBENZENE         | 6 UJ [MDL=0.7]   | 6 U [MDL=0.7]                           | 6 UJ [MDL=0.7]   |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| 1,2-DIBROMOETHANE              | 6 UJ [MDL=0.6]   | 6 U [MDL=0.5]                           | 6 UJ [MDL=0.6]   |
| 1,2-DICHLOROBENZENE            | 6 UJ [MDL=0.4]   | 6 U [MDL=0.3]                           | 6 UJ [MDL=0.4]   |
| 1,2-DICHLOROETHANE             | 6 UJ [MDL=0.7]   | 6 U [MDL=0.7]                           | 6 UJ [MDL=0.7]   |
| 1,2-DICHLOROPROPANE            | 6 UJ [MDL=0.9]   | 6 U [MDL=0.9]                           | 6 UJ [MDL=0.9]   |
| 1,3,5-TRIMETHYLBENZENE         |                  |                                         |                  |
| 1,3-DICHLOROBENZENE            | 6 UJ [MDL=0.4]   | 6 U [MDL=0.4]                           | 6 UJ [MDL=0.4]   |
| 1,3-DICHLOROPROPANE            | 6 UJ [MDL=0.4]   | 6 U [MDL=0.4]                           | 6 UJ [MDL=0.4]   |
| 1,3-DICHLOROPROPENE            |                  |                                         |                  |
| 1,4-DICHLOROBENZENE            | 6 UJ [MDL=0.3]   | 6 U [MDL=0.3]                           | 6 UJ [MDL=0.3]   |
| 1,4-DIOXANE                    |                  |                                         |                  |
| 2,2-DICHLOROPROPANE            | 6 UJ [MDL=2]     | 6 U [MDL=2]                             | 6 UJ [MDL=2]     |
| 2-BUTANONE                     | 31 UR [MDL=4]    | 30 UR [MDL=4]                           | 31 UR [MDL=4]    |
| 2-CHLOROETHYL VINYL ETHER      | 6 UJ [MDL=1]     | 6 U [MDL=1]                             | 6 UJ [MDL=1]     |
| ·                              | ·                | • · · · · · · · · · · · · · · · · · · · |                  |

February 2013 Page A-430

6 UJ [MDL=0.8]

6 U [MDL=0.8]

6 UJ [MDL=0.8]

| LOCATION                | SB-295          | SB-295         | SB-296          |
|-------------------------|-----------------|----------------|-----------------|
| SAMPLE ID               | SB-295-0405     | SB-295-0910    | SB-296-0405     |
| SAMPLE DATE             | 11/1/2005       | 11/1/2005      | 10/28/2005      |
| 2-HEXANONE              | 31 UJ [MDL=5]   | 30 U [MDL=5]   | 31 UJ [MDL=5]   |
| 4-CHLOROTOLUENE         | 6 UJ [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| 4-ISOPROPYLTOLUENE      | 6 UJ [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| 4-METHYL-2-PENTANONE    | 31 UJ [MDL=5]   | 30 U [MDL=5]   | 31 UJ [MDL=5]   |
| ACETONE                 | 21 J [MDL=5]    | 14 J [MDL=5]   | 29 J [MDL=5]    |
| BENZENE                 | 6 UJ [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| BROMOBENZENE            | 6 UJ [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| BROMOCHLOROMETHANE      | 6 UJ [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=2]    |
| BROMODICHLOROMETHANE    | 6 UJ [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| BROMOFORM               | 6 UJ [MDL=0.7]  | 6 U [MDL=0.7]  | 6 UJ [MDL=0.7]  |
| BROMOMETHANE            | 12 UJ [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| CARBON DISULFIDE        | 6 UJ [MDL=2]    | 6 U [MDL=2]    | 6 UJ [MDL=2]    |
| CARBON TETRACHLORIDE    | 6 UJ [MDL=4]    | 6 U [MDL=4]    | 6 UJ [MDL=4]    |
| CHLOROBENZENE           | 6 UJ [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| CHLORODIBROMOMETHANE    | 6 UJ [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| CHLOROETHANE            | 12 UJ [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| CHLOROFORM              | 6 UJ [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| CHLOROMETHANE           | 12 UJ [MDL=1]   | 12 U [MDL=1]   | 12 UJ [MDL=1]   |
| CIS-1,2-DICHLOROETHENE  | 6 UJ [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| CIS-1,3-DICHLOROPROPENE | 6 UJ [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| DIBROMOMETHANE          | 6 UJ [MDL=0.6]  | 6 U [MDL=0.5]  | 6 UJ [MDL=0.6]  |
| DICHLORODIFLUOROMETHANE | 12 UJ [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| DIISOPROPYL ETHER       | 6 UJ [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| ETHYL TERT-BUTYL ETHER  | 6 UJ [MDL=0.3]  | 6 U [MDL=0.3]  | 6 UJ [MDL=0.3]  |
| ETHYLBENZENE            | 6 UJ [MDL=0.9]  | 6 U [MDL=0.9]  | 6 UJ [MDL=0.9]  |
| FLUORODICHLOROMETHANE   |                 |                |                 |
| HEXACHLOROBUTADIENE     | 6 UJ [MDL=1]    | 6 U [MDL=0.9]  | 6 UJ [MDL=1]    |
| ISOPROPYLBENZENE        | 6 UJ [MDL=0.9]  | 6 U [MDL=0.9]  | 6 UJ [MDL=1]    |
| M+P-XYLENES             | 12 UJ [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| METHYL TERT-BUTYL ETHER | 12 UJ [MDL=0.8] | 12 U [MDL=0.8] | 12 UJ [MDL=0.8] |
| METHYLENE CHLORIDE      | 11 B [MDL=2]    | 8 B [MDL=2]    | 8 B [MDL=2]     |
| NAPHTHALENE             | 6 UJ [MDL=2]    | 6 U [MDL=2]    | 6 UJ [MDL=2]    |
| N-BUTYLBENZENE          | 6 UJ [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| N-PROPYLBENZENE         | 6 UJ [MDL=0.9]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.9]  |
| O-XYLENE                | 6 UJ [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| SEC-BUTYLBENZENE        | 6 UJ [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| STYRENE                 | 6 UJ [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| TERT-AMYL METHYL ETHER  | 6 UJ [MDL=0.5]  | 6 U [MDL=0.5]  | 6 UJ [MDL=0.5]  |

| LOCATION                                 | SB-295            | SB-295             | SB-296            |
|------------------------------------------|-------------------|--------------------|-------------------|
| SAMPLE ID                                | SB-295-0405       | SB-295-0910        | SB-296-0405       |
| SAMPLE DATE                              | 11/1/2005         | 11/1/2005          | 10/28/2005        |
| TERT-BUTYLBENZENE                        | 6 UJ [MDL=0.8]    | 6 U [MDL=0.8]      | 6 UJ [MDL=0.8]    |
| TERTIARY-BUTYL ALCOHOL                   | 12 UR [MDL=8]     | 12 UR [MDL=8]      | 12 UR [MDL=9]     |
| TETRACHLOROETHENE                        | 6 UJ [MDL=2]      | 6 U [MDL=1]        | 6 UJ [MDL=2]      |
| TOLUENE                                  | 6 UJ [MDL=1]      | 6 U [MDL=1]        | 6 UJ [MDL=1]      |
| TOTAL 1,2-DICHLOROETHENE                 | 12 UJ [MDL=2]     | 12 U [MDL=2]       | 12 UJ [MDL=2]     |
| TOTAL XYLENES                            | 18 UJ [MDL=2]     | 18 U [MDL=2]       | 19 UJ [MDL=2]     |
| TRANS-1,2-DICHLOROETHENE                 | 6 UJ [MDL=1]      | 6 U [MDL=1]        | 6 UJ [MDL=1]      |
| TRANS-1,3-DICHLOROPROPENE                | 6 UJ [MDL=0.7]    | 6 U [MDL=0.7]      | 6 UJ [MDL=0.7]    |
| TRICHLOROETHENE                          | 6 UJ [MDL=0.9]    | 6 U [MDL=0.9]      | 6 UJ [MDL=1]      |
| TRICHLOROFLUOROMETHANE                   | 2 J [MDL=2]       | 12 U [MDL=2]       | 12 UJ [MDL=2]     |
| VINYL ACETATE                            | 6 UJ [MDL=0.3]    | 6 U [MDL=0.3]      | 6 UJ [MDL=0.3]    |
| VINYL CHLORIDE                           | 12 UJ [MDL=2]     | 12 U [MDL=2]       | 12 UJ [MDL=2]     |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                    |                   |
| 1-METHYLNAPHTHALENE                      | 400 U [MDL=200]   | 390 U [MDL=200]    | 410 U [MDL=200]   |
| 2-METHYLNAPHTHALENE                      | 400 U [MDL=70]    | 390 U [MDL=68]     | 410 U [MDL=70]    |
| ACENAPHTHENE                             | 400 U [MDL=73]    | 390 U [MDL=71]     | 410 U [MDL=74]    |
| ACENAPHTHYLENE                           | 400 U [MDL=50]    | 390 U [MDL=48]     | 410 U [MDL=50]    |
| ANTHRACENE                               | 400 U [MDL=71]    | 390 U [MDL=69]     | 410 U [MDL=72]    |
| BAP EQUIVALENT-HALFND                    | 400 U [MDL=56]    | 390 U [MDL=54]     | 410 U [MDL=56]    |
| BAP EQUIVALENT-POS                       | 400 U [MDL=56]    | 390 U [MDL=54]     | 410 U [MDL=56]    |
| BAP EQUIVALENT-UCL                       | 36.95056 [MDL=56] | 41.043258 [MDL=54] | 14.54834 [MDL=56] |
| BENZO(A)ANTHRACENE                       | 400 U [MDL=72]    | 390 U [MDL=70]     | 410 U [MDL=73]    |
| BENZO(A)PYRENE                           | 400 U [MDL=56]    | 390 U [MDL=54]     | 410 U [MDL=56]    |
| BENZO(B)FLUORANTHENE                     | 400 U [MDL=79]    | 390 U [MDL=76]     | 410 U [MDL=80]    |
| BENZO(G,H,I)PERYLENE                     | 400 U [MDL=160]   | 390 U [MDL=150]    | 410 U [MDL=160]   |
| BENZO(K)FLUORANTHENE                     | 400 U [MDL=72]    | 390 U [MDL=70]     | 410 U [MDL=73]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                    |                   |
| C1-FLUORANTHENES/PYRENES                 |                   |                    |                   |
| C1-FLUORENES                             |                   |                    |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                    |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                    |                   |
| C2-FLUORENES                             |                   |                    |                   |
| C2-NAPHTHALENES                          |                   |                    |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                    |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                    |                   |
| C3-FLUORENES                             |                   |                    |                   |
| C3-NAPHTHALENES                          |                   |                    |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                    |                   |

HEPTACHLOR

| OOL                              |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-295          | SB-295          | SB-296          |
| SAMPLE ID                        | SB-295-0405     | SB-295-0910     | SB-296-0405     |
| SAMPLE DATE                      | 11/1/2005       | 11/1/2005       | 10/28/2005      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 400 U [MDL=81]  | 390 U [MDL=78]  | 410 U [MDL=82]  |
| DIBENZO(A,H)ANTHRACENE           | 400 U [MDL=170] | 390 U [MDL=170] | 410 U [MDL=180] |
| FLUORANTHENE                     | 400 U [MDL=87]  | 390 U [MDL=85]  | 410 U [MDL=88]  |
| FLUORENE                         | 400 U [MDL=65]  | 390 U [MDL=63]  | 410 U [MDL=66]  |
| INDENO(1,2,3-CD)PYRENE           | 400 U [MDL=160] | 390 U [MDL=160] | 410 U [MDL=160] |
| NAPHTHALENE                      | 400 U [MDL=78]  | 390 U [MDL=76]  | 410 U [MDL=79]  |
| PHENANTHRENE                     | 400 U [MDL=71]  | 390 U [MDL=69]  | 410 U [MDL=72]  |
| PYRENE                           | 400 U [MDL=88]  | 390 U [MDL=86]  | 410 U [MDL=90]  |
| TOTAL PAHS                       | 0 U [MDL=56]    | 0 U [MDL=54]    | 0 U [MDL=56]    |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1221                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1232                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1242                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1248                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1254                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| AROCLOR-1260                     | 21 U [MDL=21]   | 20 U [MDL=20]   | 21 U [MDL=21]   |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
|                                  |                 |                 |                 |

February 2013 Page A-433

--

--

--

| LOCATION           | SB-295       | SB-295       | SB-296       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | SB-295-0405  | SB-295-0910  | SB-296-0405  |
| SAMPLE DATE        | 11/1/2005    | 11/1/2005    | 10/28/2005   |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=21] | 0 U [MDL=20] | 0 U [MDL=21] |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | -                 |                   |                  |
|-------------------------|-------------------|-------------------|------------------|
| GASOLINE RANGE ORGANICS | 2800 U [MDL=0.55] | 2600 U [MDL=0.52] | 2600 U [MDL=0.5] |
| TPH (C09-C36)           | 6100 U [MDL=2.1]  | 6000 U [MDL=2.1]  | 4900 J [MDL=2.2] |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-296            | SB-297            | SB-297            |
|------------------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                    | SB-296-0910       | SB-297-0405       | SB-297-0910       |
| SAMPLE DATE                  | 10/28/2005        | 10/28/2005        | 10/28/2005        |
| METALS (MG/KG)               | <u>.</u>          |                   |                   |
| ANTIMONY                     | 0.74 U [MDL=0.74] | 0.79 U [MDL=0.79] | 0.82 U [MDL=0.82] |
| ARSENIC                      | 2.4 K [MDL=0.62]  | 3.3 [MDL=0.66]    | 3.0 K [MDL=0.69]  |
| BARIUM                       | 13.7 [MDL=0.11]   | 16.3 [MDL=0.11]   | 22.3 [MDL=0.12]   |
| BERYLLIUM                    | 3.6 [MDL=0.03]    | 3.1 [MDL=0.03]    | 3.7 [MDL=0.03]    |
| CADMIUM                      | 0.39 U [MDL=0.39] | 0.42 U [MDL=0.42] | 0.44 U [MDL=0.44] |
| CHROMIUM                     | 21.1 [MDL=0.18]   | 26.1 [MDL=0.19]   | 19.2 [MDL=0.2]    |
| COBALT                       | 6.0 K [MDL=0.55]  | 6.0 K [MDL=0.58]  | 8.7 K [MDL=0.61]  |
| COPPER                       | 21.9 [MDL=0.52]   | 21.9 [MDL=0.55]   | 15.9 [MDL=0.57]   |
| LEAD                         | 7.6 [MDL=0.3]     | 8.3 [MDL=0.32]    | 8.5 [MDL=0.33]    |
| MERCURY                      | 0.01 [MDL=0.01]   | 0.01 U [MDL=0.01] | 0.01 U [MDL=0.01] |
| MOLYBDENUM                   | 0.36 U [MDL=0.36] | 0.43 K [MDL=0.38] | 0.45 K [MDL=0.4]  |
| NICKEL                       | 21.3 [MDL=1.06]   | 24.0 [MDL=1.12]   | 25.4 [MDL=1.17]   |
| SELENIUM                     | 0.65 U [MDL=0.65] | 0.69 U [MDL=0.69] | 0.72 U [MDL=0.72] |
| SILVER                       | 1.2 [MDL=0.79]    | 0.84 U [MDL=0.84] | 0.88 U [MDL=0.88] |
| THALLIUM                     | 1.11 U [MDL=1.11] | 1.17 U [MDL=1.17] | 1.3 B [MDL=1.23]  |
| VANADIUM                     | 32.8 [MDL=0.88]   | 35.3 [MDL=0.93]   | 31.8 [MDL=0.98]   |
| ZINC                         | 26.8 [MDL=0.31]   | 24.1 [MDL=0.33]   | 33.2 [MDL=0.35]   |
| MISCELLANEOUS PARAMETERS     |                   |                   |                   |
| PERCENT SOLIDS (%)           |                   |                   |                   |
| TOTAL SOLIDS (%)             | 84 []             | 88 []             | 84 []             |
| HEXAVALENT CHROMIUM (MG/KG)  |                   |                   |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                   |                   |                   |
| PH (S.U.)                    |                   |                   |                   |
| MERCURY (METHYL) (UG/KG)     |                   |                   |                   |
| SEMIVOLATILES (UG/KG)        |                   |                   |                   |
| 1,1-BIPHENYL                 |                   |                   |                   |
| 1,2,4-TRICHLOROBENZENE       | 390 U [MDL=52]    | 380 U [MDL=50]    | 390 U [MDL=52]    |
| 1,2-DICHLOROBENZENE          | 390 U [MDL=50]    | 380 U [MDL=48]    | 390 U [MDL=50]    |
| 1,3-DICHLOROBENZENE          | 390 U [MDL=62]    | 380 U [MDL=60]    | 390 U [MDL=62]    |
| 1,4-DICHLOROBENZENE          | 390 U [MDL=30]    | 380 U [MDL=29]    | 390 U [MDL=30]    |
| 1,4-DIOXANE                  | 390 U [MDL=200]   | 380 U [MDL=190]   | 390 U [MDL=200]   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U [MDL=36]    | 380 U [MDL=35]    | 390 U [MDL=36]    |
| 2,4,5-TRICHLOROPHENOL        | 970 U [MDL=210]   | 930 U [MDL=200]   | 970 U [MDL=210]   |
| 2,4,6-TRICHLOROPHENOL        | 390 U [MDL=140]   | 380 U [MDL=130]   | 390 U [MDL=140]   |
| 2,4-DICHLOROPHENOL           | 390 U [MDL=160]   | 380 U [MDL=150]   | 390 U [MDL=160]   |
| 2,4-DIMETHYLPHENOL           | 390 U [MDL=140]   | 380 U [MDL=130]   | 390 U [MDL=140]   |
| 2,4-DINITROPHENOL            | 970 U [MDL=73]    | 930 U [MDL=70]    | 970 U [MDL=73]    |

| LOCATION                    | SB-296          | SB-297          | SB-297          |
|-----------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                   | SB-296-0910     | SB-297-0405     | SB-297-0910     |
| SAMPLE DATE                 | 10/28/2005      | 10/28/2005      | 10/28/2005      |
| 2,4-DINITROTOLUENE          | 390 U [MDL=120] | 380 U [MDL=110] | 390 U [MDL=120] |
| 2,6-DINITROTOLUENE          | 390 U [MDL=91]  | 380 U [MDL=88]  | 390 U [MDL=92]  |
| 2-CHLORONAPHTHALENE         | 390 U [MDL=57]  | 380 U [MDL=55]  | 390 U [MDL=57]  |
| 2-CHLOROPHENOL              | 390 U [MDL=110] | 380 U [MDL=100] | 390 U [MDL=110] |
| 2-METHYLPHENOL              | 390 U [MDL=160] | 380 U [MDL=150] | 390 U [MDL=160] |
| 2-NITROANILINE              | 970 U [MDL=89]  | 930 U [MDL=85]  | 970 U [MDL=89]  |
| 2-NITROPHENOL               | 390 U [MDL=130] | 380 U [MDL=120] | 390 U [MDL=130] |
| 3&4-METHYLPHENOL            | 390 U [MDL=180] | 380 U [MDL=170] | 390 U [MDL=180] |
| 3,3'-DICHLOROBENZIDINE      | 390 U [MDL=160] | 380 U [MDL=150] | 390 U [MDL=160] |
| 3-NITROANILINE              | 970 U [MDL=84]  | 930 U [MDL=81]  | 970 U [MDL=84]  |
| 4,6-DINITRO-2-METHYLPHENOL  | 970 U [MDL=240] | 930 U [MDL=240] | 970 U [MDL=240] |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U [MDL=66]  | 380 U [MDL=63]  | 390 U [MDL=66]  |
| 4-CHLORO-3-METHYLPHENOL     | 390 U [MDL=140] | 380 U [MDL=130] | 390 U [MDL=140] |
| 4-CHLOROANILINE             | 390 U [MDL=63]  | 380 U [MDL=61]  | 390 U [MDL=63]  |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U [MDL=60]  | 380 U [MDL=57]  | 390 U [MDL=60]  |
| 4-NITROANILINE              | 970 U [MDL=100] | 930 U [MDL=98]  | 970 U [MDL=100] |
| 4-NITROPHENOL               | 970 U [MDL=180] | 930 U [MDL=180] | 970 U [MDL=180] |
| ACETOPHENONE                |                 |                 |                 |
| ANILINE                     | 390 U [MDL=200] | 380 U [MDL=190] | 390 U [MDL=200] |
| ATRAZINE                    |                 |                 |                 |
| AZOBENZENE                  | 390 U [MDL=200] | 380 U [MDL=190] | 390 U [MDL=200] |
| BENZIDINE                   | 970 U [MDL=480] | 930 U [MDL=470] | 970 U [MDL=480] |
| BENZOIC ACID                | 970 U [MDL=480] | 930 U [MDL=470] | 970 U [MDL=480] |
| BENZYL ALCOHOL              | 390 U [MDL=36]  | 380 U [MDL=35]  | 390 UR [MDL=36] |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U [MDL=62]  | 380 U [MDL=60]  | 390 U [MDL=62]  |
| BIS(2-CHLOROETHYL)ETHER     | 390 U [MDL=39]  | 380 U [MDL=38]  | 390 U [MDL=39]  |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 190 J [MDL=88]  | 380 U [MDL=85]  | 390 U [MDL=88]  |
| BUTYL BENZYL PHTHALATE      | 390 U [MDL=80]  | 380 U [MDL=77]  | 390 U [MDL=80]  |
| CAPROLACTAM                 |                 |                 |                 |
| CARBAZOLE                   | 390 U [MDL=71]  | 380 U [MDL=68]  | 390 U [MDL=71]  |
| DIBENZOFURAN                | 390 U [MDL=73]  | 380 U [MDL=70]  | 390 U [MDL=73]  |
| DIETHYL PHTHALATE           | 390 U [MDL=120] | 380 U [MDL=120] | 390 U [MDL=120] |
| DIMETHYL PHTHALATE          | 390 U [MDL=74]  | 380 U [MDL=71]  | 390 U [MDL=74]  |
| DI-N-BUTYL PHTHALATE        | 390 U [MDL=100] | 380 U [MDL=96]  | 390 U [MDL=100] |
| DI-N-OCTYL PHTHALATE        | 390 U [MDL=87]  | 380 U [MDL=84]  | 390 U [MDL=87]  |
| HEXACHLOROBENZENE           | 390 U [MDL=280] | 380 U [MDL=260] | 390 U [MDL=280] |
| HEXACHLOROBUTADIENE         | 390 U [MDL=52]  | 380 U [MDL=50]  | 390 U [MDL=52]  |
| HEXACHLOROCYCLOPENTADIENE   | 390 U [MDL=89]  | 380 U [MDL=85]  | 390 UJ [MDL=89] |

2-CHLOROTOLUENE

| LOCATION                       | SB-296          | SB-297          | SB-297          |
|--------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                      | SB-296-0910     | SB-297-0405     | SB-297-0910     |
| SAMPLE DATE                    | 10/28/2005      | 10/28/2005      | 10/28/2005      |
| HEXACHLOROETHANE               | 390 U [MDL=72]  | 380 U [MDL=69]  | 390 U [MDL=72]  |
| ISOPHORONE                     | 390 U [MDL=61]  | 380 U [MDL=59]  | 390 U [MDL=62]  |
| NITROBENZENE                   | 390 U [MDL=88]  | 380 U [MDL=85]  | 390 U [MDL=88]  |
| N-NITROSODIMETHYLAMINE         | 390 U [MDL=200] | 380 U [MDL=190] | 390 U [MDL=200] |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U [MDL=67]  | 380 U [MDL=64]  | 390 U [MDL=67]  |
| N-NITROSODIPHENYLAMINE         | 390 U [MDL=85]  | 380 U [MDL=82]  | 390 U [MDL=85]  |
| PENTACHLOROPHENOL              | 970 U [MDL=170] | 930 U [MDL=160] | 970 U [MDL=170] |
| PHENOL                         | 390 U [MDL=110] | 380 U [MDL=100] | 390 U [MDL=110] |
| PYRIDINE                       | 390 U [MDL=200] | 380 U [MDL=190] | 390 U [MDL=200] |
| VOLATILES (UG/KG)              |                 |                 |                 |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U [MDL=0.6]   | 6 U [MDL=0.6]   | 6 U [MDL=0.6]   |
| 1,1,1-TRICHLOROETHANE          | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 U [MDL=2]     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 U [MDL=1]     |
| 1,1,2-TRICHLOROETHANE          |                 |                 |                 |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 U [MDL=2]     |
| 1,1-DICHLOROETHANE             | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 U [MDL=1]     |
| 1,1-DICHLOROETHENE             | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 U [MDL=1]     |
| 1,1-DICHLOROPROPENE            | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 U [MDL=2]     |
| 1,2,3-TRICHLOROBENZENE         | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 U [MDL=2]     |
| 1,2,3-TRICHLOROPROPANE         | 6 U [MDL=0.9]   | 6 U [MDL=0.8]   | 6 U [MDL=0.9]   |
| 1,2,3-TRIMETHYLBENZENE         | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   |
| 1,2,4-TRICHLOROBENZENE         | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 U [MDL=1]     |
| 1,2,4-TRIMETHYLBENZENE         | 6 U [MDL=0.7]   | 6 U [MDL=0.6]   | 6 U [MDL=0.7]   |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U [MDL=0.9]   | 6 U [MDL=0.9]   | 6 U [MDL=0.9]   |
| 1,2-DIBROMOETHANE              | 6 U [MDL=0.5]   | 6 U [MDL=0.5]   | 6 U [MDL=0.5]   |
| 1,2-DICHLOROBENZENE            | 6 U [MDL=0.3]   | 6 U [MDL=0.3]   | 6 U [MDL=0.3]   |
| 1,2-DICHLOROETHANE             | 6 U [MDL=0.7]   | 6 U [MDL=0.7]   | 6 U [MDL=0.7]   |
| 1,2-DICHLOROPROPANE            | 6 U [MDL=0.9]   | 6 U [MDL=0.8]   | 6 U [MDL=0.9]   |
| 1,3,5-TRIMETHYLBENZENE         |                 | -               |                 |
| 1,3-DICHLOROBENZENE            | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   |
| 1,3-DICHLOROPROPANE            | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   |
| 1,3-DICHLOROPROPENE            |                 |                 |                 |
| 1,4-DICHLOROBENZENE            | 6 U [MDL=0.3]   | 6 U [MDL=0.3]   | 6 U [MDL=0.3]   |
| 1,4-DIOXANE                    |                 |                 |                 |
| 2,2-DICHLOROPROPANE            | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 U [MDL=2]     |
| 2-BUTANONE                     | 30 UR [MDL=4]   | 28 UR [MDL=4]   | 30 UR [MDL=4]   |
| 2-CHLOROETHYL VINYL ETHER      | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 U [MDL=1]     |

February 2013 Page A-437

6 U [MDL=0.8]

6 U [MDL=0.8]

6 U [MDL=0.8]

| LOCATION                | SB-296         | SB-297         | SB-297         |
|-------------------------|----------------|----------------|----------------|
| SAMPLE ID               | SB-296-0910    | SB-297-0405    | SB-297-0910    |
| SAMPLE DATE             | 10/28/2005     | 10/28/2005     | 10/28/2005     |
| 2-HEXANONE              | 30 U [MDL=5]   | 28 U [MDL=5]   | 30 U [MDL=5]   |
| 4-CHLOROTOLUENE         | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  |
| 4-ISOPROPYLTOLUENE      | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  |
| 4-METHYL-2-PENTANONE    | 30 U [MDL=5]   | 28 U [MDL=5]   | 30 U [MDL=5]   |
| ACETONE                 | 14 J [MDL=5]   | 37 L [MDL=5]   | 36 L [MDL=5]   |
| BENZENE                 | 6 U [MDL=1]    | 6 U [MDL=0.9]  | 6 U [MDL=1]    |
| BROMOBENZENE            | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 U [MDL=1]    |
| BROMOCHLOROMETHANE      | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 U [MDL=1]    |
| BROMODICHLOROMETHANE    | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  |
| BROMOFORM               | 6 U [MDL=0.7]  | 6 U [MDL=0.7]  | 6 U [MDL=0.7]  |
| BROMOMETHANE            | 12 U [MDL=2]   | 11 U [MDL=2]   | 12 U [MDL=2]   |
| CARBON DISULFIDE        | 6 U [MDL=2]    | 6 U [MDL=2]    | 6 U [MDL=2]    |
| CARBON TETRACHLORIDE    | 6 U [MDL=4]    | 6 U [MDL=3]    | 6 U [MDL=4]    |
| CHLOROBENZENE           | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  |
| CHLORODIBROMOMETHANE    | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  |
| CHLOROETHANE            | 12 U [MDL=2]   | 11 U [MDL=2]   | 12 U [MDL=2]   |
| CHLOROFORM              | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 U [MDL=1]    |
| CHLOROMETHANE           | 12 U [MDL=1]   | 11 U [MDL=1]   | 12 U [MDL=1]   |
| CIS-1,2-DICHLOROETHENE  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  |
| CIS-1,3-DICHLOROPROPENE | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  |
| DIBROMOMETHANE          | 6 U [MDL=0.5]  | 6 U [MDL=0.5]  | 6 U [MDL=0.5]  |
| DICHLORODIFLUOROMETHANE | 12 U [MDL=2]   | 11 U [MDL=2]   | 12 U [MDL=2]   |
| DIISOPROPYL ETHER       | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  |
| ETHYL TERT-BUTYL ETHER  | 6 U [MDL=0.3]  | 6 U [MDL=0.3]  | 6 U [MDL=0.3]  |
| ETHYLBENZENE            | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  |
| FLUORODICHLOROMETHANE   |                |                |                |
| HEXACHLOROBUTADIENE     | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  |
| ISOPROPYLBENZENE        | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  |
| M+P-XYLENES             | 12 U [MDL=2]   | 11 U [MDL=1]   | 12 U [MDL=2]   |
| METHYL TERT-BUTYL ETHER | 12 U [MDL=0.8] | 11 U [MDL=0.8] | 12 U [MDL=0.8] |
| METHYLENE CHLORIDE      | 6 B [MDL=2]    | 7 B [MDL=2]    | 8 B [MDL=2]    |
| NAPHTHALENE             | 6 U [MDL=2]    | 6 U [MDL=2]    | 6 U [MDL=2]    |
| N-BUTYLBENZENE          | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  |
| N-PROPYLBENZENE         | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  |
| O-XYLENE                | 6 U [MDL=0.7]  | 6 U [MDL=0.7]  | 6 U [MDL=0.7]  |
| SEC-BUTYLBENZENE        | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 U [MDL=1]    |
| STYRENE                 | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  |
| TERT-AMYL METHYL ETHER  | 6 U [MDL=0.5]  | 6 U [MDL=0.4]  | 6 U [MDL=0.5]  |

| LOCATION                                 | SB-296             | SB-297             | SB-297             |
|------------------------------------------|--------------------|--------------------|--------------------|
| SAMPLE ID                                | SB-296-0910        | SB-297-0405        | SB-297-0910        |
| SAMPLE DATE                              | 10/28/2005         | 10/28/2005         | 10/28/2005         |
| TERT-BUTYLBENZENE                        | 6 U [MDL=0.8]      | 6 U [MDL=0.8]      | 6 U [MDL=0.8]      |
| TERTIARY-BUTYL ALCOHOL                   | 12 UR [MDL=8]      | 11 UR [MDL=8]      | 12 UR [MDL=8]      |
| TETRACHLOROETHENE                        | 6 U [MDL=1]        | 6 U [MDL=1]        | 6 U [MDL=1]        |
| TOLUENE                                  | 6 U [MDL=1]        | 6 U [MDL=1]        | 6 U [MDL=1]        |
| TOTAL 1,2-DICHLOROETHENE                 | 12 U [MDL=2]       | 11 U [MDL=2]       | 12 U [MDL=2]       |
| TOTAL XYLENES                            | 18 U [MDL=2]       | 17 U [MDL=2]       | 18 U [MDL=2]       |
| TRANS-1,2-DICHLOROETHENE                 | 6 U [MDL=1]        | 6 U [MDL=1]        | 6 U [MDL=1]        |
| TRANS-1,3-DICHLOROPROPENE                | 6 U [MDL=0.7]      | 6 U [MDL=0.6]      | 6 U [MDL=0.7]      |
| TRICHLOROETHENE                          | 6 U [MDL=0.9]      | 6 U [MDL=0.9]      | 6 U [MDL=0.9]      |
| TRICHLOROFLUOROMETHANE                   | 12 U [MDL=2]       | 11 U [MDL=2]       | 12 U [MDL=2]       |
| VINYL ACETATE                            | 6 U [MDL=0.3]      | 6 U [MDL=0.3]      | 6 U [MDL=0.3]      |
| VINYL CHLORIDE                           | 12 U [MDL=2]       | 11 U [MDL=2]       | 12 U [MDL=2]       |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                    |                    |                    |
| 1-METHYLNAPHTHALENE                      | 390 U [MDL=200]    | 380 U [MDL=190]    | 390 U [MDL=200]    |
| 2-METHYLNAPHTHALENE                      | 390 U [MDL=67]     | 380 U [MDL=64]     | 390 U [MDL=67]     |
| ACENAPHTHENE                             | 390 U [MDL=70]     | 380 U [MDL=68]     | 390 U [MDL=71]     |
| ACENAPHTHYLENE                           | 390 U [MDL=48]     | 380 U [MDL=46]     | 390 U [MDL=48]     |
| ANTHRACENE                               | 390 U [MDL=68]     | 380 U [MDL=66]     | 390 U [MDL=69]     |
| BAP EQUIVALENT-HALFND                    | 390 U [MDL=54]     | 380 U [MDL=52]     | 390 U [MDL=54]     |
| BAP EQUIVALENT-POS                       | 390 U [MDL=54]     | 380 U [MDL=52]     | 390 U [MDL=54]     |
| BAP EQUIVALENT-UCL                       | 44.125074 [MDL=54] | 29.175073 [MDL=52] | 47.359324 [MDL=54] |
| BENZO(A)ANTHRACENE                       | 390 U [MDL=70]     | 380 U [MDL=67]     | 390 U [MDL=70]     |
| BENZO(A)PYRENE                           | 390 U [MDL=54]     | 380 U [MDL=52]     | 390 U [MDL=54]     |
| BENZO(B)FLUORANTHENE                     | 390 U [MDL=76]     | 380 U [MDL=73]     | 390 U [MDL=76]     |
| BENZO(G,H,I)PERYLENE                     | 390 U [MDL=150]    | 380 U [MDL=150]    | 390 U [MDL=150]    |
| BENZO(K)FLUORANTHENE                     | 390 U [MDL=69]     | 380 U [MDL=67]     | 390 U [MDL=69]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES                 |                    |                    |                    |
| C1-FLUORENES                             |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
| C2-FLUORENES                             |                    |                    |                    |
| C2-NAPHTHALENES                          |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
| C3-FLUORENES                             |                    |                    |                    |
| C3-NAPHTHALENES                          |                    |                    |                    |
| C3-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |

| LOCATION                         | SB-296          | SB-297          | SB-297          |
|----------------------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | SB-296-0910     | SB-297-0405     | SB-297-0910     |
| SAMPLE DATE                      | 10/28/2005      | 10/28/2005      | 10/28/2005      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 390 U [MDL=78]  | 380 U [MDL=75]  | 390 U [MDL=78]  |
| DIBENZO(A,H)ANTHRACENE           | 390 U [MDL=170] | 380 U [MDL=160] | 390 U [MDL=170] |
| FLUORANTHENE                     | 390 U [MDL=84]  | 380 U [MDL=81]  | 390 U [MDL=84]  |
| FLUORENE                         | 390 U [MDL=62]  | 380 U [MDL=60]  | 390 U [MDL=62]  |
| INDENO(1,2,3-CD)PYRENE           | 390 U [MDL=160] | 380 U [MDL=150] | 390 U [MDL=160] |
| NAPHTHALENE                      | 390 U [MDL=75]  | 380 U [MDL=72]  | 390 U [MDL=75]  |
| PHENANTHRENE                     | 390 U [MDL=68]  | 380 U [MDL=66]  | 390 U [MDL=68]  |
| PYRENE                           | 390 U [MDL=85]  | 380 U [MDL=82]  | 390 U [MDL=85]  |
| TOTAL PAHS                       | 0 U [MDL=54]    | 0 U [MDL=52]    | 0 U [MDL=54]    |
| PESTICIDES/PCBS (UG/KG)          | <u> </u>        |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1221                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1232                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1242                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1248                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1254                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| AROCLOR-1260                     | 20 U [MDL=20]   | 19 U [MDL=19]   | 20 U [MDL=20]   |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| HEPTACHLOR                       |                 |                 |                 |

February 2013 Page A-440

| LOCATION           | SB-296       | SB-297       | SB-297       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | SB-296-0910  | SB-297-0405  | SB-297-0910  |
| SAMPLE DATE        | 10/28/2005   | 10/28/2005   | 10/28/2005   |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=20] | 0 U [MDL=19] | 0 U [MDL=20] |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          |              |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |                   |                   |                   |
|-------------------------|-------------------|-------------------|-------------------|
| GASOLINE RANGE ORGANICS | 2800 U [MDL=0.54] | 2800 U [MDL=0.55] | 2700 U [MDL=0.52] |
| TPH (C09-C36)           | 5900 U [MDL=2]    | 3500 J [MDL=2]    | 3800 J [MDL=2]    |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |                    |                    |                    |
|------------------------------|--------------------|--------------------|--------------------|
| LOCATION                     | SB-298             | SB-298             | SB-299             |
| SAMPLE ID                    | SB-298-0405        | SB-298-0910        | SB-299-0405        |
| SAMPLE DATE                  | 11/1/2005          | 11/1/2005          | 11/1/2005          |
| METALS (MG/KG)               |                    |                    |                    |
| ANTIMONY                     | 0.64 UL [MDL=0.64] | 0.78 UL [MDL=0.78] | 0.74 UL [MDL=0.74] |
| ARSENIC                      | 3.5 [MDL=0.54]     | 2.0 K [MDL=0.66]   | 1.3 K [MDL=0.62]   |
| BARIUM                       | 17.7 [MDL=0.02]    | 19.6 [MDL=0.02]    | 12.5 [MDL=0.02]    |
| BERYLLIUM                    | 4.3 [MDL=0.03]     | 3.8 [MDL=0.02]     | 1.8 [MDL=0.03]     |
| CADMIUM                      | 0.06 U [MDL=0.06]  | 0.08 U [MDL=0.08]  | 0.07 U [MDL=0.07]  |
| CHROMIUM                     | 16.3 K [MDL=0.08]  | 39.4 K [MDL=0.06]  | 18.6 K [MDL=0.09]  |
| COBALT                       | 8.0 [MDL=0.09]     | 5.3 [MDL=0.07]     | 11.0 [MDL=0.1]     |
| COPPER                       | 18.0 [MDL=0.27]    | 11.6 [MDL=0.33]    | 10.9 [MDL=0.31]    |
| LEAD                         | 8.4 [MDL=0.26]     | 10.4 [MDL=0.31]    | 4.0 [MDL=0.3]      |
| MERCURY                      | 0.01 U [MDL=0.01]  | 0.01 U [MDL=0.01]  | 0.01 U [MDL=0.01]  |
| MOLYBDENUM                   | 0.32 [MDL=0.16]    | 0.35 [MDL=0.13]    | 0.18 U [MDL=0.18]  |
| NICKEL                       | 23.3 [MDL=0.12]    | 17.8 [MDL=0.1]     | 13.7 [MDL=0.14]    |
| SELENIUM                     | 0.56 UL [MDL=0.56] | 0.69 UL [MDL=0.69] | 0.65 UL [MDL=0.65] |
| SILVER                       | 0.08 U [MDL=0.08]  | 0.07 U [MDL=0.07]  | 0.09 U [MDL=0.09]  |
| THALLIUM                     | 0.96 U [MDL=0.96]  | 1.17 U [MDL=1.17]  | 1.5 B [MDL=1.11]   |
| VANADIUM                     | 28.4 [MDL=0.21]    | 46.4 [MDL=0.26]    | 27.2 [MDL=0.25]    |
| ZINC                         | 34.7 [MDL=0.09]    | 30.8 [MDL=0.11]    | 40.9 [MDL=0.11]    |
| MISCELLANEOUS PARAMETERS     | •                  |                    |                    |
| PERCENT SOLIDS (%)           |                    |                    |                    |
| TOTAL SOLIDS (%)             | 84 []              | 83 []              | 86 []              |
| HEXAVALENT CHROMIUM (MG/KG)  |                    |                    |                    |
| TOTAL ORGANIC CARBON (MG/KG) |                    |                    |                    |
| PH (S.U.)                    |                    |                    |                    |
| MERCURY (METHYL) (UG/KG)     |                    |                    |                    |
| SEMIVOLATILES (UG/KG)        | <u> </u>           |                    |                    |
| 1,1-BIPHENYL                 |                    |                    |                    |
| 1,2,4-TRICHLOROBENZENE       | 390 U [MDL=52]     | 400 U [MDL=53]     | 380 U [MDL=51]     |
| 1,2-DICHLOROBENZENE          | 390 U [MDL=51]     | 400 U [MDL=52]     | 380 U [MDL=50]     |
| 1,3-DICHLOROBENZENE          | 390 U [MDL=63]     | 400 U [MDL=64]     | 380 U [MDL=62]     |
| 1,4-DICHLOROBENZENE          | 390 U [MDL=30]     | 400 U [MDL=30]     | 380 U [MDL=29]     |
| 1,4-DIOXANE                  | 390 U [MDL=200]    | 400 U [MDL=200]    | 380 U [MDL=190]    |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U [MDL=36]     | 400 U [MDL=37]     | 380 U [MDL=36]     |
| 2,4,5-TRICHLOROPHENOL        | 970 U [MDL=210]    | 990 U [MDL=220]    | 960 U [MDL=210]    |
| 2,4,6-TRICHLOROPHENOL        | 390 U [MDL=140]    | 400 U [MDL=140]    | 380 U [MDL=140]    |
| 2,4-DICHLOROPHENOL           | 390 U [MDL=160]    | 400 U [MDL=160]    | 380 U [MDL=160]    |
| 2,4-DIMETHYLPHENOL           | 390 U [MDL=140]    | 400 U [MDL=140]    | 380 U [MDL=140]    |
| 2,4-DINITROPHENOL            | 970 U [MDL=73]     | 990 U [MDL=74]     | 960 U [MDL=72]     |

| LOCATION                    | SB-298          | SB-298          | SB-299           |
|-----------------------------|-----------------|-----------------|------------------|
| SAMPLE ID                   | SB-298-0405     | SB-298-0910     | SB-299-0405      |
| SAMPLE DATE                 | 11/1/2005       | 11/1/2005       | 11/1/2005        |
| 2,4-DINITROTOLUENE          | 390 U [MDL=120] | 400 U [MDL=120] | 380 U [MDL=110]  |
| 2,6-DINITROTOLUENE          | 390 U [MDL=92]  | 400 U [MDL=93]  | 380 U [MDL=90]   |
| 2-CHLORONAPHTHALENE         | 390 U [MDL=57]  | 400 U [MDL=58]  | 380 U [MDL=56]   |
| 2-CHLOROPHENOL              | 390 U [MDL=110] | 400 U [MDL=110] | 380 U [MDL=100]  |
| 2-METHYLPHENOL              | 390 U [MDL=160] | 400 U [MDL=160] | 380 U [MDL=160]  |
| 2-NITROANILINE              | 970 U [MDL=89]  | 990 U [MDL=91]  | 960 U [MDL=87]   |
| 2-NITROPHENOL               | 390 U [MDL=130] | 400 U [MDL=130] | 380 U [MDL=120]  |
| 3&4-METHYLPHENOL            | 390 U [MDL=180] | 400 U [MDL=180] | 380 U [MDL=170]  |
| 3,3'-DICHLOROBENZIDINE      | 390 U [MDL=160] | 400 U [MDL=160] | 380 UR [MDL=160] |
| 3-NITROANILINE              | 970 U [MDL=85]  | 990 U [MDL=86]  | 960 UR [MDL=83]  |
| 4,6-DINITRO-2-METHYLPHENOL  | 970 U [MDL=240] | 990 U [MDL=250] | 960 U [MDL=240]  |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U [MDL=66]  | 400 U [MDL=67]  | 380 U [MDL=65]   |
| 4-CHLORO-3-METHYLPHENOL     | 390 U [MDL=140] | 400 U [MDL=140] | 380 U [MDL=140]  |
| 4-CHLOROANILINE             | 390 U [MDL=63]  | 400 U [MDL=64]  | 380 UR [MDL=62]  |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U [MDL=60]  | 400 U [MDL=61]  | 380 U [MDL=59]   |
| 4-NITROANILINE              | 970 U [MDL=100] | 990 U [MDL=100] | 960 U [MDL=100]  |
| 4-NITROPHENOL               | 970 U [MDL=180] | 990 U [MDL=190] | 960 U [MDL=180]  |
| ACETOPHENONE                |                 |                 |                  |
| ANILINE                     | 390 U [MDL=200] | 400 U [MDL=200] | 380 UR [MDL=190] |
| ATRAZINE                    |                 |                 |                  |
| AZOBENZENE                  | 390 U [MDL=200] | 400 U [MDL=200] | 380 U [MDL=190]  |
| BENZIDINE                   | 970 U [MDL=490] | 990 U [MDL=500] | 960 UR [MDL=480] |
| BENZOIC ACID                | 970 U [MDL=490] | 990 U [MDL=500] | 960 U [MDL=480]  |
| BENZYL ALCOHOL              | 390 U [MDL=36]  | 400 U [MDL=37]  | 380 UR [MDL=36]  |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U [MDL=62]  | 400 U [MDL=63]  | 380 U [MDL=61]   |
| BIS(2-CHLOROETHYL)ETHER     | 390 U [MDL=39]  | 400 U [MDL=40]  | 380 U [MDL=38]   |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U [MDL=88]  | 400 U [MDL=90]  | 380 U [MDL=87]   |
| BUTYL BENZYL PHTHALATE      | 390 U [MDL=81]  | 400 U [MDL=82]  | 380 U [MDL=79]   |
| CAPROLACTAM                 |                 |                 |                  |
| CARBAZOLE                   | 390 U [MDL=71]  | 400 U [MDL=72]  | 380 U [MDL=70]   |
| DIBENZOFURAN                | 390 U [MDL=74]  | 400 U [MDL=75]  | 380 U [MDL=72]   |
| DIETHYL PHTHALATE           | 390 U [MDL=120] | 400 U [MDL=120] | 380 U [MDL=120]  |
| DIMETHYL PHTHALATE          | 390 U [MDL=74]  | 400 U [MDL=75]  | 380 U [MDL=73]   |
| DI-N-BUTYL PHTHALATE        | 390 U [MDL=100] | 400 U [MDL=100] | 380 U [MDL=98]   |
| DI-N-OCTYL PHTHALATE        | 390 U [MDL=87]  | 400 U [MDL=89]  | 380 U [MDL=86]   |
| HEXACHLOROBENZENE           | 390 U [MDL=280] | 400 U [MDL=280] | 380 U [MDL=270]  |
| HEXACHLOROBUTADIENE         | 390 U [MDL=52]  | 400 U [MDL=53]  | 380 U [MDL=51]   |
| HEXACHLOROCYCLOPENTADIENE   | 390 U [MDL=89]  | 400 U [MDL=91]  | 380 U [MDL=87]   |

| LOCATION                       | SB-298          | SB-298          | SB-299           |
|--------------------------------|-----------------|-----------------|------------------|
| SAMPLE ID                      | SB-298-0405     | SB-298-0910     | SB-299-0405      |
| SAMPLE DATE                    | 11/1/2005       | 11/1/2005       | 11/1/2005        |
| HEXACHLOROETHANE               | 390 U [MDL=72]  | 400 U [MDL=73]  | 380 U [MDL=71]   |
| ISOPHORONE                     | 390 U [MDL=62]  | 400 U [MDL=63]  | 380 U [MDL=61]   |
| NITROBENZENE                   | 390 U [MDL=88]  | 400 U [MDL=90]  | 380 U [MDL=87]   |
| N-NITROSODIMETHYLAMINE         | 390 U [MDL=200] | 400 U [MDL=200] | 380 U [MDL=190]  |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U [MDL=67]  | 400 U [MDL=68]  | 380 U [MDL=66]   |
| N-NITROSODIPHENYLAMINE         | 390 U [MDL=85]  | 400 U [MDL=87]  | 380 UR [MDL=84]  |
| PENTACHLOROPHENOL              | 970 U [MDL=170] | 990 U [MDL=170] | 960 U [MDL=160]  |
| PHENOL                         | 390 U [MDL=110] | 400 U [MDL=110] | 380 U [MDL=110]  |
| PYRIDINE                       | 390 U [MDL=200] | 400 U [MDL=200] | 380 UR [MDL=190] |
| VOLATILES (UG/KG)              | •               |                 | •                |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U [MDL=0.6]   | 6 U [MDL=0.6]   | 6 UJ [MDL=0.6]   |
| 1,1,1-TRICHLOROETHANE          | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 UJ [MDL=2]     |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 UJ [MDL=1]     |
| 1,1,2-TRICHLOROETHANE          |                 |                 |                  |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 UJ [MDL=2]     |
| 1,1-DICHLOROETHANE             | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 UJ [MDL=1]     |
| 1,1-DICHLOROETHENE             | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 UJ [MDL=1]     |
| 1,1-DICHLOROPROPENE            | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 UJ [MDL=2]     |
| 1,2,3-TRICHLOROBENZENE         | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 UJ [MDL=2]     |
| 1,2,3-TRICHLOROPROPANE         | 6 U [MDL=0.9]   | 6 U [MDL=0.9]   | 6 UJ [MDL=0.9]   |
| 1,2,3-TRIMETHYLBENZENE         | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 UJ [MDL=0.4]   |
| 1,2,4-TRICHLOROBENZENE         | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 UJ [MDL=1]     |
| 1,2,4-TRIMETHYLBENZENE         | 6 U [MDL=0.7]   | 6 U [MDL=0.7]   | 6 UJ [MDL=0.6]   |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U [MDL=0.9]   | 6 U [MDL=1]     | 6 UJ [MDL=0.9]   |
| 1,2-DIBROMOETHANE              | 6 U [MDL=0.5]   | 6 U [MDL=0.6]   | 6 UJ [MDL=0.5]   |
| 1,2-DICHLOROBENZENE            | 6 U [MDL=0.3]   | 6 U [MDL=0.4]   | 6 UJ [MDL=0.3]   |
| 1,2-DICHLOROETHANE             | 6 U [MDL=0.7]   | 6 U [MDL=0.7]   | 6 UJ [MDL=0.7]   |
| 1,2-DICHLOROPROPANE            | 6 U [MDL=0.9]   | 6 U [MDL=0.9]   | 6 UJ [MDL=0.8]   |
| 1,3,5-TRIMETHYLBENZENE         |                 |                 |                  |
| 1,3-DICHLOROBENZENE            | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 UJ [MDL=0.4]   |
| 1,3-DICHLOROPROPANE            | 6 U [MDL=0.4]   | 6 U [MDL=0.4]   | 6 UJ [MDL=0.4]   |
| 1,3-DICHLOROPROPENE            |                 |                 |                  |
| 1,4-DICHLOROBENZENE            | 6 U [MDL=0.3]   | 6 U [MDL=0.3]   | 6 UJ [MDL=0.3]   |
| 1,4-DIOXANE                    |                 |                 |                  |
| 2,2-DICHLOROPROPANE            | 6 U [MDL=2]     | 6 U [MDL=2]     | 6 UJ [MDL=2]     |
| 2-BUTANONE                     | 30 UR [MDL=4]   | 30 UR [MDL=4]   | 29 UR [MDL=4]    |
| 2-CHLOROETHYL VINYL ETHER      | 6 U [MDL=1]     | 6 U [MDL=1]     | 6 UJ [MDL=1]     |
| 2-CHLOROTOLUENE                | 6 U [MDL=0.8]   | 6 U [MDL=0.8]   | 6 UJ [MDL=0.8]   |

| LOCATION                | SB-298         | SB-298         | SB-299          |
|-------------------------|----------------|----------------|-----------------|
| SAMPLE ID               | SB-298-0405    | SB-298-0910    | SB-299-0405     |
| SAMPLE DATE             | 11/1/2005      | 11/1/2005      | 11/1/2005       |
| 2-HEXANONE              | 30 U [MDL=5]   | 30 U [MDL=5]   | 29 UJ [MDL=5]   |
| 4-CHLOROTOLUENE         | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| 4-ISOPROPYLTOLUENE      | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| 4-METHYL-2-PENTANONE    | 30 U [MDL=5]   | 30 U [MDL=5]   | 29 UJ [MDL=5]   |
| ACETONE                 | 29 B [MDL=5]   | 16 B [MDL=5]   | 29 UR [MDL=5]   |
| BENZENE                 | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| BROMOBENZENE            | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| BROMOCHLOROMETHANE      | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| BROMODICHLOROMETHANE    | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| BROMOFORM               | 6 U [MDL=0.7]  | 6 U [MDL=0.7]  | 6 UJ [MDL=0.7]  |
| BROMOMETHANE            | 12 U [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| CARBON DISULFIDE        | 6 U [MDL=2]    | 6 U [MDL=2]    | 6 UJ [MDL=2]    |
| CARBON TETRACHLORIDE    | 6 U [MDL=4]    | 6 U [MDL=4]    | 6 UJ [MDL=4]    |
| CHLOROBENZENE           | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| CHLORODIBROMOMETHANE    | 6 U [MDL=0.6]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.6]  |
| CHLOROETHANE            | 12 U [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| CHLOROFORM              | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| CHLOROMETHANE           | 12 U [MDL=1]   | 12 U [MDL=1]   | 12 UJ [MDL=1]   |
| CIS-1,2-DICHLOROETHENE  | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| CIS-1,3-DICHLOROPROPENE | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| DIBROMOMETHANE          | 6 U [MDL=0.5]  | 6 U [MDL=0.6]  | 6 UJ [MDL=0.5]  |
| DICHLORODIFLUOROMETHANE | 12 U [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| DIISOPROPYL ETHER       | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| ETHYL TERT-BUTYL ETHER  | 6 U [MDL=0.3]  | 6 U [MDL=0.3]  | 6 UJ [MDL=0.3]  |
| ETHYLBENZENE            | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 UJ [MDL=0.9]  |
| FLUORODICHLOROMETHANE   |                |                |                 |
| HEXACHLOROBUTADIENE     | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 UJ [MDL=0.9]  |
| ISOPROPYLBENZENE        | 6 U [MDL=0.9]  | 6 U [MDL=0.9]  | 6 UJ [MDL=0.9]  |
| M+P-XYLENES             | 12 U [MDL=2]   | 12 U [MDL=2]   | 12 UJ [MDL=2]   |
| METHYL TERT-BUTYL ETHER | 12 U [MDL=0.8] | 12 U [MDL=0.8] | 12 UJ [MDL=0.8] |
| METHYLENE CHLORIDE      | 6 U [MDL=2]    | 6 U [MDL=2]    | 6 UJ [MDL=2]    |
| NAPHTHALENE             | 6 U [MDL=2]    | 6 U [MDL=2]    | 6 UJ [MDL=2]    |
| N-BUTYLBENZENE          | 6 U [MDL=0.8]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.8]  |
| N-PROPYLBENZENE         | 6 U [MDL=0.8]  | 6 U [MDL=0.9]  | 6 UJ [MDL=0.8]  |
| O-XYLENE                | 6 U [MDL=0.7]  | 6 U [MDL=0.8]  | 6 UJ [MDL=0.7]  |
| SEC-BUTYLBENZENE        | 6 U [MDL=1]    | 6 U [MDL=1]    | 6 UJ [MDL=1]    |
| STYRENE                 | 6 U [MDL=0.4]  | 6 U [MDL=0.4]  | 6 UJ [MDL=0.4]  |
| TERT-AMYL METHYL ETHER  | 6 U [MDL=0.5]  | 6 U [MDL=0.5]  | 6 UJ [MDL=0.4]  |

| SAMPLE ID SAMPLE DATE TERT-BUTYLBENZENE  | SB-298-0405<br>11/1/2005<br>6 U [MDL=0.8] | SB-298-0910<br>11/1/2005 | SB-299-0405        |
|------------------------------------------|-------------------------------------------|--------------------------|--------------------|
|                                          |                                           | 11/1/2005                |                    |
| TERT_RLITYLRENZENE                       | 6 11 [MDI =0.8]                           |                          | 11/1/2005          |
| TENT-BOTTEBLINEINE                       |                                           | 6 U [MDL=0.8]            | 6 UJ [MDL=0.8]     |
| TERTIARY-BUTYL ALCOHOL                   | 12 UJ [MDL=8]                             | 12 UJ [MDL=8]            | 12 UR [MDL=8]      |
| TETRACHLOROETHENE                        | 6 U [MDL=1]                               | 6 U [MDL=1]              | 6 UJ [MDL=1]       |
| TOLUENE                                  | 6 U [MDL=1]                               | 6 U [MDL=1]              | 6 UJ [MDL=1]       |
| TOTAL 1,2-DICHLOROETHENE                 | 12 U [MDL=2]                              | 12 U [MDL=2]             | 12 UJ [MDL=2]      |
| TOTAL XYLENES                            | 18 U [MDL=2]                              | 18 U [MDL=2]             | 17 UJ [MDL=2]      |
| TRANS-1,2-DICHLOROETHENE                 | 6 U [MDL=1]                               | 6 U [MDL=1]              | 6 UJ [MDL=1]       |
| TRANS-1,3-DICHLOROPROPENE                | 6 U [MDL=0.7]                             | 6 U [MDL=0.7]            | 6 UJ [MDL=0.6]     |
| TRICHLOROETHENE                          | 6 U [MDL=0.9]                             | 6 U [MDL=0.9]            | 6 UJ [MDL=0.9]     |
| TRICHLOROFLUOROMETHANE                   | 12 U [MDL=2]                              | 12 U [MDL=2]             | 12 UJ [MDL=2]      |
| VINYL ACETATE                            | 6 U [MDL=0.3]                             | 6 U [MDL=0.3]            | 6 UJ [MDL=0.3]     |
| VINYL CHLORIDE                           | 12 U [MDL=2]                              | 12 U [MDL=2]             | 12 UJ [MDL=2]      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                                           |                          |                    |
| 1-METHYLNAPHTHALENE                      | 390 U [MDL=200]                           | 400 U [MDL=200]          | 380 U [MDL=190]    |
| 2-METHYLNAPHTHALENE                      | 390 U [MDL=67]                            | 400 U [MDL=68]           | 380 U [MDL=66]     |
| ACENAPHTHENE                             | 390 U [MDL=71]                            | 400 U [MDL=72]           | 380 U [MDL=70]     |
| ACENAPHTHYLENE                           | 390 U [MDL=48]                            | 400 U [MDL=49]           | 380 U [MDL=47]     |
| ANTHRACENE                               | 390 U [MDL=69]                            | 400 U [MDL=70]           | 380 U [MDL=68]     |
| BAP EQUIVALENT-HALFND                    | 390 U [MDL=54]                            | 400 U [MDL=55]           | 380 U [MDL=53]     |
| BAP EQUIVALENT-POS                       | 390 U [MDL=54]                            | 400 U [MDL=55]           | 380 U [MDL=53]     |
| BAP EQUIVALENT-UCL                       | 50.760342 [MDL=54]                        | 40.472406 [MDL=55]       | 32.894335 [MDL=53] |
| BENZO(A)ANTHRACENE                       | 390 U [MDL=70]                            | 400 U [MDL=71]           | 380 U [MDL=69]     |
| BENZO(A)PYRENE                           | 390 U [MDL=54]                            | 400 U [MDL=55]           | 380 U [MDL=53]     |
| BENZO(B)FLUORANTHENE                     | 390 U [MDL=76]                            | 400 U [MDL=77]           | 380 U [MDL=75]     |
| BENZO(G,H,I)PERYLENE                     | 390 U [MDL=150]                           | 400 U [MDL=160]          | 380 U [MDL=150]    |
| BENZO(K)FLUORANTHENE                     | 390 U [MDL=70]                            | 400 U [MDL=71]           | 380 U [MDL=68]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                                           |                          |                    |
| C1-FLUORANTHENES/PYRENES                 |                                           |                          |                    |
| C1-FLUORENES                             |                                           |                          |                    |
| C1-PHENANTHRENES/ANTHRACENES             |                                           |                          |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                                           |                          |                    |
| C2-FLUORENES                             |                                           |                          |                    |
| C2-NAPHTHALENES                          |                                           |                          |                    |
| C2-PHENANTHRENES/ANTHRACENES             |                                           |                          |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                                           |                          |                    |
| C3-FLUORENES                             |                                           |                          |                    |
| C3-NAPHTHALENES                          |                                           |                          |                    |
| C3-PHENANTHRENES/ANTHRACENES             |                                           |                          |                    |

HEPTACHLOR

| LOGITION                         | 00.000          | D 000           | 00.000          |
|----------------------------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-298          | SB-298          | SB-299          |
| SAMPLE ID                        | SB-298-0405     | SB-298-0910     | SB-299-0405     |
| SAMPLE DATE                      | 11/1/2005       | 11/1/2005       | 11/1/2005       |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |
| CHRYSENE                         | 390 U [MDL=78]  | 400 U [MDL=79]  | 380 U [MDL=76]  |
| DIBENZO(A,H)ANTHRACENE           | 390 U [MDL=170] | 400 U [MDL=170] | 380 U [MDL=160] |
| FLUORANTHENE                     | 390 U [MDL=84]  | 400 U [MDL=86]  | 380 U [MDL=83]  |
| FLUORENE                         | 390 U [MDL=62]  | 400 U [MDL=64]  | 380 U [MDL=61]  |
| INDENO(1,2,3-CD)PYRENE           | 390 U [MDL=160] | 400 U [MDL=160] | 380 U [MDL=160] |
| NAPHTHALENE                      | 390 U [MDL=76]  | 400 U [MDL=77]  | 380 U [MDL=74]  |
| PHENANTHRENE                     | 390 U [MDL=68]  | 400 U [MDL=70]  | 380 U [MDL=67]  |
| PYRENE                           | 390 U [MDL=85]  | 400 U [MDL=87]  | 380 U [MDL=84]  |
| TOTAL PAHS                       | 0 U [MDL=54]    | 0 U [MDL=55]    | 0 U [MDL=53]    |
| PESTICIDES/PCBS (UG/KG)          |                 |                 | -               |
| 4,4'-DDD                         |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |
| AROCLOR-1016                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1221                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1232                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1242                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1248                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1254                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| AROCLOR-1260                     | 20 U [MDL=20]   | 20 U [MDL=20]   | 20 U [MDL=20]   |
| BETA-BHC                         |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |
| ONIVINA OF LONDAINE              |                 | ==              | ==              |

February 2013 Page A-447

--

--

--

| LOCATION           | SB-298       | SB-298       | SB-299       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | SB-298-0405  | SB-298-0910  | SB-299-0405  |
| SAMPLE DATE        | 11/1/2005    | 11/1/2005    | 11/1/2005    |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=20] | 0 U [MDL=20] | 0 U [MDL=20] |
| TOTAL DDT POS      |              |              |              |
| TOXAPHENE          | -            |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |                  |                  |                  |
|-------------------------|------------------|------------------|------------------|
| GASOLINE RANGE ORGANICS | 2800 U [MDL=2.3] | 2900 U [MDL=2.4] | 2700 U [MDL=2.3] |
| TPH (C09-C36)           | 3600 B [MDL=2.1] | 2800 B [MDL=2.1] | 2900 B [MDL=2]   |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| LOCATION                     | SB-299             | SB-382        | SB-382        |
|------------------------------|--------------------|---------------|---------------|
| SAMPLE ID                    | SB-299-0910        | SB-382-0102   | SB-382-0203   |
| SAMPLE DATE                  | 11/1/2005          | 10/15/2007    | 10/15/2007    |
| METALS (MG/KG)               | ·                  |               |               |
| ANTIMONY                     | 0.84 UL [MDL=0.84] |               |               |
| ARSENIC                      | 2.2 K [MDL=0.71]   |               |               |
| BARIUM                       | 42.2 [MDL=0.06]    |               |               |
| BERYLLIUM                    | 2.6 [MDL=0.04]     |               |               |
| CADMIUM                      | 0.08 U [MDL=0.08]  |               |               |
| CHROMIUM                     | 16.0 K [MDL=0.1]   |               |               |
| COBALT                       | 9.3 [MDL=0.11]     |               |               |
| COPPER                       | 11.2 [MDL=0.36]    |               |               |
| LEAD                         | 11.2 [MDL=0.34]    |               |               |
| MERCURY                      | 0.01 B [MDL=0.01]  |               |               |
| MOLYBDENUM                   | 0.20 U [MDL=0.2]   |               |               |
| NICKEL                       | 18.1 [MDL=0.16]    |               |               |
| SELENIUM                     | 0.73 UL [MDL=0.73] |               |               |
| SILVER                       | 0.11 U [MDL=0.11]  |               |               |
| THALLIUM                     | 2.0 B [MDL=1.25]   |               |               |
| VANADIUM                     | 20.7 [MDL=0.28]    |               |               |
| ZINC                         | 42.7 [MDL=0.12]    |               |               |
| MISCELLANEOUS PARAMETERS     | ·                  |               |               |
| PERCENT SOLIDS (%)           |                    | 85.6 [MDL=10] | 76.2 [MDL=10] |
| TOTAL SOLIDS (%)             | 85 []              |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |                    |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |                    |               |               |
| PH (S.U.)                    |                    |               |               |
| MERCURY (METHYL) (UG/KG)     |                    |               |               |
| SEMIVOLATILES (UG/KG)        | ·                  |               |               |
| 1,1-BIPHENYL                 |                    |               |               |
| 1,2,4-TRICHLOROBENZENE       | 390 U [MDL=51]     |               |               |
| 1,2-DICHLOROBENZENE          | 390 U [MDL=50]     |               |               |
| 1,3-DICHLOROBENZENE          | 390 U [MDL=62]     |               |               |
| 1,4-DICHLOROBENZENE          | 390 U [MDL=30]     |               |               |
| 1,4-DIOXANE                  | 390 U [MDL=190]    |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 390 U [MDL=36]     |               |               |
| 2,4,5-TRICHLOROPHENOL        | 960 U [MDL=210]    |               |               |
| 2,4,6-TRICHLOROPHENOL        | 390 U [MDL=140]    |               |               |
| 2,4-DICHLOROPHENOL           | 390 U [MDL=160]    |               |               |
| 2,4-DIMETHYLPHENOL           | 390 U [MDL=140]    |               |               |
| 2,4-DINITROPHENOL            | 960 U [MDL=72]     |               |               |
|                              |                    |               |               |

| LOCATION                    | SB-299           | SB-382      | SB-382      |
|-----------------------------|------------------|-------------|-------------|
| SAMPLE ID                   | SB-299-0910      | SB-382-0102 | SB-382-0203 |
| SAMPLE DATE                 | 11/1/2005        | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          | 390 U [MDL=110]  |             |             |
| 2,6-DINITROTOLUENE          | 390 U [MDL=91]   |             |             |
| 2-CHLORONAPHTHALENE         | 390 U [MDL=57]   |             |             |
| 2-CHLOROPHENOL              | 390 U [MDL=100]  |             |             |
| 2-METHYLPHENOL              | 390 U [MDL=160]  |             |             |
| 2-NITROANILINE              | 960 U [MDL=88]   |             |             |
| 2-NITROPHENOL               | 390 U [MDL=120]  |             |             |
| 3&4-METHYLPHENOL            | 390 U [MDL=180]  |             |             |
| 3,3'-DICHLOROBENZIDINE      | 390 U [MDL=160]  |             |             |
| 3-NITROANILINE              | 960 U [MDL=84]   |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  | 960 U [MDL=240]  |             |             |
| 4-BROMOPHENYL PHENYL ETHER  | 390 U [MDL=65]   |             |             |
| 4-CHLORO-3-METHYLPHENOL     | 390 U [MDL=140]  |             |             |
| 4-CHLOROANILINE             | 390 U [MDL=63]   |             |             |
| 4-CHLOROPHENYL PHENYL ETHER | 390 U [MDL=59]   |             |             |
| 4-NITROANILINE              | 960 U [MDL=100]  |             |             |
| 4-NITROPHENOL               | 960 U [MDL=180]  |             |             |
| ACETOPHENONE                |                  |             |             |
| ANILINE                     | 390 U [MDL=190]  |             |             |
| ATRAZINE                    |                  |             |             |
| AZOBENZENE                  | 390 U [MDL=190]  |             |             |
| BENZIDINE                   | 960 U [MDL=480]  |             |             |
| BENZOIC ACID                | 960 UJ [MDL=480] |             |             |
| BENZYL ALCOHOL              | 390 U [MDL=36]   |             |             |
| BIS(2-CHLOROETHOXY)METHANE  | 390 U [MDL=62]   |             |             |
| BIS(2-CHLOROETHYL)ETHER     | 390 U [MDL=39]   |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  | 390 U [MDL=87]   |             |             |
| BUTYL BENZYL PHTHALATE      | 390 U [MDL=80]   |             |             |
| CAPROLACTAM                 |                  |             |             |
| CARBAZOLE                   | 390 U [MDL=70]   |             |             |
| DIBENZOFURAN                | 390 U [MDL=73]   |             |             |
| DIETHYL PHTHALATE           | 390 U [MDL=120]  |             |             |
| DIMETHYL PHTHALATE          | 390 U [MDL=73]   |             |             |
| DI-N-BUTYL PHTHALATE        | 390 U [MDL=99]   |             |             |
| DI-N-OCTYL PHTHALATE        | 390 U [MDL=87]   |             |             |
| HEXACHLOROBENZENE           | 390 U [MDL=270]  |             |             |
| HEXACHLOROBUTADIENE         | 390 U [MDL=51]   |             |             |
| HEXACHLOROCYCLOPENTADIENE   | 390 UJ [MDL=88]  |             |             |

| LOCATION                       | SB-299          | SB-382      | SB-382      |
|--------------------------------|-----------------|-------------|-------------|
| SAMPLE ID                      | SB-299-0910     | SB-382-0102 | SB-382-0203 |
| SAMPLE DATE                    | 11/1/2005       | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               | 390 U [MDL=71]  |             |             |
| ISOPHORONE                     | 390 U [MDL=61]  |             |             |
| NITROBENZENE                   | 390 U [MDL=87]  |             |             |
| N-NITROSODIMETHYLAMINE         | 390 U [MDL=190] |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     | 390 U [MDL=66]  |             |             |
| N-NITROSODIPHENYLAMINE         | 390 U [MDL=85]  |             |             |
| PENTACHLOROPHENOL              | 960 U [MDL=160] |             |             |
| PHENOL                         | 390 U [MDL=110] |             |             |
| PYRIDINE                       | 390 U [MDL=190] |             |             |
| VOLATILES (UG/KG)              |                 |             |             |
| 1,1,1,2-TETRACHLOROETHANE      | 6 U [MDL=0.6]   |             |             |
| 1,1,1-TRICHLOROETHANE          | 6 U [MDL=2]     |             |             |
| 1,1,2,2-TETRACHLOROETHANE      | 6 U [MDL=1]     |             |             |
| 1,1,2-TRICHLOROETHANE          |                 |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 6 U [MDL=2]     |             |             |
| 1,1-DICHLOROETHANE             | 6 U [MDL=1]     |             |             |
| 1,1-DICHLOROETHENE             | 6 U [MDL=1]     |             |             |
| 1,1-DICHLOROPROPENE            | 6 U [MDL=2]     |             |             |
| 1,2,3-TRICHLOROBENZENE         | 6 U [MDL=2]     |             |             |
| 1,2,3-TRICHLOROPROPANE         | 6 U [MDL=0.9]   |             |             |
| 1,2,3-TRIMETHYLBENZENE         | 6 U [MDL=0.4]   |             |             |
| 1,2,4-TRICHLOROBENZENE         | 6 U [MDL=1]     |             |             |
| 1,2,4-TRIMETHYLBENZENE         | 6 U [MDL=0.6]   |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 6 U [MDL=0.9]   |             |             |
| 1,2-DIBROMOETHANE              | 6 U [MDL=0.5]   |             |             |
| 1,2-DICHLOROBENZENE            | 6 U [MDL=0.3]   |             |             |
| 1,2-DICHLOROETHANE             | 6 U [MDL=0.7]   |             |             |
| 1,2-DICHLOROPROPANE            | 6 U [MDL=0.8]   |             |             |
| 1,3,5-TRIMETHYLBENZENE         |                 |             |             |
| 1,3-DICHLOROBENZENE            | 6 U [MDL=0.4]   |             |             |
| 1,3-DICHLOROPROPANE            | 6 U [MDL=0.4]   |             |             |
| 1,3-DICHLOROPROPENE            |                 |             |             |
| 1,4-DICHLOROBENZENE            | 6 U [MDL=0.3]   |             |             |
| 1,4-DIOXANE                    |                 |             |             |
| 2,2-DICHLOROPROPANE            | 6 U [MDL=2]     |             |             |
| 2-BUTANONE                     | 29 UR [MDL=4]   |             |             |
| 2-CHLOROETHYL VINYL ETHER      | 6 U [MDL=1]     |             |             |
| 2-CHLOROTOLUENE                | 6 U [MDL=0.8]   |             |             |

February 2013 Page A-451

| LOCATION                | SB-299         | SB-382      | SB-382      |
|-------------------------|----------------|-------------|-------------|
| SAMPLE ID               | SB-299-0910    | SB-382-0102 | SB-382-0203 |
| SAMPLE DATE             | 11/1/2005      | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              | 29 U [MDL=5]   |             |             |
| 4-CHLOROTOLUENE         | 6 U [MDL=0.6]  |             |             |
| 4-ISOPROPYLTOLUENE      | 6 U [MDL=0.8]  |             |             |
| 4-METHYL-2-PENTANONE    | 29 U [MDL=5]   |             |             |
| ACETONE                 | 16 B [MDL=5]   |             |             |
| BENZENE                 | 6 U [MDL=1]    |             |             |
| BROMOBENZENE            | 6 U [MDL=1]    |             |             |
| BROMOCHLOROMETHANE      | 6 U [MDL=1]    |             |             |
| BROMODICHLOROMETHANE    | 6 U [MDL=0.6]  |             |             |
| BROMOFORM               | 6 U [MDL=0.7]  |             |             |
| BROMOMETHANE            | 12 U [MDL=2]   |             |             |
| CARBON DISULFIDE        | 6 U [MDL=2]    |             |             |
| CARBON TETRACHLORIDE    | 6 U [MDL=4]    |             |             |
| CHLOROBENZENE           | 6 U [MDL=0.8]  |             |             |
| CHLORODIBROMOMETHANE    | 6 U [MDL=0.6]  |             |             |
| CHLOROETHANE            | 12 U [MDL=2]   |             |             |
| CHLOROFORM              | 6 U [MDL=1]    |             |             |
| CHLOROMETHANE           | 12 UJ [MDL=1]  |             |             |
| CIS-1,2-DICHLOROETHENE  | 6 U [MDL=0.8]  |             |             |
| CIS-1,3-DICHLOROPROPENE | 6 U [MDL=0.4]  |             |             |
| DIBROMOMETHANE          | 6 U [MDL=0.5]  |             |             |
| DICHLORODIFLUOROMETHANE | 12 U [MDL=2]   |             |             |
| DIISOPROPYL ETHER       | 6 U [MDL=0.4]  |             |             |
| ETHYL TERT-BUTYL ETHER  | 6 U [MDL=0.3]  |             |             |
| ETHYLBENZENE            | 6 U [MDL=0.9]  |             |             |
| FLUORODICHLOROMETHANE   |                |             |             |
| HEXACHLOROBUTADIENE     | 6 U [MDL=0.9]  |             |             |
| ISOPROPYLBENZENE        | 6 U [MDL=0.9]  |             |             |
| M+P-XYLENES             | 12 U [MDL=2]   |             |             |
| METHYL TERT-BUTYL ETHER | 12 U [MDL=0.8] |             |             |
| METHYLENE CHLORIDE      | 7 B [MDL=2]    |             |             |
| NAPHTHALENE             | 6 U [MDL=2]    |             |             |
| N-BUTYLBENZENE          | 6 U [MDL=0.8]  |             |             |
| N-PROPYLBENZENE         | 6 U [MDL=0.8]  |             |             |
| O-XYLENE                | 6 U [MDL=0.7]  |             |             |
| SEC-BUTYLBENZENE        | 6 U [MDL=1]    |             |             |
| STYRENE                 | 6 U [MDL=0.4]  |             |             |
| TERT-AMYL METHYL ETHER  | 6 U [MDL=0.4]  |             |             |

| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOCATION                                 | SB-299             | SB-382             | SB-382             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|--------------------|--------------------|
| TERTER/TABENENE   6   U MDL-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE ID                                | SB-299-0910        | SB-382-0102        | SB-382-0203        |
| TERTRAPHUNE ALCOHOL   12 U MIDL-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE DATE                              | 11/1/2005          | 10/15/2007         | 10/15/2007         |
| TETRACHICROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERT-BUTYLBENZENE                        | 6 U [MDL=0.8]      |                    |                    |
| TOLURNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TERTIARY-BUTYL ALCOHOL                   | 12 UR [MDL=8]      |                    |                    |
| TOTAL 12-DICHLOROETHENE   12 U   MDL-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TETRACHLOROETHENE                        | 6 U [MDL=1]        |                    |                    |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOLUENE                                  | 6 U [MDL=1]        |                    |                    |
| TRANS-12-DICHLOROPTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL 1,2-DICHLOROETHENE                 | 12 U [MDL=2]       |                    |                    |
| TRANS-1.3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL XYLENES                            | 18 U [MDL=2]       |                    |                    |
| TRICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRANS-1,2-DICHLOROETHENE                 | 6 U [MDL=1]        |                    |                    |
| TRICHLOROFLUGROMETHANE  12 U [MDL=2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRANS-1,3-DICHLOROPROPENE                | 6 U [MDL=0.6]      |                    |                    |
| MINYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRICHLOROETHENE                          | 6 U [MDL=0.9]      |                    |                    |
| VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRICHLOROFLUOROMETHANE                   | 12 U [MDL=2]       |                    |                    |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)  1-METHYLNAPHTHALENE 390 U [MDL=190]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VINYL ACETATE                            | 6 U [MDL=0.3]      |                    |                    |
| 1-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VINYL CHLORIDE                           | 12 U [MDL=2]       |                    |                    |
| 2-METHYLNAPHTHALENE   390 U [MDL=67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                  |                    |                    |
| ACENAPHTHENE ACENAPHTHYLENE 390 U [MDL=70]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-METHYLNAPHTHALENE                      | 390 U [MDL=190]    |                    |                    |
| ACENAPHTHYLENE  ADTHRACENE  390 U [MDL=68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-METHYLNAPHTHALENE                      | 390 U [MDL=67]     |                    |                    |
| ANTHRACENE  APP EQUIVALENT-HALFND  BAP EQUIVALENT-HALFND  BAP EQUIVALENT-POS  BAP EQUIVALENT-POS  BAP EQUIVALENT-UCL  BAP EQUIVALENT-UCL  BENZO(A)ANTHRACENE  BENZO(A)ANTHRACENE  BENZO(B)FLUORANTHENE  BENZO(B)FLUORANTHENES/PYRENES  C1-FLUORANTHENES/PYRENES  C1-FLUORANTHENES/PYRENES  C1-FLUORENES  C1-FL | ACENAPHTHENE                             | 390 U [MDL=70]     |                    |                    |
| BAP EQUIVALENT-HALFND   390 U [MDL=53]   1.5 U [MDL=1.5]   1.7 U [MDL=1.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACENAPHTHYLENE                           | 390 U [MDL=47]     |                    |                    |
| BAP EQUIVALENT-POS   390 U [MDL=53]   1.5 U [MDL=1.5]   1.7 U [MDL=1.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANTHRACENE                               | 390 U [MDL=68]     |                    |                    |
| SA SA SA SE E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BAP EQUIVALENT-HALFND                    | 390 U [MDL=53]     | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    |
| BENZO(A)ANTHRACENE   390 U [MDL=69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BAP EQUIVALENT-POS                       | 390 U [MDL=53]     | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    |
| BENZO(A)PYRENE   390 U [MDL=53]   1.5 U [MDL=1.5]   1.7 U [MDL=1.7]   1.8 BENZO(B)FLUORANTHENE   390 U [MDL=75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAP EQUIVALENT-UCL                       | 54.343864 [MDL=53] | 0.086021 [MDL=1.5] | 0.298749 [MDL=1.7] |
| BENZO(B)FLUORANTHENE   390 U [MDL=75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BENZO(A)ANTHRACENE                       | 390 U [MDL=69]     |                    |                    |
| SENZO(G,H,I)PERYLENE   390 U [MDL=150]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BENZO(A)PYRENE                           | 390 U [MDL=53]     | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    |
| SENZO(K)FLUORANTHENE   390 U [MDL=69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BENZO(B)FLUORANTHENE                     | 390 U [MDL=75]     |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BENZO(G,H,I)PERYLENE                     | 390 U [MDL=150]    |                    |                    |
| C1-FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENZO(K)FLUORANTHENE                     | 390 U [MDL=69]     |                    |                    |
| C1-FLUORENES C1-PHENANTHRENES/ANTHRACENES C2-CHRYSENES/BENZO(A)ANTHRACENES C2-FLUORENES C2-FLUORENES C2-NAPHTHALENES C2-PHENANTHRENES/ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-FLUORENES C3-FLUORENES C3-NAPHTHALENES | C1-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES C2-CHRYSENES/BENZO(A)ANTHRACENES C2-FLUORENES C2-PHENANTHRENES C2-PHENANTHRENES C3-CPHENANTHRENES/ANTHRACENES C3-CPHENANTHRENES/ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES/BENZO(A)ANTHRACENES C3-CHRYSENES C3-CHRYSEN | C1-FLUORANTHENES/PYRENES                 |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES            C2-FLUORENES            C2-NAPHTHALENES            C2-PHENANTHRENES/ANTHRACENES            C3-CHRYSENES/BENZO(A)ANTHRACENES            C3-FLUORENES             C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1-FLUORENES                             |                    |                    |                    |
| C2-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |
| C2-NAPHTHALENES              C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES              C3-CHRYSENES/BENZO(A)ANTHRACENES              C3-FLUORENES               C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2-FLUORENES                             |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES               C3-FLUORENES                C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-NAPHTHALENES                          |                    |                    |                    |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-FLUORENES                             |                    |                    |                    |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-NAPHTHALENES                          |                    |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3-PHENANTHRENES/ANTHRACENES             |                    |                    |                    |

HEPTACHLOR

| OOIL                             |                 |               |               |
|----------------------------------|-----------------|---------------|---------------|
| LOCATION                         | SB-299          | SB-382        | SB-382        |
| SAMPLE ID                        | SB-299-0910     | SB-382-0102   | SB-382-0203   |
| SAMPLE DATE                      | 11/1/2005       | 10/15/2007    | 10/15/2007    |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |               |               |
| C4-NAPHTHALENES                  |                 |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |                 |               |               |
| CHRYSENE                         | 390 U [MDL=77]  |               |               |
| DIBENZO(A,H)ANTHRACENE           | 390 U [MDL=160] |               |               |
| FLUORANTHENE                     | 390 U [MDL=83]  |               |               |
| FLUORENE                         | 390 U [MDL=62]  |               |               |
| INDENO(1,2,3-CD)PYRENE           | 390 U [MDL=160] |               |               |
| NAPHTHALENE                      | 390 U [MDL=75]  |               |               |
| PHENANTHRENE                     | 390 U [MDL=68]  |               |               |
| PYRENE                           | 390 U [MDL=85]  |               |               |
| TOTAL PAHS                       | 0 U [MDL=53]    | 0 U [MDL=1.5] | 0 U [MDL=1.7] |
| PESTICIDES/PCBS (UG/KG)          |                 | -             |               |
| 4,4'-DDD                         |                 |               |               |
| 4,4'-DDE                         |                 |               |               |
| 4,4'-DDT                         |                 |               |               |
| ALDRIN                           |                 |               |               |
| ALPHA-BHC                        |                 |               |               |
| ALPHA-CHLORDANE                  |                 |               |               |
| AROCLOR-1016                     | 20 U [MDL=20]   | 39 U [MDL=13] | 43 U [MDL=14] |
| AROCLOR-1221                     | 20 U [MDL=20]   | 39 U [MDL=15] | 43 U [MDL=17] |
| AROCLOR-1232                     | 20 U [MDL=20]   | 39 U [MDL=14] | 43 U [MDL=16] |
| AROCLOR-1242                     | 20 U [MDL=20]   | 39 U [MDL=16] | 43 U [MDL=18] |
| AROCLOR-1248                     | 20 U [MDL=20]   | 39 U [MDL=18] | 43 U [MDL=20] |
| AROCLOR-1254                     | 20 U [MDL=20]   | 39 U [MDL=10] | 43 U [MDL=12] |
| AROCLOR-1260                     | 20 U [MDL=20]   | 39 U [MDL=11] | 43 U [MDL=13] |
| BETA-BHC                         |                 |               |               |
| DELTA-BHC                        |                 |               |               |
| DIELDRIN                         |                 |               |               |
| ENDOSULFAN I                     |                 |               |               |
| ENDOSULFAN II                    |                 |               |               |
| ENDOSULFAN SULFATE               |                 |               |               |
| ENDRIN                           |                 |               |               |
| ENDRIN ALDEHYDE                  |                 |               |               |
| ENDRIN KETONE                    |                 |               |               |
| GAMMA-BHC (LINDANE)              |                 |               |               |
| GAMMA-CHLORDANE                  |                 | <del></del>   |               |
|                                  |                 |               |               |

February 2013 Page A-454

--

--

--

| LOCATION           | SB-299       | SB-382       | SB-382       |
|--------------------|--------------|--------------|--------------|
| SAMPLE ID          | SB-299-0910  | SB-382-0102  | SB-382-0203  |
| SAMPLE DATE        | 11/1/2005    | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR EPOXIDE |              |              |              |
| METHOXYCHLOR       |              |              |              |
| TOTAL AROCLOR      | 0 U [MDL=20] | 0 U [MDL=13] | 0 U [MDL=14] |
| TOTAL DDT POS      | 1            |              |              |
| TOXAPHENE          |              |              |              |

PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |                  | <br> |
|-------------------------|------------------|------|
| GASOLINE RANGE ORGANICS | 2800 U [MDL=2.3] | <br> |
| TPH (C09-C36)           | 2900 B [MDL=2]   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |               |               |             |
|------------------------------|---------------|---------------|-------------|
| LOCATION                     | SB-382        | SB-382        | SB-383      |
| SAMPLE ID                    | SB-382-0405   | SB-382-0708   | SB-383-0102 |
| SAMPLE DATE                  | 10/15/2007    | 10/15/2007    | 10/15/2007  |
| METALS (MG/KG)               |               |               |             |
| ANTIMONY                     |               |               |             |
| ARSENIC                      |               |               |             |
| BARIUM                       |               |               |             |
| BERYLLIUM                    |               |               |             |
| CADMIUM                      |               |               |             |
| CHROMIUM                     |               |               |             |
| COBALT                       |               |               |             |
| COPPER                       |               |               |             |
| LEAD                         |               |               |             |
| MERCURY                      |               |               |             |
| MOLYBDENUM                   |               |               |             |
| NICKEL                       |               |               |             |
| SELENIUM                     |               |               |             |
| SILVER                       |               |               |             |
| THALLIUM                     |               |               |             |
| VANADIUM                     |               |               |             |
| ZINC                         |               |               |             |
| MISCELLANEOUS PARAMETERS     |               |               |             |
| PERCENT SOLIDS (%)           | 80.4 [MDL=10] | 79.2 [MDL=10] | 88 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |             |
| PH (S.U.)                    |               |               |             |
| MERCURY (METHYL) (UG/KG)     |               |               |             |
| SEMIVOLATILES (UG/KG)        |               |               |             |
| 1,1-BIPHENYL                 |               |               |             |
| 1,2,4-TRICHLOROBENZENE       |               |               |             |
| 1,2-DICHLOROBENZENE          |               |               |             |
| 1,3-DICHLOROBENZENE          |               |               |             |
| 1,4-DICHLOROBENZENE          |               |               |             |
| 1,4-DIOXANE                  |               |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |             |
| 2,4,5-TRICHLOROPHENOL        |               |               |             |
| 2,4,6-TRICHLOROPHENOL        |               |               |             |
| 2,4-DICHLOROPHENOL           |               | 1             |             |
| 2,4-DIMETHYLPHENOL           |               |               |             |
| 2,4-DINITROPHENOL            |               |               |             |
|                              |               |               |             |

| LOCATION                    | SB-382      | SB-382      | SB-383      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-382-0405 | SB-382-0708 | SB-383-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |

| LOCATION                       | SB-382      | SB-382      | SB-383      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-382-0405 | SB-382-0708 | SB-383-0102 |
| SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               |             |             |             |
| ISOPHORONE                     |             |             |             |
| NITROBENZENE                   |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |
| ·                              | -           |             |             |

February 2013 Page A-458

| 4-METHYL2-PENTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION                | SB-382      | SB-382      | SB-383      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------|-------------|
| 24ESANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE ID               | SB-382-0405 | SB-382-0708 | SB-383-0102 |
| 4-CHLOROPITUENE 4-CHLOROPITUEN | SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-HEXANONE              |             |             |             |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-CHLOROTOLUENE         |             |             |             |
| AGETONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-ISOPROPYLTOLUENE      |             |             |             |
| BENZENE BROMODENZENE BROMODENZE | 4-METHYL-2-PENTANONE    |             |             |             |
| BROMOCHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACETONE                 |             |             |             |
| BROMOCHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BENZENE                 |             |             |             |
| BROMOFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BROMOBENZENE            |             |             |             |
| BROMOFORM         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BROMOCHLOROMETHANE      |             |             |             |
| BROMOMETHANE         -         -         -           CARBON DISULFIDE         -         -         -           CARBON TETRACHLORIDE         -         -         -           CHLOROBENZENE         -         -         -           CHLORODIBROMOMETHANE         -         -         -           CHLOROFORM         -         -         -           CHLOROFORM         -         -         -           CHLOROFETHANE         -         -         -           CHLOROFITAME         -         -         -           CHLOROFITAME         -         -         -           CHLOROFITAME         -         -         -           CHLOROFITAME         -         -         -           CIS-12-DICHLOROFRENE         -         -         -           DISCHOROFRENE         -         -         -           DICHLOROFITAME         -         -         -           DICHLOROFITAME         -         -         -           DICHLOROFITAME         -         -         -           ETHYL TERT-BUTYL ETHER         -         -         -           ETHYLEBREZENE         -         -         - </td <td>BROMODICHLOROMETHANE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BROMODICHLOROMETHANE    |             |             |             |
| CARBON DISULFIDE         -         -         -           CARBON TETRACHORIDE         -         -         -           CHLOROBENZENE         -         -         -           CHLORODIBROMOMETHANE         -         -         -           CHLOROFORM         -         -         -           CHLOROFORM         -         -         -           CHLOROFITHANE         -         -         -           CHLOROFORM         -         -         -           CHLOROFORM         -         -         -           CHLOROFITHANE         -         -         -           CIS-1,2-DICHLOROFOREPRE         -         -         -           DIBROMOMETHANE         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BROMOFORM               |             |             |             |
| CARBON TETRACHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BROMOMETHANE            |             |             |             |
| CHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CARBON DISULFIDE        |             |             |             |
| CHLORODIBROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CARBON TETRACHLORIDE    |             |             |             |
| CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROMETHANE CIS-1,3- | CHLOROBENZENE           |             |             |             |
| CHLOROFORM CHLOROMETHANE CHLOROMETHANE CIS-1,2-DICHLOROPETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE CIS-1,3-DICHLOROPETHANE CIS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROMETHANE  | CHLORODIBROMOMETHANE    |             |             |             |
| CHLOROMETHANE CIS-1,2-DICHLOROFTHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLOROPROPENE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DISSORROPYL ETHER DISSOR | CHLOROETHANE            |             |             |             |
| CIS-1,2-DICHLOROETHENE              CIS-1,3-DICHLOROPROPENE              DIBROMOMETHANE              DICHLORODIFLUOROMETHANE              DIISOPROPYL ETHER              ETHYL TERT-BUTYL ETHER              ETHYLBENZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              MP-PXYLENES              METHYL TERT-BUTYL ETHER              NAPHTHALENE              N-PROPYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHLOROFORM              |             |             |             |
| CIS-1,3-DICHLOROPROPENE DIBORMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DISOPROPYL ETHER DISOPROPYL ETHER THYL TERT-BUTYL ETHER THYL THYL TERT-BUTYL ETHER THYL TERT-BUTYL ETHER THYL THYL THYL THYL THYL THYL THYL THYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHLOROMETHANE           |             |             |             |
| DIBROMOMETHANE              DICHLORODIFLUOROMETHANE              DISOPROPYL ETHER              ETHYL TERT-BUTYL ETHER              ETHYLEBRZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              N-BUTYL TERT-BUTYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CIS-1,2-DICHLOROETHENE  |             |             |             |
| DICHLORODIFLUOROMETHANE              DIISOPROPYL ETHER              ETHYL TERT-BUTYL ETHER              ETHYLBENZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIS-1,3-DICHLOROPROPENE |             |             |             |
| DIISOPROPYL ETHER              ETHYL TERT-BUTYL ETHER              ETHYLBENZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              N-PROPYLBENZENE              N-PROPYLBENZENE              N-PROPYLBENZENE              N-PROPYLBENZENE              SEC-BUTYLBENZENE              SEC-BUTYLBENZENE <tr< td=""><td>DIBROMOMETHANE</td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIBROMOMETHANE          |             |             |             |
| ETHYL TERT-BUTYL ETHER              ETHYLBENZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DICHLORODIFLUOROMETHANE |             |             |             |
| ETHYLBENZENE              FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              N-BUTYLBENZENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DIISOPROPYL ETHER       |             |             |             |
| FLUORODICHLOROMETHANE              HEXACHLOROBUTADIENE              ISOPROPYLBENZENE              M+P-XYLENES              METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETHYL TERT-BUTYL ETHER  |             |             |             |
| HEXACHLOROBUTADIENE ISOPROPYLBENZENE M+P-XYLENES METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE NAPHTHALENE N-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE N-ROPYLBENZENE SEC-BUTYLBENZENE SEC-BUTYLBENZENE STYRENE SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ETHYLBENZENE            |             |             |             |
| SOPROPYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLUORODICHLOROMETHANE   |             |             |             |
| M+P-XYLENES            METHYL TERT-BUTYL ETHER            METHYLENE CHLORIDE            NAPHTHALENE            N-BUTYLBENZENE            N-PROPYLBENZENE            O-XYLENE            SEC-BUTYLBENZENE            STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEXACHLOROBUTADIENE     |             |             |             |
| METHYL TERT-BUTYL ETHER              METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISOPROPYLBENZENE        |             |             |             |
| METHYLENE CHLORIDE              NAPHTHALENE              N-BUTYLBENZENE              N-PROPYLBENZENE              O-XYLENE              SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M+P-XYLENES             |             |             |             |
| NAPHTHALENE            N-BUTYLBENZENE            N-PROPYLBENZENE            0-XYLENE            SEC-BUTYLBENZENE            STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | METHYL TERT-BUTYL ETHER |             |             |             |
| N-BUTYLBENZENE            N-PROPYLBENZENE            O-XYLENE             SEC-BUTYLBENZENE              STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METHYLENE CHLORIDE      |             |             |             |
| N-PROPYLBENZENE            O-XYLENE            SEC-BUTYLBENZENE             STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAPHTHALENE             |             |             |             |
| O-XYLENE              SEC-BUTYLBENZENE               STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |             |             |             |
| SEC-BUTYLBENZENE STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-PROPYLBENZENE         |             |             |             |
| STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O-XYLENE                |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEC-BUTYLBENZENE        |             |             |             |
| TERT-AMYL METHYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STYRENE                 |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TERT-AMYL METHYL ETHER  |             |             |             |

| LOCATION                                 | SB-382             | SB-382             | SB-383         |
|------------------------------------------|--------------------|--------------------|----------------|
| SAMPLE ID                                | SB-382-0405        | SB-382-0708        | SB-383-0102    |
| SAMPLE DATE                              | 10/15/2007         | 10/15/2007         | 10/15/2007     |
| TERT-BUTYLBENZENE                        |                    |                    |                |
| TERTIARY-BUTYL ALCOHOL                   |                    |                    |                |
| TETRACHLOROETHENE                        |                    |                    |                |
| TOLUENE                                  |                    |                    |                |
| TOTAL 1,2-DICHLOROETHENE                 |                    |                    |                |
| TOTAL XYLENES                            |                    |                    |                |
| TRANS-1,2-DICHLOROETHENE                 |                    |                    |                |
| TRANS-1,3-DICHLOROPROPENE                |                    |                    |                |
| TRICHLOROETHENE                          |                    |                    |                |
| TRICHLOROFLUOROMETHANE                   |                    |                    |                |
| VINYL ACETATE                            |                    |                    |                |
| VINYL CHLORIDE                           |                    |                    |                |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                    |                    | -              |
| 1-METHYLNAPHTHALENE                      |                    |                    |                |
| 2-METHYLNAPHTHALENE                      |                    |                    |                |
| ACENAPHTHENE                             |                    |                    |                |
| ACENAPHTHYLENE                           |                    |                    |                |
| ANTHRACENE                               |                    |                    |                |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6]    | 1.6 U [MDL=1.6]    | 19000 [MDL=30] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6]    | 1.6 U [MDL=1.6]    | 19000 [MDL=30] |
| BAP EQUIVALENT-UCL                       | 0.030766 [MDL=1.6] | 0.037361 [MDL=1.6] | 19000 [MDL=30] |
| BENZO(A)ANTHRACENE                       |                    |                    |                |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6]    | 1.6 U [MDL=1.6]    | 19000 [MDL=30] |
| BENZO(B)FLUORANTHENE                     |                    |                    |                |
| BENZO(G,H,I)PERYLENE                     |                    |                    |                |
| BENZO(K)FLUORANTHENE                     |                    |                    |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                |
| C1-FLUORANTHENES/PYRENES                 |                    |                    |                |
| C1-FLUORENES                             |                    |                    |                |
| C1-PHENANTHRENES/ANTHRACENES             |                    |                    |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                |
| C2-FLUORENES                             |                    |                    |                |
| C2-NAPHTHALENES                          |                    |                    |                |
| C2-PHENANTHRENES/ANTHRACENES             |                    |                    |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                    |                    |                |
| C3-FLUORENES                             |                    |                    |                |
| C3-NAPHTHALENES                          |                    |                    |                |
| C3-PHENANTHRENES/ANTHRACENES             |                    |                    |                |

February 2013 Page A-460

HEPTACHLOR

| OOL                              |               |               |                |
|----------------------------------|---------------|---------------|----------------|
| LOCATION                         | SB-382        | SB-382        | SB-383         |
| SAMPLE ID                        | SB-382-0405   | SB-382-0708   | SB-383-0102    |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007    | 10/15/2007     |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |
| C4-NAPHTHALENES                  |               |               |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |
| CHRYSENE                         |               |               |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |
| FLUORANTHENE                     |               |               |                |
| FLUORENE                         |               |               |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |
| NAPHTHALENE                      |               |               |                |
| PHENANTHRENE                     |               |               |                |
| PYRENE                           |               |               |                |
| TOTAL PAHS                       | 0 U [MDL=1.6] | 0 U [MDL=1.6] | 19000 [MDL=30] |
| PESTICIDES/PCBS (UG/KG)          |               |               |                |
| 4,4'-DDD                         |               |               |                |
| 4,4'-DDE                         |               |               |                |
| 4,4'-DDT                         |               |               |                |
| ALDRIN                           |               |               |                |
| ALPHA-BHC                        |               |               |                |
| ALPHA-CHLORDANE                  |               |               |                |
| AROCLOR-1016                     | 41 U [MDL=14] | 42 U [MDL=14] | 37 U [MDL=12]  |
| AROCLOR-1221                     | 41 U [MDL=16] | 42 U [MDL=16] | 37 U [MDL=15]  |
| AROCLOR-1232                     | 41 U [MDL=15] | 42 U [MDL=15] | 37 U [MDL=14]  |
| AROCLOR-1242                     | 41 U [MDL=17] | 42 U [MDL=18] | 37 U [MDL=16]  |
| AROCLOR-1248                     | 41 U [MDL=19] | 42 U [MDL=19] | 37 U [MDL=17]  |
| AROCLOR-1254                     | 41 U [MDL=11] | 42 U [MDL=11] | 37 U [MDL=10]  |
| AROCLOR-1260                     | 41 U [MDL=12] | 42 U [MDL=12] | 34 J [MDL=11]  |
| BETA-BHC                         |               |               |                |
| DELTA-BHC                        |               |               |                |
| DIELDRIN                         |               |               |                |
| ENDOSULFAN I                     |               |               |                |
| ENDOSULFAN II                    |               |               |                |
| ENDOSULFAN SULFATE               |               |               |                |
| ENDRIN                           |               |               |                |
| ENDRIN ALDEHYDE                  |               |               |                |
| ENDRIN KETONE                    |               |               |                |
| GAMMA-BHC (LINDANE)              |               |               |                |
| GAMMA-CHLORDANE                  |               |               |                |
|                                  |               | <del> </del>  |                |

February 2013 Page A-461

--

--

--

| LOCATION           | SB-382       | SB-382       | SB-383      |
|--------------------|--------------|--------------|-------------|
| SAMPLE ID          | SB-382-0405  | SB-382-0708  | SB-383-0102 |
| SAMPLE DATE        | 10/15/2007   | 10/15/2007   | 10/15/2007  |
| HEPTACHLOR EPOXIDE |              |              |             |
| METHOXYCHLOR       |              | -            |             |
| TOTAL AROCLOR      | 0 U [MDL=14] | 0 U [MDL=14] | 34 [MDL=12] |
| TOTAL DDT POS      |              | -            |             |
| TOXAPHENE          |              |              | <del></del> |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   | 1 | <br> |
|-------------------------|---|------|
| GASOLINE RANGE ORGANICS | 1 | <br> |
| TPH (C09-C36)           |   | <br> |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

- U = The chemical was not detected.
- L = The chemical result was positively detected and biased low.
- UR = The chemical was nondetected and rejected.
- UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.
- $K = The \ chemical \ result \ was \ positively \ detected \ and \ biased \ high.$
- UL = The chemical was nondetected and the concentration reported is an biased low.
- B = The chemical result was present as a laboratory artifact.

| SOIL                         |              |              |
|------------------------------|--------------|--------------|
| LOCATION                     | SB-383       | SB-383       |
| SAMPLE ID                    | F-SB-383RE-3 | F-SB-383RE-4 |
| SAMPLE DATE                  | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)               |              |              |
| ANTIMONY                     |              |              |
| ARSENIC                      |              |              |
| BARIUM                       |              |              |
| BERYLLIUM                    |              |              |
| CADMIUM                      |              |              |
| CHROMIUM                     |              |              |
| COBALT                       |              |              |
| COPPER                       |              |              |
| LEAD                         |              |              |
| MERCURY                      |              |              |
| MOLYBDENUM                   |              |              |
| NICKEL                       |              |              |
| SELENIUM                     |              |              |
| SILVER                       |              |              |
| THALLIUM                     |              |              |
| VANADIUM                     |              |              |
| ZINC                         |              |              |
| MISCELLANEOUS PARAMETERS     |              |              |
| PERCENT SOLIDS (%)           |              |              |
| TOTAL SOLIDS (%)             |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |
| PH (S.U.)                    |              |              |
| MERCURY (METHYL) (UG/KG)     |              |              |
| SEMIVOLATILES (UG/KG)        |              |              |
| 1,1-BIPHENYL                 |              |              |
| 1,2,4-TRICHLOROBENZENE       |              |              |
| 1,2-DICHLOROBENZENE          |              |              |
| 1,3-DICHLOROBENZENE          |              |              |
| 1,4-DICHLOROBENZENE          |              |              |
| 1,4-DIOXANE                  |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |
| 2,4,5-TRICHLOROPHENOL        |              |              |
| 2,4,6-TRICHLOROPHENOL        |              | 1            |
| 2,4-DICHLOROPHENOL           |              |              |
| 2,4-DIMETHYLPHENOL           |              |              |
| 2,4-DINITROPHENOL            |              | ŀ            |

| LOCATION                    | SB-383       | SB-383       |
|-----------------------------|--------------|--------------|
| SAMPLE ID                   | F-SB-383RE-3 | F-SB-383RE-4 |
| SAMPLE DATE                 | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |              |              |
| 2,6-DINITROTOLUENE          |              |              |
| 2-CHLORONAPHTHALENE         |              |              |
| 2-CHLOROPHENOL              |              |              |
| 2-METHYLPHENOL              |              |              |
| 2-NITROANILINE              |              |              |
| 2-NITROPHENOL               |              |              |
| 3&4-METHYLPHENOL            |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |              |
| 3-NITROANILINE              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |              |
| 4-CHLOROANILINE             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |
| 4-NITROANILINE              |              |              |
| 4-NITROPHENOL               |              |              |
| ACETOPHENONE                |              |              |
| ANILINE                     |              |              |
| ATRAZINE                    |              |              |
| AZOBENZENE                  |              |              |
| BENZIDINE                   |              |              |
| BENZOIC ACID                |              |              |
| BENZYL ALCOHOL              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |
| BUTYL BENZYL PHTHALATE      |              |              |
| CAPROLACTAM                 |              |              |
| CARBAZOLE                   |              |              |
| DIBENZOFURAN                |              |              |
| DIETHYL PHTHALATE           |              |              |
| DIMETHYL PHTHALATE          |              |              |
| DI-N-BUTYL PHTHALATE        |              |              |
| DI-N-OCTYL PHTHALATE        |              |              |
| HEXACHLOROBENZENE           |              |              |
| HEXACHLOROBUTADIENE         |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |              |

| SAMPLE DATE         FSB-383RE-3         FSB-383RE-4           SAMPLE DATE         9/18/2009         9/18/2009           HEXACHLOROETHANE         -         -           ISOPHORDE         -         -           INTROSEDIMENTALAINE         -         -           NNTROSCOIMENTALAINE         -         -           NNTROSCOIPHENQUAMINE         -         -           PENTACHLOROPHENOL         -         -           PHENOL         -         -           PYRIDINE         -         -           1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCATION                       | SB-383       | SB-383       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------|
| HEXACHLORGETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE ID                      | F-SB-383RE-3 | F-SB-383RE-4 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 9/18/2009    | 9/18/2009    |
| NTROSENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEXACHLOROETHANE               |              |              |
| N-NITROSODIMETHYLAMNE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSH-DROST-DI-N-PROPYLAMINE N-NITROSH-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST-DROST | ISOPHORONE                     |              |              |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NITROBENZENE                   |              |              |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIMETHYLAMINE         |              |              |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |              |              |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |              |              |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |              |              |
| VOLATILES (UG/KG)           1.1.1.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PHENOL                         |              |              |
| 1.1,1,2-TERRACHLOROETHANE           1.1,1-TRICHLOROETHANE           1.1,2-TERRACHLOROETHANE           1.1,2-TRICHLOROETHANE           1.1,2-TRICHLOROETHANE           1.1-DICHLOROETHANE           1.1-DICHLOROETHANE           1.1-DICHLOROPROPENE           1.1-DICHLOROBENZENE           1.2,3-TRICHLOROBENZENE           1.2,3-TRICHLOROBENZENE           1.2,3-TRICHLOROBENZENE           1.2,4-TRINETHYLBENZENE           1.2,2-TRICHLOROBENZENE           1.2-DIBROMO-3-CHLOROPROPANE           1.2-DICHLOROBENZENE           1.2-DICHLOROBENZENE           1.2-DICHLOROPROPANE           1.3-DICHLOROPROPANE           1.3-DICHLOROPROPANE           1.3-DICHLOROPROPANE           1.3-DICHLOROPROPANE <t< td=""><td>PYRIDINE</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PYRIDINE                       |              |              |
| 1,1,1-TRICHLOROETHANE       -       -         1,1,2-ZETERACHLOROETHANE       -       -         1,1,2-TRICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROETHENE       -       -         1,1-DICHLOROPROPENE       -       -         1,2-3-TRICHLOROPROPANE       -       -         1,2-3-TRICHLOROPROPANE       -       -         1,2-3-TRIMETHYLBENZENE       -       -         1,2-4-TRICHLOROBENZENE       -       -         1,2-4-TRIMETHYLBENZENE       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -         1,2-DICHLOROBENZENE       -       -         1,2-DICHLOROBENZENE       -       -         1,2-DICHLOROPROPANE       -       -         1,3-DICHLOROPROPANE       -       -         1,4-DICHLOROPROPANE       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOLATILES (UG/KG)              |              |              |
| 1,1,2,2-TETRACHLOROETHANE       -       -         1,1,2-TRICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROETHANE       -       -         1,1-DICHLOROPROPENE       -       -         1,2,3-TRICHLOROBENZENE       -       -         1,2,3-TRIMETHYLERUZENE       -       -         1,2,4-TRIMETHYLERUZENE       -       -         1,2,4-TRIMETHYLBENZENE       -       -         1,2,4-TRIMETHYLBENZENE       -       -         1,2-DIBROMO-3-CHLOROPROPANE       -       -         1,2-DICHLOROBENZENE       -       -         1,2-DICHLOROBENZENE       -       -         1,2-DICHLOROPROPANE       -       -         1,2-DICHLOROPROPANE       -       -         1,3-DICHLOROPROPANE       -       -         1,3-DICHLOROPROPANE       -       -         1,3-DICHLOROPROPANE       -       -         1,3-DICHLOROPROPANE       -       -         1,4-DICHLOROPROPANE       -       -         1,4-DICHLOROPROPANE       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,1,2-TETRACHLOROETHANE      |              |              |
| 1.1.2-TRICHLOROETHANE       -       -         1.1.2-TRICHLOROETHANE       -       -         1.1-DICHLOROETHANE       -       -         1.1-DICHLOROETHENE       -       -         1.1-DICHLOROPROPENE       -       -         1.2.3-TRICHLOROBENZENE       -       -         1.2.3-TRICHLOROPROPANE       -       -         1.2.3-TRIMETHYLBENZENE       -       -         1.2.4-TRIMETHYLBENZENE       -       -         1.2.4-TRIMETHYLBENZENE       -       -         1.2.1-DIBROMO-3-CHLOROPROPANE       -       -         1.2-DIBROMO-5-CHLOROPROPANE       -       -         1.2-DICHLOROBENZENE       -       -         1.2-DICHLOROBENZENE       -       -         1.2-DICHLOROPROPANE       -       -         1.3-DICHLOROPROPANE       -       -         1.3-DICHLOROPROPENE       -       -         1.4-DIONANE       -       -         2.2-DICHLOROPROPANE       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,1-TRICHLOROETHANE          |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE           1,1-DICHLOROETHANE           1,1-DICHLOROPROPENE           1,2,3-TRICHLOROBENZENE           1,2,3-TRICHLOROPROPANE           1,2,3-TRIMETHYLBENZENE           1,2,4-TRIMETHYLBENZENE           1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,2-DICHLOROPROPANE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,4-DICHLOROPROPANE           1,4-DICHLOROPROPANE           1,4-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2,2-TETRACHLOROETHANE      |              |              |
| 1,1-DICHLOROETHANE           1,1-DICHLOROETHENE           1,1-DICHLOROPROPENE           1,2,3-TRICHLOROBENZENE           1,2,3-TRICHLOROPROPANE           1,2,3-TRICHLOROBENZENE           1,2,4-TRICHLOROBENZENE           1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,4-DICHOROPROPENE           1,4-DICHLOROPROPANE           1,4-DICHLOROPROPANE           1,4-DICHLOROPROPANE           1,4-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2,2-DICHLOROPROPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2-TRICHLOROETHANE          |              |              |
| 1.1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |
| 1,1-DICHLOROPROPENE           1,2,3-TRICHLOROBENZENE           1,2,3-TRIMETHYLBENZENE           1,2,4-TRICHLOROBENZENE           1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,3-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,4-DIOXANE           2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-DICHLOROETHANE             |              |              |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |              |              |
| 1,2,3-TRICHLOROPROPANE           1,2,3-TRIMETHYLBENZENE           1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMO-S-CHLOROPROPANE           1,2-DICHLOROBENZENE           1,2-DICHLOROFTHANE           1,2-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,4-DIOXANE           1,4-DIOXANE           2-DICHLOROPROPANE           2-BUTANONE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1-DICHLOROPROPENE            |              |              |
| 1,2,3-TRIMETHYLBENZENE           1,2,4-TRICHLOROBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,2-DICHLOROPROPANE           1,3-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |              |              |
| 1,2,4-TRICHLOROBENZENE           1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,3-DICHLOROBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHOROBENZENE           1,4-DICHOROBENZENE           1,4-DICHOROPROPANE           2,2-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3-TRICHLOROPROPANE         |              |              |
| 1,2,4-TRIMETHYLBENZENE           1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPANE           1,4-DICHLOROBENZENE           1,4-DICHLOROBENZENE           1,4-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3-TRIMETHYLBENZENE         |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE           1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,3-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-TRICHLOROBENZENE         |              |              |
| 1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,2-DICHLOROPROPANE           1,3,5-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |              |              |
| 1,2-DICHLOROBENZENE           1,2-DICHLOROPROPANE           1,2-DICHLOROPROPANE           1,3,5-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |
| 1,2-DICHLOROETHANE           1,2-DICHLOROPROPANE           1,3,5-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-DIBROMOETHANE              |              |              |
| 1,2-DICHLOROPROPANE           1,3,5-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-DICHLOROBENZENE            |              |              |
| 1,3,5-TRIMETHYLBENZENE           1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-DICHLOROETHANE             |              |              |
| 1,3-DICHLOROBENZENE           1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-DICHLOROPROPANE            |              |              |
| 1,3-DICHLOROPROPANE           1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3,5-TRIMETHYLBENZENE         |              |              |
| 1,3-DICHLOROPROPENE           1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,3-DICHLOROBENZENE            |              |              |
| 1,4-DICHLOROBENZENE           1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,3-DICHLOROPROPANE            |              |              |
| 1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3-DICHLOROPROPENE            |              |              |
| 2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4-DICHLOROBENZENE            |              |              |
| 2-BUTANONE 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-DIOXANE                    |              |              |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |              |              |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |              |              |

| LOCATION                | SB-383       | SB-383       |
|-------------------------|--------------|--------------|
| SAMPLE ID               | F-SB-383RE-3 | F-SB-383RE-4 |
| SAMPLE DATE             | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |              |              |
| 4-CHLOROTOLUENE         |              |              |
| 4-ISOPROPYLTOLUENE      |              |              |
| 4-METHYL-2-PENTANONE    |              |              |
| ACETONE                 |              |              |
| BENZENE                 |              |              |
| BROMOBENZENE            |              |              |
| BROMOCHLOROMETHANE      |              |              |
| BROMODICHLOROMETHANE    |              |              |
| BROMOFORM               |              |              |
| BROMOMETHANE            |              |              |
| CARBON DISULFIDE        |              |              |
| CARBON TETRACHLORIDE    |              |              |
| CHLOROBENZENE           |              |              |
| CHLORODIBROMOMETHANE    |              |              |
| CHLOROETHANE            |              |              |
| CHLOROFORM              |              |              |
| CHLOROMETHANE           |              |              |
| CIS-1,2-DICHLOROETHENE  |              |              |
| CIS-1,3-DICHLOROPROPENE |              |              |
| DIBROMOMETHANE          |              |              |
| DICHLORODIFLUOROMETHANE |              |              |
| DIISOPROPYL ETHER       |              |              |
| ETHYL TERT-BUTYL ETHER  |              |              |
| ETHYLBENZENE            |              |              |
| FLUORODICHLOROMETHANE   |              |              |
| HEXACHLOROBUTADIENE     |              |              |
| ISOPROPYLBENZENE        |              |              |
| M+P-XYLENES             |              |              |
| METHYL TERT-BUTYL ETHER |              |              |
| METHYLENE CHLORIDE      |              |              |
| NAPHTHALENE             |              |              |
| N-BUTYLBENZENE          |              |              |
| N-PROPYLBENZENE         |              |              |
| O-XYLENE                |              |              |
| SEC-BUTYLBENZENE        |              |              |
| STYRENE                 | <del>-</del> |              |
| TERT-AMYL METHYL ETHER  |              |              |

| LOCATION                                 | SB-383           | SB-383           |
|------------------------------------------|------------------|------------------|
| SAMPLE ID                                | F-SB-383RE-3     | F-SB-383RE-4     |
| SAMPLE DATE                              | 9/18/2009        | 9/18/2009        |
| TERT-BUTYLBENZENE                        |                  |                  |
| TERTIARY-BUTYL ALCOHOL                   |                  |                  |
| TETRACHLOROETHENE                        |                  |                  |
| TOLUENE                                  |                  |                  |
| TOTAL 1,2-DICHLOROETHENE                 |                  |                  |
| TOTAL XYLENES                            |                  |                  |
| TRANS-1,2-DICHLOROETHENE                 |                  |                  |
| TRANS-1,3-DICHLOROPROPENE                |                  |                  |
| TRICHLOROETHENE                          |                  |                  |
| TRICHLOROFLUOROMETHANE                   |                  |                  |
| VINYL ACETATE                            |                  |                  |
| VINYL CHLORIDE                           |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                  |
| 1-METHYLNAPHTHALENE                      |                  |                  |
| 2-METHYLNAPHTHALENE                      |                  |                  |
| ACENAPHTHENE                             |                  |                  |
| ACENAPHTHYLENE                           |                  |                  |
| ANTHRACENE                               |                  |                  |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-UCL                       |                  |                  |
| BENZO(A)ANTHRACENE                       | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.60 U [MDL=1.6] | 1.50 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                  |
| BENZO(K)FLUORANTHENE                     | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |                  |                  |
| C1-FLUORENES                             |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |
| C2-FLUORENES                             |                  |                  |
| C2-NAPHTHALENES                          |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |
| C3-FLUORENES                             |                  |                  |
| C3-NAPHTHALENES                          |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                  |

| LOCATION                         | SB-383           | SB-383           |
|----------------------------------|------------------|------------------|
| SAMPLE ID                        | F-SB-383RE-3     | F-SB-383RE-4     |
| SAMPLE DATE                      | 9/18/2009        | 9/18/2009        |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |
| C4-NAPHTHALENES                  |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                  |
| CHRYSENE                         | 1.10 U [MDL=1.1] | 1.00 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 1.60 U [MDL=1.6] | 1.50 U [MDL=1.5] |
| FLUORANTHENE                     |                  |                  |
| FLUORENE                         |                  |                  |
| INDENO(1,2,3-CD)PYRENE           | 1.80 U [MDL=1.8] | 1.70 U [MDL=1.7] |
| NAPHTHALENE                      |                  |                  |
| PHENANTHRENE                     |                  |                  |
| PYRENE                           |                  |                  |
| TOTAL PAHS                       | 0 U [MDL=1.6]    | 0 U [MDL=1.5]    |
| PESTICIDES/PCBS (UG/KG)          |                  |                  |
| 4,4'-DDD                         |                  |                  |
| 4,4'-DDE                         |                  |                  |
| 4,4'-DDT                         |                  |                  |
| ALDRIN                           |                  |                  |
| ALPHA-BHC                        |                  |                  |
| ALPHA-CHLORDANE                  |                  |                  |
| AROCLOR-1016                     |                  |                  |
| AROCLOR-1221                     |                  |                  |
| AROCLOR-1232                     |                  |                  |
| AROCLOR-1242                     |                  |                  |
| AROCLOR-1248                     |                  |                  |
| AROCLOR-1254                     |                  |                  |
| AROCLOR-1260                     |                  |                  |
| BETA-BHC                         |                  |                  |
| DELTA-BHC                        |                  |                  |
| DIELDRIN                         |                  |                  |
| ENDOSULFAN I                     |                  |                  |
| ENDOSULFAN II                    |                  |                  |
| ENDOSULFAN SULFATE               |                  |                  |
| ENDRIN                           |                  |                  |
| ENDRIN ALDEHYDE                  |                  |                  |
| ENDRIN KETONE                    |                  |                  |
| GAMMA-BHC (LINDANE)              |                  |                  |
| GAMMA-CHLORDANE                  |                  |                  |
| HEPTACHLOR                       |                  |                  |

| LOCATION           | SB-383       | SB-383       |
|--------------------|--------------|--------------|
| SAMPLE ID          | F-SB-383RE-3 | F-SB-383RE-4 |
| SAMPLE DATE        | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR EPOXIDE |              |              |
| METHOXYCHLOR       |              |              |
| TOTAL AROCLOR      |              | 1            |
| TOTAL DDT POS      |              |              |
| TOXAPHENE          |              |              |

#### PETROLEUM HYDROCARBONS (UG/KG)

| DIESEL RANGE ORGANICS   |   |  |
|-------------------------|---|--|
| GASOLINE RANGE ORGANICS | 1 |  |
| TPH (C09-C36)           |   |  |

#### **SOIL Footnotes:**

-- = The chemical was not analyzed or no value was available.

[MDL=1.4] = Laboratory method detection limit

[--] = Laboratory method detection limit reported as zero or not available

#### Data Qualifiers:

Blank (i.e., no qualifier) = the chemical was detected.

J = The chemical was detected but the concentration reported is an estimated value. Bias indeterminate.

U = The chemical was not detected.

L = The chemical result was positively detected and biased low.

UR = The chemical was nondetected and rejected.

UJ = The chemical was nondetected and the concentration reported is an estimated value. Bias indeterminate.

K = The chemical result was positively detected and biased high.

UL = The chemical was nondetected and the concentration reported is an biased low.

B = The chemical result was present as a laboratory artifact.

| SOIL |  |
|------|--|
|------|--|

| JOIL                         |               |               |               |             |
|------------------------------|---------------|---------------|---------------|-------------|
| LOCATION                     | SB-383        | SB-383        | SB-383        | SB-384      |
| SAMPLE ID                    | SB-383-0203   | SB-383-0405   | SB-383-0708   | SB-384-0102 |
| SAMPLE DATE                  | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007  |
| METALS (MG/KG)               |               |               |               |             |
| ANTIMONY                     |               |               |               |             |
| ARSENIC                      |               |               |               |             |
| BARIUM                       |               |               |               |             |
| BERYLLIUM                    |               |               |               |             |
| CADMIUM                      |               |               |               |             |
| CHROMIUM                     |               |               |               |             |
| COBALT                       |               |               |               |             |
| COPPER                       |               |               |               |             |
| LEAD                         |               |               |               |             |
| MERCURY                      |               |               |               |             |
| MOLYBDENUM                   |               |               |               |             |
| NICKEL                       |               |               |               |             |
| SELENIUM                     |               |               |               |             |
| SILVER                       |               |               |               |             |
| THALLIUM                     |               |               |               |             |
| VANADIUM                     |               |               |               |             |
| ZINC                         |               |               |               |             |
| MISCELLANEOUS PARAMETERS     |               |               | •             |             |
| PERCENT SOLIDS (%)           | 87.2 [MDL=10] | 79.2 [MDL=10] | 83.1 [MDL=10] | 87 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |             |
| PH (S.U.)                    |               |               |               |             |
| MERCURY (METHYL) (UG/KG)     |               |               |               |             |
| SEMIVOLATILES (UG/KG)        | •             |               | •             |             |
| 1,1-BIPHENYL                 |               |               |               |             |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |             |
| 1,2-DICHLOROBENZENE          |               |               |               |             |
| 1,3-DICHLOROBENZENE          |               |               |               |             |
| 1,4-DICHLOROBENZENE          |               |               |               |             |
| 1,4-DIOXANE                  |               |               |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |             |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |             |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |             |
| 2,4-DICHLOROPHENOL           |               |               |               |             |
| 2,4-DIMETHYLPHENOL           |               |               |               |             |
| 2,4-DINITROPHENOL            |               |               |               |             |

| LOCATION                    | SB-383      | SB-383      | SB-383      | SB-384      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-383-0203 | SB-383-0405 | SB-383-0708 | SB-384-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SOIL                           |             | •           | 1           | 1           |
|--------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                       | SB-383      | SB-383      | SB-383      | SB-384      |
| SAMPLE ID                      | SB-383-0203 | SB-383-0405 | SB-383-0708 | SB-384-0102 |
| SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

| SOIL                    |             |             |             | 1           |
|-------------------------|-------------|-------------|-------------|-------------|
| LOCATION                | SB-383      | SB-383      | SB-383      | SB-384      |
| SAMPLE ID               | SB-383-0203 | SB-383-0405 | SB-383-0708 | SB-384-0102 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-383      | SB-383      | SB-383      | SB-384      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-383-0203 | SB-383-0405 | SB-383-0708 | SB-384-0102 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                |                |                |                    |
|----------------------------------|----------------|----------------|----------------|--------------------|
| 2-METHYLNAPHTHALENE              |                |                |                |                    |
| ACENAPHTHENE                     |                |                |                |                    |
| ACENAPHTHYLENE                   |                |                |                |                    |
| ANTHRACENE                       |                |                |                |                    |
| BAP EQUIVALENT-HALFND            | 51 [MDL=1.5]   | 38 [MDL=1.6]   | 10 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 51 [MDL=1.5]   | 38 [MDL=1.6]   | 10 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 51 [MDL=1.5]   | 38 [MDL=1.6]   | 10 [MDL=1.6]   | 0.091754 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                |                |                |                    |
| BENZO(A)PYRENE                   | 51 J [MDL=1.5] | 38 J [MDL=1.6] | 10 J [MDL=1.6] | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                |                |                |                    |
| BENZO(G,H,I)PERYLENE             |                |                |                |                    |
| BENZO(K)FLUORANTHENE             |                |                |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C1-FLUORANTHENES/PYRENES         |                |                |                |                    |
| C1-FLUORENES                     |                |                |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C2-FLUORENES                     |                |                |                |                    |
| C2-NAPHTHALENES                  |                |                |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C3-FLUORENES                     |                |                |                |                    |
| C3-NAPHTHALENES                  |                |                |                |                    |

| LOCATION                         | SB-383        | SB-383        | SB-383        | SB-384        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-383-0203   | SB-383-0405   | SB-383-0708   | SB-384-0102   |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 51 [MDL=1.5]  | 38 [MDL=1.6]  | 10 [MDL=1.6]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          | •             | •             |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 38 U [MDL=13] | 42 U [MDL=14] | 40 U [MDL=13] | 38 U [MDL=13] |
| AROCLOR-1221                     | 38 U [MDL=15] | 42 U [MDL=16] | 40 U [MDL=16] | 38 U [MDL=15] |
| AROCLOR-1232                     | 38 U [MDL=14] | 42 U [MDL=15] | 40 U [MDL=14] | 38 U [MDL=14] |
| AROCLOR-1242                     | 38 U [MDL=16] | 42 U [MDL=18] | 40 U [MDL=17] | 38 U [MDL=16] |
| AROCLOR-1248                     | 38 U [MDL=17] | 42 U [MDL=19] | 40 U [MDL=18] | 38 U [MDL=17] |
| AROCLOR-1254                     | 38 U [MDL=10] | 42 U [MDL=11] | 40 U [MDL=11] | 38 U [MDL=10] |
| AROCLOR-1260                     | 38 U [MDL=11] | 42 U [MDL=12] | 40 U [MDL=12] | 38 U [MDL=11] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix C

## SOIL

| LOCATION                       | SB-383       | SB-383       | SB-383       | SB-384       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-383-0203  | SB-383-0405  | SB-383-0708  | SB-384-0102  |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=13] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |             |               |               |             |
|------------------------------|-------------|---------------|---------------|-------------|
| LOCATION                     | SB-384      | SB-384        | SB-384        | SB-385      |
| SAMPLE ID                    | SB-384-0203 | SB-384-0405   | SB-384-0708   | SB-385-0102 |
| SAMPLE DATE                  | 10/15/2007  | 10/15/2007    | 10/15/2007    | 10/15/2007  |
| METALS (MG/KG)               |             |               |               |             |
| ANTIMONY                     |             |               |               |             |
| ARSENIC                      |             |               |               |             |
| BARIUM                       |             |               |               |             |
| BERYLLIUM                    |             |               |               |             |
| CADMIUM                      |             |               |               |             |
| CHROMIUM                     |             |               |               |             |
| COBALT                       |             |               |               |             |
| COPPER                       |             |               |               |             |
| LEAD                         |             |               |               |             |
| MERCURY                      |             |               |               |             |
| MOLYBDENUM                   |             |               |               |             |
| NICKEL                       |             |               |               |             |
| SELENIUM                     |             |               |               |             |
| SILVER                       |             |               |               |             |
| THALLIUM                     |             |               |               |             |
| VANADIUM                     |             |               |               |             |
| ZINC                         |             |               |               |             |
| MISCELLANEOUS PARAMETERS     |             |               |               |             |
| PERCENT SOLIDS (%)           | 86 [MDL=10] | 84.6 [MDL=10] | 76.6 [MDL=10] | 92 [MDL=10] |
| TOTAL SOLIDS (%)             |             |               |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |               |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |               |               |             |
| PH (S.U.)                    |             |               |               |             |
| MERCURY (METHYL) (UG/KG)     |             |               |               |             |
| SEMIVOLATILES (UG/KG)        | <u> </u>    |               | •             |             |
| 1,1-BIPHENYL                 |             |               |               |             |
| 1,2,4-TRICHLOROBENZENE       |             |               |               |             |
| 1,2-DICHLOROBENZENE          |             |               |               |             |
| 1,3-DICHLOROBENZENE          |             |               |               |             |
| 1,4-DICHLOROBENZENE          |             |               |               |             |
| 1,4-DIOXANE                  |             |               |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |               |               |             |
| 2,4,5-TRICHLOROPHENOL        |             |               |               |             |
| 2,4,6-TRICHLOROPHENOL        |             |               |               |             |
| 2,4-DICHLOROPHENOL           |             |               |               |             |
| 2,4-DIMETHYLPHENOL           |             |               |               |             |
| 2,4-DINITROPHENOL            |             |               |               |             |

| LOCATION                    | SB-384      | SB-384      | SB-384      | SB-385      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-384-0203 | SB-384-0405 | SB-384-0708 | SB-385-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-384      | SB-384      | SB-384      | SB-385      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-384-0203 | SB-384-0405 | SB-384-0708 | SB-385-0102 |
| SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-10

| LOCATION                | SB-384      | SB-384      | SB-384      | SB-385      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-384-0203 | SB-384-0405 | SB-384-0708 | SB-385-0102 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-384      | SB-384      | SB-384      | SB-385      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-384-0203 | SB-384-0405 | SB-384-0708 | SB-385-0102 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              |                    |                    |                    |                    |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| ACENAPHTHENE                     |                    |                    |                    |                    |
| ACENAPHTHYLENE                   |                    |                    |                    |                    |
| ANTHRACENE                       |                    |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 0.097661 [MDL=1.5] | 0.103745 [MDL=1.5] | 0.511571 [MDL=1.7] | 0.011755 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                    |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.7 U [MDL=1.7]    | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                    |
| C1-FLUORENES                     |                    |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C2-FLUORENES                     |                    |                    |                    |                    |
| C2-NAPHTHALENES                  |                    |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C3-FLUORENES                     |                    |                    |                    |                    |
| C3-NAPHTHALENES                  |                    |                    |                    |                    |
|                                  |                    |                    |                    |                    |

| LOCATION                         | SB-384        | SB-384        | SB-384        | SB-385         |
|----------------------------------|---------------|---------------|---------------|----------------|
| SAMPLE ID                        | SB-384-0203   | SB-384-0405   | SB-384-0708   | SB-385-0102    |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |                |
| C4-NAPHTHALENES                  |               |               |               |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |                |
| CHRYSENE                         |               |               |               |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |                |
| FLUORANTHENE                     |               |               |               |                |
| FLUORENE                         |               |               |               |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |                |
| NAPHTHALENE                      |               |               |               |                |
| PHENANTHRENE                     |               |               |               |                |
| PYRENE                           |               |               |               |                |
| TOTAL PAHS                       | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.7] | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |                |
| 4,4'-DDD                         |               |               |               |                |
| 4,4'-DDE                         |               |               |               |                |
| 4,4'-DDT                         |               |               |               |                |
| ALDRIN                           |               |               |               |                |
| ALPHA-BHC                        |               |               |               |                |
| ALPHA-CHLORDANE                  |               |               |               |                |
| AROCLOR-1016                     | 38 U [MDL=13] | 39 U [MDL=13] | 43 U [MDL=14] | 36 U [MDL=12]  |
| AROCLOR-1221                     | 38 U [MDL=15] | 39 U [MDL=15] | 43 U [MDL=17] | 36 U [MDL=14]  |
| AROCLOR-1232                     | 38 U [MDL=14] | 39 U [MDL=14] | 43 U [MDL=16] | 36 U [MDL=13]  |
| AROCLOR-1242                     | 38 U [MDL=16] | 39 U [MDL=17] | 43 U [MDL=18] | 36 U [MDL=15]  |
| AROCLOR-1248                     | 38 U [MDL=17] | 39 U [MDL=18] | 43 U [MDL=20] | 36 U [MDL=16]  |
| AROCLOR-1254                     | 38 U [MDL=10] | 39 U [MDL=10] | 43 U [MDL=11] | 36 U [MDL=9.6] |
| AROCLOR-1260                     | 38 U [MDL=11] | 39 U [MDL=12] | 43 U [MDL=13] | 36 U [MDL=11]  |
| BETA-BHC                         |               |               |               |                |
| DELTA-BHC                        |               |               |               |                |
| DIELDRIN                         |               |               |               |                |
| ENDOSULFAN I                     |               |               |               |                |
| ENDOSULFAN II                    |               |               |               |                |
| ENDOSULFAN SULFATE               |               |               |               |                |
| ENDRIN                           |               |               |               |                |
| ENDRIN ALDEHYDE                  |               |               |               |                |
| ENDRIN KETONE                    |               |               |               |                |
| GAMMA-BHC (LINDANE)              |               |               |               |                |
| GAMMA-CHLORDANE                  |               |               |               |                |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-384       | SB-384       | SB-384       | SB-385       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-384-0203  | SB-384-0405  | SB-384-0708  | SB-385-0102  |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |             |             |               |             |
|------------------------------|-------------|-------------|---------------|-------------|
| LOCATION                     | SB-385      | SB-385      | SB-385        | SB-386      |
| SAMPLE ID                    | SB-385-0203 | SB-385-0405 | SB-385-0708   | SB-386-0102 |
| SAMPLE DATE                  | 10/15/2007  | 10/15/2007  | 10/15/2007    | 10/15/2007  |
| METALS (MG/KG)               |             |             |               |             |
| ANTIMONY                     |             |             |               |             |
| ARSENIC                      |             |             |               |             |
| BARIUM                       |             |             |               |             |
| BERYLLIUM                    |             |             |               |             |
| CADMIUM                      |             |             |               |             |
| CHROMIUM                     |             |             |               |             |
| COBALT                       |             |             |               |             |
| COPPER                       |             |             |               |             |
| LEAD                         |             |             |               |             |
| MERCURY                      |             |             |               |             |
| MOLYBDENUM                   |             |             |               |             |
| NICKEL                       |             |             |               |             |
| SELENIUM                     |             | -1          |               |             |
| SILVER                       |             | -1          |               |             |
| THALLIUM                     |             |             |               |             |
| VANADIUM                     |             |             |               |             |
| ZINC                         |             |             |               |             |
| MISCELLANEOUS PARAMETERS     |             |             |               |             |
| PERCENT SOLIDS (%)           | 91 [MDL=10] | 93 [MDL=10] | 84.7 [MDL=10] | 90 [MDL=10] |
| TOTAL SOLIDS (%)             |             |             |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |               |             |
| PH (S.U.)                    |             |             |               |             |
| MERCURY (METHYL) (UG/KG)     |             |             |               |             |
| SEMIVOLATILES (UG/KG)        |             |             |               |             |
| 1,1-BIPHENYL                 |             |             |               |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |               |             |
| 1,2-DICHLOROBENZENE          |             |             |               |             |
| 1,3-DICHLOROBENZENE          |             |             |               |             |
| 1,4-DICHLOROBENZENE          |             |             |               |             |
| 1,4-DIOXANE                  |             |             |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |               |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |               |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |               |             |
| 2,4-DICHLOROPHENOL           |             |             |               |             |
| 2,4-DIMETHYLPHENOL           |             | -1          |               |             |
| 2,4-DINITROPHENOL            |             |             |               |             |
| 1                            |             |             |               |             |

| LOCATION                    | SB-385      | SB-385      | SB-385      | SB-386      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-385-0203 | SB-385-0405 | SB-385-0708 | SB-386-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| HEXACLICROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOCATION                       | SB-385      | SB-385      | SB-385      | SB-386      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACLICROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE ID                      | SB-385-0203 | SB-385-0405 | SB-385-0708 | SB-386-0102 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| NITROSEDNETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEXACHLOROETHANE               |             |             |             |             |
| NATIFOSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISOPHORONE                     |             |             |             |             |
| NNTROSO-DIA-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NITROBENZENE                   |             |             |             |             |
| NNTROSOUPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTALCROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL PYRIDNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATILES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHENOL                         |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYRIDINE                       |             |             |             |             |
| 1,1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              | •           |             | •           |             |
| 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHORE 1,1-DICHLOROETHORE 1,1-DICHLOROETHORE 1,2,3-TRICHLOROEROENE 1,2,3-TRICHLOROPROPENE 1,2,3-TRICHLOROPROPENE 1,2,3-TRICHLOROPROPENE 1,2,3-TRICHLOROPROPENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,3,3-TRICHLOROPROPANE 1,3,3-TRICHLOROPRO | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1.2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE              1,2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE              1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE              1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2.4.TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE <t< td=""><td>1,2,4-TRICHLOROBENZENE</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                               -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE             1,4-DIOXANE              2,2-DICHLOROPROPANE              2-BUTANONE               2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 2,2-DICHLOROPROPANE                2-BUTANONE                 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 2-BUTANONE              2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,4-DIOXANE                    |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-17

| LOCATION                | SB-385      | SB-385      | SB-385      | SB-386      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-385-0203 | SB-385-0405 | SB-385-0708 | SB-386-0102 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-385      | SB-385      | SB-385      | SB-386      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-385-0203 | SB-385-0405 | SB-385-0708 | SB-386-0102 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                | •                  |                   |                    |                    |
|----------------------------------|--------------------|-------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                   |                    |                    |
| 2-METHYLNAPHTHALENE              |                    |                   |                    |                    |
| ACENAPHTHENE                     |                    |                   |                    |                    |
| ACENAPHTHYLENE                   |                    |                   |                    |                    |
| ANTHRACENE                       |                    |                   |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 0.026144 [MDL=1.4] | 0.04356 [MDL=1.4] | 0.110007 [MDL=1.5] | 0.064087 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                    |                   |                    |                    |
| BENZO(A)PYRENE                   | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                    |                   |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                   |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                   |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                   |                    |                    |
| C1-FLUORENES                     |                    |                   |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                   |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |                    |
| C2-FLUORENES                     |                    |                   |                    |                    |
| C2-NAPHTHALENES                  |                    |                   |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                   |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |                    |
| C3-FLUORENES                     |                    |                   |                    |                    |
| C3-NAPHTHALENES                  |                    |                   |                    |                    |
|                                  | •                  |                   |                    |                    |

| LOCATION                         | SB-385         | SB-385         | SB-385        | SB-386         |
|----------------------------------|----------------|----------------|---------------|----------------|
| SAMPLE ID                        | SB-385-0203    | SB-385-0405    | SB-385-0708   | SB-386-0102    |
| SAMPLE DATE                      | 10/15/2007     | 10/15/2007     | 10/15/2007    | 10/15/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |                |                |               |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |               |                |
| C4-NAPHTHALENES                  |                |                |               |                |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |               |                |
| CHRYSENE                         |                |                |               |                |
| DIBENZO(A,H)ANTHRACENE           |                |                |               |                |
| FLUORANTHENE                     |                |                |               |                |
| FLUORENE                         |                |                |               |                |
| INDENO(1,2,3-CD)PYRENE           |                |                |               |                |
| NAPHTHALENE                      |                |                |               |                |
| PHENANTHRENE                     |                |                |               |                |
| PYRENE                           |                |                |               |                |
| TOTAL PAHS                       | 0 U [MDL=1.4]  | 0 U [MDL=1.4]  | 0 U [MDL=1.5] | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          |                |                |               |                |
| 4,4'-DDD                         |                |                |               |                |
| 4,4'-DDE                         |                |                |               |                |
| 4,4'-DDT                         |                |                |               |                |
| ALDRIN                           |                |                |               |                |
| ALPHA-BHC                        |                |                |               |                |
| ALPHA-CHLORDANE                  |                |                |               |                |
| AROCLOR-1016                     | 36 U [MDL=12]  | 36 U [MDL=12]  | 39 U [MDL=13] | 37 U [MDL=12]  |
| AROCLOR-1221                     | 36 U [MDL=14]  | 36 U [MDL=14]  | 39 U [MDL=15] | 37 U [MDL=14]  |
| AROCLOR-1232                     | 36 U [MDL=13]  | 36 U [MDL=13]  | 39 U [MDL=14] | 37 U [MDL=13]  |
| AROCLOR-1242                     | 36 U [MDL=15]  | 36 U [MDL=15]  | 39 U [MDL=17] | 37 U [MDL=16]  |
| AROCLOR-1248                     | 36 U [MDL=16]  | 36 U [MDL=16]  | 39 U [MDL=18] | 37 U [MDL=17]  |
| AROCLOR-1254                     | 36 U [MDL=9.7] | 36 U [MDL=9.5] | 39 U [MDL=10] | 37 U [MDL=9.8] |
| AROCLOR-1260                     | 36 U [MDL=11]  | 36 U [MDL=11]  | 39 U [MDL=12] | 37 U [MDL=11]  |
| BETA-BHC                         |                |                |               |                |
| DELTA-BHC                        |                |                |               |                |
| DIELDRIN                         |                |                |               |                |
| ENDOSULFAN I                     |                |                |               |                |
| ENDOSULFAN II                    |                |                |               |                |
| ENDOSULFAN SULFATE               |                |                |               |                |
| ENDRIN                           |                |                |               |                |
| ENDRIN ALDEHYDE                  |                |                |               |                |
| ENDRIN KETONE                    |                |                |               |                |
| GAMMA-BHC (LINDANE)              |                |                |               |                |
| GAMMA-CHLORDANE                  |                |                |               |                |

# Block F Soil Remedial Action Plan Appendix

| SB-385       | SB-385                                 | SB-385                               | SB-386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-385-0203  | SB-385-0405                            | SB-385-0708                          | SB-386-0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/15/2007   | 10/15/2007                             | 10/15/2007                           | 10/15/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 U [MDL=12] | 0 U [MDL=12]                           | 0 U [MDL=13]                         | 0 U [MDL=12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | SB-385-0203<br>10/15/2007 0 U [MDL=12] | SB-385-0203 10/15/2007  0 U [MDL=12] | SB-385-0203 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 10/15/2007 |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-386        | SB-386        | SB-386        | SB-387        |
| SAMPLE ID                    | SB-386-0203   | SB-386-0405   | SB-386-0708   | SB-387-0102   |
| SAMPLE DATE                  | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               | -1            |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 89.2 [MDL=10] | 89.5 [MDL=10] | 84.1 [MDL=10] | 93.7 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
|                              |               |               |               |               |

| LOCATION                    | SB-386      | SB-386      | SB-386      | SB-387      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-386-0203 | SB-386-0405 | SB-386-0708 | SB-387-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SAMPLE ID   SB-386-0708   SB-386-0708   SB-387-0102   SAMPLE DATE   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007   10/15/2007 | LOCATION                       | SB-386      | SB-386      | SB-386      | SB-387      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE ID                      | SB-386-0203 | SB-386-0405 | SB-386-0708 | SB-387-0102 |
| SOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEXACHLOROETHANE               |             |             |             |             |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISOPHORONE                     |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NITROBENZENE                   |             |             |             |             |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATILES (UG/KG)         1.1,1.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PHENOL                         |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PYRIDINE                       |             |             |             |             |
| 1,1,1-TRICHLOROETHANE <t< td=""><td>VOLATILES (UG/KG)</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROETHANE <t< td=""><td>1,1,2,2-TETRACHLOROETHANE</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE             1,2,3-TRICHLOROBENZENE             1,2,3-TRIMETHYLBENZENE             1,2,4-TRICHLOROBENZENE             1,2,4-TRIMETHYLBENZENE             1,2-DIBROMO-3-CHLOROPROPANE             1,2-DIBROMOETHANE             1,2-DICHLOROBENZENE             1,2-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE             1,2-DIBROMO-3-CHLOROPROPANE             1,2-DIBROMOETHANE              1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE           1,2-DICHLOROBENZENE           1,2-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE           1,2-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-DIBROMOETHANE              |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1 2-DICHI OROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-DICHLOROETHANE             |             |             |             |             |
| THE STOTIES TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-24

| LOCATION                | SB-386      | SB-386      | SB-386      | SB-387      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-386-0203 | SB-386-0405 | SB-386-0708 | SB-387-0102 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-386      | SB-386      | SB-386      | SB-387      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-386-0203 | SB-386-0405 | SB-386-0708 | SB-387-0102 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                   |                    |                    |                |
|----------------------------------|-------------------|--------------------|--------------------|----------------|
| 2-METHYLNAPHTHALENE              |                   |                    |                    |                |
| ACENAPHTHENE                     |                   |                    |                    |                |
| ACENAPHTHYLENE                   |                   |                    |                    |                |
| ANTHRACENE                       |                   |                    |                    |                |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 12 [MDL=1.4]   |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 12 [MDL=1.4]   |
| BAP EQUIVALENT-UCL               | 0.11645 [MDL=1.5] | 0.123076 [MDL=1.5] | 0.129889 [MDL=1.5] | 12 [MDL=1.4]   |
| BENZO(A)ANTHRACENE               |                   |                    |                    |                |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 12 J [MDL=1.4] |
| BENZO(B)FLUORANTHENE             |                   |                    |                    |                |
| BENZO(G,H,I)PERYLENE             |                   |                    |                    |                |
| BENZO(K)FLUORANTHENE             |                   |                    |                    |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                |
| C1-FLUORANTHENES/PYRENES         |                   |                    |                    |                |
| C1-FLUORENES                     |                   |                    |                    |                |
| C1-PHENANTHRENES/ANTHRACENES     |                   |                    |                    |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                |
| C2-FLUORENES                     |                   |                    |                    |                |
| C2-NAPHTHALENES                  |                   |                    |                    |                |
| C2-PHENANTHRENES/ANTHRACENES     |                   |                    |                    |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                |
| C3-FLUORENES                     |                   |                    |                    |                |
| C3-NAPHTHALENES                  |                   |                    |                    |                |

| LOCATION                         | SB-386         | SB-386         | SB-386        | SB-387         |
|----------------------------------|----------------|----------------|---------------|----------------|
| SAMPLE ID                        | SB-386-0203    | SB-386-0405    | SB-386-0708   | SB-387-0102    |
| SAMPLE DATE                      | 10/15/2007     | 10/15/2007     | 10/15/2007    | 10/15/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |                |                |               |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |               |                |
| C4-NAPHTHALENES                  |                |                |               |                |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |               |                |
| CHRYSENE                         |                |                |               |                |
| DIBENZO(A,H)ANTHRACENE           |                |                |               |                |
| FLUORANTHENE                     |                |                |               |                |
| FLUORENE                         |                |                |               |                |
| INDENO(1,2,3-CD)PYRENE           |                |                |               |                |
| NAPHTHALENE                      |                |                |               |                |
| PHENANTHRENE                     |                |                |               |                |
| PYRENE                           |                |                |               |                |
| TOTAL PAHS                       | 0 U [MDL=1.5]  | 0 U [MDL=1.5]  | 0 U [MDL=1.5] | 12 [MDL=1.4]   |
| PESTICIDES/PCBS (UG/KG)          |                |                |               |                |
| 4,4'-DDD                         |                |                |               |                |
| 4,4'-DDE                         |                |                |               |                |
| 4,4'-DDT                         |                |                |               |                |
| ALDRIN                           |                |                |               |                |
| ALPHA-BHC                        |                |                |               |                |
| ALPHA-CHLORDANE                  |                |                |               |                |
| AROCLOR-1016                     | 37 U [MDL=12]  | 37 U [MDL=12]  | 39 U [MDL=13] | 35 U [MDL=12]  |
| AROCLOR-1221                     | 37 U [MDL=15]  | 37 U [MDL=15]  | 39 U [MDL=15] | 35 U [MDL=14]  |
| AROCLOR-1232                     | 37 U [MDL=13]  | 37 U [MDL=13]  | 39 U [MDL=14] | 35 U [MDL=13]  |
| AROCLOR-1242                     | 37 U [MDL=16]  | 37 U [MDL=16]  | 39 U [MDL=17] | 35 U [MDL=15]  |
| AROCLOR-1248                     | 37 U [MDL=17]  | 37 U [MDL=17]  | 39 U [MDL=18] | 35 U [MDL=16]  |
| AROCLOR-1254                     | 37 U [MDL=9.9] | 37 U [MDL=9.8] | 39 U [MDL=10] | 35 U [MDL=9.4] |
| AROCLOR-1260                     | 37 U [MDL=11]  | 37 U [MDL=11]  | 39 U [MDL=12] | 35 U [MDL=10]  |
| BETA-BHC                         |                |                |               |                |
| DELTA-BHC                        |                |                |               |                |
| DIELDRIN                         |                |                |               |                |
| ENDOSULFAN I                     |                |                |               |                |
| ENDOSULFAN II                    |                |                |               |                |
| ENDOSULFAN SULFATE               |                |                |               |                |
| ENDRIN                           |                |                |               |                |
| ENDRIN ALDEHYDE                  |                |                |               |                |
| ENDRIN KETONE                    |                |                |               |                |
| GAMMA-BHC (LINDANE)              | <del>-</del>   |                |               |                |
| GAMMA-CHLORDANE                  |                |                |               |                |

# Block F Soil Remedial Action Plan Appendix

| LOCATION                       | SB-386       | SB-386       | SB-386       | SB-387       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-386-0203  | SB-386-0405  | SB-386-0708  | SB-387-0102  |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=12] | 0 U [MDL=12] | 0 U [MDL=13] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                | ·            |              | ·            | •            |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-387        | SB-387        | SB-387        | SB-388        |
| SAMPLE ID                    | SB-387-0203   | SB-387-0405   | SB-387-0708   | SB-388-0102   |
| SAMPLE DATE                  | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 91.4 [MDL=10] | 84.4 [MDL=10] | 88.8 [MDL=10] | 93.6 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
|                              |               | ·             |               |               |

| LOCATION                    | SB-387      | SB-387      | SB-387      | SB-388      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-387-0203 | SB-387-0405 | SB-387-0708 | SB-388-0102 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOCATION                       | SB-387      | SB-387      | SB-387      | SB-388      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACLOROFTHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                      | SB-387-0203 | SB-387-0405 | SB-387-0708 | SB-388-0102 |
| SOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| NITROSODIMETYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEXACHLOROETHANE               |             |             |             |             |
| NATITOSOOMETHYLAINIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISOPHORONE                     |             |             |             |             |
| NNTROSO-DH-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NITROBENZENE                   |             |             |             |             |
| NNTROSOUPHENYLAMNE PENTACHLOROPHENOL PENTACHLOROPHENOL PENTACHLOROPHENOL POLITILES (IGNKG)  1.1.1-TEICHLOROPHANE 1.1.2-TEICHLOROPHANE 1.1.2-TEICHLOROPHANE 1.1.2-TEICHLOROPHANE 1.1.2-TEICHLOROPHANE 1.1.1-DICHLOROPHANE 1.1.1-DIC | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATIES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PHENOL                         |             |             |             |             |
| 1,1,1-Z-TERACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PYRIDINE                       |             |             |             |             |
| 1.1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              | •           | •           |             |             |
| 1.1.2.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1.1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1.1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-5-THANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DI | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1.2.3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1.2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1.2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2.4-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 2,2-DICHLOROPROPANE           2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,4-DIOXANE                    |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-31

| LOCATION                | SB-387      | SB-387      | SB-387      | SB-388      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-387-0203 | SB-387-0405 | SB-387-0708 | SB-388-0102 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-387      | SB-387      | SB-387      | SB-388      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-387-0203 | SB-387-0405 | SB-387-0708 | SB-388-0102 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                    |                   |                    |               |
|----------------------------------|--------------------|-------------------|--------------------|---------------|
| 2-METHYLNAPHTHALENE              |                    |                   |                    |               |
| ACENAPHTHENE                     |                    |                   |                    |               |
| ACENAPHTHYLENE                   |                    |                   |                    |               |
| ANTHRACENE                       |                    |                   |                    |               |
| BAP EQUIVALENT-HALFND            | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 380 [MDL=1.4] |
| BAP EQUIVALENT-POS               | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 380 [MDL=1.4] |
| BAP EQUIVALENT-UCL               | 0.087868 [MDL=1.4] | 0.13689 [MDL=1.5] | 0.144084 [MDL=1.5] | 380 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                    |                   |                    |               |
| BENZO(A)PYRENE                   | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    | 380 [MDL=1.4] |
| BENZO(B)FLUORANTHENE             |                    |                   |                    |               |
| BENZO(G,H,I)PERYLENE             |                    |                   |                    |               |
| BENZO(K)FLUORANTHENE             |                    |                   |                    |               |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |               |
| C1-FLUORANTHENES/PYRENES         |                    |                   |                    |               |
| C1-FLUORENES                     |                    |                   |                    |               |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                   |                    |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |               |
| C2-FLUORENES                     |                    |                   |                    |               |
| C2-NAPHTHALENES                  |                    |                   |                    |               |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                   |                    |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                   |                    |               |
| C3-FLUORENES                     |                    |                   |                    |               |
| C3-NAPHTHALENES                  |                    |                   |                    |               |

| LOCATION                         | SB-387         | SB-387        | SB-387         | SB-388         |
|----------------------------------|----------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-387-0203    | SB-387-0405   | SB-387-0708    | SB-388-0102    |
| SAMPLE DATE                      | 10/15/2007     | 10/15/2007    | 10/15/2007     | 10/15/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |                |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |               |                |                |
| C4-NAPHTHALENES                  |                |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |                |               |                |                |
| CHRYSENE                         |                |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |                |               |                |                |
| FLUORANTHENE                     |                |               |                |                |
| FLUORENE                         |                |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |                |               |                |                |
| NAPHTHALENE                      |                |               |                |                |
| PHENANTHRENE                     |                |               |                |                |
| PYRENE                           |                |               |                |                |
| TOTAL PAHS                       | 0 U [MDL=1.4]  | 0 U [MDL=1.5] | 0 U [MDL=1.5]  | 380 [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          | •              |               | •              |                |
| 4,4'-DDD                         |                |               |                |                |
| 4,4'-DDE                         |                |               |                |                |
| 4,4'-DDT                         |                |               |                |                |
| ALDRIN                           |                |               |                |                |
| ALPHA-BHC                        |                |               |                |                |
| ALPHA-CHLORDANE                  |                |               |                |                |
| AROCLOR-1016                     | 36 U [MDL=12]  | 39 U [MDL=13] | 37 U [MDL=12]  | 35 U [MDL=12]  |
| AROCLOR-1221                     | 36 U [MDL=14]  | 39 U [MDL=15] | 37 U [MDL=15]  | 35 U [MDL=14]  |
| AROCLOR-1232                     | 36 U [MDL=13]  | 39 U [MDL=14] | 37 U [MDL=14]  | 35 U [MDL=13]  |
| AROCLOR-1242                     | 36 U [MDL=15]  | 39 U [MDL=17] | 37 U [MDL=16]  | 35 U [MDL=15]  |
| AROCLOR-1248                     | 36 U [MDL=16]  | 39 U [MDL=18] | 37 U [MDL=17]  | 35 U [MDL=16]  |
| AROCLOR-1254                     | 36 U [MDL=9.6] | 39 U [MDL=10] | 37 U [MDL=9.9] | 35 U [MDL=9.4] |
| AROCLOR-1260                     | 36 U [MDL=11]  | 39 U [MDL=12] | 37 U [MDL=11]  | 35 U [MDL=10]  |
| BETA-BHC                         |                |               |                |                |
| DELTA-BHC                        |                |               |                |                |
| DIELDRIN                         |                |               |                |                |
| ENDOSULFAN I                     |                |               |                |                |
| ENDOSULFAN II                    |                |               |                |                |
| ENDOSULFAN SULFATE               |                |               |                |                |
| ENDRIN                           |                |               |                |                |
| ENDRIN ALDEHYDE                  |                |               |                |                |
| ENDRIN KETONE                    |                |               |                |                |
| GAMMA-BHC (LINDANE)              |                |               |                |                |
| GAMMA-CHLORDANE                  |                |               |                |                |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-387       | SB-387       | SB-387       | SB-388       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-387-0203  | SB-387-0405  | SB-387-0708  | SB-388-0102  |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=12] | 0 U [MDL=13] | 0 U [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                | ·            | ·            | ·            | ·            |

| SB-388        | SB-388                 | SB-388                 | SB-388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-388-0203   | SB-388-0405            | SB-388-0708            | F-SB-388RE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10/15/2007    | 10/15/2007             | 10/15/2007             | 9/21/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 87.6 [MDL=10] | 90.8 [MDL=10]          | 90.3 [MDL=10]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | SB-388-0203 10/15/2007 | SB-388-0405 10/15/2007 | SB-388-0203 10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/2007  10/15/ |

| LOCATION                    | SB-388      | SB-388      | SB-388      | SB-388       |
|-----------------------------|-------------|-------------|-------------|--------------|
| SAMPLE ID                   | SB-388-0203 | SB-388-0405 | SB-388-0708 | F-SB-388RE-3 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 9/21/2009    |
| 2,4-DINITROTOLUENE          |             |             |             |              |
| 2,6-DINITROTOLUENE          |             |             |             |              |
| 2-CHLORONAPHTHALENE         |             |             |             |              |
| 2-CHLOROPHENOL              |             |             |             |              |
| 2-METHYLPHENOL              |             |             |             |              |
| 2-NITROANILINE              |             |             |             |              |
| 2-NITROPHENOL               |             |             |             |              |
| 3&4-METHYLPHENOL            |             |             |             |              |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |              |
| 3-NITROANILINE              |             |             |             |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |              |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |              |
| 4-CHLOROANILINE             |             |             |             |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |              |
| 4-NITROANILINE              |             |             |             |              |
| 4-NITROPHENOL               |             |             |             |              |
| ACETOPHENONE                |             |             |             |              |
| ANILINE                     |             |             |             |              |
| ATRAZINE                    |             |             |             |              |
| AZOBENZENE                  |             |             |             |              |
| BENZIDINE                   |             |             |             |              |
| BENZOIC ACID                |             |             |             |              |
| BENZYL ALCOHOL              |             |             |             |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |              |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |              |
| BUTYL BENZYL PHTHALATE      |             |             |             |              |
| CAPROLACTAM                 |             |             |             |              |
| CARBAZOLE                   |             |             |             |              |
| DIBENZOFURAN                |             |             |             |              |
| DIETHYL PHTHALATE           |             |             |             |              |
| DIMETHYL PHTHALATE          |             |             |             |              |
| DI-N-BUTYL PHTHALATE        |             |             |             |              |
| DI-N-OCTYL PHTHALATE        |             |             |             |              |
| HEXACHLOROBENZENE           |             |             |             |              |
| HEXACHLOROBUTADIENE         |             |             |             |              |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |              |

| SAMPLE IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCATION                       | SB-388      | SB-388      | SB-388      | SB-388       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|--------------|
| HEMORICH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE ID                      | SB-388-0203 | SB-388-0405 | SB-388-0708 | F-SB-388RE-3 |
| SOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 9/21/2009    |
| NITROSONMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEXACHLOROETHANE               |             |             |             |              |
| N-NITGOSODIMETHYLAMNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISOPHORONE                     |             |             |             |              |
| N-NTROSODIN-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NITROBENZENE                   |             |             |             |              |
| N-NTROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-NITROSODIMETHYLAMINE         |             |             |             |              |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |              |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |             |             |             |              |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |              |
| VOLATILES (UG/KG)   1.1.1.2 TEITRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PHENOL                         |             |             |             |              |
| 1.1,1.2-TERRACHLOROETHANE       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PYRIDINE                       |             |             |             |              |
| 1.1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              | •           | •           |             |              |
| 1.1.2.7ETRACHLOROETHANE 1.1.2.TRICHLOROTIFLUGROETHANE 1.1.2.TRICHLOROTIFLUGROETHANE 1.1.2.TRICHLOROTIFLUGROETHANE 1.1.1.DICHLOROETHANE 1.1.1.DICHLOROETHENE 1.1.1.DICHLOROETHENE 1.1.2.3.TRICHLOROBENZENE 1.2.3.TRICHLOROPROPANE 1.2.3.TRICHLOROPROPANE 1.2.3.TRICHLOROPROPANE 1.2.4.TRIMETHYLBENZENE 1.2.4.TRIMETHYLBENZENE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.1.DICHLOROPROPANE 1.2.DICHLOROPROPANE 1.2.DICHLOROPROPANE 1.2.DICHLOROPROPANE 1.2.DICHLOROPROPANE 1.2.DICHLOROPROPANE 1.3.DICHLOROPROPANE 1.3.DICHLOROPRO | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |              |
| 1.1.2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |              |
| 1,1-2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |              |
| 1,1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |              |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |              |
| 1.1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-DICHLOROETHANE             |             |             |             |              |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |              |
| 1,2,3-TRICHLOROPROPANE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-DICHLOROPROPENE            |             |             |             |              |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |             |             |             |              |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |             |             |              |
| 1,2,4-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,3-TRIMETHYLBENZENE         |             |             |             |              |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-TRICHLOROBENZENE         |             |             |             |              |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |              |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |              |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |              |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROBENZENE            |             |             |             |              |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-DICHLOROETHANE             |             |             |             |              |
| 1,3-DICHLOROBENZENE             1,3-DICHLOROPROPANE             1,3-DICHLOROPROPENE              1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-DICHLOROPROPANE            |             |             |             |              |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |             |             |             |              |
| 1,3-DICHLOROPROPENE             1,4-DICHLOROBENZENE             1,4-DIOXANE              2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3-DICHLOROBENZENE            |             |             |             |              |
| 1,4-DICHLOROBENZENE          1,4-DIOXANE          2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROPROPANE            |             |             |             |              |
| 1,4-DIOXANE               2,2-DICHLOROPROPANE                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPENE            |             |             |             |              |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-DICHLOROBENZENE            |             |             |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-DIOXANE                    |             |             |             |              |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,2-DICHLOROPROPANE            |             |             |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |              |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                              |             |             |             |              |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |              |

February 2013 Page B-38

| LOCATION                | SB-388      | SB-388      | SB-388      | SB-388       |
|-------------------------|-------------|-------------|-------------|--------------|
| SAMPLE ID               | SB-388-0203 | SB-388-0405 | SB-388-0708 | F-SB-388RE-3 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 9/21/2009    |
| 2-HEXANONE              |             |             |             |              |
| 4-CHLOROTOLUENE         |             |             |             |              |
| 4-ISOPROPYLTOLUENE      |             |             |             |              |
| 4-METHYL-2-PENTANONE    |             |             |             |              |
| ACETONE                 |             |             |             |              |
| BENZENE                 |             |             |             |              |
| BROMOBENZENE            |             |             |             |              |
| BROMOCHLOROMETHANE      |             |             |             |              |
| BROMODICHLOROMETHANE    |             |             |             |              |
| BROMOFORM               |             |             |             |              |
| BROMOMETHANE            |             |             |             |              |
| CARBON DISULFIDE        |             |             |             |              |
| CARBON TETRACHLORIDE    |             |             |             |              |
| CHLOROBENZENE           |             |             |             |              |
| CHLORODIBROMOMETHANE    |             |             |             |              |
| CHLOROETHANE            |             |             |             |              |
| CHLOROFORM              |             |             |             |              |
| CHLOROMETHANE           |             |             |             |              |
| CIS-1,2-DICHLOROETHENE  |             |             |             |              |
| CIS-1,3-DICHLOROPROPENE |             |             |             |              |
| DIBROMOMETHANE          |             |             |             |              |
| DICHLORODIFLUOROMETHANE |             |             |             |              |
| DIISOPROPYL ETHER       |             |             |             |              |
| ETHYL TERT-BUTYL ETHER  |             |             |             |              |
| ETHYLBENZENE            |             |             |             |              |
| FLUORODICHLOROMETHANE   |             |             |             |              |
| HEXACHLOROBUTADIENE     |             |             |             |              |
| ISOPROPYLBENZENE        |             |             |             |              |
| M+P-XYLENES             |             |             |             |              |
| METHYL TERT-BUTYL ETHER |             |             |             |              |
| METHYLENE CHLORIDE      |             |             |             |              |
| NAPHTHALENE             |             |             |             |              |
| N-BUTYLBENZENE          |             |             |             |              |
| N-PROPYLBENZENE         |             |             |             |              |
| O-XYLENE                |             |             |             |              |
| SEC-BUTYLBENZENE        |             |             |             |              |
| STYRENE                 | <del></del> |             | -           |              |
| TERT-AMYL METHYL ETHER  |             |             |             |              |

| LOCATION                  | SB-388      | SB-388      | SB-388      | SB-388       |
|---------------------------|-------------|-------------|-------------|--------------|
| SAMPLE ID                 | SB-388-0203 | SB-388-0405 | SB-388-0708 | F-SB-388RE-3 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 9/21/2009    |
| TERT-BUTYLBENZENE         |             |             |             |              |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |              |
| TETRACHLOROETHENE         |             |             |             |              |
| TOLUENE                   |             |             |             |              |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |              |
| TOTAL XYLENES             |             |             |             |              |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |              |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |              |
| TRICHLOROETHENE           |             |             |             |              |
| TRICHLOROFLUOROMETHANE    |             |             |             |              |
| VINYL ACETATE             |             |             |             |              |
| VINYL CHLORIDE            |             |             |             |              |
|                           |             |             |             |              |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                    |                    |                    |                      |
|----------------------------------|--------------------|--------------------|--------------------|----------------------|
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                      |
| ACENAPHTHENE                     |                    |                    |                    |                      |
| ACENAPHTHYLENE                   |                    |                    |                    |                      |
| ANTHRACENE                       |                    |                    |                    |                      |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL               | 0.151472 [MDL=1.5] | 0.115086 [MDL=1.4] | 0.145955 [MDL=1.4] |                      |
| BENZO(A)ANTHRACENE               |                    |                    |                    | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             |                    |                    |                    | 1.400000 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                      |
| BENZO(K)FLUORANTHENE             |                    |                    |                    | 2.000000 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                      |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                      |
| C1-FLUORENES                     |                    |                    |                    |                      |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                      |
| C2-FLUORENES                     |                    |                    |                    |                      |
| C2-NAPHTHALENES                  |                    |                    |                    |                      |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                      |
| C3-FLUORENES                     |                    |                    |                    |                      |
| C3-NAPHTHALENES                  |                    |                    |                    |                      |

| LOCATION                         | SB-388        | SB-388         | SB-388         | SB-388               |
|----------------------------------|---------------|----------------|----------------|----------------------|
| SAMPLE ID                        | SB-388-0203   | SB-388-0405    | SB-388-0708    | F-SB-388RE-3         |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007     | 10/15/2007     | 9/21/2009            |
| C3-PHENANTHRENES/ANTHRACENES     |               |                |                |                      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |                |                |                      |
| C4-NAPHTHALENES                  |               |                |                |                      |
| C4-PHENANTHRENES/ANTHRACENES     |               |                |                |                      |
| CHRYSENE                         |               |                |                | 1.000000 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           |               |                |                | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     |               |                |                |                      |
| FLUORENE                         |               |                |                |                      |
| INDENO(1,2,3-CD)PYRENE           |               |                |                | 1.700000 U [MDL=1.7] |
| NAPHTHALENE                      |               |                |                |                      |
| PHENANTHRENE                     |               |                |                |                      |
| PYRENE                           |               |                |                |                      |
| TOTAL PAHS                       | 0 U [MDL=1.5] | 0 U [MDL=1.4]  | 0 U [MDL=1.4]  | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          | •             |                |                | •                    |
| 4,4'-DDD                         |               |                |                |                      |
| 4,4'-DDE                         |               |                |                |                      |
| 4,4'-DDT                         |               |                |                |                      |
| ALDRIN                           |               |                |                |                      |
| ALPHA-BHC                        |               |                |                |                      |
| ALPHA-CHLORDANE                  |               |                |                |                      |
| AROCLOR-1016                     | 38 U [MDL=13] | 36 U [MDL=12]  | 37 U [MDL=12]  |                      |
| AROCLOR-1221                     | 38 U [MDL=15] | 36 U [MDL=14]  | 37 U [MDL=14]  |                      |
| AROCLOR-1232                     | 38 U [MDL=14] | 36 U [MDL=13]  | 37 U [MDL=13]  |                      |
| AROCLOR-1242                     | 38 U [MDL=16] | 36 U [MDL=15]  | 37 U [MDL=16]  |                      |
| AROCLOR-1248                     | 38 U [MDL=17] | 36 U [MDL=17]  | 37 U [MDL=17]  |                      |
| AROCLOR-1254                     | 38 U [MDL=10] | 36 U [MDL=9.7] | 37 U [MDL=9.7] |                      |
| AROCLOR-1260                     | 38 U [MDL=11] | 36 U [MDL=11]  | 37 U [MDL=11]  |                      |
| BETA-BHC                         |               |                |                |                      |
| DELTA-BHC                        |               |                |                |                      |
| DIELDRIN                         |               |                |                |                      |
| ENDOSULFAN I                     |               |                |                |                      |
| ENDOSULFAN II                    |               |                |                |                      |
| ENDOSULFAN SULFATE               |               |                |                |                      |
| ENDRIN                           |               |                |                |                      |
| ENDRIN ALDEHYDE                  |               |                |                |                      |
| ENDRIN KETONE                    |               |                |                |                      |
| GAMMA-BHC (LINDANE)              |               |                |                |                      |
| GAMMA-CHLORDANE                  |               |                |                |                      |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-388       | SB-388       | SB-388       | SB-388       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-388-0203  | SB-388-0405  | SB-388-0708  | F-SB-388RE-3 |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 9/21/2009    |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=12] | 0 U [MDL=12] |              |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                                  |                                       |              |                                       |             |
|---------------------------------------|---------------------------------------|--------------|---------------------------------------|-------------|
| LOCATION                              | SB-388                                | SB-388       | SB-389                                | SB-389      |
| SAMPLE ID                             | F-SB-388RE-4                          | F-SB-388RE-5 | SB-389-0102                           | SB-389-0203 |
| SAMPLE DATE                           | 9/21/2009                             | 9/21/2009    | 10/15/2007                            | 10/15/2007  |
| METALS (MG/KG)                        |                                       |              |                                       |             |
| ANTIMONY                              |                                       |              |                                       |             |
| ARSENIC                               |                                       |              |                                       |             |
| BARIUM                                |                                       |              |                                       |             |
| BERYLLIUM                             |                                       |              |                                       |             |
| CADMIUM                               |                                       |              |                                       |             |
| CHROMIUM                              |                                       |              |                                       |             |
| COBALT                                |                                       |              |                                       |             |
| COPPER                                |                                       |              |                                       |             |
| LEAD                                  |                                       |              |                                       |             |
| MERCURY                               |                                       |              |                                       |             |
| MOLYBDENUM                            |                                       |              |                                       |             |
| NICKEL                                |                                       |              |                                       |             |
| SELENIUM                              |                                       |              |                                       |             |
| SILVER                                |                                       |              |                                       |             |
| THALLIUM                              |                                       |              |                                       |             |
| VANADIUM                              |                                       |              |                                       |             |
| ZINC                                  |                                       |              |                                       |             |
| MISCELLANEOUS PARAMETERS              |                                       |              |                                       |             |
| PERCENT SOLIDS (%)                    |                                       |              | 91.2 [MDL=10]                         | 85 [MDL=10] |
| TOTAL SOLIDS (%)                      |                                       |              |                                       |             |
| HEXAVALENT CHROMIUM (MG/KG)           |                                       |              |                                       |             |
| TOTAL ORGANIC CARBON (MG/KG)          |                                       |              |                                       |             |
| PH (S.U.)                             |                                       |              |                                       |             |
| MERCURY (METHYL) (UG/KG)              |                                       |              |                                       |             |
| SEMIVOLATILES (UG/KG)                 |                                       |              |                                       |             |
| 1,1-BIPHENYL                          |                                       |              |                                       |             |
| 1,2,4-TRICHLOROBENZENE                |                                       |              |                                       |             |
| 1,2-DICHLOROBENZENE                   |                                       |              |                                       |             |
| 1,3-DICHLOROBENZENE                   |                                       |              |                                       |             |
| 1,4-DICHLOROBENZENE                   |                                       |              |                                       |             |
| 1,4-DIOXANE                           |                                       |              |                                       |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE)          |                                       |              |                                       |             |
| 2,4,5-TRICHLOROPHENOL                 |                                       |              |                                       |             |
| 2,4,6-TRICHLOROPHENOL                 |                                       |              |                                       |             |
| 2,4-DICHLOROPHENOL                    |                                       |              |                                       |             |
| 2,4-DIMETHYLPHENOL                    |                                       |              |                                       |             |
| 2,4-DINITROPHENOL                     |                                       |              |                                       |             |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |              | · · · · · · · · · · · · · · · · · · · |             |

| LOCATION                    | SB-388       | SB-388       | SB-389      | SB-389      |
|-----------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                   | F-SB-388RE-4 | F-SB-388RE-5 | SB-389-0102 | SB-389-0203 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |              |              |             |             |
| 2,6-DINITROTOLUENE          |              |              |             |             |
| 2-CHLORONAPHTHALENE         |              |              |             |             |
| 2-CHLOROPHENOL              |              |              |             |             |
| 2-METHYLPHENOL              |              |              |             |             |
| 2-NITROANILINE              |              |              |             |             |
| 2-NITROPHENOL               |              |              |             |             |
| 3&4-METHYLPHENOL            |              |              |             |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |             |             |
| 3-NITROANILINE              |              |              |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |             |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |             |             |
| 4-CHLOROANILINE             |              |              |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |             |             |
| 4-NITROANILINE              |              |              |             |             |
| 4-NITROPHENOL               |              |              |             |             |
| ACETOPHENONE                |              |              |             |             |
| ANILINE                     |              |              |             |             |
| ATRAZINE                    |              |              |             |             |
| AZOBENZENE                  |              |              |             |             |
| BENZIDINE                   |              |              |             |             |
| BENZOIC ACID                |              |              |             |             |
| BENZYL ALCOHOL              |              |              |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |             |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |             |             |
| BUTYL BENZYL PHTHALATE      |              |              |             |             |
| CAPROLACTAM                 |              |              |             |             |
| CARBAZOLE                   |              |              |             |             |
| DIBENZOFURAN                |              |              |             |             |
| DIETHYL PHTHALATE           |              |              |             |             |
| DIMETHYL PHTHALATE          |              |              |             |             |
| DI-N-BUTYL PHTHALATE        |              |              |             |             |
| DI-N-OCTYL PHTHALATE        |              |              |             |             |
| HEXACHLOROBENZENE           |              |              |             |             |
| HEXACHLOROBUTADIENE         |              |              |             |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |             |             |

| LOCATION                       | SB-388       | SB-388       | SB-389      | SB-389      |
|--------------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                      | F-SB-388RE-4 | F-SB-388RE-5 | SB-389-0102 | SB-389-0203 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               |              |              |             |             |
| ISOPHORONE                     |              |              |             |             |
| NITROBENZENE                   |              |              |             |             |
| N-NITROSODIMETHYLAMINE         |              |              |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |             |             |
| N-NITROSODIPHENYLAMINE         |              |              |             |             |
| PENTACHLOROPHENOL              |              |              |             |             |
| PHENOL                         |              |              |             |             |
| PYRIDINE                       |              |              |             |             |
| VOLATILES (UG/KG)              |              |              |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,1-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,2-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |             |             |
| 1,1-DICHLOROETHANE             |              |              |             |             |
| 1,1-DICHLOROETHENE             |              |              |             |             |
| 1,1-DICHLOROPROPENE            |              |              |             |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |             |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |             |             |
| 1,2-DIBROMOETHANE              |              |              |             |             |
| 1,2-DICHLOROBENZENE            |              |              |             |             |
| 1,2-DICHLOROETHANE             |              |              |             |             |
| 1,2-DICHLOROPROPANE            |              |              |             |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |             |             |
| 1,3-DICHLOROBENZENE            |              |              |             |             |
| 1,3-DICHLOROPROPANE            |              |              |             |             |
| 1,3-DICHLOROPROPENE            |              |              |             |             |
| 1,4-DICHLOROBENZENE            |              |              |             |             |
| 1,4-DIOXANE                    |              |              |             |             |
| 2,2-DICHLOROPROPANE            |              |              |             |             |
| 2-BUTANONE                     |              |              |             |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |             |             |
| 2-CHLOROTOLUENE                |              |              |             |             |

February 2013 Page B-45

| LOCATION                | SB-388       | SB-388       | SB-389      | SB-389      |
|-------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID               | F-SB-388RE-4 | F-SB-388RE-5 | SB-389-0102 | SB-389-0203 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009    | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |              |              |             |             |
| 4-CHLOROTOLUENE         |              |              |             |             |
| 4-ISOPROPYLTOLUENE      |              |              |             |             |
| 4-METHYL-2-PENTANONE    |              |              |             |             |
| ACETONE                 |              |              |             |             |
| BENZENE                 |              |              |             |             |
| BROMOBENZENE            |              |              |             |             |
| BROMOCHLOROMETHANE      |              |              |             |             |
| BROMODICHLOROMETHANE    |              |              |             |             |
| BROMOFORM               |              |              |             |             |
| BROMOMETHANE            |              |              |             |             |
| CARBON DISULFIDE        |              |              |             |             |
| CARBON TETRACHLORIDE    |              |              |             |             |
| CHLOROBENZENE           |              |              |             |             |
| CHLORODIBROMOMETHANE    |              |              |             |             |
| CHLOROETHANE            |              |              |             |             |
| CHLOROFORM              |              |              |             |             |
| CHLOROMETHANE           |              |              |             |             |
| CIS-1,2-DICHLOROETHENE  |              |              |             |             |
| CIS-1,3-DICHLOROPROPENE |              |              |             |             |
| DIBROMOMETHANE          |              |              |             |             |
| DICHLORODIFLUOROMETHANE |              |              |             |             |
| DIISOPROPYL ETHER       |              |              |             |             |
| ETHYL TERT-BUTYL ETHER  |              |              |             |             |
| ETHYLBENZENE            |              |              |             |             |
| FLUORODICHLOROMETHANE   |              |              |             |             |
| HEXACHLOROBUTADIENE     |              |              |             |             |
| ISOPROPYLBENZENE        |              |              |             |             |
| M+P-XYLENES             |              |              |             |             |
| METHYL TERT-BUTYL ETHER |              |              |             |             |
| METHYLENE CHLORIDE      |              |              |             |             |
| NAPHTHALENE             |              |              |             |             |
| N-BUTYLBENZENE          |              |              |             |             |
| N-PROPYLBENZENE         |              |              |             |             |
| O-XYLENE                |              |              |             |             |
| SEC-BUTYLBENZENE        |              |              |             |             |
| STYRENE                 |              |              |             |             |
| TERT-AMYL METHYL ETHER  |              |              |             |             |

| LOCATION                  | SB-388       | SB-388       | SB-389      | SB-389      |
|---------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                 | F-SB-388RE-4 | F-SB-388RE-5 | SB-389-0102 | SB-389-0203 |
| SAMPLE DATE               | 9/21/2009    | 9/21/2009    | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |              |              |             |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |             |             |
| TETRACHLOROETHENE         |              |              |             |             |
| TOLUENE                   |              |              |             |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |             |             |
| TOTAL XYLENES             |              |              |             |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |             |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |             |             |
| TRICHLOROETHENE           |              |              |             |             |
| TRICHLOROFLUOROMETHANE    |              |              |             |             |
| VINYL ACETATE             |              |              |             |             |
| VINYL CHLORIDE            |              |              |             |             |
|                           |              |              |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                      |                 |                 |                    |
|----------------------------------|----------------------|-----------------|-----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                      |                 |                 |                    |
| 2-METHYLNAPHTHALENE              |                      |                 |                 |                    |
| ACENAPHTHENE                     |                      |                 |                 |                    |
| ACENAPHTHYLENE                   |                      |                 |                 |                    |
| ANTHRACENE                       |                      |                 |                 |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5] | 220 [MDL=1.4]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]      | 1.5 U [MDL=1.5] | 220 [MDL=1.4]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               |                      |                 | 220 [MDL=1.4]   | 0.159057 [MDL=1.5] |
| BENZO(A)ANTHRACENE               | 1.100000 U [MDL=1.1] | 1.1 U [MDL=1.1] |                 |                    |
| BENZO(A)PYRENE                   | 1.500000 U [MDL=1.5] | 1.5 U [MDL=1.5] | 220 J [MDL=1.4] | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             | 1.400000 U [MDL=1.4] | 1.4 U [MDL=1.4] |                 |                    |
| BENZO(G,H,I)PERYLENE             |                      |                 |                 |                    |
| BENZO(K)FLUORANTHENE             | 1.900000 U [MDL=1.9] | 1.9 U [MDL=1.9] |                 |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                      |                 |                 |                    |
| C1-FLUORANTHENES/PYRENES         |                      |                 |                 |                    |
| C1-FLUORENES                     |                      |                 |                 |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                      |                 |                 |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                      |                 |                 |                    |
| C2-FLUORENES                     |                      |                 |                 |                    |
| C2-NAPHTHALENES                  |                      |                 |                 |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                      |                 |                 |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                      |                 |                 |                    |
| C3-FLUORENES                     |                      |                 |                 |                    |
| C3-NAPHTHALENES                  |                      |                 |                 |                    |

| LOCATION                         | SB-388               | SB-388          | SB-389         | SB-389        |
|----------------------------------|----------------------|-----------------|----------------|---------------|
| SAMPLE ID                        | F-SB-388RE-4         | F-SB-388RE-5    | SB-389-0102    | SB-389-0203   |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009       | 10/15/2007     | 10/15/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |                      |                 |                |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                 |                |               |
| C4-NAPHTHALENES                  |                      |                 |                |               |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                 |                |               |
| CHRYSENE                         | 1.000000 U [MDL=1]   | 1.0 U [MDL=1]   |                |               |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.5 U [MDL=1.5] |                |               |
| FLUORANTHENE                     |                      |                 |                |               |
| FLUORENE                         |                      |                 |                |               |
| INDENO(1,2,3-CD)PYRENE           | 1.700000 U [MDL=1.7] | 1.7 U [MDL=1.7] |                |               |
| NAPHTHALENE                      |                      |                 |                |               |
| PHENANTHRENE                     |                      |                 |                |               |
| PYRENE                           |                      |                 |                |               |
| TOTAL PAHS                       | 0 U [MDL=1.5]        | 0 U [MDL=1.5]   | 220 [MDL=1.4]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |                      |                 |                |               |
| 4,4'-DDD                         |                      |                 |                |               |
| 4,4'-DDE                         |                      |                 |                |               |
| 4,4'-DDT                         |                      |                 |                |               |
| ALDRIN                           |                      |                 |                |               |
| ALPHA-BHC                        |                      |                 |                |               |
| ALPHA-CHLORDANE                  |                      |                 |                |               |
| AROCLOR-1016                     |                      |                 | 36 U [MDL=12]  | 39 U [MDL=13] |
| AROCLOR-1221                     |                      |                 | 36 U [MDL=14]  | 39 U [MDL=15] |
| AROCLOR-1232                     |                      |                 | 36 U [MDL=13]  | 39 U [MDL=14] |
| AROCLOR-1242                     |                      |                 | 36 U [MDL=15]  | 39 U [MDL=16] |
| AROCLOR-1248                     |                      |                 | 36 U [MDL=16]  | 39 U [MDL=18] |
| AROCLOR-1254                     |                      |                 | 36 U [MDL=9.6] | 39 U [MDL=10] |
| AROCLOR-1260                     |                      |                 | 36 U [MDL=11]  | 39 U [MDL=12] |
| BETA-BHC                         |                      |                 |                |               |
| DELTA-BHC                        |                      |                 |                |               |
| DIELDRIN                         |                      |                 |                |               |
| ENDOSULFAN I                     |                      |                 |                |               |
| ENDOSULFAN II                    |                      |                 |                |               |
| ENDOSULFAN SULFATE               |                      |                 |                |               |
| ENDRIN                           |                      |                 |                |               |
| ENDRIN ALDEHYDE                  |                      |                 |                |               |
| ENDRIN KETONE                    |                      |                 |                |               |
| GAMMA-BHC (LINDANE)              |                      |                 |                |               |
| GAMMA-CHLORDANE                  |                      |                 |                |               |

# Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                       | SB-388       | SB-388       | SB-389       | SB-389       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-388RE-4 | F-SB-388RE-5 | SB-389-0102  | SB-389-0203  |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  |              |              | 0 U [MDL=12] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| JOIL                                   |               |               |              |              |
|----------------------------------------|---------------|---------------|--------------|--------------|
| LOCATION                               | SB-389        | SB-389        | SB-389       | SB-389       |
| SAMPLE ID                              | SB-389-0405   | SB-389-0708   | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE                            | 10/15/2007    | 10/15/2007    | 9/18/2009    | 9/18/2009    |
| METALS (MG/KG)                         |               |               |              |              |
| ANTIMONY                               |               | -             |              |              |
| ARSENIC                                |               | 1             |              |              |
| BARIUM                                 |               |               |              |              |
| BERYLLIUM                              |               |               |              |              |
| CADMIUM                                |               |               |              |              |
| CHROMIUM                               |               |               |              |              |
| COBALT                                 |               |               |              |              |
| COPPER                                 |               |               |              |              |
| EAD                                    |               |               |              |              |
| MERCURY                                |               |               |              |              |
| MOLYBDENUM                             |               |               |              |              |
| NICKEL                                 |               |               |              |              |
| SELENIUM                               |               |               |              |              |
| SILVER                                 |               |               |              |              |
| HALLIUM                                |               |               |              |              |
| /ANADIUM                               |               |               |              |              |
| ZINC                                   |               |               |              |              |
| MISCELLANEOUS PARAMETERS               | •             |               |              |              |
| PERCENT SOLIDS (%)                     | 87.5 [MDL=10] | 86.4 [MDL=10] |              |              |
| OTAL SOLIDS (%)                        |               |               |              |              |
| HEXAVALENT CHROMIUM (MG/KG)            |               |               |              |              |
| OTAL ORGANIC CARBON (MG/KG)            |               |               |              |              |
| PH (S.U.)                              |               |               |              |              |
| MERCURY (METHYL) (UG/KG)               |               |               |              |              |
| SEMIVOLATILES (UG/KG)                  | •             |               |              |              |
| ,1-BIPHENYL                            |               |               |              |              |
| ,2,4-TRICHLOROBENZENE                  |               |               |              |              |
| ,2-DICHLOROBENZENE                     |               |               |              |              |
| ,3-DICHLOROBENZENE                     |               |               |              |              |
| ,4-DICHLOROBENZENE                     |               |               |              |              |
| ,4-DIOXANE                             |               |               |              |              |
| ,2'-OXYBIS(1-CHLOROPROPANE)            |               |               |              |              |
| ,4,5-TRICHLOROPHENOL                   |               |               |              |              |
| ,4,6-TRICHLOROPHENOL                   |               |               |              |              |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               |               |              |              |
| ,4-DIMETHYLPHENOL                      |               |               |              |              |
| 2,4-DINITROPHENOL                      |               |               |              |              |

| LOCATION                    | SB-389      | SB-389      | SB-389       | SB-389       |
|-----------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                   | SB-389-0405 | SB-389-0708 | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 9/18/2009    | 9/18/2009    |
| 2,4-DINITROTOLUENE          |             |             |              |              |
| 2,6-DINITROTOLUENE          |             |             |              |              |
| 2-CHLORONAPHTHALENE         |             |             |              |              |
| 2-CHLOROPHENOL              |             |             |              |              |
| 2-METHYLPHENOL              |             |             |              |              |
| 2-NITROANILINE              |             |             |              |              |
| 2-NITROPHENOL               |             |             |              |              |
| 3&4-METHYLPHENOL            |             |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |             |              |              |
| 3-NITROANILINE              |             |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |             |              |              |
| 4-CHLOROANILINE             |             |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |              |              |
| 4-NITROANILINE              |             |             |              |              |
| 4-NITROPHENOL               |             |             |              |              |
| ACETOPHENONE                |             |             |              |              |
| ANILINE                     |             |             |              |              |
| ATRAZINE                    |             |             |              |              |
| AZOBENZENE                  |             |             |              |              |
| BENZIDINE                   |             |             |              |              |
| BENZOIC ACID                |             |             |              |              |
| BENZYL ALCOHOL              |             |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |              |              |
| BUTYL BENZYL PHTHALATE      |             |             |              |              |
| CAPROLACTAM                 |             |             |              |              |
| CARBAZOLE                   |             |             |              |              |
| DIBENZOFURAN                |             |             |              |              |
| DIETHYL PHTHALATE           |             |             |              |              |
| DIMETHYL PHTHALATE          |             |             |              |              |
| DI-N-BUTYL PHTHALATE        |             |             |              |              |
| DI-N-OCTYL PHTHALATE        |             |             |              |              |
| HEXACHLOROBENZENE           |             |             |              |              |
| HEXACHLOROBUTADIENE         |             |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |             |              |              |

| SUIL                           |             |             | 1            | T            |
|--------------------------------|-------------|-------------|--------------|--------------|
| LOCATION                       | SB-389      | SB-389      | SB-389       | SB-389       |
| SAMPLE ID                      | SB-389-0405 | SB-389-0708 | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 9/18/2009    | 9/18/2009    |
| HEXACHLOROETHANE               |             |             |              |              |
| ISOPHORONE                     |             |             |              |              |
| NITROBENZENE                   |             |             |              |              |
| N-NITROSODIMETHYLAMINE         |             |             |              |              |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |              |              |
| N-NITROSODIPHENYLAMINE         |             |             |              |              |
| PENTACHLOROPHENOL              |             |             |              |              |
| PHENOL                         |             |             |              |              |
| PYRIDINE                       |             |             |              |              |
| VOLATILES (UG/KG)              |             |             |              |              |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |              |              |
| 1,1,1-TRICHLOROETHANE          |             |             |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |              |              |
| 1,1,2-TRICHLOROETHANE          |             |             |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |              |              |
| 1,1-DICHLOROETHANE             |             |             |              |              |
| 1,1-DICHLOROETHENE             |             |             |              |              |
| 1,1-DICHLOROPROPENE            |             |             |              |              |
| 1,2,3-TRICHLOROBENZENE         |             |             |              |              |
| 1,2,3-TRICHLOROPROPANE         |             |             |              |              |
| 1,2,3-TRIMETHYLBENZENE         |             |             |              |              |
| 1,2,4-TRICHLOROBENZENE         |             |             |              |              |
| 1,2,4-TRIMETHYLBENZENE         |             |             |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |              |              |
| 1,2-DIBROMOETHANE              |             |             |              |              |
| 1,2-DICHLOROBENZENE            |             |             |              |              |
| 1,2-DICHLOROETHANE             |             |             |              |              |
| 1,2-DICHLOROPROPANE            |             |             |              |              |
| 1,3,5-TRIMETHYLBENZENE         |             |             |              |              |
| 1,3-DICHLOROBENZENE            |             |             |              |              |
| 1,3-DICHLOROPROPANE            |             |             |              |              |
| 1.3-DICHLOROPROPENE            |             |             |              |              |
| 1,4-DICHLOROBENZENE            |             |             |              |              |
| 1,4-DIOXANE                    |             |             |              |              |
| 2,2-DICHLOROPROPANE            |             |             |              |              |
| 2-BUTANONE                     |             | <u></u>     |              |              |
| 2-CHLOROETHYL VINYL ETHER      |             |             |              |              |
| 2-CHLOROTOLUENE                |             |             |              |              |
| 2-01 ILORO I OLUEINE           |             |             | <del></del>  |              |

| LOCATION                | SB-389      | SB-389      | SB-389       | SB-389       |
|-------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID               | SB-389-0405 | SB-389-0708 | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 9/18/2009    | 9/18/2009    |
| 2-HEXANONE              |             |             |              |              |
| 4-CHLOROTOLUENE         |             |             |              |              |
| 4-ISOPROPYLTOLUENE      |             |             |              |              |
| 4-METHYL-2-PENTANONE    |             |             |              |              |
| ACETONE                 |             |             |              |              |
| BENZENE                 |             |             |              |              |
| BROMOBENZENE            |             |             |              |              |
| BROMOCHLOROMETHANE      |             |             |              |              |
| BROMODICHLOROMETHANE    |             |             |              |              |
| BROMOFORM               |             |             |              |              |
| BROMOMETHANE            |             |             |              |              |
| CARBON DISULFIDE        |             |             |              |              |
| CARBON TETRACHLORIDE    |             |             |              |              |
| CHLOROBENZENE           |             |             |              |              |
| CHLORODIBROMOMETHANE    |             |             |              |              |
| CHLOROETHANE            |             |             |              |              |
| CHLOROFORM              |             |             |              |              |
| CHLOROMETHANE           |             |             |              |              |
| CIS-1,2-DICHLOROETHENE  |             |             |              |              |
| CIS-1,3-DICHLOROPROPENE |             |             |              |              |
| DIBROMOMETHANE          |             |             |              |              |
| DICHLORODIFLUOROMETHANE |             |             |              |              |
| DIISOPROPYL ETHER       |             |             |              |              |
| ETHYL TERT-BUTYL ETHER  |             |             |              |              |
| ETHYLBENZENE            |             |             |              |              |
| FLUORODICHLOROMETHANE   |             |             |              |              |
| HEXACHLOROBUTADIENE     |             |             |              |              |
| ISOPROPYLBENZENE        |             |             |              |              |
| M+P-XYLENES             |             |             |              |              |
| METHYL TERT-BUTYL ETHER |             |             |              |              |
| METHYLENE CHLORIDE      |             |             |              |              |
| NAPHTHALENE             |             |             |              |              |
| N-BUTYLBENZENE          |             |             |              |              |
| N-PROPYLBENZENE         |             |             |              |              |
| O-XYLENE                |             |             |              |              |
| SEC-BUTYLBENZENE        |             |             |              |              |
| STYRENE                 |             |             |              |              |
| TERT-AMYL METHYL ETHER  |             |             |              |              |

| LOCATION                  | SB-389      | SB-389      | SB-389       | SB-389       |
|---------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                 | SB-389-0405 | SB-389-0708 | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 9/18/2009    | 9/18/2009    |
| TERT-BUTYLBENZENE         |             |             |              |              |
| TERTIARY-BUTYL ALCOHOL    |             |             |              |              |
| TETRACHLOROETHENE         |             |             |              |              |
| TOLUENE                   |             |             |              |              |
| TOTAL 1,2-DICHLOROETHENE  |             |             |              |              |
| TOTAL XYLENES             |             |             |              |              |
| TRANS-1,2-DICHLOROETHENE  |             |             |              |              |
| TRANS-1,3-DICHLOROPROPENE |             |             |              |              |
| TRICHLOROETHENE           |             |             |              |              |
| TRICHLOROFLUOROMETHANE    |             |             |              |              |
| VINYL ACETATE             |             |             |              |              |
| VINYL CHLORIDE            |             |             |              |              |
|                           |             |             |              |              |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                |                 |                  |                  |
|----------------------------------|----------------|-----------------|------------------|------------------|
| 2-METHYLNAPHTHALENE              |                |                 |                  |                  |
| ACENAPHTHENE                     |                |                 |                  |                  |
| ACENAPHTHYLENE                   |                |                 |                  |                  |
| ANTHRACENE                       |                |                 |                  |                  |
| BAP EQUIVALENT-HALFND            | 33 [MDL=1.5]   | 9.7 [MDL=1.5]   | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-POS               | 33 [MDL=1.5]   | 9.7 [MDL=1.5]   | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-UCL               | 33 [MDL=1.5]   | 9.7 [MDL=1.5]   |                  |                  |
| BENZO(A)ANTHRACENE               |                |                 | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 33 J [MDL=1.5] | 9.7 J [MDL=1.5] | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             |                |                 | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                |                 |                  |                  |
| BENZO(K)FLUORANTHENE             |                |                 | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                |                 |                  |                  |
| C1-FLUORENES                     |                |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                 |                  |                  |
| C2-FLUORENES                     |                |                 |                  |                  |
| C2-NAPHTHALENES                  |                |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                 |                  |                  |
| C3-FLUORENES                     |                |                 |                  |                  |
| C3-NAPHTHALENES                  |                |                 |                  |                  |

| LOCATION                         | SB-389        | SB-389        | SB-389           | SB-389           |
|----------------------------------|---------------|---------------|------------------|------------------|
| SAMPLE ID                        | SB-389-0405   | SB-389-0708   | F-SB-389RE-3     | F-SB-389RE-4     |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007    | 9/18/2009        | 9/18/2009        |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                  |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                  |                  |
| C4-NAPHTHALENES                  |               |               |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                  |                  |
| CHRYSENE                         |               |               | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           |               |               | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| FLUORANTHENE                     |               |               |                  |                  |
| FLUORENE                         |               |               |                  |                  |
| INDENO(1,2,3-CD)PYRENE           |               |               | 1.80 U [MDL=1.8] | 1.80 U [MDL=1.8] |
| NAPHTHALENE                      |               |               |                  |                  |
| PHENANTHRENE                     |               |               |                  |                  |
| PYRENE                           |               |               |                  |                  |
| TOTAL PAHS                       | 33 [MDL=1.5]  | 9.7 [MDL=1.5] | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    |
| PESTICIDES/PCBS (UG/KG)          |               |               |                  |                  |
| 4,4'-DDD                         |               |               |                  |                  |
| 4,4'-DDE                         |               |               |                  |                  |
| 4,4'-DDT                         |               |               |                  |                  |
| ALDRIN                           |               |               |                  |                  |
| ALPHA-BHC                        |               |               |                  |                  |
| ALPHA-CHLORDANE                  |               |               |                  |                  |
| AROCLOR-1016                     | 38 U [MDL=13] | 38 U [MDL=13] |                  |                  |
| AROCLOR-1221                     | 38 U [MDL=15] | 38 U [MDL=15] |                  |                  |
| AROCLOR-1232                     | 38 U [MDL=14] | 38 U [MDL=14] |                  |                  |
| AROCLOR-1242                     | 38 U [MDL=16] | 38 U [MDL=16] |                  |                  |
| AROCLOR-1248                     | 38 U [MDL=17] | 38 U [MDL=17] |                  |                  |
| AROCLOR-1254                     | 38 U [MDL=10] | 38 U [MDL=10] |                  |                  |
| AROCLOR-1260                     | 38 U [MDL=11] | 38 U [MDL=11] |                  |                  |
| BETA-BHC                         |               |               |                  |                  |
| DELTA-BHC                        |               |               |                  |                  |
| DIELDRIN                         |               |               |                  |                  |
| ENDOSULFAN I                     |               |               |                  |                  |
| ENDOSULFAN II                    |               |               |                  |                  |
| ENDOSULFAN SULFATE               |               |               |                  |                  |
| ENDRIN                           |               |               |                  |                  |
| ENDRIN ALDEHYDE                  |               |               |                  |                  |
| ENDRIN KETONE                    |               |               |                  |                  |
| GAMMA-BHC (LINDANE)              |               |               |                  |                  |
| GAMMA-CHLORDANE                  |               |               |                  |                  |

# Block F Soil Remedial Action Plan Appendix

| LOCATION                       | SB-389       | SB-389       | SB-389       | SB-389       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-389-0405  | SB-389-0708  | F-SB-389RE-3 | F-SB-389RE-4 |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 9/18/2009    | 9/18/2009    |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] |              |              |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      | 1            |              | ŀ            | 1            |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          | 1            |              | ŀ            | 1            |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |             |               |               |               |
|------------------------------|-------------|---------------|---------------|---------------|
| LOCATION                     | SB-390      | SB-390        | SB-390        | SB-390        |
| SAMPLE ID                    | SB-390-0102 | SB-390-0203   | SB-390-0405   | SB-390-0708   |
| SAMPLE DATE                  | 10/15/2007  | 10/15/2007    | 10/15/2007    | 10/15/2007    |
| METALS (MG/KG)               |             |               |               |               |
| ANTIMONY                     |             |               |               |               |
| ARSENIC                      |             |               |               |               |
| BARIUM                       |             |               |               |               |
| BERYLLIUM                    |             |               |               |               |
| CADMIUM                      |             |               |               |               |
| CHROMIUM                     |             |               |               |               |
| COBALT                       |             |               |               |               |
| COPPER                       |             |               |               |               |
| LEAD                         |             |               |               |               |
| MERCURY                      |             |               |               |               |
| MOLYBDENUM                   |             |               |               |               |
| NICKEL                       |             |               |               |               |
| SELENIUM                     |             |               |               |               |
| SILVER                       |             |               |               |               |
| THALLIUM                     |             |               |               |               |
| VANADIUM                     |             |               |               |               |
| ZINC                         |             |               |               |               |
| MISCELLANEOUS PARAMETERS     |             |               |               | •             |
| PERCENT SOLIDS (%)           | 87 [MDL=10] | 78.4 [MDL=10] | 82.8 [MDL=10] | 82.3 [MDL=10] |
| TOTAL SOLIDS (%)             |             |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |             |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |             |               |               |               |
| PH (S.U.)                    |             |               |               |               |
| MERCURY (METHYL) (UG/KG)     |             |               |               |               |
| SEMIVOLATILES (UG/KG)        |             |               |               |               |
| 1,1-BIPHENYL                 |             |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |             |               |               |               |
| 1,2-DICHLOROBENZENE          |             |               |               |               |
| 1,3-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DIOXANE                  |             |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |             |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |             |               |               |               |
| 2,4-DICHLOROPHENOL           |             |               |               |               |
| 2,4-DIMETHYLPHENOL           |             |               |               |               |
| 2,4-DINITROPHENOL            |             |               |               |               |

| LOCATION                    | SB-390      | SB-390      | SB-390      | SB-390      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-390-0102 | SB-390-0203 | SB-390-0405 | SB-390-0708 |
| SAMPLE DATE                 | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-390      | SB-390      | SB-390      | SB-390      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-390-0102 | SB-390-0203 | SB-390-0405 | SB-390-0708 |
| SAMPLE DATE                    | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |

February 2013 Page B-59

--

--

--

--

| LOCATION                | SB-390      | SB-390      | SB-390      | SB-390      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-390-0102 | SB-390-0203 | SB-390-0405 | SB-390-0708 |
| SAMPLE DATE             | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-390      | SB-390      | SB-390      | SB-390      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-390-0102 | SB-390-0203 | SB-390-0405 | SB-390-0708 |
| SAMPLE DATE               | 10/15/2007  | 10/15/2007  | 10/15/2007  | 10/15/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · · · · · · · · · · · · · · · · · · · |                 |                   |               |                    |
|---------------------------------------|-----------------|-------------------|---------------|--------------------|
| 1-METHYLNAPHTHALENE                   |                 |                   |               |                    |
| 2-METHYLNAPHTHALENE                   |                 |                   |               |                    |
| ACENAPHTHENE                          |                 |                   |               |                    |
| ACENAPHTHYLENE                        |                 |                   |               |                    |
| ANTHRACENE                            |                 |                   |               |                    |
| BAP EQUIVALENT-HALFND                 | 9.9 [MDL=1.5]   | 1.7 U [MDL=1.7]   | 990 [MDL=1.6] | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-POS                    | 9.9 [MDL=1.5]   | 1.7 U [MDL=1.7]   | 990 [MDL=1.6] | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-UCL                    | 9.9 [MDL=1.5]   | 0.81015 [MDL=1.7] | 990 [MDL=1.6] | 0.044401 [MDL=1.6] |
| BENZO(A)ANTHRACENE                    |                 |                   |               |                    |
| BENZO(A)PYRENE                        | 9.9 J [MDL=1.5] | 1.7 U [MDL=1.7]   | 990 [MDL=1.6] | 1.6 U [MDL=1.6]    |
| BENZO(B)FLUORANTHENE                  |                 |                   |               |                    |
| BENZO(G,H,I)PERYLENE                  |                 |                   |               |                    |
| BENZO(K)FLUORANTHENE                  |                 |                   |               |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                   |               |                    |
| C1-FLUORANTHENES/PYRENES              |                 |                   |               |                    |
| C1-FLUORENES                          |                 |                   |               |                    |
| C1-PHENANTHRENES/ANTHRACENES          |                 |                   |               |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                   |               |                    |
| C2-FLUORENES                          |                 |                   |               |                    |
| C2-NAPHTHALENES                       |                 |                   |               |                    |
| C2-PHENANTHRENES/ANTHRACENES          |                 |                   |               |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                   |               |                    |
| C3-FLUORENES                          |                 |                   |               |                    |
| C3-NAPHTHALENES                       |                 |                   |               |                    |
|                                       |                 |                   |               |                    |

| LOCATION                         | SB-390        | SB-390        | SB-390        | SB-390        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-390-0102   | SB-390-0203   | SB-390-0405   | SB-390-0708   |
| SAMPLE DATE                      | 10/15/2007    | 10/15/2007    | 10/15/2007    | 10/15/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 9.9 [MDL=1.5] | 0 U [MDL=1.7] | 990 [MDL=1.6] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 38 U [MDL=13] | 42 U [MDL=14] | 40 U [MDL=13] | 40 U [MDL=13] |
| AROCLOR-1221                     | 38 U [MDL=15] | 42 U [MDL=17] | 40 U [MDL=16] | 40 U [MDL=16] |
| AROCLOR-1232                     | 38 U [MDL=14] | 42 U [MDL=15] | 40 U [MDL=15] | 40 U [MDL=15] |
| AROCLOR-1242                     | 38 U [MDL=16] | 42 U [MDL=18] | 40 U [MDL=17] | 40 U [MDL=17] |
| AROCLOR-1248                     | 38 U [MDL=17] | 42 U [MDL=19] | 40 U [MDL=18] | 40 U [MDL=18] |
| AROCLOR-1254                     | 38 U [MDL=10] | 42 U [MDL=11] | 40 U [MDL=11] | 40 U [MDL=11] |
| AROCLOR-1260                     | 38 U [MDL=11] | 42 U [MDL=12] | 40 U [MDL=12] | 40 U [MDL=12] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              | <del>-</del>  |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                       | SB-390       | SB-390       | SB-390       | SB-390       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-390-0102  | SB-390-0203  | SB-390-0405  | SB-390-0708  |
| SAMPLE DATE                    | 10/15/2007   | 10/15/2007   | 10/15/2007   | 10/15/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=13] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              | -1           |              |              |
| TOXAPHENE                      |              | 1            |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              | 1            |              |              |
| GASOLINE RANGE ORGANICS        |              | 1            |              |              |
| TPH (C09-C36)                  |              |              |              |              |
| <u> </u>                       |              |              |              | ·            |

| JOIL                         |              | _            |               |               |
|------------------------------|--------------|--------------|---------------|---------------|
| LOCATION                     | SB-390       | SB-390       | SB-391        | SB-391        |
| SAMPLE ID                    | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102   | SB-391-0203   |
| SAMPLE DATE                  | 9/18/2009    | 9/18/2009    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |              |              |               |               |
| ANTIMONY                     |              |              |               |               |
| ARSENIC                      |              |              |               |               |
| BARIUM                       |              |              |               |               |
| BERYLLIUM                    |              |              |               |               |
| CADMIUM                      |              |              |               |               |
| CHROMIUM                     |              |              |               |               |
| COBALT                       |              |              |               |               |
| COPPER                       |              |              |               |               |
| LEAD                         |              |              |               |               |
| MERCURY                      |              |              |               |               |
| MOLYBDENUM                   |              |              |               |               |
| NICKEL                       |              |              |               |               |
| SELENIUM                     |              |              |               |               |
| SILVER                       |              |              |               |               |
| THALLIUM                     |              |              |               |               |
| VANADIUM                     |              |              |               |               |
| ZINC                         |              |              |               |               |
| MISCELLANEOUS PARAMETERS     | •            |              | •             |               |
| PERCENT SOLIDS (%)           |              |              | 83.6 [MDL=10] | 65.8 [MDL=10] |
| TOTAL SOLIDS (%)             |              |              |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |               |               |
| PH (S.U.)                    |              |              |               |               |
| MERCURY (METHYL) (UG/KG)     |              |              |               |               |
| SEMIVOLATILES (UG/KG)        | •            |              | •             |               |
| 1,1-BIPHENYL                 |              |              |               |               |
| 1,2,4-TRICHLOROBENZENE       |              |              |               |               |
| 1,2-DICHLOROBENZENE          |              |              |               |               |
| 1,3-DICHLOROBENZENE          |              |              |               |               |
| 1,4-DICHLOROBENZENE          |              |              |               |               |
| 1,4-DIOXANE                  |              |              |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |               |               |
| 2,4,5-TRICHLOROPHENOL        |              |              |               |               |
| 2,4,6-TRICHLOROPHENOL        |              |              |               |               |
| 2,4-DICHLOROPHENOL           |              |              |               |               |
| 2,4-DIMETHYLPHENOL           |              |              |               |               |
| 2,4-DINITROPHENOL            |              |              |               |               |
| <u> </u>                     | <u>i</u>     | 1            |               |               |

| LOCATION                    | SB-390       | SB-390       | SB-391      | SB-391      |
|-----------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                   | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102 | SB-391-0203 |
| SAMPLE DATE                 | 9/18/2009    | 9/18/2009    | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |              |              |             |             |
| 2,6-DINITROTOLUENE          |              |              |             |             |
| 2-CHLORONAPHTHALENE         |              |              |             |             |
| 2-CHLOROPHENOL              |              |              |             |             |
| 2-METHYLPHENOL              |              |              |             |             |
| 2-NITROANILINE              |              |              |             |             |
| 2-NITROPHENOL               |              |              |             |             |
| 3&4-METHYLPHENOL            |              |              |             |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |             |             |
| 3-NITROANILINE              |              |              |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |             |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |             |             |
| 4-CHLOROANILINE             |              |              |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |             |             |
| 4-NITROANILINE              |              |              |             |             |
| 4-NITROPHENOL               |              |              |             |             |
| ACETOPHENONE                |              |              |             |             |
| ANILINE                     |              |              |             |             |
| ATRAZINE                    |              |              |             |             |
| AZOBENZENE                  |              |              |             |             |
| BENZIDINE                   |              |              |             |             |
| BENZOIC ACID                |              |              |             |             |
| BENZYL ALCOHOL              |              |              |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |             |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |             |             |
| BUTYL BENZYL PHTHALATE      |              |              |             |             |
| CAPROLACTAM                 |              |              |             |             |
| CARBAZOLE                   |              |              |             |             |
| DIBENZOFURAN                |              |              |             |             |
| DIETHYL PHTHALATE           |              |              |             |             |
| DIMETHYL PHTHALATE          |              |              |             |             |
| DI-N-BUTYL PHTHALATE        |              |              |             |             |
| DI-N-OCTYL PHTHALATE        |              |              |             |             |
| HEXACHLOROBENZENE           |              |              |             |             |
| HEXACHLOROBUTADIENE         |              |              |             |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |             |             |

| LOCATION                       | SB-390       | SB-390       | SB-391      | SB-391      |
|--------------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                      | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102 | SB-391-0203 |
| SAMPLE DATE                    | 9/18/2009    | 9/18/2009    | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |              |              |             |             |
| ISOPHORONE                     |              |              |             |             |
| NITROBENZENE                   |              |              |             |             |
| N-NITROSODIMETHYLAMINE         |              |              |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |             |             |
| N-NITROSODIPHENYLAMINE         |              |              |             |             |
| PENTACHLOROPHENOL              |              |              |             |             |
| PHENOL                         |              |              |             |             |
| PYRIDINE                       |              |              |             |             |
| VOLATILES (UG/KG)              |              |              |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,1-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,2-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |             |             |
| 1,1-DICHLOROETHANE             |              |              |             |             |
| 1,1-DICHLOROETHENE             |              |              |             |             |
| 1,1-DICHLOROPROPENE            |              |              |             |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |             |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |             |             |
| 1,2-DIBROMOETHANE              |              |              |             |             |
| 1,2-DICHLOROBENZENE            |              |              |             |             |
| 1,2-DICHLOROETHANE             |              |              |             |             |
| 1,2-DICHLOROPROPANE            |              |              |             |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |             |             |
| 1,3-DICHLOROBENZENE            |              |              |             |             |
| 1,3-DICHLOROPROPANE            |              |              |             |             |
| 1,3-DICHLOROPROPENE            |              |              |             |             |
| 1,4-DICHLOROBENZENE            |              |              |             |             |
| 1,4-DIOXANE                    |              |              |             |             |
| 2,2-DICHLOROPROPANE            |              |              |             |             |
| 2-BUTANONE                     |              |              |             |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |             |             |
| 2-CHLOROTOLUENE                |              |              |             |             |

February 2013 Page B-66

| LOCATION                | SB-390       | SB-390       | SB-391      | SB-391      |
|-------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID               | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102 | SB-391-0203 |
| SAMPLE DATE             | 9/18/2009    | 9/18/2009    | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |              |              |             |             |
| 4-CHLOROTOLUENE         |              |              |             |             |
| 4-ISOPROPYLTOLUENE      |              |              |             |             |
| 4-METHYL-2-PENTANONE    |              |              |             |             |
| ACETONE                 |              |              |             |             |
| BENZENE                 |              |              |             |             |
| BROMOBENZENE            |              |              |             |             |
| BROMOCHLOROMETHANE      |              |              |             |             |
| BROMODICHLOROMETHANE    |              |              |             |             |
| BROMOFORM               |              |              |             |             |
| BROMOMETHANE            |              |              |             |             |
| CARBON DISULFIDE        |              |              |             |             |
| CARBON TETRACHLORIDE    |              |              |             |             |
| CHLOROBENZENE           |              |              |             |             |
| CHLORODIBROMOMETHANE    |              |              |             |             |
| CHLOROETHANE            |              |              |             |             |
| CHLOROFORM              |              |              |             |             |
| CHLOROMETHANE           |              |              |             |             |
| CIS-1,2-DICHLOROETHENE  |              |              |             |             |
| CIS-1,3-DICHLOROPROPENE |              |              |             |             |
| DIBROMOMETHANE          |              |              |             |             |
| DICHLORODIFLUOROMETHANE |              |              |             |             |
| DIISOPROPYL ETHER       |              |              |             |             |
| ETHYL TERT-BUTYL ETHER  |              |              |             |             |
| ETHYLBENZENE            |              |              |             |             |
| FLUORODICHLOROMETHANE   |              |              |             |             |
| HEXACHLOROBUTADIENE     |              |              |             |             |
| ISOPROPYLBENZENE        |              |              |             |             |
| M+P-XYLENES             |              |              |             |             |
| METHYL TERT-BUTYL ETHER |              |              |             |             |
| METHYLENE CHLORIDE      |              |              |             |             |
| NAPHTHALENE             |              |              |             |             |
| N-BUTYLBENZENE          |              |              |             |             |
| N-PROPYLBENZENE         |              |              |             |             |
| O-XYLENE                |              |              |             |             |
| SEC-BUTYLBENZENE        |              |              |             |             |
| STYRENE                 |              |              |             |             |
| TERT-AMYL METHYL ETHER  |              |              |             |             |

| LOCATION                  | SB-390       | SB-390       | SB-391      | SB-391      |
|---------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                 | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102 | SB-391-0203 |
| SAMPLE DATE               | 9/18/2009    | 9/18/2009    | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |              |              |             |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |             |             |
| TETRACHLOROETHENE         |              |              |             |             |
| TOLUENE                   |              |              |             |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |             |             |
| TOTAL XYLENES             |              |              |             |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |             |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |             |             |
| TRICHLOROETHENE           |              |              |             |             |
| TRICHLOROFLUOROMETHANE    |              |              |             |             |
| VINYL ACETATE             |              |              |             |             |
| VINYL CHLORIDE            |              |              |             |             |
|                           |              |              |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                  |                  |                    |                  |
|----------------------------------|------------------|------------------|--------------------|------------------|
| 2-METHYLNAPHTHALENE              |                  |                  |                    |                  |
| ACENAPHTHENE                     |                  |                  |                    |                  |
| ACENAPHTHYLENE                   |                  |                  |                    |                  |
| ANTHRACENE                       |                  |                  |                    |                  |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 1.6 U [MDL=1.6]    | 2 U [MDL=2]      |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 1.6 U [MDL=1.6]    | 2 U [MDL=2]      |
| BAP EQUIVALENT-UCL               |                  |                  | 0.051892 [MDL=1.6] | 1.222189 [MDL=2] |
| BENZO(A)ANTHRACENE               | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |                    |                  |
| BENZO(A)PYRENE                   | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 1.6 U [MDL=1.6]    | 2 U [MDL=2]      |
| BENZO(B)FLUORANTHENE             | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] |                    |                  |
| BENZO(G,H,I)PERYLENE             |                  |                  |                    |                  |
| BENZO(K)FLUORANTHENE             | 2.00 U [MDL=2]   | 1.90 U [MDL=1.9] |                    |                  |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                    |                  |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                    |                  |
| C1-FLUORENES                     |                  |                  |                    |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                    |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                    |                  |
| C2-FLUORENES                     |                  |                  |                    |                  |
| C2-NAPHTHALENES                  |                  |                  |                    |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                    |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                    |                  |
| C3-FLUORENES                     |                  |                  |                    |                  |
| C3-NAPHTHALENES                  |                  |                  |                    |                  |

| LOCATION                         | SB-390           | SB-390           | SB-391        | SB-391        |
|----------------------------------|------------------|------------------|---------------|---------------|
| SAMPLE ID                        | F-SB-390RE-6     | F-SB-390RE-7     | SB-391-0102   | SB-391-0203   |
| SAMPLE DATE                      | 9/18/2009        | 9/18/2009        | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |                  |                  |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |               |               |
| C4-NAPHTHALENES                  |                  |                  |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                  |               |               |
| CHRYSENE                         | 1.00 U [MDL=1]   | 1.00 U [MDL=1]   |               |               |
| DIBENZO(A,H)ANTHRACENE           | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |               |               |
| FLUORANTHENE                     |                  |                  |               |               |
| FLUORENE                         |                  |                  |               |               |
| INDENO(1,2,3-CD)PYRENE           | 1.70 U [MDL=1.7] | 1.70 U [MDL=1.7] |               |               |
| NAPHTHALENE                      |                  |                  |               |               |
| PHENANTHRENE                     |                  |                  |               |               |
| PYRENE                           |                  |                  |               |               |
| TOTAL PAHS                       | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    | 0 U [MDL=1.6] | 0 U [MDL=2]   |
| PESTICIDES/PCBS (UG/KG)          | •                |                  |               |               |
| 4,4'-DDD                         |                  |                  |               |               |
| 4,4'-DDE                         |                  |                  |               |               |
| 4,4'-DDT                         |                  |                  |               |               |
| ALDRIN                           |                  |                  |               |               |
| ALPHA-BHC                        |                  |                  |               |               |
| ALPHA-CHLORDANE                  |                  |                  |               |               |
| AROCLOR-1016                     |                  |                  | 39 U [MDL=13] | 50 U [MDL=17] |
| AROCLOR-1221                     |                  |                  | 39 U [MDL=16] | 50 U [MDL=20] |
| AROCLOR-1232                     |                  |                  | 39 U [MDL=14] | 50 U [MDL=18] |
| AROCLOR-1242                     |                  |                  | 39 U [MDL=17] | 50 U [MDL=21] |
| AROCLOR-1248                     |                  |                  | 39 U [MDL=18] | 50 U [MDL=23] |
| AROCLOR-1254                     |                  |                  | 39 U [MDL=11] | 50 U [MDL=13] |
| AROCLOR-1260                     |                  |                  | 39 U [MDL=12] | 50 U [MDL=15] |
| BETA-BHC                         |                  |                  |               |               |
| DELTA-BHC                        |                  |                  |               |               |
| DIELDRIN                         |                  |                  |               |               |
| ENDOSULFAN I                     |                  |                  |               |               |
| ENDOSULFAN II                    |                  |                  |               |               |
| ENDOSULFAN SULFATE               |                  |                  |               |               |
| ENDRIN                           |                  |                  |               |               |
| ENDRIN ALDEHYDE                  |                  |                  |               |               |
| ENDRIN KETONE                    |                  |                  |               |               |
| GAMMA-BHC (LINDANE)              |                  |                  |               |               |
| GAMMA-CHLORDANE                  |                  |                  |               |               |

# Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                       | SB-390       | SB-390       | SB-391       | SB-391       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | F-SB-390RE-6 | F-SB-390RE-7 | SB-391-0102  | SB-391-0203  |
| SAMPLE DATE                    | 9/18/2009    | 9/18/2009    | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  |              |              | 0 U [MDL=13] | 0 U [MDL=17] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                | ·            | ·            | ·            | ·            |

| SOIL                         |             |               |               |               |
|------------------------------|-------------|---------------|---------------|---------------|
| LOCATION                     | SB-391      | SB-391        | SB-392        | SB-392        |
| SAMPLE ID                    | SB-391-0405 | SB-391-0708   | SB-392-0102   | SB-392-0203   |
| SAMPLE DATE                  | 10/16/2007  | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |             |               |               |               |
| ANTIMONY                     |             |               |               |               |
| ARSENIC                      |             |               |               |               |
| BARIUM                       |             |               |               |               |
| BERYLLIUM                    |             |               |               |               |
| CADMIUM                      |             |               |               |               |
| CHROMIUM                     |             |               |               |               |
| COBALT                       |             |               |               |               |
| COPPER                       |             |               |               |               |
| LEAD                         |             |               |               |               |
| MERCURY                      |             |               |               |               |
| MOLYBDENUM                   |             |               |               |               |
| NICKEL                       |             |               |               |               |
| SELENIUM                     |             |               |               |               |
| SILVER                       |             |               |               |               |
| THALLIUM                     |             |               |               |               |
| VANADIUM                     |             |               |               |               |
| ZINC                         |             |               |               |               |
| MISCELLANEOUS PARAMETERS     |             |               |               | •             |
| PERCENT SOLIDS (%)           | 87 [MDL=10] | 85.3 [MDL=10] | 90.3 [MDL=10] | 89.3 [MDL=10] |
| TOTAL SOLIDS (%)             |             |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |             |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |             |               |               |               |
| PH (S.U.)                    |             |               |               |               |
| MERCURY (METHYL) (UG/KG)     |             |               |               |               |
| SEMIVOLATILES (UG/KG)        |             |               |               |               |
| 1,1-BIPHENYL                 |             |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |             |               |               |               |
| 1,2-DICHLOROBENZENE          |             |               |               |               |
| 1,3-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DIOXANE                  |             |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |             |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |             |               |               |               |
| 2,4-DICHLOROPHENOL           |             |               |               |               |
| 2,4-DIMETHYLPHENOL           |             |               |               |               |
| 2,4-DINITROPHENOL            |             |               |               |               |

| LOCATION                    | SB-391      | SB-391      | SB-392      | SB-392      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-391-0405 | SB-391-0708 | SB-392-0102 | SB-392-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-391      | SB-391      | SB-392      | SB-392      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-391-0405 | SB-391-0708 | SB-392-0102 | SB-392-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             | <del></del> |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             | -           |
| 1,2-DICHLOROETHANE             |             |             |             | -           |
| 1,2-DICHLOROPROPANE            |             |             |             | -           |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             | -           |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

| LOCATION                | SB-391      | SB-391      | SB-392      | SB-392      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-391-0405 | SB-391-0708 | SB-392-0102 | SB-392-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-391      | SB-391      | SB-392      | SB-392      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-391-0405 | SB-391-0708 | SB-392-0102 | SB-392-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                | ,                  |                    |                    |                    |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| ACENAPHTHENE                     |                    |                    |                    |                    |
| ACENAPHTHYLENE                   |                    |                    |                    |                    |
| ANTHRACENE                       |                    |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 0.166843 [MDL=1.5] | 0.174833 [MDL=1.5] | 0.180721 [MDL=1.4] | 0.183029 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                    |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                    |
| C1-FLUORENES                     |                    |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C2-FLUORENES                     |                    |                    |                    |                    |
| C2-NAPHTHALENES                  |                    |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C3-FLUORENES                     |                    |                    |                    |                    |
| C3-NAPHTHALENES                  |                    |                    |                    |                    |
|                                  |                    |                    |                    |                    |

| LOCATION                         | SB-391        | SB-391        | SB-392         | SB-392         |
|----------------------------------|---------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-391-0405   | SB-391-0708   | SB-392-0102    | SB-392-0203    |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007     | 10/16/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |                |
| C4-NAPHTHALENES                  |               |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| CHRYSENE                         |               |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |                |
| FLUORANTHENE                     |               |               |                |                |
| FLUORENE                         |               |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |                |
| NAPHTHALENE                      |               |               |                |                |
| PHENANTHRENE                     |               |               |                |                |
| PYRENE                           |               |               |                |                |
| TOTAL PAHS                       | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.4]  | 0 U [MDL=1.5]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |                |                |
| 4,4'-DDD                         |               |               |                |                |
| 4,4'-DDE                         |               |               |                |                |
| 4,4'-DDT                         |               |               |                |                |
| ALDRIN                           |               |               |                |                |
| ALPHA-BHC                        |               |               |                |                |
| ALPHA-CHLORDANE                  |               |               |                |                |
| AROCLOR-1016                     | 38 U [MDL=13] | 39 U [MDL=13] | 37 U [MDL=12]  | 37 U [MDL=12]  |
| AROCLOR-1221                     | 38 U [MDL=15] | 39 U [MDL=15] | 37 U [MDL=14]  | 37 U [MDL=15]  |
| AROCLOR-1232                     | 38 U [MDL=14] | 39 U [MDL=14] | 37 U [MDL=13]  | 37 U [MDL=13]  |
| AROCLOR-1242                     | 38 U [MDL=16] | 39 U [MDL=16] | 37 U [MDL=16]  | 37 U [MDL=16]  |
| AROCLOR-1248                     | 38 U [MDL=17] | 39 U [MDL=18] | 37 U [MDL=17]  | 37 U [MDL=17]  |
| AROCLOR-1254                     | 38 U [MDL=10] | 39 U [MDL=10] | 37 U [MDL=9.8] | 37 U [MDL=9.9] |
| AROCLOR-1260                     | 38 U [MDL=11] | 39 U [MDL=11] | 37 U [MDL=11]  | 37 U [MDL=11]  |
| BETA-BHC                         |               |               |                |                |
| DELTA-BHC                        |               |               |                |                |
| DIELDRIN                         |               |               |                |                |
| ENDOSULFAN I                     |               |               |                |                |
| ENDOSULFAN II                    |               |               |                |                |
| ENDOSULFAN SULFATE               |               |               |                |                |
| ENDRIN                           |               |               |                |                |
| ENDRIN ALDEHYDE                  |               |               |                |                |
| ENDRIN KETONE                    |               |               |                |                |
| GAMMA-BHC (LINDANE)              |               |               |                |                |
| GAMMA-CHLORDANE                  |               |               |                |                |

# Block F Soil Remedial Action Plan Appendix

| SB-391       | SB-391                                 | SB-392                                            | SB-392                                                                                                                                     |
|--------------|----------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| SB-391-0405  | SB-391-0708                            | SB-392-0102                                       | SB-392-0203                                                                                                                                |
| 10/16/2007   | 10/16/2007                             | 10/16/2007                                        | 10/16/2007                                                                                                                                 |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
| 0 U [MDL=13] | 0 U [MDL=13]                           | 0 U [MDL=12]                                      | 0 U [MDL=12]                                                                                                                               |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              |                                        |                                                   |                                                                                                                                            |
|              | SB-391-0405<br>10/16/2007 0 U [MDL=13] | SB-391-0405 10/16/2007  0 U [MDL=13] 0 U [MDL=13] | SB-391-0405     SB-391-0708     SB-392-0102       10/16/2007     10/16/2007               0 U [MDL=13]     0 U [MDL=13]       0 U [MDL=12] |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-392        | SB-392        | SB-393        | SB-393        |
| SAMPLE ID                    | SB-392-0405   | SB-392-0708   | SB-393-0102   | SB-393-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 84.9 [MDL=10] | 84.4 [MDL=10] | 94.6 [MDL=10] | 92.6 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
| 1                            |               |               |               |               |

| LOCATION                    | SB-392      | SB-392      | SB-393      | SB-393      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-392-0405 | SB-392-0708 | SB-393-0102 | SB-393-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-392      | SB-392      | SB-393      | SB-393      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-392-0405 | SB-392-0708 | SB-393-0102 | SB-393-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| SOPHORONE                      |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             | <del></del> |
| PHENOL                         |             |             |             | <del></del> |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           | •           |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             | <del></del> |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             | <del></del> |
| 1,2-DIBROMOETHANE              |             |             |             | <del></del> |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

| LOCATION                | SB-392      | SB-392      | SB-393      | SB-393      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-392-0405 | SB-392-0708 | SB-393-0102 | SB-393-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-392      | SB-392      | SB-393      | SB-393      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-392-0405 | SB-392-0708 | SB-393-0102 | SB-393-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                |                    |               |                    |
|----------------------------------|----------------|--------------------|---------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                    |               |                    |
| 2-METHYLNAPHTHALENE              |                |                    |               |                    |
| ACENAPHTHENE                     |                |                    |               |                    |
| ACENAPHTHYLENE                   |                |                    |               |                    |
| ANTHRACENE                       |                |                    |               |                    |
| BAP EQUIVALENT-HALFND            | 20 [MDL=1.5]   | 1.5 U [MDL=1.5]    | 450 [MDL=1.4] | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 20 [MDL=1.5]   | 1.5 U [MDL=1.5]    | 450 [MDL=1.4] | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 20 [MDL=1.5]   | 0.191435 [MDL=1.5] | 450 [MDL=1.4] | 0.219655 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                |                    |               |                    |
| BENZO(A)PYRENE                   | 20 J [MDL=1.5] | 1.5 U [MDL=1.5]    | 450 [MDL=1.4] | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                |                    |               |                    |
| BENZO(G,H,I)PERYLENE             |                |                    |               |                    |
| BENZO(K)FLUORANTHENE             |                |                    |               |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C1-FLUORANTHENES/PYRENES         |                |                    |               |                    |
| C1-FLUORENES                     |                |                    |               |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                    |               |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C2-FLUORENES                     |                |                    |               |                    |
| C2-NAPHTHALENES                  |                |                    |               |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                    |               |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C3-FLUORENES                     |                |                    |               |                    |
| C3-NAPHTHALENES                  |                |                    |               |                    |
|                                  |                |                    |               |                    |

| LOCATION                         | SB-392        | SB-392        | SB-393         | SB-393         |
|----------------------------------|---------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-392-0405   | SB-392-0708   | SB-393-0102    | SB-393-0203    |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007     | 10/16/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |                |
| C4-NAPHTHALENES                  |               |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| CHRYSENE                         |               |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |                |
| FLUORANTHENE                     |               |               |                |                |
| FLUORENE                         |               |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |                |
| NAPHTHALENE                      |               |               |                |                |
| PHENANTHRENE                     |               |               |                |                |
| PYRENE                           |               |               |                |                |
| TOTAL PAHS                       | 20 [MDL=1.5]  | 0 U [MDL=1.5] | 450 [MDL=1.4]  | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |                |                |
| 4,4'-DDD                         |               |               |                |                |
| 4,4'-DDE                         |               |               |                |                |
| 4,4'-DDT                         |               |               |                |                |
| ALDRIN                           |               |               |                |                |
| ALPHA-BHC                        |               |               |                |                |
| ALPHA-CHLORDANE                  |               |               |                |                |
| AROCLOR-1016                     | 39 U [MDL=13] | 39 U [MDL=13] | 35 U [MDL=12]  | 36 U [MDL=12]  |
| AROCLOR-1221                     | 39 U [MDL=15] | 39 U [MDL=15] | 35 U [MDL=14]  | 36 U [MDL=14]  |
| AROCLOR-1232                     | 39 U [MDL=14] | 39 U [MDL=14] | 35 U [MDL=13]  | 36 U [MDL=13]  |
| AROCLOR-1242                     | 39 U [MDL=16] | 39 U [MDL=17] | 35 U [MDL=15]  | 36 U [MDL=15]  |
| AROCLOR-1248                     | 39 U [MDL=18] | 39 U [MDL=18] | 35 U [MDL=16]  | 36 U [MDL=16]  |
| AROCLOR-1254                     | 39 U [MDL=10] | 39 U [MDL=10] | 35 U [MDL=9.3] | 36 U [MDL=9.5] |
| AROCLOR-1260                     | 39 U [MDL=12] | 39 U [MDL=12] | 22 J [MDL=10]  | 36 U [MDL=11]  |
| BETA-BHC                         |               |               |                |                |
| DELTA-BHC                        |               |               |                |                |
| DIELDRIN                         |               |               |                |                |
| ENDOSULFAN I                     |               |               |                |                |
| ENDOSULFAN II                    |               |               |                |                |
| ENDOSULFAN SULFATE               |               |               |                |                |
| ENDRIN                           |               |               |                |                |
| ENDRIN ALDEHYDE                  |               |               |                |                |
| ENDRIN KETONE                    |               |               |                |                |
| GAMMA-BHC (LINDANE)              | <del>-</del>  |               |                |                |
| GAMMA-CHLORDANE                  |               |               |                |                |

# Block F Soil Remedial Action Plan Appendix

| LOCATION                       | SB-392       | SB-392       | SB-393      | SB-393       |
|--------------------------------|--------------|--------------|-------------|--------------|
| SAMPLE ID                      | SB-392-0405  | SB-392-0708  | SB-393-0102 | SB-393-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007  | 10/16/2007   |
| HEPTACHLOR                     |              |              |             |              |
| HEPTACHLOR EPOXIDE             |              |              |             |              |
| METHOXYCHLOR                   |              |              |             |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 22 [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |             |              |
| TOXAPHENE                      |              |              |             |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |             |              |
| DIESEL RANGE ORGANICS          |              |              |             |              |
| GASOLINE RANGE ORGANICS        |              |              |             |              |
| TPH (C09-C36)                  |              |              |             |              |
|                                | •            |              |             |              |

| 30IL                         |               |               |              |              |
|------------------------------|---------------|---------------|--------------|--------------|
| LOCATION                     | SB-393        | SB-393        | SB-393       | SB-393       |
| SAMPLE ID                    | SB-393-0405   | SB-393-0708   | F-SB-393RE-3 | F-SB-393RE-4 |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               |               |               |              |              |
| ANTIMONY                     |               |               |              |              |
| ARSENIC                      |               |               |              |              |
| BARIUM                       |               |               |              |              |
| BERYLLIUM                    |               |               |              |              |
| CADMIUM                      |               |               |              |              |
| CHROMIUM                     |               |               |              |              |
| COBALT                       |               |               |              |              |
| COPPER                       |               |               |              |              |
| EAD                          |               |               |              |              |
| MERCURY                      |               |               |              |              |
| MOLYBDENUM                   |               |               |              |              |
| NICKEL                       |               |               |              |              |
| SELENIUM                     |               |               |              |              |
| SILVER                       |               |               |              |              |
| THALLIUM                     |               |               |              |              |
| /ANADIUM                     |               |               |              |              |
| ZINC                         |               |               |              |              |
| MISCELLANEOUS PARAMETERS     | •             |               |              |              |
| PERCENT SOLIDS (%)           | 93.5 [MDL=10] | 86.9 [MDL=10] |              |              |
| OTAL SOLIDS (%)              |               |               |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |              |              |
| PH (S.U.)                    |               |               |              |              |
| MERCURY (METHYL) (UG/KG)     |               |               |              |              |
| SEMIVOLATILES (UG/KG)        |               |               |              |              |
| ,1-BIPHENYL                  |               |               |              |              |
| ,2,4-TRICHLOROBENZENE        |               |               |              |              |
| ,2-DICHLOROBENZENE           |               |               |              |              |
| ,3-DICHLOROBENZENE           |               |               |              |              |
| ,4-DICHLOROBENZENE           |               |               |              |              |
| ,4-DIOXANE                   |               |               |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |              |              |
| 2,4,5-TRICHLOROPHENOL        |               |               |              |              |
| ,4,6-TRICHLOROPHENOL         |               |               |              |              |
| 2,4-DICHLOROPHENOL           | -             |               |              |              |
| 2,4-DIMETHYLPHENOL           | -             |               |              |              |
| 2,4-DINITROPHENOL            |               |               |              |              |

| LOCATION                    | SB-393      | SB-393      | SB-393       | SB-393       |
|-----------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                   | SB-393-0405 | SB-393-0708 | F-SB-393RE-3 | F-SB-393RE-4 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |             |             |              |              |
| 2,6-DINITROTOLUENE          |             |             |              |              |
| 2-CHLORONAPHTHALENE         |             |             |              |              |
| 2-CHLOROPHENOL              |             |             |              |              |
| 2-METHYLPHENOL              |             |             |              |              |
| 2-NITROANILINE              |             |             |              |              |
| 2-NITROPHENOL               |             |             |              |              |
| 3&4-METHYLPHENOL            |             |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |             |              |              |
| 3-NITROANILINE              |             |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |             |              |              |
| 4-CHLOROANILINE             |             |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |              |              |
| 4-NITROANILINE              |             |             |              |              |
| 4-NITROPHENOL               |             |             |              |              |
| ACETOPHENONE                |             |             |              |              |
| ANILINE                     |             |             |              |              |
| ATRAZINE                    |             |             |              |              |
| AZOBENZENE                  |             |             |              |              |
| BENZIDINE                   |             |             |              |              |
| BENZOIC ACID                |             |             |              |              |
| BENZYL ALCOHOL              |             |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |              |              |
| BUTYL BENZYL PHTHALATE      |             |             |              |              |
| CAPROLACTAM                 |             |             |              |              |
| CARBAZOLE                   |             |             |              |              |
| DIBENZOFURAN                |             |             |              |              |
| DIETHYL PHTHALATE           |             |             |              |              |
| DIMETHYL PHTHALATE          |             |             |              |              |
| DI-N-BUTYL PHTHALATE        |             |             |              |              |
| DI-N-OCTYL PHTHALATE        |             |             |              |              |
| HEXACHLOROBENZENE           |             |             |              |              |
| HEXACHLOROBUTADIENE         |             |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |             |              |              |

| SB-393      | SB-393                 | SB-393                              | SB-393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-393-0405 | SB-393-0708            | F-SB-393RE-3                        | F-SB-393RE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10/16/2007  | 10/16/2007             | 9/21/2009                           | 9/21/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | •                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | SB-393-0405 10/16/2007 | SB-393-0405 10/16/2007 10/16/2007 1 | SB-393-0405 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2009  10/16/2007 10/16/2007 10/16/2009  10/16/2007 10/16/2007 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2007 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/20 |

February 2013 Page B-87

| LOCATION                | SB-393      | SB-393      | SB-393       | SB-393       |
|-------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID               | SB-393-0405 | SB-393-0708 | F-SB-393RE-3 | F-SB-393RE-4 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |             |             |              |              |
| 4-CHLOROTOLUENE         |             |             |              |              |
| 4-ISOPROPYLTOLUENE      |             |             |              |              |
| 4-METHYL-2-PENTANONE    |             |             |              |              |
| ACETONE                 |             |             |              |              |
| BENZENE                 |             |             |              |              |
| BROMOBENZENE            |             |             |              |              |
| BROMOCHLOROMETHANE      |             |             |              |              |
| BROMODICHLOROMETHANE    |             |             |              |              |
| BROMOFORM               |             |             |              |              |
| BROMOMETHANE            |             |             |              |              |
| CARBON DISULFIDE        |             |             |              |              |
| CARBON TETRACHLORIDE    |             |             |              |              |
| CHLOROBENZENE           |             |             |              |              |
| CHLORODIBROMOMETHANE    |             |             |              |              |
| CHLOROETHANE            |             |             |              |              |
| CHLOROFORM              |             |             |              |              |
| CHLOROMETHANE           |             |             |              |              |
| CIS-1,2-DICHLOROETHENE  |             |             |              |              |
| CIS-1,3-DICHLOROPROPENE |             |             |              |              |
| DIBROMOMETHANE          |             |             |              |              |
| DICHLORODIFLUOROMETHANE |             |             |              |              |
| DIISOPROPYL ETHER       |             |             |              |              |
| ETHYL TERT-BUTYL ETHER  |             |             |              |              |
| ETHYLBENZENE            |             |             |              |              |
| FLUORODICHLOROMETHANE   |             |             |              |              |
| HEXACHLOROBUTADIENE     |             |             |              |              |
| ISOPROPYLBENZENE        |             |             |              |              |
| M+P-XYLENES             |             |             |              |              |
| METHYL TERT-BUTYL ETHER |             |             |              |              |
| METHYLENE CHLORIDE      |             |             |              |              |
| NAPHTHALENE             |             |             |              |              |
| N-BUTYLBENZENE          |             |             |              |              |
| N-PROPYLBENZENE         |             |             |              |              |
| O-XYLENE                |             |             |              |              |
| SEC-BUTYLBENZENE        |             |             |              |              |
| STYRENE                 |             |             |              |              |
| TERT-AMYL METHYL ETHER  |             |             |              |              |

| LOCATION                  | SB-393      | SB-393      | SB-393       | SB-393       |
|---------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                 | SB-393-0405 | SB-393-0708 | F-SB-393RE-3 | F-SB-393RE-4 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 9/21/2009    | 9/21/2009    |
| TERT-BUTYLBENZENE         |             |             |              |              |
| TERTIARY-BUTYL ALCOHOL    |             |             |              |              |
| TETRACHLOROETHENE         |             |             |              |              |
| TOLUENE                   |             |             |              |              |
| TOTAL 1,2-DICHLOROETHENE  |             |             |              |              |
| TOTAL XYLENES             |             |             |              |              |
| TRANS-1,2-DICHLOROETHENE  |             |             |              |              |
| TRANS-1,3-DICHLOROPROPENE |             |             |              |              |
| TRICHLOROETHENE           |             |             |              |              |
| TRICHLOROFLUOROMETHANE    |             |             |              |              |
| VINYL ACETATE             |             |             |              |              |
| VINYL CHLORIDE            |             |             |              |              |
|                           |             |             |              |              |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                 |                    |                  |                      |
|----------------------------------|-----------------|--------------------|------------------|----------------------|
| 2-METHYLNAPHTHALENE              |                 |                    |                  |                      |
| ACENAPHTHENE                     |                 |                    |                  |                      |
| ACENAPHTHYLENE                   |                 |                    |                  |                      |
| ANTHRACENE                       |                 |                    |                  |                      |
| BAP EQUIVALENT-HALFND            | 7.5 [MDL=1.4]   | 1.5 U [MDL=1.5]    | 329.45 [MDL=1.5] | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-POS               | 7.5 [MDL=1.4]   | 1.5 U [MDL=1.5]    | 329.45 [MDL=1.5] | 1.5 U [MDL=1.5]      |
| BAP EQUIVALENT-UCL               | 7.5 [MDL=1.4]   | 0.200054 [MDL=1.5] |                  |                      |
| BENZO(A)ANTHRACENE               |                 |                    | 230 [MDL=1.1]    | 1.100000 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 7.5 J [MDL=1.4] | 1.5 U [MDL=1.5]    | 230 [MDL=1.5]    | 1.500000 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             |                 |                    | 270 [MDL=1.4]    | 1.400000 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                 |                    |                  |                      |
| BENZO(K)FLUORANTHENE             |                 |                    | 120 [MDL=2]      | 2.000000 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                    |                  |                      |
| C1-FLUORANTHENES/PYRENES         |                 |                    |                  |                      |
| C1-FLUORENES                     |                 |                    |                  |                      |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                    |                  |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                    |                  |                      |
| C2-FLUORENES                     |                 |                    |                  |                      |
| C2-NAPHTHALENES                  |                 |                    |                  |                      |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                    |                  |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                    |                  |                      |
| C3-FLUORENES                     |                 |                    |                  |                      |
| C3-NAPHTHALENES                  |                 |                    |                  |                      |

| LOCATION                         | SB-393         | SB-393        | SB-393         | SB-393               |
|----------------------------------|----------------|---------------|----------------|----------------------|
| SAMPLE ID                        | SB-393-0405    | SB-393-0708   | F-SB-393RE-3   | F-SB-393RE-4         |
| SAMPLE DATE                      | 10/16/2007     | 10/16/2007    | 9/21/2009      | 9/21/2009            |
| C3-PHENANTHRENES/ANTHRACENES     |                |               |                |                      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |               |                |                      |
| C4-NAPHTHALENES                  |                |               |                |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                |               |                |                      |
| CHRYSENE                         |                |               | 250 [MDL=1]    | 1.100000 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           |                |               | 36 [MDL=1.5]   | 1.500000 U [MDL=1.5] |
| FLUORANTHENE                     |                |               |                |                      |
| FLUORENE                         |                |               |                |                      |
| INDENO(1,2,3-CD)PYRENE           |                |               | 120 [MDL=1.7]  | 1.800000 U [MDL=1.8] |
| NAPHTHALENE                      |                |               |                |                      |
| PHENANTHRENE                     |                |               |                |                      |
| PYRENE                           |                |               |                |                      |
| TOTAL PAHS                       | 7.5 [MDL=1.4]  | 0 U [MDL=1.5] | 1256 [MDL=1.5] | 0 U [MDL=1.5]        |
| PESTICIDES/PCBS (UG/KG)          | •              |               |                |                      |
| 4,4'-DDD                         |                |               |                |                      |
| 4,4'-DDE                         |                |               |                |                      |
| 4,4'-DDT                         |                |               |                |                      |
| ALDRIN                           |                |               |                |                      |
| ALPHA-BHC                        |                |               |                |                      |
| ALPHA-CHLORDANE                  |                |               |                |                      |
| AROCLOR-1016                     | 35 U [MDL=12]  | 38 U [MDL=13] |                |                      |
| AROCLOR-1221                     | 35 U [MDL=14]  | 38 U [MDL=15] |                |                      |
| AROCLOR-1232                     | 35 U [MDL=13]  | 38 U [MDL=14] |                |                      |
| AROCLOR-1242                     | 35 U [MDL=15]  | 38 U [MDL=16] |                |                      |
| AROCLOR-1248                     | 35 U [MDL=16]  | 38 U [MDL=17] |                |                      |
| AROCLOR-1254                     | 35 U [MDL=9.4] | 38 U [MDL=10] |                |                      |
| AROCLOR-1260                     | 35 U [MDL=10]  | 38 U [MDL=11] |                |                      |
| BETA-BHC                         |                |               |                |                      |
| DELTA-BHC                        |                |               |                |                      |
| DIELDRIN                         |                |               |                |                      |
| ENDOSULFAN I                     |                |               |                |                      |
| ENDOSULFAN II                    |                |               |                |                      |
| ENDOSULFAN SULFATE               |                |               |                |                      |
| ENDRIN                           |                |               |                |                      |
| ENDRIN ALDEHYDE                  |                |               |                |                      |
| ENDRIN KETONE                    |                |               |                |                      |
| GAMMA-BHC (LINDANE)              |                |               |                |                      |
| GAMMA-CHLORDANE                  |                |               |                |                      |

## Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-393       | SB-393       | SB-393       | SB-393       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-393-0405  | SB-393-0708  | F-SB-393RE-3 | F-SB-393RE-4 |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=12] | 0 U [MDL=13] |              |              |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      | 1            |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          | 1            |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| JOIL                         |              |                |              |              |
|------------------------------|--------------|----------------|--------------|--------------|
| LOCATION                     | SB-393       | SB-393         | SB-393       | SB-393       |
| SAMPLE ID                    | F-SB-393RE-5 | F-SB-393RE-5-D | F-SB-393RE-6 | F-SB-393RE-7 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| METALS (MG/KG)               |              |                |              |              |
| ANTIMONY                     |              |                |              |              |
| ARSENIC                      |              |                |              |              |
| BARIUM                       |              |                |              |              |
| BERYLLIUM                    |              |                |              |              |
| CADMIUM                      |              |                |              |              |
| CHROMIUM                     |              |                |              |              |
| COBALT                       |              |                |              |              |
| COPPER                       |              |                |              |              |
| LEAD                         |              |                |              |              |
| MERCURY                      |              |                |              |              |
| MOLYBDENUM                   |              |                |              |              |
| NICKEL                       |              |                |              |              |
| SELENIUM                     |              |                |              |              |
| SILVER                       |              |                |              |              |
| THALLIUM                     |              |                |              |              |
| VANADIUM                     |              |                |              |              |
| ZINC                         |              |                |              |              |
| MISCELLANEOUS PARAMETERS     | •            |                |              |              |
| PERCENT SOLIDS (%)           |              |                |              |              |
| TOTAL SOLIDS (%)             |              |                |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |              |                |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |              |                |              |              |
| PH (S.U.)                    |              |                |              |              |
| MERCURY (METHYL) (UG/KG)     |              |                |              |              |
| SEMIVOLATILES (UG/KG)        | •            |                |              |              |
| 1,1-BIPHENYL                 |              |                |              |              |
| 1,2,4-TRICHLOROBENZENE       |              |                |              |              |
| 1,2-DICHLOROBENZENE          |              |                |              |              |
| 1,3-DICHLOROBENZENE          |              |                |              |              |
| 1,4-DICHLOROBENZENE          |              |                |              |              |
| 1,4-DIOXANE                  |              |                |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |                |              |              |
| 2,4,5-TRICHLOROPHENOL        |              |                |              |              |
| 2,4,6-TRICHLOROPHENOL        |              |                |              |              |
| 2,4-DICHLOROPHENOL           |              |                |              |              |
| 2,4-DIMETHYLPHENOL           |              |                |              |              |
| 2,4-DINITROPHENOL            |              |                |              |              |
| .,                           |              |                |              | <u> </u>     |

| LOCATION                    | SB-393       | SB-393         | SB-393       | SB-393       |
|-----------------------------|--------------|----------------|--------------|--------------|
| SAMPLE ID                   | F-SB-393RE-5 | F-SB-393RE-5-D | F-SB-393RE-6 | F-SB-393RE-7 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| 2,4-DINITROTOLUENE          |              |                |              |              |
| 2,6-DINITROTOLUENE          |              |                |              |              |
| 2-CHLORONAPHTHALENE         |              |                |              |              |
| 2-CHLOROPHENOL              |              |                |              |              |
| 2-METHYLPHENOL              |              |                |              |              |
| 2-NITROANILINE              |              |                |              |              |
| 2-NITROPHENOL               |              |                |              |              |
| 3&4-METHYLPHENOL            |              |                |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |                |              |              |
| 3-NITROANILINE              |              |                |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |                |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |                |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |                |              |              |
| 4-CHLOROANILINE             |              |                |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |                |              |              |
| 4-NITROANILINE              |              |                |              |              |
| 4-NITROPHENOL               |              |                |              |              |
| ACETOPHENONE                |              |                |              |              |
| ANILINE                     |              |                |              |              |
| ATRAZINE                    |              |                |              |              |
| AZOBENZENE                  |              |                |              |              |
| BENZIDINE                   |              |                |              |              |
| BENZOIC ACID                |              |                |              |              |
| BENZYL ALCOHOL              |              |                |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |                |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |                |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |                |              |              |
| BUTYL BENZYL PHTHALATE      |              |                |              |              |
| CAPROLACTAM                 |              |                |              |              |
| CARBAZOLE                   |              |                |              |              |
| DIBENZOFURAN                |              |                |              |              |
| DIETHYL PHTHALATE           |              |                |              |              |
| DIMETHYL PHTHALATE          |              |                |              |              |
| DI-N-BUTYL PHTHALATE        |              |                |              |              |
| DI-N-OCTYL PHTHALATE        |              |                |              |              |
| HEXACHLOROBENZENE           |              |                |              |              |
| HEXACHLOROBUTADIENE         |              |                |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |                |              |              |

| SB-393       | SB-393                 | SB-393                   | SB-393                 |
|--------------|------------------------|--------------------------|------------------------|
| F-SB-393RE-5 | F-SB-393RE-5-D         | F-SB-393RE-6             | F-SB-393RE-7           |
| 9/21/2009    | 9/21/2009              | 9/21/2009                | 9/21/2009              |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
| •            |                        | •                        |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              |                        |                          |                        |
|              | F-SB-393RE-5 9/21/2009 | F-SB-393RE-5 D 9/21/2009 | F-SB-393RE-5 9/21/2009 |

February 2013 Page B-94

| LOCATION                | SB-393       | SB-393         | SB-393       | SB-393       |
|-------------------------|--------------|----------------|--------------|--------------|
| SAMPLE ID               | F-SB-393RE-5 | F-SB-393RE-5-D | F-SB-393RE-6 | F-SB-393RE-7 |
| SAMPLE DATE             | 9/21/2009    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| 2-HEXANONE              |              |                |              |              |
| 4-CHLOROTOLUENE         |              |                |              |              |
| 4-ISOPROPYLTOLUENE      |              |                |              |              |
| 4-METHYL-2-PENTANONE    |              |                |              |              |
| ACETONE                 |              |                |              |              |
| BENZENE                 |              |                |              |              |
| BROMOBENZENE            |              |                |              |              |
| BROMOCHLOROMETHANE      |              |                |              |              |
| BROMODICHLOROMETHANE    |              |                |              |              |
| BROMOFORM               |              |                |              |              |
| BROMOMETHANE            |              |                |              |              |
| CARBON DISULFIDE        |              |                |              |              |
| CARBON TETRACHLORIDE    |              |                |              |              |
| CHLOROBENZENE           |              |                |              |              |
| CHLORODIBROMOMETHANE    |              |                |              |              |
| CHLOROETHANE            |              |                |              |              |
| CHLOROFORM              |              |                |              |              |
| CHLOROMETHANE           |              |                |              |              |
| CIS-1,2-DICHLOROETHENE  |              |                |              |              |
| CIS-1,3-DICHLOROPROPENE |              |                |              |              |
| DIBROMOMETHANE          |              |                |              |              |
| DICHLORODIFLUOROMETHANE |              |                |              |              |
| DIISOPROPYL ETHER       |              |                |              |              |
| ETHYL TERT-BUTYL ETHER  |              |                |              |              |
| ETHYLBENZENE            |              |                |              |              |
| FLUORODICHLOROMETHANE   |              |                |              |              |
| HEXACHLOROBUTADIENE     |              |                |              |              |
| ISOPROPYLBENZENE        |              |                |              |              |
| M+P-XYLENES             |              |                |              |              |
| METHYL TERT-BUTYL ETHER |              |                |              |              |
| METHYLENE CHLORIDE      |              |                |              |              |
| NAPHTHALENE             |              |                |              |              |
| N-BUTYLBENZENE          |              |                |              |              |
| N-PROPYLBENZENE         |              |                |              |              |
| O-XYLENE                |              |                |              |              |
| SEC-BUTYLBENZENE        |              |                |              |              |
| STYRENE                 |              |                |              |              |
| TERT-AMYL METHYL ETHER  |              |                |              |              |

| LOCATION                  | SB-393       | SB-393         | SB-393       | SB-393       |
|---------------------------|--------------|----------------|--------------|--------------|
| SAMPLE ID                 | F-SB-393RE-5 | F-SB-393RE-5-D | F-SB-393RE-6 | F-SB-393RE-7 |
| SAMPLE DATE               | 9/21/2009    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| TERT-BUTYLBENZENE         |              |                |              |              |
| TERTIARY-BUTYL ALCOHOL    |              |                |              |              |
| TETRACHLOROETHENE         |              |                |              |              |
| TOLUENE                   |              |                |              |              |
| TOTAL 1,2-DICHLOROETHENE  |              |                |              |              |
| TOTAL XYLENES             |              |                |              |              |
| TRANS-1,2-DICHLOROETHENE  |              |                |              |              |
| TRANS-1,3-DICHLOROPROPENE |              |                |              |              |
| TRICHLOROETHENE           |              |                |              |              |
| TRICHLOROFLUOROMETHANE    |              |                |              |              |
| VINYL ACETATE             |              |                |              |              |
| VINYL CHLORIDE            |              |                |              |              |
|                           |              |                |              |              |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                  |                  |                 |                 |
|----------------------------------|------------------|------------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| 2-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| ACENAPHTHENE                     |                  |                  |                 |                 |
| ACENAPHTHYLENE                   |                  |                  |                 |                 |
| ANTHRACENE                       |                  |                  |                 |                 |
| BAP EQUIVALENT-HALFND            | 29.166 [MDL=1.5] | 58.486 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS               | 28.416 [MDL=1.5] | 57.736 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL               |                  |                  |                 |                 |
| BENZO(A)ANTHRACENE               | 21 J [MDL=1.1]   | 45 J [MDL=1.1]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 22 J [MDL=1.5]   | 45 J [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             | 29 J [MDL=1.4]   | 52 J [MDL=1.4]   | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                  |                  |                 |                 |
| BENZO(K)FLUORANTHENE             | 9.5 J [MDL=1.9]  | 29 J [MDL=1.9]   | 2.0 U [MDL=2]   | 1.9 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                 |                 |
| C1-FLUORENES                     |                  |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C2-FLUORENES                     |                  |                  |                 |                 |
| C2-NAPHTHALENES                  |                  |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C3-FLUORENES                     |                  |                  |                 |                 |
| C3-NAPHTHALENES                  |                  |                  |                 |                 |

| LOCATION                         | SB-393          | SB-393               | SB-393          | SB-393          |
|----------------------------------|-----------------|----------------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-393RE-5    | F-SB-393RE-5-D       | F-SB-393RE-6    | F-SB-393RE-7    |
| SAMPLE DATE                      | 9/21/2009       | 9/21/2009            | 9/21/2009       | 9/21/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                      |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                      |                 |                 |
| C4-NAPHTHALENES                  |                 |                      |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                      |                 |                 |
| CHRYSENE                         | 21 J [MDL=1]    | 46 J [MDL=1]         | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.500000 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                      |                 |                 |
| FLUORENE                         |                 |                      |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 13 J [MDL=1.7]  | 27 J [MDL=1.7]       | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                      |                 |                      |                 |                 |
| PHENANTHRENE                     |                 |                      |                 |                 |
| PYRENE                           |                 |                      |                 |                 |
| TOTAL PAHS                       | 115.5 [MDL=1.5] | 244 [MDL=1.5]        | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                      |                 | -               |
| 4,4'-DDD                         |                 |                      |                 |                 |
| 4,4'-DDE                         |                 |                      |                 |                 |
| 4,4'-DDT                         |                 |                      |                 |                 |
| ALDRIN                           |                 |                      |                 |                 |
| ALPHA-BHC                        |                 |                      |                 |                 |
| ALPHA-CHLORDANE                  |                 |                      |                 |                 |
| AROCLOR-1016                     |                 |                      |                 |                 |
| AROCLOR-1221                     |                 |                      |                 |                 |
| AROCLOR-1232                     |                 |                      |                 |                 |
| AROCLOR-1242                     |                 |                      |                 |                 |
| AROCLOR-1248                     |                 |                      |                 |                 |
| AROCLOR-1254                     |                 |                      |                 |                 |
| AROCLOR-1260                     |                 |                      |                 |                 |
| BETA-BHC                         |                 |                      |                 |                 |
| DELTA-BHC                        |                 |                      |                 |                 |
| DIELDRIN                         |                 |                      |                 |                 |
| ENDOSULFAN I                     |                 |                      |                 |                 |
| ENDOSULFAN II                    |                 |                      |                 |                 |
| ENDOSULFAN SULFATE               |                 |                      |                 |                 |
| ENDRIN                           |                 |                      |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                      |                 |                 |
| ENDRIN KETONE                    |                 |                      |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                      |                 |                 |
| GAMMA-CHLORDANE                  |                 |                      |                 |                 |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-393       | SB-393         | SB-393       | SB-393       |
|--------------------------------|--------------|----------------|--------------|--------------|
| SAMPLE ID                      | F-SB-393RE-5 | F-SB-393RE-5-D | F-SB-393RE-6 | F-SB-393RE-7 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009      | 9/21/2009    | 9/21/2009    |
| HEPTACHLOR                     |              |                |              |              |
| HEPTACHLOR EPOXIDE             |              |                |              |              |
| METHOXYCHLOR                   |              |                |              |              |
| TOTAL AROCLOR                  |              |                |              |              |
| TOTAL DDT POS                  |              |                |              |              |
| TOXAPHENE                      |              |                |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |                |              |              |
| DIESEL RANGE ORGANICS          |              |                |              |              |
| GASOLINE RANGE ORGANICS        |              |                |              |              |
| TPH (C09-C36)                  |              |                |              |              |
|                                |              |                |              |              |

LOCATION

| LOCATION                                 | 30-334      | 30-334        | 30-334        | 30-334        |
|------------------------------------------|-------------|---------------|---------------|---------------|
| SAMPLE ID                                | SB-394-0102 | SB-394-0203   | SB-394-0405   | SB-394-0708   |
| SAMPLE DATE                              | 10/16/2007  | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)                           | •           |               | •             |               |
| ANTIMONY                                 |             |               |               |               |
| ARSENIC                                  |             |               |               |               |
| BARIUM                                   |             |               |               |               |
| BERYLLIUM                                |             |               |               |               |
| CADMIUM                                  |             |               |               |               |
| CHROMIUM                                 |             |               |               |               |
| COBALT                                   |             |               |               |               |
| COPPER                                   |             |               |               |               |
| LEAD                                     |             |               |               |               |
| MERCURY                                  |             |               |               |               |
| MOLYBDENUM                               |             |               |               |               |
| NICKEL                                   |             |               |               |               |
| SELENIUM                                 |             |               |               |               |
| SILVER                                   |             |               |               |               |
| THALLIUM                                 |             |               |               |               |
| VANADIUM                                 |             |               |               |               |
| ZINC                                     |             |               |               |               |
| MISCELLANEOUS PARAMETERS                 | •           |               |               |               |
| PERCENT SOLIDS (%)                       | 90 [MDL=10] | 90.6 [MDL=10] | 86.7 [MDL=10] | 86.2 [MDL=10] |
| TOTAL SOLIDS (%)                         |             |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)              |             |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG)             |             |               |               |               |
| PH (S.U.)                                |             |               |               |               |
| MERCURY (METHYL) (UG/KG)                 |             |               |               |               |
| SEMIVOLATILES (UG/KG)                    |             |               |               |               |
| 1,1-BIPHENYL                             |             |               |               |               |
| 1,2,4-TRICHLOROBENZENE                   |             |               |               |               |
| 1,2-DICHLOROBENZENE                      |             |               |               |               |
| 1,3-DICHLOROBENZENE                      |             |               |               |               |
| 1,4-DICHLOROBENZENE                      |             |               |               |               |
| 1,4-DIOXANE                              |             |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE)             |             |               |               |               |
| 2,4,5-TRICHLOROPHENOL                    |             |               |               |               |
| 2,4,6-TRICHLOROPHENOL                    |             |               |               |               |
|                                          | =           |               |               |               |
| 2,4-DICHLOROPHENOL                       |             |               |               |               |
| 2,4-DICHLOROPHENOL<br>2,4-DIMETHYLPHENOL |             |               |               |               |

SB-394

SB-394

SB-394

SB-394

| LOCATION                    | SB-394      | SB-394      | SB-394      | SB-394      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-394-0102 | SB-394-0203 | SB-394-0405 | SB-394-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-394      | SB-394       | SB-394      | SB-394       |
|--------------------------------|-------------|--------------|-------------|--------------|
| SAMPLE ID                      | SB-394-0102 | SB-394-0203  | SB-394-0405 | SB-394-0708  |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007   | 10/16/2007  | 10/16/2007   |
| HEXACHLOROETHANE               |             |              |             |              |
| ISOPHORONE                     |             |              |             |              |
| NITROBENZENE                   |             |              |             |              |
| N-NITROSODIMETHYLAMINE         |             |              |             |              |
| N-NITROSO-DI-N-PROPYLAMINE     |             |              |             |              |
| N-NITROSODIPHENYLAMINE         |             |              |             |              |
| PENTACHLOROPHENOL              |             |              |             |              |
|                                |             |              |             |              |
| PHENOL                         |             | +            |             |              |
| PYRIDINE                       |             | <del>-</del> |             | <del>-</del> |
| VOLATILES (UG/KG)              |             |              |             | T            |
| 1,1,1,2-TETRACHLOROETHANE      |             |              |             |              |
| 1,1,1-TRICHLOROETHANE          |             |              |             |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |              |             |              |
| 1,1,2-TRICHLOROETHANE          |             |              |             |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |              |             |              |
| 1,1-DICHLOROETHANE             |             |              |             |              |
| 1,1-DICHLOROETHENE             |             |              |             |              |
| 1,1-DICHLOROPROPENE            |             |              |             |              |
| 1,2,3-TRICHLOROBENZENE         |             |              |             |              |
| 1,2,3-TRICHLOROPROPANE         |             |              |             |              |
| 1,2,3-TRIMETHYLBENZENE         |             |              |             |              |
| 1,2,4-TRICHLOROBENZENE         |             |              |             |              |
| 1,2,4-TRIMETHYLBENZENE         |             |              |             |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |              |             |              |
| 1,2-DIBROMOETHANE              |             |              |             |              |
| 1,2-DICHLOROBENZENE            |             |              |             |              |
| 1,2-DICHLOROETHANE             |             |              |             |              |
| 1,2-DICHLOROPROPANE            |             |              |             |              |
| 1,3,5-TRIMETHYLBENZENE         |             |              |             |              |
| 1,3-DICHLOROBENZENE            |             |              |             |              |
| 1,3-DICHLOROPROPANE            |             |              |             |              |
| 1,3-DICHLOROPROPENE            |             |              |             |              |
| 1,4-DICHLOROBENZENE            |             |              |             |              |
| 1,4-DIOXANE                    |             |              |             |              |
| 2,2-DICHLOROPROPANE            |             |              |             |              |
| 2-BUTANONE                     |             |              |             |              |
| 2-CHLOROETHYL VINYL ETHER      |             |              |             |              |
| 2-CHLOROTOLUENE                |             |              |             |              |

| SOIL                    |             |             | I           | I 1         |
|-------------------------|-------------|-------------|-------------|-------------|
| LOCATION                | SB-394      | SB-394      | SB-394      | SB-394      |
| SAMPLE ID               | SB-394-0102 | SB-394-0203 | SB-394-0405 | SB-394-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-394      | SB-394      | SB-394      | SB-394      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-394-0102 | SB-394-0203 | SB-394-0405 | SB-394-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                 |                |                   |                    |
|----------------------------------|-----------------|----------------|-------------------|--------------------|
| 2-METHYLNAPHTHALENE              |                 |                |                   |                    |
| ACENAPHTHENE                     |                 |                |                   |                    |
| ACENAPHTHYLENE                   |                 |                |                   |                    |
| ANTHRACENE                       |                 |                |                   |                    |
| BAP EQUIVALENT-HALFND            | 140 [MDL=1.4]   | 25 [MDL=1.4]   | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 140 [MDL=1.4]   | 25 [MDL=1.4]   | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 140 [MDL=1.4]   | 25 [MDL=1.4]   | 0.20889 [MDL=1.5] | 0.217946 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                 |                |                   |                    |
| BENZO(A)PYRENE                   | 140 J [MDL=1.4] | 25 J [MDL=1.4] | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                 |                |                   |                    |
| BENZO(G,H,I)PERYLENE             |                 |                |                   |                    |
| BENZO(K)FLUORANTHENE             |                 |                |                   |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                |                   |                    |
| C1-FLUORANTHENES/PYRENES         |                 |                |                   |                    |
| C1-FLUORENES                     |                 |                |                   |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                |                   |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                |                   |                    |
| C2-FLUORENES                     |                 |                |                   |                    |
| C2-NAPHTHALENES                  |                 |                |                   |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                |                   |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                |                   |                    |
| C3-FLUORENES                     |                 |                |                   |                    |
| C3-NAPHTHALENES                  |                 |                |                   |                    |

| LOCATION                         | SB-394         | SB-394         | SB-394        | SB-394        |
|----------------------------------|----------------|----------------|---------------|---------------|
| SAMPLE ID                        | SB-394-0102    | SB-394-0203    | SB-394-0405   | SB-394-0708   |
| SAMPLE DATE                      | 10/16/2007     | 10/16/2007     | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |                |                |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |               |               |
| C4-NAPHTHALENES                  |                |                |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |               |               |
| CHRYSENE                         |                |                |               |               |
| DIBENZO(A,H)ANTHRACENE           |                |                |               |               |
| FLUORANTHENE                     |                |                |               |               |
| FLUORENE                         |                |                |               |               |
| INDENO(1,2,3-CD)PYRENE           |                |                |               |               |
| NAPHTHALENE                      |                |                |               |               |
| PHENANTHRENE                     |                |                |               |               |
| PYRENE                           |                |                |               |               |
| TOTAL PAHS                       | 140 [MDL=1.4]  | 25 [MDL=1.4]   | 0 U [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |                |                |               |               |
| 4,4'-DDD                         |                |                |               |               |
| 4,4'-DDE                         |                |                |               |               |
| 4,4'-DDT                         |                |                |               |               |
| ALDRIN                           |                |                |               |               |
| ALPHA-BHC                        |                |                |               |               |
| ALPHA-CHLORDANE                  |                |                |               |               |
| AROCLOR-1016                     | 37 U [MDL=12]  | 36 U [MDL=12]  | 38 U [MDL=13] | 38 U [MDL=13] |
| AROCLOR-1221                     | 37 U [MDL=14]  | 36 U [MDL=14]  | 38 U [MDL=15] | 38 U [MDL=15] |
| AROCLOR-1232                     | 37 U [MDL=13]  | 36 U [MDL=13]  | 38 U [MDL=14] | 38 U [MDL=14] |
| AROCLOR-1242                     | 37 U [MDL=16]  | 36 U [MDL=15]  | 38 U [MDL=16] | 38 U [MDL=16] |
| AROCLOR-1248                     | 37 U [MDL=17]  | 36 U [MDL=17]  | 38 U [MDL=17] | 38 U [MDL=17] |
| AROCLOR-1254                     | 37 U [MDL=9.8] | 36 U [MDL=9.7] | 38 U [MDL=10] | 38 U [MDL=10] |
| AROCLOR-1260                     | 37 U [MDL=11]  | 36 U [MDL=11]  | 38 U [MDL=11] | 38 U [MDL=11] |
| BETA-BHC                         |                |                |               |               |
| DELTA-BHC                        |                |                |               |               |
| DIELDRIN                         |                |                |               |               |
| ENDOSULFAN I                     |                |                |               |               |
| ENDOSULFAN II                    |                |                |               |               |
| ENDOSULFAN SULFATE               |                |                |               |               |
| ENDRIN                           |                |                |               |               |
| ENDRIN ALDEHYDE                  |                |                |               |               |
| ENDRIN KETONE                    |                |                |               |               |
| GAMMA-BHC (LINDANE)              | <del>-</del>   |                |               |               |
| GAMMA-CHLORDANE                  |                |                |               |               |

## Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-394       | SB-394       | SB-394       | SB-394       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-394-0102  | SB-394-0203  | SB-394-0405  | SB-394-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=12] | 0 U [MDL=12] | 0 U [MDL=13] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              | -            |

| LOCATION                     | SB-395                | SB-395        | SB-395        | SB-395      |
|------------------------------|-----------------------|---------------|---------------|-------------|
| SAMPLE ID                    | SB-395<br>SB-395-0102 | SB-395-0203   | SB-395-0405   | SB-395-0708 |
|                              |                       |               |               |             |
| METALS (MG/KG)               | 10/16/2007            | 10/16/2007    | 10/16/2007    | 10/16/2007  |
| ANTIMONY                     |                       |               |               |             |
| ARSENIC                      |                       |               |               |             |
| BARIUM                       |                       |               |               |             |
| BERYLLIUM                    |                       |               |               |             |
| CADMIUM                      | <del></del>           |               |               | <del></del> |
|                              | <del>-</del>          | -             |               | <del></del> |
| CHROMIUM                     |                       |               |               | <del></del> |
| COBALT                       |                       |               |               | <del></del> |
| COPPER                       |                       |               |               |             |
| LEAD                         |                       |               |               |             |
| MERCURY                      |                       |               |               |             |
| MOLYBDENUM                   |                       |               |               | <del></del> |
| NICKEL                       |                       |               |               |             |
| SELENIUM                     |                       |               |               |             |
| SILVER                       |                       |               |               |             |
| THALLIUM                     |                       |               |               |             |
| VANADIUM                     |                       |               |               |             |
| ZINC                         |                       |               |               |             |
| MISCELLANEOUS PARAMETERS     |                       |               |               |             |
| PERCENT SOLIDS (%)           | 83.2 [MDL=10]         | 95.9 [MDL=10] | 86.9 [MDL=10] | 87 [MDL=10] |
| TOTAL SOLIDS (%)             |                       |               |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |                       |               |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |                       |               |               |             |
| PH (S.U.)                    |                       |               |               |             |
| MERCURY (METHYL) (UG/KG)     |                       |               |               |             |
| SEMIVOLATILES (UG/KG)        |                       |               |               |             |
| 1,1-BIPHENYL                 |                       |               |               |             |
| 1,2,4-TRICHLOROBENZENE       |                       |               |               |             |
| 1,2-DICHLOROBENZENE          |                       |               |               | <del></del> |
| 1,3-DICHLOROBENZENE          |                       |               |               |             |
| 1,4-DICHLOROBENZENE          |                       |               |               |             |
| 1,4-DIOXANE                  |                       |               |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                       |               |               |             |
| 2,4,5-TRICHLOROPHENOL        |                       |               |               |             |
| 2,4,6-TRICHLOROPHENOL        |                       |               |               |             |
| 2,4-DICHLOROPHENOL           |                       |               |               |             |
| 2,4-DIMETHYLPHENOL           |                       |               |               |             |
| 2,4-DINITROPHENOL            |                       |               |               |             |

| LOCATION                    | SB-395      | SB-395      | SB-395      | SB-395      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-395-0102 | SB-395-0203 | SB-395-0405 | SB-395-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SOIL                           | T           | 1           | 1           | 1           |
|--------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                       | SB-395      | SB-395      | SB-395      | SB-395      |
| SAMPLE ID                      | SB-395-0102 | SB-395-0203 | SB-395-0405 | SB-395-0708 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           |             | •           | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-108

| LOCATION                | SB-395      | SB-395      | SB-395      | SB-395      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-395-0102 | SB-395-0203 | SB-395-0405 | SB-395-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-395      | SB-395      | SB-395      | SB-395      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-395-0102 | SB-395-0203 | SB-395-0405 | SB-395-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              |                    |                    |                    |                    |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| ACENAPHTHENE                     |                    |                    |                    |                    |
| ACENAPHTHYLENE                   |                    |                    |                    |                    |
| ANTHRACENE                       |                    |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 0.059841 [MDL=1.6] | 0.263062 [MDL=1.4] | 0.227226 [MDL=1.5] | 0.236732 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                    |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6]    | 1.4 U [MDL=1.4]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                    |
| C1-FLUORENES                     |                    |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C2-FLUORENES                     |                    |                    |                    |                    |
| C2-NAPHTHALENES                  |                    |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C3-FLUORENES                     |                    |                    |                    |                    |
| C3-NAPHTHALENES                  |                    |                    |                    |                    |
|                                  | -                  |                    |                    | •                  |

| LOCATION                         | SB-395        | SB-395         | SB-395        | SB-395        |
|----------------------------------|---------------|----------------|---------------|---------------|
| SAMPLE ID                        | SB-395-0102   | SB-395-0203    | SB-395-0405   | SB-395-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007     | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |                |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |                |               |               |
| C4-NAPHTHALENES                  |               |                |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |                |               |               |
| CHRYSENE                         |               |                |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |                |               |               |
| FLUORANTHENE                     |               |                |               |               |
| FLUORENE                         |               |                |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |                |               |               |
| NAPHTHALENE                      |               |                |               |               |
| PHENANTHRENE                     |               |                |               |               |
| PYRENE                           |               |                |               |               |
| TOTAL PAHS                       | 0 U [MDL=1.6] | 0 U [MDL=1.4]  | 0 U [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |               |                |               |               |
| 4,4'-DDD                         |               |                |               |               |
| 4,4'-DDE                         |               |                |               |               |
| 4,4'-DDT                         |               |                |               |               |
| ALDRIN                           |               |                |               |               |
| ALPHA-BHC                        |               |                |               |               |
| ALPHA-CHLORDANE                  |               |                |               |               |
| AROCLOR-1016                     | 40 U [MDL=13] | 34 U [MDL=11]  | 38 U [MDL=13] | 38 U [MDL=13] |
| AROCLOR-1221                     | 40 U [MDL=16] | 34 U [MDL=14]  | 38 U [MDL=15] | 38 U [MDL=15] |
| AROCLOR-1232                     | 40 U [MDL=14] | 34 U [MDL=13]  | 38 U [MDL=14] | 38 U [MDL=14] |
| AROCLOR-1242                     | 40 U [MDL=17] | 34 U [MDL=15]  | 38 U [MDL=16] | 38 U [MDL=16] |
| AROCLOR-1248                     | 40 U [MDL=18] | 34 U [MDL=16]  | 38 U [MDL=17] | 38 U [MDL=17] |
| AROCLOR-1254                     | 40 U [MDL=11] | 34 U [MDL=9.2] | 38 U [MDL=10] | 38 U [MDL=10] |
| AROCLOR-1260                     | 40 U [MDL=12] | 34 U [MDL=10]  | 38 U [MDL=11] | 38 U [MDL=11] |
| BETA-BHC                         |               |                |               |               |
| DELTA-BHC                        |               |                |               |               |
| DIELDRIN                         |               |                |               |               |
| ENDOSULFAN I                     |               |                |               |               |
| ENDOSULFAN II                    |               |                |               |               |
| ENDOSULFAN SULFATE               |               |                |               |               |
| ENDRIN                           |               |                |               |               |
| ENDRIN ALDEHYDE                  |               |                |               |               |
| ENDRIN KETONE                    |               |                |               |               |
| GAMMA-BHC (LINDANE)              | <del></del>   |                |               |               |
| GAMMA-CHLORDANE                  |               |                |               |               |

## Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-395       | SB-395       | SB-395       | SB-395       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-395-0102  | SB-395-0203  | SB-395-0405  | SB-395-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              | 1            |              |              |
| METHOXYCHLOR                   |              | 1            |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=11] | 0 U [MDL=13] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              | 1            |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              | 1            |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |               |             |               |               |
|------------------------------|---------------|-------------|---------------|---------------|
| LOCATION                     | SB-396        | SB-396      | SB-396        | SB-396        |
| SAMPLE ID                    | SB-396-0102   | SB-396-0203 | SB-396-0405   | SB-396-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007  | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |             | -             |               |
| ANTIMONY                     |               |             |               |               |
| ARSENIC                      |               |             |               |               |
| BARIUM                       |               |             |               |               |
| BERYLLIUM                    |               |             |               |               |
| CADMIUM                      |               |             |               |               |
| CHROMIUM                     |               |             |               |               |
| COBALT                       |               |             |               |               |
| COPPER                       |               |             |               |               |
| LEAD                         |               |             |               |               |
| MERCURY                      |               |             |               |               |
| MOLYBDENUM                   |               |             |               |               |
| NICKEL                       |               |             |               |               |
| SELENIUM                     |               |             |               |               |
| SILVER                       |               |             |               |               |
| THALLIUM                     |               |             |               |               |
| VANADIUM                     |               |             |               |               |
| ZINC                         |               |             |               |               |
| MISCELLANEOUS PARAMETERS     |               |             | -             |               |
| PERCENT SOLIDS (%)           | 85.5 [MDL=10] | 86 [MDL=10] | 84.8 [MDL=10] | 83.8 [MDL=10] |
| TOTAL SOLIDS (%)             |               |             |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |             |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |             |               |               |
| PH (S.U.)                    |               |             |               |               |
| MERCURY (METHYL) (UG/KG)     |               |             |               |               |
| SEMIVOLATILES (UG/KG)        |               |             |               |               |
| 1,1-BIPHENYL                 |               |             |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |             |               |               |
| 1,2-DICHLOROBENZENE          |               |             |               |               |
| 1,3-DICHLOROBENZENE          |               |             |               |               |
| 1,4-DICHLOROBENZENE          |               |             |               |               |
| 1,4-DIOXANE                  |               |             |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |             |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |             |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |             |               |               |
| 2,4-DICHLOROPHENOL           |               |             |               |               |
| 2,4-DIMETHYLPHENOL           |               |             |               |               |
| 2,4-DINITROPHENOL            |               |             |               |               |

| LOCATION                    | 00.000      |             | 00.000      | 00.000      |
|-----------------------------|-------------|-------------|-------------|-------------|
| LOCATION                    | SB-396      | SB-396      | SB-396      | SB-396      |
| SAMPLE ID                   | SB-396-0102 | SB-396-0203 | SB-396-0405 | SB-396-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
|                             | 1           | I           | 1           | I .         |

| SAMPLE ID   SB-396-0708   SB   | LOCATION                       | SB-396      | SB-396      | SB-396      | SB-396      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACLOROFTHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                      | SB-396-0102 | SB-396-0203 | SB-396-0405 | SB-396-0708 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| NITROSODIMETRYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEXACHLOROETHANE               |             |             |             |             |
| NNTROSODMETHYLAMNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISOPHORONE                     |             |             |             |             |
| NNTROSO-DIP-RPOPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NITROBENZENE                   |             |             |             |             |
| NATIROSODIPHENYLAIMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |             |
| No.Late   No.L   | PHENOL                         |             |             |             |             |
| 1.1.1.2TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PYRIDINE                       |             |             |             |             |
| 1.1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              | •           |             |             |             |
| 1.1.2.2TETRACHLOROETHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROETHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFITHANE 1.1.2.TRICHLOROFROPROPENE 1.1.2.TRICHLOROPROPENE 1.1.2.TRICHLOROPROPENE 1.2.3.TRICHLOROPROPANE 1.3.3.TRICHLOROPROPANE 1.3.TRICHLOROPROPANE 1.3.TRIC | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1.1.2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1.1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2.4-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,4-DIOXANE                    |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-115

| LOCATION                | SB-396      | SB-396      | SB-396      | SB-396      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-396-0102 | SB-396-0203 | SB-396-0405 | SB-396-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-396      | SB-396      | SB-396      | SB-396      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-396-0102 | SB-396-0203 | SB-396-0405 | SB-396-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · · · · · · · · · · · · · · · · · · · |                |                    |                    |                    |
|---------------------------------------|----------------|--------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE                   |                |                    |                    |                    |
| 2-METHYLNAPHTHALENE                   |                |                    |                    |                    |
| ACENAPHTHENE                          |                |                    |                    |                    |
| ACENAPHTHYLENE                        |                |                    |                    |                    |
| ANTHRACENE                            |                |                    |                    |                    |
| BAP EQUIVALENT-HALFND                 | 80 [MDL=1.5]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-POS                    | 80 [MDL=1.5]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-UCL                    | 80 [MDL=1.5]   | 0.246469 [MDL=1.5] | 0.256441 [MDL=1.5] | 0.068255 [MDL=1.6] |
| BENZO(A)ANTHRACENE                    |                |                    |                    |                    |
| BENZO(A)PYRENE                        | 80 J [MDL=1.5] | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BENZO(B)FLUORANTHENE                  |                |                    |                    |                    |
| BENZO(G,H,I)PERYLENE                  |                |                    |                    |                    |
| BENZO(K)FLUORANTHENE                  |                |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES      |                |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES              |                |                    |                    |                    |
| C1-FLUORENES                          |                |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES          |                |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES      |                |                    |                    |                    |
| C2-FLUORENES                          |                |                    |                    |                    |
| C2-NAPHTHALENES                       |                |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES          |                |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES      |                |                    |                    |                    |
| C3-FLUORENES                          |                |                    |                    |                    |
| C3-NAPHTHALENES                       |                |                    |                    |                    |
|                                       |                |                    |                    |                    |

| LOCATION                         | SB-396        | SB-396        | SB-396        | SB-396        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-396-0102   | SB-396-0203   | SB-396-0405   | SB-396-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 80 [MDL=1.5]  | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 39 U [MDL=13] | 38 U [MDL=13] | 39 U [MDL=13] | 39 U [MDL=13] |
| AROCLOR-1221                     | 39 U [MDL=15] | 38 U [MDL=15] | 39 U [MDL=15] | 39 U [MDL=16] |
| AROCLOR-1232                     | 39 U [MDL=14] | 38 U [MDL=14] | 39 U [MDL=14] | 39 U [MDL=14] |
| AROCLOR-1242                     | 39 U [MDL=16] | 38 U [MDL=16] | 39 U [MDL=17] | 39 U [MDL=17] |
| AROCLOR-1248                     | 39 U [MDL=18] | 38 U [MDL=17] | 39 U [MDL=18] | 39 U [MDL=18] |
| AROCLOR-1254                     | 39 U [MDL=10] | 38 U [MDL=10] | 39 U [MDL=10] | 39 U [MDL=11] |
| AROCLOR-1260                     | 39 U [MDL=11] | 38 U [MDL=11] | 39 U [MDL=12] | 39 U [MDL=12] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              | <del>-</del>  |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

## Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-396       | SB-396       | SB-396       | SB-396       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-396-0102  | SB-396-0203  | SB-396-0405  | SB-396-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=13] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-397        | SB-397        | SB-397        | SB-397        |
| SAMPLE ID                    | SB-397-0102   | SB-397-0203   | SB-397-0405   | SB-397-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     | •             |               | •             | •             |
| PERCENT SOLIDS (%)           | 95.1 [MDL=10] | 89.4 [MDL=10] | 95.1 [MDL=10] | 85.2 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-397      | SB-397      | SB-397      | SB-397      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-397-0102 | SB-397-0203 | SB-397-0405 | SB-397-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SAMPLE DATE   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10/16/2007   10 | LOCATION                       | SB-397      | SB-397      | SB-397      | SB-397      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLE ID                      | SB-397-0102 | SB-397-0203 | SB-397-0405 | SB-397-0708 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEXACHLOROETHANE               |             |             |             |             |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISOPHORONE                     |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NITROBENZENE                   |             |             |             |             |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATILES (UG/KG)   1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHENOL                         |             |             |             |             |
| 1.1.1.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PYRIDINE                       |             |             |             |             |
| 1,1,1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VOLATILES (UG/KG)              | •           |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE             1,2-DIBROMO-3-CHLOROPROPANE              1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE             1,2-DICHLOROBENZENE              1,2-DICHLOROETHANE                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE           1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-DICHLOROBENZENE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-DICHLOROETHANE             |             |             |             |             |
| A OF TRIMETURY PENISONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-1KIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-122

| LOCATION                | SB-397      | SB-397      | SB-397      | SB-397      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-397-0102 | SB-397-0203 | SB-397-0405 | SB-397-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-397      | SB-397      | SB-397      | SB-397      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-397-0102 | SB-397-0203 | SB-397-0405 | SB-397-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · · · · ·                        |                |                    |               |                    |
|----------------------------------|----------------|--------------------|---------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                    |               |                    |
| 2-METHYLNAPHTHALENE              |                |                    |               |                    |
| ACENAPHTHENE                     |                |                    |               |                    |
| ACENAPHTHYLENE                   |                |                    |               |                    |
| ANTHRACENE                       |                |                    |               |                    |
| BAP EQUIVALENT-HALFND            | 80 [MDL=1.4]   | 1.5 U [MDL=1.5]    | 850 [MDL=1.4] | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 80 [MDL=1.4]   | 1.5 U [MDL=1.5]    | 850 [MDL=1.4] | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 80 [MDL=1.4]   | 0.266651 [MDL=1.5] | 850 [MDL=1.4] | 0.277103 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                |                    |               |                    |
| BENZO(A)PYRENE                   | 80 J [MDL=1.4] | 1.5 UJ [MDL=1.5]   | 850 [MDL=1.4] | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                |                    |               |                    |
| BENZO(G,H,I)PERYLENE             |                |                    |               |                    |
| BENZO(K)FLUORANTHENE             |                |                    |               |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C1-FLUORANTHENES/PYRENES         |                |                    |               |                    |
| C1-FLUORENES                     |                |                    |               |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                    |               |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C2-FLUORENES                     |                |                    |               |                    |
| C2-NAPHTHALENES                  |                |                    |               |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                    |               |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |               |                    |
| C3-FLUORENES                     |                |                    |               |                    |
| C3-NAPHTHALENES                  |                |                    |               |                    |
|                                  |                |                    |               |                    |

| LOCATION                         | SB-397         | SB-397         | SB-397         | SB-397        |
|----------------------------------|----------------|----------------|----------------|---------------|
| SAMPLE ID                        | SB-397-0102    | SB-397-0203    | SB-397-0405    | SB-397-0708   |
| SAMPLE DATE                      | 10/16/2007     | 10/16/2007     | 10/16/2007     | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |                |                |                |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |               |
| C4-NAPHTHALENES                  |                |                |                |               |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |                |               |
| CHRYSENE                         |                |                |                |               |
| DIBENZO(A,H)ANTHRACENE           |                |                |                |               |
| FLUORANTHENE                     |                |                |                |               |
| FLUORENE                         |                |                |                |               |
| INDENO(1,2,3-CD)PYRENE           |                |                |                |               |
| NAPHTHALENE                      |                |                |                |               |
| PHENANTHRENE                     |                |                |                |               |
| PYRENE                           |                |                |                |               |
| TOTAL PAHS                       | 80 [MDL=1.4]   | 0 U [MDL=1.5]  | 850 [MDL=1.4]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |                |                |                |               |
| 4,4'-DDD                         |                |                |                |               |
| 4,4'-DDE                         |                |                |                |               |
| 4,4'-DDT                         |                |                |                |               |
| ALDRIN                           |                |                |                |               |
| ALPHA-BHC                        |                |                |                |               |
| ALPHA-CHLORDANE                  |                |                |                |               |
| AROCLOR-1016                     | 35 U [MDL=12]  | 37 U [MDL=12]  | 35 U [MDL=12]  | 39 U [MDL=13] |
| AROCLOR-1221                     | 35 U [MDL=14]  | 37 U [MDL=15]  | 35 U [MDL=14]  | 39 U [MDL=15] |
| AROCLOR-1232                     | 35 U [MDL=13]  | 37 U [MDL=13]  | 35 U [MDL=13]  | 39 U [MDL=14] |
| AROCLOR-1242                     | 35 U [MDL=15]  | 37 U [MDL=16]  | 35 U [MDL=15]  | 39 U [MDL=16] |
| AROCLOR-1248                     | 35 U [MDL=16]  | 37 U [MDL=17]  | 35 U [MDL=16]  | 39 U [MDL=18] |
| AROCLOR-1254                     | 35 U [MDL=9.3] | 37 U [MDL=9.8] | 35 U [MDL=9.3] | 39 U [MDL=10] |
| AROCLOR-1260                     | 35 U [MDL=10]  | 37 U [MDL=11]  | 19 J [MDL=10]  | 39 U [MDL=12] |
| BETA-BHC                         |                |                |                |               |
| DELTA-BHC                        |                |                |                |               |
| DIELDRIN                         |                |                |                |               |
| ENDOSULFAN I                     |                |                |                |               |
| ENDOSULFAN II                    |                |                |                |               |
| ENDOSULFAN SULFATE               |                |                |                |               |
| ENDRIN                           |                |                |                |               |
| ENDRIN ALDEHYDE                  |                | <del></del>    |                |               |
| ENDRIN KETONE                    |                |                |                |               |
| GAMMA-BHC (LINDANE)              |                | <del></del>    |                |               |
| GAMMA-CHLORDANE                  |                |                |                |               |

# Block F Soil Remedial Action Plan Appendix

| _ |  |
|---|--|
|   |  |
|   |  |

| SB-397       | SB-397                                                        | SB-397                                                       | SB-397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-397-0102  | SB-397-0203                                                   | SB-397-0405                                                  | SB-397-0708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/16/2007   | 10/16/2007                                                    | 10/16/2007                                                   | 10/16/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 U [MDL=12] | 0 U [MDL=12]                                                  | 19 [MDL=12]                                                  | 0 U [MDL=13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | SB-397-0102<br>10/16/2007<br><br><br><br>0 U [MDL=12]<br><br> | SB-397-0102 10/16/2007 10/16/2007  0 U [MDL=12] 0 U [MDL=12] | SB-397-0102 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 |

| JOIL                         |              |              |               |             |
|------------------------------|--------------|--------------|---------------|-------------|
| LOCATION                     | SB-397       | SB-397       | SB-398        | SB-398      |
| SAMPLE ID                    | F-SB-397RE-6 | F-SB-397RE-7 | SB-398-0102   | SB-398-0203 |
| SAMPLE DATE                  | 9/21/2009    | 9/21/2009    | 10/16/2007    | 10/16/2007  |
| METALS (MG/KG)               |              |              |               |             |
| ANTIMONY                     |              |              |               |             |
| ARSENIC                      |              |              |               |             |
| BARIUM                       |              |              |               |             |
| BERYLLIUM                    |              |              |               |             |
| CADMIUM                      |              |              |               |             |
| CHROMIUM                     |              |              |               |             |
| COBALT                       |              |              |               |             |
| COPPER                       |              |              |               |             |
| LEAD                         |              |              |               |             |
| MERCURY                      |              |              |               |             |
| MOLYBDENUM                   |              |              |               |             |
| NICKEL                       |              |              |               |             |
| SELENIUM                     |              |              |               |             |
| SILVER                       |              |              |               |             |
| THALLIUM                     |              |              |               |             |
| VANADIUM                     |              |              |               |             |
| ZINC                         |              |              |               |             |
| MISCELLANEOUS PARAMETERS     | •            | •            |               |             |
| PERCENT SOLIDS (%)           |              |              | 90.9 [MDL=10] | 86 [MDL=10] |
| TOTAL SOLIDS (%)             |              |              |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |               |             |
| PH (S.U.)                    |              |              |               |             |
| MERCURY (METHYL) (UG/KG)     |              |              |               |             |
| SEMIVOLATILES (UG/KG)        | •            | •            |               |             |
| 1,1-BIPHENYL                 |              |              |               |             |
| 1,2,4-TRICHLOROBENZENE       |              |              |               |             |
| 1,2-DICHLOROBENZENE          |              |              |               |             |
| 1,3-DICHLOROBENZENE          |              |              |               |             |
| 1,4-DICHLOROBENZENE          |              |              |               |             |
| 1,4-DIOXANE                  |              |              |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |               |             |
| 2,4,5-TRICHLOROPHENOL        |              |              |               |             |
| 2,4,6-TRICHLOROPHENOL        |              |              |               |             |
| 2,4-DICHLOROPHENOL           |              |              |               |             |
| 2,4-DIMETHYLPHENOL           |              |              |               |             |
| 2,4-DINITROPHENOL            |              |              |               |             |
|                              |              |              |               |             |

| LOCATION                    | SB-397       | SB-397       | SB-398      | SB-398      |
|-----------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                   | F-SB-397RE-6 | F-SB-397RE-7 | SB-398-0102 | SB-398-0203 |
| SAMPLE DATE                 | 9/21/2009    | 9/21/2009    | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |              |              |             |             |
| 2,6-DINITROTOLUENE          |              |              |             |             |
| 2-CHLORONAPHTHALENE         |              |              |             |             |
| 2-CHLOROPHENOL              |              |              |             |             |
| 2-METHYLPHENOL              |              |              |             |             |
| 2-NITROANILINE              |              |              |             |             |
| 2-NITROPHENOL               |              |              |             |             |
| 3&4-METHYLPHENOL            |              |              |             |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |             |             |
| 3-NITROANILINE              |              |              |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |             |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |             |             |
| 4-CHLOROANILINE             |              |              |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |             |             |
| 4-NITROANILINE              |              |              |             |             |
| 4-NITROPHENOL               |              |              |             |             |
| ACETOPHENONE                |              |              |             |             |
| ANILINE                     |              |              |             |             |
| ATRAZINE                    |              |              |             |             |
| AZOBENZENE                  |              |              |             |             |
| BENZIDINE                   |              |              |             |             |
| BENZOIC ACID                |              |              |             |             |
| BENZYL ALCOHOL              |              |              |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |             |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |             |             |
| BUTYL BENZYL PHTHALATE      |              |              |             |             |
| CAPROLACTAM                 |              |              |             |             |
| CARBAZOLE                   |              |              |             |             |
| DIBENZOFURAN                |              |              |             |             |
| DIETHYL PHTHALATE           |              |              |             |             |
| DIMETHYL PHTHALATE          |              |              |             |             |
| DI-N-BUTYL PHTHALATE        |              |              |             |             |
| DI-N-OCTYL PHTHALATE        |              |              |             |             |
| HEXACHLOROBENZENE           |              |              |             |             |
| HEXACHLOROBUTADIENE         |              |              |             |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |             |             |

| SOIL                           |              |              | 1           | 1           |
|--------------------------------|--------------|--------------|-------------|-------------|
| LOCATION                       | SB-397       | SB-397       | SB-398      | SB-398      |
| SAMPLE ID                      | F-SB-397RE-6 | F-SB-397RE-7 | SB-398-0102 | SB-398-0203 |
| SAMPLE DATE                    | 9/21/2009    | 9/21/2009    | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |              |              |             |             |
| ISOPHORONE                     |              |              |             |             |
| NITROBENZENE                   |              |              |             |             |
| N-NITROSODIMETHYLAMINE         |              |              |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |             |             |
| N-NITROSODIPHENYLAMINE         |              |              |             |             |
| PENTACHLOROPHENOL              |              |              |             |             |
| PHENOL                         |              |              |             |             |
| PYRIDINE                       |              |              |             |             |
| VOLATILES (UG/KG)              |              |              |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,1-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |             |             |
| 1,1,2-TRICHLOROETHANE          |              |              |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |             |             |
| 1,1-DICHLOROETHANE             |              |              |             |             |
| 1,1-DICHLOROETHENE             |              |              |             |             |
| 1,1-DICHLOROPROPENE            |              |              |             |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |             |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |             |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |             |             |
| 1,2-DIBROMOETHANE              |              |              |             |             |
| 1,2-DICHLOROBENZENE            |              |              |             |             |
| 1,2-DICHLOROETHANE             |              |              |             |             |
| 1,2-DICHLOROPROPANE            |              |              |             |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |             |             |
| 1,3-DICHLOROBENZENE            |              |              |             |             |
| 1,3-DICHLOROPROPANE            |              |              |             |             |
| 1,3-DICHLOROPROPENE            |              |              |             |             |
| 1,4-DICHLOROBENZENE            |              |              |             |             |
| 1,4-DIOXANE                    |              |              |             |             |
| 2,2-DICHLOROPROPANE            |              |              |             |             |
| 2-BUTANONE                     |              |              |             |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |             |             |
| 2-CHLOROTOLUENE                |              |              |             |             |

| SB-397       | SB-397                 | SB-398                 | SB-398                                      |
|--------------|------------------------|------------------------|---------------------------------------------|
| F-SB-397RE-6 | F-SB-397RE-7           | SB-398-0102            | SB-398-0203                                 |
| 9/21/2009    | 9/21/2009              | 10/16/2007             | 10/16/2007                                  |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              |                        |                        |                                             |
|              | F-SB-397RE-6 9/21/2009 | F-SB-397RE-6 9/21/2009 | F-SB-397RE-6 9/21/2009 9/21/2009 10/16/2007 |

| LOCATION                  | SB-397       | SB-397       | SB-398      | SB-398      |
|---------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                 | F-SB-397RE-6 | F-SB-397RE-7 | SB-398-0102 | SB-398-0203 |
| SAMPLE DATE               | 9/21/2009    | 9/21/2009    | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |              |              |             |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |             |             |
| TETRACHLOROETHENE         |              |              |             |             |
| TOLUENE                   |              |              |             |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |             |             |
| TOTAL XYLENES             |              |              |             |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |             |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |             |             |
| TRICHLOROETHENE           |              |              |             |             |
| TRICHLOROFLUOROMETHANE    |              |              |             |             |
| VINYL ACETATE             |              |              |             |             |
| VINYL CHLORIDE            |              |              |             |             |
|                           |              |              |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              | ,                |                  |                |                |
|----------------------------------|------------------|------------------|----------------|----------------|
| 1-METHYLNAPHTHALENE              |                  |                  |                |                |
| 2-METHYLNAPHTHALENE              |                  |                  |                |                |
| ACENAPHTHENE                     |                  |                  |                |                |
| ACENAPHTHYLENE                   |                  |                  |                |                |
| ANTHRACENE                       |                  |                  |                |                |
| BAP EQUIVALENT-HALFND            | 36.547 [MDL=1.5] | 24.798 [MDL=1.5] | 29 [MDL=1.4]   | 33 [MDL=1.5]   |
| BAP EQUIVALENT-POS               | 35.797 [MDL=1.5] | 24.048 [MDL=1.5] | 29 [MDL=1.4]   | 33 [MDL=1.5]   |
| BAP EQUIVALENT-UCL               |                  |                  | 29 [MDL=1.4]   | 33 [MDL=1.5]   |
| BENZO(A)ANTHRACENE               | 27 [MDL=1.1]     | 18 [MDL=1.1]     |                |                |
| BENZO(A)PYRENE                   | 28 [MDL=1.5]     | 19 [MDL=1.5]     | 29 J [MDL=1.4] | 33 J [MDL=1.5] |
| BENZO(B)FLUORANTHENE             | 34 [MDL=1.4]     | 21 [MDL=1.4]     |                |                |
| BENZO(G,H,I)PERYLENE             |                  |                  |                |                |
| BENZO(K)FLUORANTHENE             | 17 [MDL=2]       | 13 [MDL=2]       |                |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                |                |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                |                |
| C1-FLUORENES                     |                  |                  |                |                |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                |                |
| C2-FLUORENES                     |                  |                  |                |                |
| C2-NAPHTHALENES                  |                  |                  |                |                |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                |                |
| C3-FLUORENES                     |                  |                  |                |                |
| C3-NAPHTHALENES                  |                  |                  |                |                |
|                                  |                  |                  |                |                |

| LOCATION                         | SB-397               | SB-397               | SB-398         | SB-398        |
|----------------------------------|----------------------|----------------------|----------------|---------------|
| SAMPLE ID                        | F-SB-397RE-6         | F-SB-397RE-7         | SB-398-0102    | SB-398-0203   |
| SAMPLE DATE                      | 9/21/2009            | 9/21/2009            | 10/16/2007     | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |                      |                      |                |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                      |                      |                |               |
| C4-NAPHTHALENES                  |                      |                      |                |               |
| C4-PHENANTHRENES/ANTHRACENES     |                      |                      |                |               |
| CHRYSENE                         | 27 [MDL=1.1]         | 18 [MDL=1]           |                |               |
| DIBENZO(A,H)ANTHRACENE           | 1.500000 U [MDL=1.5] | 1.500000 U [MDL=1.5] |                |               |
| FLUORANTHENE                     |                      |                      |                |               |
| FLUORENE                         |                      |                      |                |               |
| INDENO(1,2,3-CD)PYRENE           | 15 [MDL=1.8]         | 10 [MDL=1.7]         |                |               |
| NAPHTHALENE                      |                      |                      |                |               |
| PHENANTHRENE                     |                      |                      |                |               |
| PYRENE                           |                      |                      |                |               |
| TOTAL PAHS                       | 148 [MDL=1.5]        | 99 [MDL=1.5]         | 29 [MDL=1.4]   | 33 [MDL=1.5]  |
| PESTICIDES/PCBS (UG/KG)          |                      |                      |                |               |
| 4,4'-DDD                         |                      |                      |                |               |
| 4,4'-DDE                         |                      |                      |                |               |
| 4,4'-DDT                         |                      |                      |                |               |
| ALDRIN                           |                      |                      |                |               |
| ALPHA-BHC                        |                      |                      |                |               |
| ALPHA-CHLORDANE                  |                      |                      |                |               |
| AROCLOR-1016                     |                      |                      | 36 U [MDL=12]  | 38 U [MDL=13] |
| AROCLOR-1221                     |                      |                      | 36 U [MDL=14]  | 38 U [MDL=15] |
| AROCLOR-1232                     |                      |                      | 36 U [MDL=13]  | 38 U [MDL=14] |
| AROCLOR-1242                     |                      |                      | 36 U [MDL=15]  | 38 U [MDL=16] |
| AROCLOR-1248                     |                      |                      | 36 U [MDL=17]  | 38 U [MDL=17] |
| AROCLOR-1254                     |                      |                      | 36 U [MDL=9.7] | 38 U [MDL=10] |
| AROCLOR-1260                     |                      |                      | 36 U [MDL=11]  | 38 U [MDL=11] |
| BETA-BHC                         |                      |                      |                |               |
| DELTA-BHC                        |                      |                      |                |               |
| DIELDRIN                         |                      |                      |                |               |
| ENDOSULFAN I                     |                      |                      |                |               |
| ENDOSULFAN II                    |                      |                      |                |               |
| ENDOSULFAN SULFATE               |                      |                      |                |               |
| ENDRIN                           |                      |                      |                |               |
| ENDRIN ALDEHYDE                  |                      |                      |                |               |
| ENDRIN KETONE                    |                      |                      |                |               |
| GAMMA-BHC (LINDANE)              |                      |                      |                |               |
| GAMMA-CHLORDANE                  |                      |                      |                |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                              | SB-397       | SB-397                                | SB-398       | SB-398                                |
|---------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|
| SAMPLE ID                             | F-SB-397RE-6 | F-SB-397RE-7                          | SB-398-0102  | SB-398-0203                           |
| SAMPLE DATE                           | 9/21/2009    | 9/21/2009                             | 10/16/2007   | 10/16/2007                            |
| HEPTACHLOR                            |              |                                       |              |                                       |
| HEPTACHLOR EPOXIDE                    |              |                                       |              |                                       |
| METHOXYCHLOR                          |              |                                       |              |                                       |
| TOTAL AROCLOR                         |              |                                       | 0 U [MDL=12] | 0 U [MDL=13]                          |
| TOTAL DDT POS                         |              |                                       |              |                                       |
| TOXAPHENE                             |              |                                       |              |                                       |
| PETROLEUM HYDROCARBONS (UG/KG)        |              |                                       |              |                                       |
| DIESEL RANGE ORGANICS                 |              |                                       |              |                                       |
| GASOLINE RANGE ORGANICS               |              |                                       |              |                                       |
| TPH (C09-C36)                         |              |                                       |              |                                       |
| · · · · · · · · · · · · · · · · · · · | ·            | · · · · · · · · · · · · · · · · · · · | ·            | · · · · · · · · · · · · · · · · · · · |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-398        | SB-398        | SB-399        | SB-399        |
| SAMPLE ID                    | SB-398-0405   | SB-398-0708   | SB-399-0102   | SB-399-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 89.4 [MDL=10] | 86.3 [MDL=10] | 90.8 [MDL=10] | 89.9 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               | -1            |               |               |
| 2,4-DIMETHYLPHENOL           |               | -1            |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| SUIL                        | 00.000      | D 000       | 00.000      | 00.000      |
|-----------------------------|-------------|-------------|-------------|-------------|
| LOCATION                    | SB-398      | SB-398      | SB-399      | SB-399      |
| SAMPLE ID                   | SB-398-0405 | SB-398-0708 | SB-399-0102 | SB-399-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| I-NITROANILINE              |             |             |             |             |
| 1-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-398      | SB-398      | SB-399      | SB-399      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-398-0405 | SB-398-0708 | SB-399-0102 | SB-399-0203 |
| SAMPLE DATE                    |             |             |             |             |
|                                | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             | T           | <b>T</b>    | 1           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         | <del></del> |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

| LOCATION                | SB-398      | SB-398      | SB-399      | SB-399      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-398-0405 | SB-398-0708 | SB-399-0102 | SB-399-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-398      | SB-398      | SB-399      | SB-399      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-398-0405 | SB-398-0708 | SB-399-0102 | SB-399-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                    |                    |                    |                    |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| ACENAPHTHENE                     |                    |                    |                    |                    |
| ACENAPHTHYLENE                   |                    |                    |                    |                    |
| ANTHRACENE                       |                    |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 0.287801 [MDL=1.5] | 0.298749 [MDL=1.5] | 0.311271 [MDL=1.4] | 0.364645 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                    |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.4 U [MDL=1.4]    | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                    |
| C1-FLUORENES                     |                    |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C2-FLUORENES                     |                    |                    |                    |                    |
| C2-NAPHTHALENES                  |                    |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C3-FLUORENES                     |                    |                    |                    |                    |
| C3-NAPHTHALENES                  |                    |                    |                    |                    |

| LOCATION                         | SB-398         | SB-398        | SB-399         | SB-399         |
|----------------------------------|----------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-398-0405    | SB-398-0708   | SB-399-0102    | SB-399-0203    |
| SAMPLE DATE                      | 10/16/2007     | 10/16/2007    | 10/16/2007     | 10/16/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |                |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |               |                |                |
| C4-NAPHTHALENES                  |                |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |                |               |                |                |
| CHRYSENE                         |                |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |                |               |                |                |
| FLUORANTHENE                     |                |               |                |                |
| FLUORENE                         |                |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |                |               |                |                |
| NAPHTHALENE                      |                |               |                |                |
| PHENANTHRENE                     |                |               |                |                |
| PYRENE                           |                |               |                |                |
| TOTAL PAHS                       | 0 U [MDL=1.5]  | 0 U [MDL=1.5] | 0 U [MDL=1.4]  | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          |                |               |                |                |
| 4,4'-DDD                         |                |               |                |                |
| 4,4'-DDE                         |                |               |                |                |
| 4,4'-DDT                         |                |               |                |                |
| ALDRIN                           |                |               |                |                |
| ALPHA-BHC                        |                |               |                |                |
| ALPHA-CHLORDANE                  |                |               |                |                |
| AROCLOR-1016                     | 37 U [MDL=12]  | 38 U [MDL=13] | 36 U [MDL=12]  | 37 U [MDL=12]  |
| AROCLOR-1221                     | 37 U [MDL=15]  | 38 U [MDL=15] | 36 U [MDL=14]  | 37 U [MDL=14]  |
| AROCLOR-1232                     | 37 U [MDL=13]  | 38 U [MDL=14] | 36 U [MDL=13]  | 37 U [MDL=13]  |
| AROCLOR-1242                     | 37 U [MDL=16]  | 38 U [MDL=16] | 36 U [MDL=15]  | 37 U [MDL=16]  |
| AROCLOR-1248                     | 37 U [MDL=17]  | 38 U [MDL=17] | 36 U [MDL=17]  | 37 U [MDL=17]  |
| AROCLOR-1254                     | 37 U [MDL=9.8] | 38 U [MDL=10] | 36 U [MDL=9.7] | 37 U [MDL=9.8] |
| AROCLOR-1260                     | 37 U [MDL=11]  | 38 U [MDL=11] | 36 U [MDL=11]  | 37 U [MDL=11]  |
| BETA-BHC                         |                |               |                |                |
| DELTA-BHC                        |                |               |                |                |
| DIELDRIN                         |                |               |                |                |
| ENDOSULFAN I                     |                |               |                |                |
| ENDOSULFAN II                    |                |               |                |                |
| ENDOSULFAN SULFATE               |                |               |                |                |
| ENDRIN                           |                |               |                |                |
| ENDRIN ALDEHYDE                  |                |               |                |                |
| ENDRIN KETONE                    |                |               |                |                |
| GAMMA-BHC (LINDANE)              |                |               |                |                |
| GAMMA-CHLORDANE                  |                |               |                |                |

# Block F Soil Remedial Action Plan Appendix

| LOCATION                       | SB-398       | SB-398       | SB-399       | SB-399       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-398-0405  | SB-398-0708  | SB-399-0102  | SB-399-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=12] | 0 U [MDL=13] | 0 U [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          | -1-          |              |              |              |
| GASOLINE RANGE ORGANICS        | -1-          |              |              |              |
| TPH (C09-C36)                  | -1-          |              |              |              |
|                                |              |              |              | •            |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-399        | SB-399        | SB-400        | SB-400        |
| SAMPLE ID                    | SB-399-0405   | SB-399-0708   | SB-400-0102   | SB-400-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               | •             |               |
| PERCENT SOLIDS (%)           | 84.5 [MDL=10] | 83.3 [MDL=10] | 91.6 [MDL=10] | 92.1 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-399      | SB-399      | SB-400      | SB-400      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-399-0405 | SB-399-0708 | SB-400-0102 | SB-400-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-399      | SB-399      | SB-400      | SB-400      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-399-0405 | SB-399-0708 | SB-400-0102 | SB-400-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             | •           | -           | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                |             |             |             |             |

February 2013 Page B-143

--

--

--

--

| LOCATION                | SB-399      | SB-399      | SB-400      | SB-400      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-399-0405 | SB-399-0708 | SB-400-0102 | SB-400-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-399      | SB-399      | SB-400      | SB-400      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-399-0405 | SB-399-0708 | SB-400-0102 | SB-400-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                |                    |                 |                    |
|----------------------------------|----------------|--------------------|-----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                    |                 |                    |
| 2-METHYLNAPHTHALENE              |                |                    |                 |                    |
| ACENAPHTHENE                     |                |                    |                 |                    |
| ACENAPHTHYLENE                   |                |                    |                 |                    |
| ANTHRACENE                       |                |                    |                 |                    |
| BAP EQUIVALENT-HALFND            | 22 [MDL=1.5]   | 1.6 U [MDL=1.6]    | 9.1 [MDL=1.4]   | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 22 [MDL=1.5]   | 1.6 U [MDL=1.6]    | 9.1 [MDL=1.4]   | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 22 [MDL=1.5]   | 0.077146 [MDL=1.6] | 9.1 [MDL=1.4]   | 0.423582 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                |                    |                 |                    |
| BENZO(A)PYRENE                   | 22 J [MDL=1.5] | 1.6 U [MDL=1.6]    | 9.1 J [MDL=1.4] | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                |                    |                 |                    |
| BENZO(G,H,I)PERYLENE             |                |                    |                 |                    |
| BENZO(K)FLUORANTHENE             |                |                    |                 |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |                 |                    |
| C1-FLUORANTHENES/PYRENES         |                |                    |                 |                    |
| C1-FLUORENES                     |                |                    |                 |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                    |                 |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |                 |                    |
| C2-FLUORENES                     |                |                    |                 |                    |
| C2-NAPHTHALENES                  |                |                    |                 |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                    |                 |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                    |                 |                    |
| C3-FLUORENES                     |                |                    |                 |                    |
| C3-NAPHTHALENES                  |                |                    |                 |                    |
|                                  |                |                    | -               | -                  |

| LOCATION                         | SB-399        | SB-399        | SB-400         | SB-400         |
|----------------------------------|---------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-399-0405   | SB-399-0708   | SB-400-0102    | SB-400-0203    |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007     | 10/16/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |                |
| C4-NAPHTHALENES                  |               |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| CHRYSENE                         |               |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |                |
| FLUORANTHENE                     |               |               |                |                |
| FLUORENE                         |               |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |                |
| NAPHTHALENE                      |               |               |                |                |
| PHENANTHRENE                     |               |               |                |                |
| PYRENE                           |               |               |                |                |
| TOTAL PAHS                       | 22 [MDL=1.5]  | 0 U [MDL=1.6] | 9.1 [MDL=1.4]  | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |                |                |
| 4,4'-DDD                         |               |               |                |                |
| 4,4'-DDE                         |               |               |                |                |
| 4,4'-DDT                         |               |               |                |                |
| ALDRIN                           |               |               |                |                |
| ALPHA-BHC                        |               |               |                |                |
| ALPHA-CHLORDANE                  |               |               |                |                |
| AROCLOR-1016                     | 39 U [MDL=13] | 40 U [MDL=13] | 36 U [MDL=12]  | 36 U [MDL=12]  |
| AROCLOR-1221                     | 39 U [MDL=15] | 40 U [MDL=16] | 36 U [MDL=14]  | 36 U [MDL=14]  |
| AROCLOR-1232                     | 39 U [MDL=14] | 40 U [MDL=14] | 36 U [MDL=13]  | 36 U [MDL=13]  |
| AROCLOR-1242                     | 39 U [MDL=17] | 40 U [MDL=17] | 36 U [MDL=15]  | 36 U [MDL=15]  |
| AROCLOR-1248                     | 39 U [MDL=18] | 40 U [MDL=18] | 36 U [MDL=16]  | 36 U [MDL=16]  |
| AROCLOR-1254                     | 39 U [MDL=10] | 40 U [MDL=11] | 36 U [MDL=9.6] | 36 U [MDL=9.6] |
| AROCLOR-1260                     | 39 U [MDL=12] | 40 U [MDL=12] | 36 U [MDL=11]  | 36 U [MDL=11]  |
| BETA-BHC                         |               |               |                |                |
| DELTA-BHC                        |               |               |                |                |
| DIELDRIN                         |               |               |                |                |
| ENDOSULFAN I                     |               |               |                |                |
| ENDOSULFAN II                    |               |               |                |                |
| ENDOSULFAN SULFATE               |               |               |                |                |
| ENDRIN                           |               |               |                |                |
| ENDRIN ALDEHYDE                  |               |               |                |                |
| ENDRIN KETONE                    |               |               |                |                |
| GAMMA-BHC (LINDANE)              |               |               |                |                |
| GAMMA-CHLORDANE                  |               |               |                |                |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-399       | SB-399       | SB-400       | SB-400       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-399-0405  | SB-399-0708  | SB-400-0102  | SB-400-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
| 1                              |              |              |              |              |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-400        | SB-400        | SB-401        | SB-401        |
| SAMPLE ID                    | SB-400-0405   | SB-400-0708   | SB-401-0102   | SB-401-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 84.1 [MDL=10] | 80.3 [MDL=10] | 79.7 [MDL=10] | 88.3 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
|                              |               |               |               |               |

| LOCATION                    | SB-400      | SB-400      | SB-401      | SB-401      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-400-0405 | SB-400-0708 | SB-401-0102 | SB-401-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-400      | SB-400      | SB-401      | SB-401      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-400-0405 | SB-400-0708 | SB-401-0102 | SB-401-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |

February 2013 Page B-150

--

--

--

--

| LOCATION                | SB-400      | SB-400      | SB-401      | SB-401      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-400-0405 | SB-400-0708 | SB-401-0102 | SB-401-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-400      | SB-400      | SB-401      | SB-401      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-400-0405 | SB-400-0708 | SB-401-0102 | SB-401-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              | •                  |                    |                |                    |
|----------------------------------|--------------------|--------------------|----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                |                    |
| ACENAPHTHENE                     |                    |                    |                |                    |
| ACENAPHTHYLENE                   |                    |                    |                |                    |
| ANTHRACENE                       |                    |                    |                |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 25 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 25 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 0.309951 [MDL=1.5] | 0.086521 [MDL=1.6] | 25 [MDL=1.6]   | 0.321412 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                    |                    |                |                    |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 25 J [MDL=1.6] | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                |                    |
| C1-FLUORENES                     |                    |                    |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C2-FLUORENES                     |                    |                    |                |                    |
| C2-NAPHTHALENES                  |                    |                    |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C3-FLUORENES                     |                    |                    |                |                    |
| C3-NAPHTHALENES                  |                    |                    |                |                    |
|                                  |                    |                    |                |                    |

| LOCATION                         | SB-400        | SB-400        | SB-401        | SB-401        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-400-0405   | SB-400-0708   | SB-401-0102   | SB-401-0203   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 25 [MDL=1.6]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 39 U [MDL=13] | 41 U [MDL=14] | 41 U [MDL=14] | 37 U [MDL=12] |
| AROCLOR-1221                     | 39 U [MDL=15] | 41 U [MDL=16] | 41 U [MDL=16] | 37 U [MDL=15] |
| AROCLOR-1232                     | 39 U [MDL=14] | 41 U [MDL=15] | 41 U [MDL=15] | 37 U [MDL=14] |
| AROCLOR-1242                     | 39 U [MDL=17] | 41 U [MDL=17] | 41 U [MDL=18] | 37 U [MDL=16] |
| AROCLOR-1248                     | 39 U [MDL=18] | 41 U [MDL=19] | 41 U [MDL=19] | 37 U [MDL=17] |
| AROCLOR-1254                     | 39 U [MDL=10] | 41 U [MDL=11] | 41 U [MDL=11] | 37 U [MDL=10] |
| AROCLOR-1260                     | 39 U [MDL=12] | 41 U [MDL=12] | 41 U [MDL=12] | 37 U [MDL=11] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-400       | SB-400       | SB-401       | SB-401       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-400-0405  | SB-400-0708  | SB-401-0102  | SB-401-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=14] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                | •            | •            | •            | •            |

| SOIL                         |               |             |               |               |
|------------------------------|---------------|-------------|---------------|---------------|
| LOCATION                     | SB-401        | SB-401      | SB-402        | SB-402        |
| SAMPLE ID                    | SB-401-0405   | SB-401-0708 | SB-402-0102   | SB-402-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007  | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |             |               |               |
| ANTIMONY                     |               |             |               |               |
| ARSENIC                      |               |             |               |               |
| BARIUM                       |               |             |               |               |
| BERYLLIUM                    |               |             |               |               |
| CADMIUM                      |               |             |               |               |
| CHROMIUM                     |               |             |               |               |
| COBALT                       |               |             |               |               |
| COPPER                       |               |             |               |               |
| LEAD                         |               |             |               |               |
| MERCURY                      |               |             |               |               |
| MOLYBDENUM                   |               |             |               |               |
| NICKEL                       |               |             |               |               |
| SELENIUM                     |               |             |               |               |
| SILVER                       |               | -1          |               |               |
| THALLIUM                     |               |             |               |               |
| VANADIUM                     |               |             |               |               |
| ZINC                         |               |             |               |               |
| MISCELLANEOUS PARAMETERS     |               |             |               |               |
| PERCENT SOLIDS (%)           | 83.1 [MDL=10] | 86 [MDL=10] | 79.9 [MDL=10] | 84.7 [MDL=10] |
| TOTAL SOLIDS (%)             |               |             |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |             |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |             |               |               |
| PH (S.U.)                    |               |             |               |               |
| MERCURY (METHYL) (UG/KG)     |               |             |               |               |
| SEMIVOLATILES (UG/KG)        |               |             |               |               |
| 1,1-BIPHENYL                 |               |             |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |             |               |               |
| 1,2-DICHLOROBENZENE          |               |             |               |               |
| 1,3-DICHLOROBENZENE          |               |             |               |               |
| 1,4-DICHLOROBENZENE          |               |             |               |               |
| 1,4-DIOXANE                  |               |             |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               | 1           |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |             |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |             |               |               |
| 2,4-DICHLOROPHENOL           |               |             |               |               |
| 2,4-DIMETHYLPHENOL           |               | -1          |               |               |
| 2,4-DINITROPHENOL            |               |             |               |               |
| 1                            |               |             |               |               |

| _ | _ |   |  |
|---|---|---|--|
| • | 7 | • |  |
|   |   |   |  |

| LOCATION                    | SB-401      | SB-401      | SB-402      | SB-402      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-401-0405 | SB-401-0708 | SB-402-0102 | SB-402-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                                          | SB-401       | SB-401      | SB-402      | SB-402      |
|---------------------------------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                                         | SB-401-0405  | SB-401-0708 | SB-402-0102 | SB-402-0203 |
| SAMPLE DATE                                       | 10/16/2007   | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE                                  |              |             |             |             |
| ISOPHORONE                                        |              |             |             |             |
| NITROBENZENE                                      |              |             |             |             |
| N-NITROSODIMETHYLAMINE                            |              |             |             |             |
| N-NITROSODIMETH LAMINE N-NITROSO-DI-N-PROPYLAMINE |              |             |             |             |
| N-NITROSODIPHENYLAMINE                            |              |             |             |             |
| PENTACHLOROPHENOL                                 |              |             |             |             |
|                                                   |              |             |             |             |
| PHENOL                                            |              | +           |             |             |
| PYRIDINE                                          | <del>-</del> |             |             | <del></del> |
| VOLATILES (UG/KG)                                 |              |             |             | 1           |
| 1,1,1,2-TETRACHLOROETHANE                         | <del>-</del> |             |             |             |
| 1,1,1-TRICHLOROETHANE                             | <del></del>  |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE                         |              |             |             |             |
| 1,1,2-TRICHLOROETHANE                             |              |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                    |              |             |             |             |
| 1,1-DICHLOROETHANE                                |              |             |             |             |
| 1,1-DICHLOROETHENE                                |              |             |             |             |
| 1,1-DICHLOROPROPENE                               |              |             |             |             |
| 1,2,3-TRICHLOROBENZENE                            |              |             |             |             |
| 1,2,3-TRICHLOROPROPANE                            |              |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                            |              |             |             |             |
| 1,2,4-TRICHLOROBENZENE                            |              |             |             |             |
| 1,2,4-TRIMETHYLBENZENE                            |              |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                       |              |             |             |             |
| 1,2-DIBROMOETHANE                                 |              |             |             |             |
| 1,2-DICHLOROBENZENE                               |              |             |             |             |
| 1,2-DICHLOROETHANE                                |              |             |             |             |
| 1,2-DICHLOROPROPANE                               |              |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                            |              |             |             |             |
| 1,3-DICHLOROBENZENE                               |              |             |             |             |
| 1,3-DICHLOROPROPANE                               |              |             |             |             |
| 1,3-DICHLOROPROPENE                               |              |             |             |             |
| 1,4-DICHLOROBENZENE                               |              |             |             |             |
| 1,4-DIOXANE                                       |              |             |             |             |
| 2,2-DICHLOROPROPANE                               |              |             |             |             |
| 2-BUTANONE                                        |              |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                         |              |             |             |             |
| 2-CHLOROTOLUENE                                   |              |             |             |             |

| LOCATION                | SB-401      | SB-401      | SB-402      | SB-402      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-401-0405 | SB-401-0708 | SB-402-0102 | SB-402-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-401      | SB-401      | SB-402      | SB-402      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-401-0405 | SB-401-0708 | SB-402-0102 | SB-402-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                | ,                  |                    |                |                    |
|----------------------------------|--------------------|--------------------|----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                |                    |
| ACENAPHTHENE                     |                    |                    |                |                    |
| ACENAPHTHYLENE                   |                    |                    |                |                    |
| ANTHRACENE                       |                    |                    |                |                    |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 37 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 37 [MDL=1.6]   | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 0.096392 [MDL=1.6] | 0.333136 [MDL=1.5] | 37 [MDL=1.6]   | 0.345127 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                    |                    |                |                    |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 37 J [MDL=1.6] | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                |                    |
| C1-FLUORENES                     |                    |                    |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C2-FLUORENES                     |                    |                    |                |                    |
| C2-NAPHTHALENES                  |                    |                    |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                |                    |
| C3-FLUORENES                     |                    |                    |                |                    |
| C3-NAPHTHALENES                  |                    |                    |                |                    |
|                                  |                    |                    |                |                    |

| LOCATION                         | SB-401        | SB-401        | SB-402        | SB-402        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-401-0405   | SB-401-0708   | SB-402-0102   | SB-402-0203   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 37 [MDL=1.6]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 40 U [MDL=13] | 38 U [MDL=13] | 41 U [MDL=14] | 39 U [MDL=13] |
| AROCLOR-1221                     | 40 U [MDL=16] | 38 U [MDL=15] | 41 U [MDL=16] | 39 U [MDL=15] |
| AROCLOR-1232                     | 40 U [MDL=14] | 38 U [MDL=14] | 41 U [MDL=15] | 39 U [MDL=14] |
| AROCLOR-1242                     | 40 U [MDL=17] | 38 U [MDL=16] | 41 U [MDL=18] | 39 U [MDL=17] |
| AROCLOR-1248                     | 40 U [MDL=18] | 38 U [MDL=17] | 41 U [MDL=19] | 39 U [MDL=18] |
| AROCLOR-1254                     | 40 U [MDL=11] | 38 U [MDL=10] | 41 U [MDL=11] | 39 U [MDL=10] |
| AROCLOR-1260                     | 40 U [MDL=12] | 38 U [MDL=11] | 41 U [MDL=12] | 39 U [MDL=12] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                              | SB-401       | SB-401       | SB-402       | SB-402       |  |
|---------------------------------------|--------------|--------------|--------------|--------------|--|
| SAMPLE ID                             | SB-401-0405  | SB-401-0708  | SB-402-0102  | SB-402-0203  |  |
| SAMPLE DATE                           | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |  |
| HEPTACHLOR                            |              |              |              |              |  |
| HEPTACHLOR EPOXIDE                    |              |              |              |              |  |
| METHOXYCHLOR                          |              |              |              |              |  |
| TOTAL AROCLOR                         | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=13] |  |
| TOTAL DDT POS                         |              |              |              |              |  |
| TOXAPHENE                             |              |              |              |              |  |
| PETROLEUM HYDROCARBONS (UG/KG)        |              |              |              |              |  |
| DIESEL RANGE ORGANICS                 |              |              |              |              |  |
| GASOLINE RANGE ORGANICS               |              |              |              |              |  |
| TPH (C09-C36)                         |              |              |              |              |  |
| · · · · · · · · · · · · · · · · · · · |              |              |              |              |  |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-402        | SB-402        | SB-403        | SB-403        |
| SAMPLE ID                    | SB-402-0405   | SB-402-0708   | SB-403-0102   | SB-403-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 83.6 [MDL=10] | 84.1 [MDL=10] | 88.6 [MDL=10] | 88.4 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
|                              |               |               |               |               |

| SOIL                                          |             |             | 1           |             |
|-----------------------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                                      | SB-402      | SB-402      | SB-403      | SB-403      |
| SAMPLE ID                                     | SB-402-0405 | SB-402-0708 | SB-403-0102 | SB-403-0203 |
| SAMPLE DATE                                   | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE                            |             |             |             |             |
| 2,6-DINITROTOLUENE                            |             |             |             |             |
| 2-CHLORONAPHTHALENE                           |             |             |             |             |
| 2-CHLOROPHENOL                                |             |             |             |             |
| 2-METHYLPHENOL                                |             |             |             |             |
| 2-NITROANILINE                                |             |             |             |             |
| 2-NITROPHENOL                                 |             |             |             |             |
| 3&4-METHYLPHENOL                              |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE                        |             |             |             |             |
| 3-NITROANILINE                                |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL                    |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER                    |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL                       |             |             |             |             |
| 4-CHLOROANILINE                               |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER                   |             |             |             |             |
| 4-NITROANILINE                                |             |             |             |             |
| 4-NITROPHENOL                                 |             |             |             |             |
| ACETOPHENONE                                  |             |             |             |             |
| ANILINE                                       |             |             |             |             |
| ATRAZINE                                      |             |             |             |             |
| AZOBENZENE                                    |             |             |             |             |
| BENZIDINE                                     |             |             |             |             |
| BENZOIC ACID                                  |             |             |             |             |
| BENZYL ALCOHOL                                |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE                    |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER                       |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE                    |             |             |             |             |
| BUTYL BENZYL PHTHALATE                        |             |             |             |             |
| CAPROLACTAM                                   |             |             |             |             |
| CARBAZOLE                                     |             |             |             |             |
| DIBENZOFURAN                                  |             |             |             |             |
| DIETHYL PHTHALATE                             |             |             |             |             |
| DIMETHYL PHTHALATE                            |             |             |             |             |
| DI-N-BUTYL PHTHALATE                          |             |             |             |             |
| DI-N-OCTYL PHTHALATE                          |             |             |             |             |
| HEXACHLOROBENZENE                             |             |             |             |             |
| HEXACHLOROBUTADIENE                           |             |             |             |             |
|                                               |             |             |             |             |
| HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE |             |             |             |             |

| SAMPLE ID                                                                                                                                                                                           | LOCATION                       | SB-402      | SB-402      | SB-403      | SB-403      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACHLOROETHANE                                                                                                                                                                                    | SAMPLE ID                      | SB-402-0405 | SB-402-0708 | SB-403-0102 | SB-403-0203 |
| SOPHORONE                                                                                                                                                                                           | SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                              | HEXACHLOROETHANE               |             |             |             |             |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                              | ISOPHORONE                     |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                          | NITROBENZENE                   |             |             |             |             |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                              | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                   | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL                                                                                                                                                                                              | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                            | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATILES (UG/KG)         1,1,1,2-TETRACHLOROETHANE                                                                                                                                                 | PHENOL                         |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                           | PYRIDINE                       |             |             |             |             |
| 1,1,1-TRICHLOROETHANE <t< td=""><td>VOLATILES (UG/KG)</td><td>•</td><td></td><td></td><td>•</td></t<>                                                                                               | VOLATILES (UG/KG)              | •           |             |             | •           |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                           | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE <t< td=""><td>1,1,1-TRICHLOROETHANE</td><td></td><td></td><td></td><td></td></t<>                                                                                             | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                      | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1-DICHLOROETHANE                                                                                                                     -                                                            | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                     -                                                            | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE             1,2,3-TRICHLOROBENZENE             1,2,3-TRICHLOROPROPANE             1,2,3-TRIMETHYLBENZENE             1,2,4-TRICHLOROBENZENE              1,2,4-TRIMETHYLBENZENE | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                     <                                                        | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE             1,2,3-TRIMETHYLBENZENE              1,2,4-TRICHLOROBENZENE                                                                                                       | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                     <                                                        | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE           1,2,4-TRIMETHYLBENZENE                                                                                                                                             | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE                                                                                                                                                                              | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
|                                                                                                                                                                                                     | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
|                                                                                                                                                                                                     | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                         | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                   | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                 | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                                                                                  | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                 | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                                                                              | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                 | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                 | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                 | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                 | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                         | 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                 | 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                          | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                           |                                |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                     | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-164

| LOCATION                | SB-402      | SB-402      | SB-403      | SB-403      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-402-0405 | SB-402-0708 | SB-403-0102 | SB-403-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-402      | SB-402      | SB-403      | SB-403      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-402-0405 | SB-402-0708 | SB-403-0102 | SB-403-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                   |                    |                    |                    |
|----------------------------------|-------------------|--------------------|--------------------|--------------------|
| 2-METHYLNAPHTHALENE              |                   |                    |                    |                    |
| ACENAPHTHENE                     |                   |                    |                    |                    |
| ACENAPHTHYLENE                   |                   |                    |                    |                    |
| ANTHRACENE                       |                   |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BAP EQUIVALENT-UCL               | 0.10677 [MDL=1.6] | 0.357389 [MDL=1.5] | 0.369928 [MDL=1.5] | 0.382747 [MDL=1.5] |
| BENZO(A)ANTHRACENE               |                   |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    | 1.5 U [MDL=1.5]    |
| BENZO(B)FLUORANTHENE             |                   |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                   |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                   |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                   |                    |                    |                    |
| C1-FLUORENES                     |                   |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                   |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                    |
| C2-FLUORENES                     |                   |                    |                    |                    |
| C2-NAPHTHALENES                  |                   |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                   |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                   |                    |                    |                    |
| C3-FLUORENES                     |                   |                    |                    |                    |
| C3-NAPHTHALENES                  |                   |                    |                    |                    |

| LOCATION                         | SB-402        | SB-402        | SB-403         | SB-403        |
|----------------------------------|---------------|---------------|----------------|---------------|
| SAMPLE ID                        | SB-402-0405   | SB-402-0708   | SB-403-0102    | SB-403-0203   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007     | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |               |
| C4-NAPHTHALENES                  |               |               |                |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |               |
| CHRYSENE                         |               |               |                |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |               |
| FLUORANTHENE                     |               |               |                |               |
| FLUORENE                         |               |               |                |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |               |
| NAPHTHALENE                      |               |               |                |               |
| PHENANTHRENE                     |               |               |                |               |
| PYRENE                           |               |               |                |               |
| TOTAL PAHS                       | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.5]  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          |               |               |                |               |
| 4,4'-DDD                         |               |               |                |               |
| 4,4'-DDE                         |               |               |                |               |
| 4,4'-DDT                         |               |               |                |               |
| ALDRIN                           |               |               |                |               |
| ALPHA-BHC                        |               |               |                |               |
| ALPHA-CHLORDANE                  |               |               |                |               |
| AROCLOR-1016                     | 39 U [MDL=13] | 39 U [MDL=13] | 37 U [MDL=12]  | 37 U [MDL=12] |
| AROCLOR-1221                     | 39 U [MDL=16] | 39 U [MDL=15] | 37 U [MDL=15]  | 37 U [MDL=15] |
| AROCLOR-1232                     | 39 U [MDL=14] | 39 U [MDL=14] | 37 U [MDL=14]  | 37 U [MDL=14] |
| AROCLOR-1242                     | 39 U [MDL=17] | 39 U [MDL=17] | 37 U [MDL=16]  | 37 U [MDL=16] |
| AROCLOR-1248                     | 39 U [MDL=18] | 39 U [MDL=18] | 37 U [MDL=17]  | 37 U [MDL=17] |
| AROCLOR-1254                     | 39 U [MDL=11] | 39 U [MDL=10] | 37 U [MDL=9.9] | 37 U [MDL=10] |
| AROCLOR-1260                     | 39 U [MDL=12] | 39 U [MDL=12] | 37 U [MDL=11]  | 37 U [MDL=11] |
| BETA-BHC                         |               |               |                |               |
| DELTA-BHC                        |               |               |                |               |
| DIELDRIN                         |               |               |                |               |
| ENDOSULFAN I                     |               |               |                |               |
| ENDOSULFAN II                    |               |               |                |               |
| ENDOSULFAN SULFATE               |               |               |                |               |
| ENDRIN                           |               |               |                |               |
| ENDRIN ALDEHYDE                  |               |               |                |               |
| ENDRIN KETONE                    |               |               |                |               |
| GAMMA-BHC (LINDANE)              | <del></del>   |               |                |               |
| GAMMA-CHLORDANE                  |               |               |                |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                              | SB-402       | SB-402       | SB-403       | SB-403       |
|---------------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                             | SB-402-0405  | SB-402-0708  | SB-403-0102  | SB-403-0203  |
| SAMPLE DATE                           | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                            |              |              |              |              |
| HEPTACHLOR EPOXIDE                    |              |              |              |              |
| METHOXYCHLOR                          |              |              |              |              |
| TOTAL AROCLOR                         | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                         |              |              |              |              |
| TOXAPHENE                             |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG)        |              |              |              |              |
| DIESEL RANGE ORGANICS                 |              |              |              |              |
| GASOLINE RANGE ORGANICS               |              |              |              |              |
| TPH (C09-C36)                         |              |              |              |              |
| · · · · · · · · · · · · · · · · · · · |              |              |              |              |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-403        | SB-403        | SB-404        | SB-404        |
| SAMPLE ID                    | SB-403-0405   | SB-403-0708   | SB-404-0102   | SB-404-0203   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     | •             |               | •             | •             |
| PERCENT SOLIDS (%)           | 84.7 [MDL=10] | 83.5 [MDL=10] | 86.6 [MDL=10] | 81.2 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-403      | SB-403      | SB-404      | SB-404      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-403-0405 | SB-403-0708 | SB-404-0102 | SB-404-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-403      | SB-403      | SB-404      | SB-404      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-403-0405 | SB-403-0708 | SB-404-0102 | SB-404-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| ·                              |             | •           | •           | - I         |

February 2013 Page B-171

--

--

--

--

| LOCATION                | SB-403      | SB-403      | SB-404      | SB-404      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-403-0405 | SB-403-0708 | SB-404-0102 | SB-404-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-403      | SB-403      | SB-404      | SB-404      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-403-0405 | SB-403-0708 | SB-404-0102 | SB-404-0203 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              |                    |                    |                    |                    |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
| 1-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| 2-METHYLNAPHTHALENE              |                    |                    |                    |                    |
| ACENAPHTHENE                     |                    |                    |                    |                    |
| ACENAPHTHYLENE                   |                    |                    |                    |                    |
| ANTHRACENE                       |                    |                    |                    |                    |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-UCL               | 0.395852 [MDL=1.5] | 0.117667 [MDL=1.6] | 0.409248 [MDL=1.5] | 0.129095 [MDL=1.6] |
| BENZO(A)ANTHRACENE               |                    |                    |                    |                    |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    | 1.5 U [MDL=1.5]    | 1.6 U [MDL=1.6]    |
| BENZO(B)FLUORANTHENE             |                    |                    |                    |                    |
| BENZO(G,H,I)PERYLENE             |                    |                    |                    |                    |
| BENZO(K)FLUORANTHENE             |                    |                    |                    |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C1-FLUORANTHENES/PYRENES         |                    |                    |                    |                    |
| C1-FLUORENES                     |                    |                    |                    |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C2-FLUORENES                     |                    |                    |                    |                    |
| C2-NAPHTHALENES                  |                    |                    |                    |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                    |                    |                    |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                    |                    |                    |                    |
| C3-FLUORENES                     |                    |                    |                    |                    |
| C3-NAPHTHALENES                  |                    |                    |                    |                    |
|                                  |                    |                    |                    |                    |

| LOCATION                         | SB-403        | SB-403        | SB-404        | SB-404        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-403-0405   | SB-403-0708   | SB-404-0102   | SB-404-0203   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 39 U [MDL=13] | 40 U [MDL=13] | 38 U [MDL=13] | 41 U [MDL=14] |
| AROCLOR-1221                     | 39 U [MDL=15] | 40 U [MDL=16] | 38 U [MDL=15] | 41 U [MDL=16] |
| AROCLOR-1232                     | 39 U [MDL=14] | 40 U [MDL=14] | 38 U [MDL=14] | 41 U [MDL=15] |
| AROCLOR-1242                     | 39 U [MDL=17] | 40 U [MDL=17] | 38 U [MDL=16] | 41 U [MDL=17] |
| AROCLOR-1248                     | 39 U [MDL=18] | 40 U [MDL=18] | 38 U [MDL=17] | 41 U [MDL=18] |
| AROCLOR-1254                     | 39 U [MDL=10] | 40 U [MDL=11] | 38 U [MDL=10] | 41 U [MDL=11] |
| AROCLOR-1260                     | 39 U [MDL=12] | 40 U [MDL=12] | 38 U [MDL=11] | 41 U [MDL=12] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              | <del>-</del>  |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-403       | SB-403       | SB-404       | SB-404       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-403-0405  | SB-403-0708  | SB-404-0102  | SB-404-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=13] | 0 U [MDL=14] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| SOIL                         |             |               |               |               |
|------------------------------|-------------|---------------|---------------|---------------|
| LOCATION                     | SB-404      | SB-404        | SB-405        | SB-405        |
| SAMPLE ID                    | SB-404-0405 | SB-404-0708   | SB-405-0102   | SB-405-0203   |
| SAMPLE DATE                  | 10/16/2007  | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |             |               |               |               |
| ANTIMONY                     |             |               |               |               |
| ARSENIC                      |             |               |               |               |
| BARIUM                       |             |               |               |               |
| BERYLLIUM                    |             |               |               |               |
| CADMIUM                      |             |               |               |               |
| CHROMIUM                     |             |               |               |               |
| COBALT                       |             |               |               |               |
| COPPER                       |             |               |               |               |
| LEAD                         |             |               |               |               |
| MERCURY                      |             |               |               |               |
| MOLYBDENUM                   |             |               |               |               |
| NICKEL                       |             |               |               |               |
| SELENIUM                     |             |               |               |               |
| SILVER                       |             |               |               |               |
| THALLIUM                     |             |               |               |               |
| VANADIUM                     |             |               |               |               |
| ZINC                         |             |               |               |               |
| MISCELLANEOUS PARAMETERS     |             |               |               |               |
| PERCENT SOLIDS (%)           | 78 [MDL=10] | 76.5 [MDL=10] | 91.3 [MDL=10] | 90.3 [MDL=10] |
| TOTAL SOLIDS (%)             |             |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |             |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |             |               |               |               |
| PH (S.U.)                    |             |               |               |               |
| MERCURY (METHYL) (UG/KG)     |             |               |               |               |
| SEMIVOLATILES (UG/KG)        |             |               |               |               |
| 1,1-BIPHENYL                 |             |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |             |               |               |               |
| 1,2-DICHLOROBENZENE          |             |               |               |               |
| 1,3-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DICHLOROBENZENE          |             |               |               |               |
| 1,4-DIOXANE                  |             |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |             |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |             |               |               |               |
| 2,4-DICHLOROPHENOL           |             |               |               |               |
| 2,4-DIMETHYLPHENOL           |             |               |               |               |
| 2,4-DINITROPHENOL            |             |               |               |               |
|                              |             |               |               |               |

| LOCATION                    | SB-404      | SB-404      | SB-405      | SB-405      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-404-0405 | SB-404-0708 | SB-405-0102 | SB-405-0203 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-404      | SB-404      | SB-405      | SB-405      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-404-0405 | SB-404-0708 | SB-405-0102 | SB-405-0203 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | -           |             |             | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                |             |             |             |             |

February 2013 Page B-178

--

--

--

--

| LOCATION                | SB-404      | SB-404      | SB-405      | SB-405      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-404-0405 | SB-404-0708 | SB-405-0102 | SB-405-0203 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| SB-404      | SB-404                                                    | SB-405                 | SB-405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|-----------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-404-0405 | SB-404-0708                                               | SB-405-0102            | SB-405-0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10/16/2007  | 10/16/2007                                                | 10/16/2007             | 10/16/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1           |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1           |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1           |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | SB-404-0405<br>10/16/2007<br><br><br><br><br><br><br><br> | SB-404-0405 10/16/2007 | SB-404-0405 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 10/16/2007 |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                |                |                |                    |
|----------------------------------|----------------|----------------|----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                |                |                    |
| 2-METHYLNAPHTHALENE              |                |                |                |                    |
| ACENAPHTHENE                     |                |                |                |                    |
| ACENAPHTHYLENE                   |                |                |                |                    |
| ANTHRACENE                       |                |                |                |                    |
| BAP EQUIVALENT-HALFND            | 18 [MDL=1.7]   | 72 [MDL=1.7]   | 36 [MDL=1.4]   | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-POS               | 18 [MDL=1.7]   | 72 [MDL=1.7]   | 36 [MDL=1.4]   | 1.4 U [MDL=1.4]    |
| BAP EQUIVALENT-UCL               | 18 [MDL=1.7]   | 72 [MDL=1.7]   | 36 [MDL=1.4]   | 0.488515 [MDL=1.4] |
| BENZO(A)ANTHRACENE               |                |                |                |                    |
| BENZO(A)PYRENE                   | 18 J [MDL=1.7] | 72 J [MDL=1.7] | 36 J [MDL=1.4] | 1.4 U [MDL=1.4]    |
| BENZO(B)FLUORANTHENE             |                |                |                |                    |
| BENZO(G,H,I)PERYLENE             |                |                |                |                    |
| BENZO(K)FLUORANTHENE             |                |                |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C1-FLUORANTHENES/PYRENES         |                |                |                |                    |
| C1-FLUORENES                     |                |                |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C2-FLUORENES                     |                |                |                |                    |
| C2-NAPHTHALENES                  |                |                |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C3-FLUORENES                     |                |                |                |                    |
| C3-NAPHTHALENES                  |                |                |                |                    |
|                                  | •              | -              | •              |                    |

| LOCATION                         | SB-404        | SB-404        | SB-405         | SB-405         |
|----------------------------------|---------------|---------------|----------------|----------------|
| SAMPLE ID                        | SB-404-0405   | SB-404-0708   | SB-405-0102    | SB-405-0203    |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007     | 10/16/2007     |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                |                |
| C4-NAPHTHALENES                  |               |               |                |                |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                |                |
| CHRYSENE                         |               |               |                |                |
| DIBENZO(A,H)ANTHRACENE           |               |               |                |                |
| FLUORANTHENE                     |               |               |                |                |
| FLUORENE                         |               |               |                |                |
| INDENO(1,2,3-CD)PYRENE           |               |               |                |                |
| NAPHTHALENE                      |               |               |                |                |
| PHENANTHRENE                     |               |               |                |                |
| PYRENE                           |               |               |                |                |
| TOTAL PAHS                       | 18 [MDL=1.7]  | 72 [MDL=1.7]  | 36 [MDL=1.4]   | 0 U [MDL=1.4]  |
| PESTICIDES/PCBS (UG/KG)          | •             |               |                |                |
| 4,4'-DDD                         |               |               |                |                |
| 4,4'-DDE                         |               |               |                |                |
| 4,4'-DDT                         |               |               |                |                |
| ALDRIN                           |               |               |                |                |
| ALPHA-BHC                        |               |               |                |                |
| ALPHA-CHLORDANE                  |               |               |                |                |
| AROCLOR-1016                     | 42 U [MDL=14] | 43 U [MDL=14] | 36 U [MDL=12]  | 37 U [MDL=12]  |
| AROCLOR-1221                     | 42 U [MDL=17] | 43 U [MDL=17] | 36 U [MDL=14]  | 37 U [MDL=14]  |
| AROCLOR-1232                     | 42 U [MDL=15] | 43 U [MDL=16] | 36 U [MDL=13]  | 37 U [MDL=13]  |
| AROCLOR-1242                     | 42 U [MDL=18] | 43 U [MDL=18] | 36 U [MDL=15]  | 37 U [MDL=16]  |
| AROCLOR-1248                     | 42 U [MDL=19] | 43 U [MDL=20] | 36 U [MDL=16]  | 37 U [MDL=17]  |
| AROCLOR-1254                     | 42 U [MDL=11] | 43 U [MDL=12] | 36 U [MDL=9.6] | 37 U [MDL=9.7] |
| AROCLOR-1260                     | 42 U [MDL=13] | 43 U [MDL=13] | 36 U [MDL=11]  | 37 U [MDL=11]  |
| BETA-BHC                         |               |               |                | 1              |
| DELTA-BHC                        |               |               |                | 1              |
| DIELDRIN                         |               |               |                | 1              |
| ENDOSULFAN I                     |               |               |                | 1              |
| ENDOSULFAN II                    |               |               |                |                |
| ENDOSULFAN SULFATE               |               |               |                |                |
| ENDRIN                           |               |               |                |                |
| ENDRIN ALDEHYDE                  |               |               |                |                |
| ENDRIN KETONE                    |               |               |                |                |
| GAMMA-BHC (LINDANE)              |               |               |                |                |
| GAMMA-CHLORDANE                  |               |               |                | 1              |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-404       | SB-404       | SB-405       | SB-405       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-404-0405  | SB-404-0708  | SB-405-0102  | SB-405-0203  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=14] | 0 U [MDL=14] | 0 U [MDL=12] | 0 U [MDL=12] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              |              |

| JOIL                         |               | _             |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-405        | SB-405        | SB-405        | SB-405        |
| SAMPLE ID                    | SB-405-0405   | SB-405-0708   | F-SB-405RE-10 | F-SB-405RE-11 |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 9/22/2009     | 9/22/2009     |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               | -             |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| EAD                          |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| BELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| HALLIUM                      |               |               |               |               |
| /ANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     | •             |               |               |               |
| PERCENT SOLIDS (%)           | 83.3 [MDL=10] | 77.4 [MDL=10] |               |               |
| OTAL SOLIDS (%)              |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| OTAL ORGANIC CARBON (MG/KG)  |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        | •             |               |               |               |
| ,1-BIPHENYL                  |               |               |               |               |
| ,2,4-TRICHLOROBENZENE        |               |               |               |               |
| ,2-DICHLOROBENZENE           |               |               |               |               |
| ,3-DICHLOROBENZENE           |               |               |               |               |
| ,4-DICHLOROBENZENE           |               |               |               |               |
| ,4-DIOXANE                   |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| ,4,5-TRICHLOROPHENOL         |               |               |               |               |
| ,4,6-TRICHLOROPHENOL         |               |               |               |               |
| ,4-DICHLOROPHENOL            |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-405      | SB-405      | SB-405        | SB-405        |
|-----------------------------|-------------|-------------|---------------|---------------|
| SAMPLE ID                   | SB-405-0405 | SB-405-0708 | F-SB-405RE-10 | F-SB-405RE-11 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 9/22/2009     | 9/22/2009     |
| 2,4-DINITROTOLUENE          |             |             |               |               |
| 2,6-DINITROTOLUENE          |             |             |               |               |
| 2-CHLORONAPHTHALENE         |             |             |               |               |
| 2-CHLOROPHENOL              |             |             |               |               |
| 2-METHYLPHENOL              |             |             |               |               |
| 2-NITROANILINE              |             |             |               |               |
| 2-NITROPHENOL               |             |             |               |               |
| 3&4-METHYLPHENOL            |             |             |               |               |
| 3,3'-DICHLOROBENZIDINE      |             |             |               |               |
| 3-NITROANILINE              |             |             |               |               |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |               |               |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |               |               |
| 4-CHLORO-3-METHYLPHENOL     |             |             |               |               |
| 4-CHLOROANILINE             |             |             |               |               |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |               |               |
| 4-NITROANILINE              |             |             |               |               |
| 4-NITROPHENOL               |             |             |               |               |
| ACETOPHENONE                |             |             |               |               |
| ANILINE                     |             |             |               |               |
| ATRAZINE                    |             |             |               |               |
| AZOBENZENE                  |             |             |               |               |
| BENZIDINE                   |             |             |               |               |
| BENZOIC ACID                |             |             |               |               |
| BENZYL ALCOHOL              |             |             |               |               |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |               |               |
| BIS(2-CHLOROETHYL)ETHER     |             |             |               |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |               |               |
| BUTYL BENZYL PHTHALATE      |             |             |               |               |
| CAPROLACTAM                 |             |             |               |               |
| CARBAZOLE                   |             |             |               |               |
| DIBENZOFURAN                |             |             |               |               |
| DIETHYL PHTHALATE           |             |             |               |               |
| DIMETHYL PHTHALATE          |             |             |               |               |
| DI-N-BUTYL PHTHALATE        |             |             |               |               |
| DI-N-OCTYL PHTHALATE        |             |             |               |               |
| HEXACHLOROBENZENE           |             |             |               |               |
| HEXACHLOROBUTADIENE         |             |             |               |               |
| HEXACHLOROCYCLOPENTADIENE   |             |             |               |               |

| LOCATION                       | SB-405      | SB-405      | SB-405        | SB-405        |
|--------------------------------|-------------|-------------|---------------|---------------|
| SAMPLE ID                      | SB-405-0405 | SB-405-0708 | F-SB-405RE-10 | F-SB-405RE-11 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 9/22/2009     | 9/22/2009     |
| HEXACHLOROETHANE               |             |             |               |               |
| ISOPHORONE                     |             |             |               |               |
| NITROBENZENE                   |             |             |               |               |
| N-NITROSODIMETHYLAMINE         |             |             |               |               |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |               |               |
| N-NITROSODIPHENYLAMINE         |             |             |               |               |
| PENTACHLOROPHENOL              |             |             |               |               |
| PHENOL                         |             |             |               |               |
| PYRIDINE                       |             |             |               |               |
| VOLATILES (UG/KG)              |             | -1          |               |               |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |               |               |
| 1,1,1-TRICHLOROETHANE          |             |             |               |               |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |               |               |
| 1,1,2-TRICHLOROETHANE          |             |             |               |               |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |               |               |
| 1,1-DICHLOROETHANE             |             |             |               |               |
| 1,1-DICHLOROETHENE             |             |             |               |               |
| 1,1-DICHLOROPROPENE            |             |             |               |               |
| 1,2,3-TRICHLOROBENZENE         |             |             |               |               |
| 1,2,3-TRICHLOROPROPANE         |             |             |               |               |
| 1,2,3-TRIMETHYLBENZENE         |             |             |               |               |
| 1,2,4-TRICHLOROBENZENE         |             |             |               |               |
| 1,2,4-TRIMETHYLBENZENE         |             |             |               |               |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |               |               |
| 1,2-DIBROMOETHANE              |             |             |               |               |
| 1,2-DICHLOROBENZENE            |             |             |               |               |
| 1,2-DICHLOROETHANE             |             |             |               |               |
| 1,2-DICHLOROPROPANE            |             |             |               |               |
| 1,3,5-TRIMETHYLBENZENE         |             |             |               |               |
| 1,3-DICHLOROBENZENE            |             |             |               |               |
| 1,3-DICHLOROPROPANE            |             |             |               |               |
| 1,3-DICHLOROPROPENE            |             |             |               |               |
| 1,4-DICHLOROBENZENE            |             |             |               |               |
| 1,4-DIOXANE                    |             |             |               |               |
| 2,2-DICHLOROPROPANE            |             |             |               |               |
| 2-BUTANONE                     |             |             |               |               |
| 2-CHLOROETHYL VINYL ETHER      |             |             |               |               |
| 2-CHLOROTOLUENE                |             |             |               |               |

| LOCATION                | SB-405      | SB-405      | SB-405        | SB-405        |
|-------------------------|-------------|-------------|---------------|---------------|
| SAMPLE ID               | SB-405-0405 | SB-405-0708 | F-SB-405RE-10 | F-SB-405RE-11 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 9/22/2009     | 9/22/2009     |
| 2-HEXANONE              |             |             |               |               |
| 4-CHLOROTOLUENE         |             |             |               |               |
| 4-ISOPROPYLTOLUENE      |             |             |               |               |
| 4-METHYL-2-PENTANONE    |             |             |               |               |
| ACETONE                 |             |             |               |               |
| BENZENE                 |             |             |               |               |
| BROMOBENZENE            |             |             |               |               |
| BROMOCHLOROMETHANE      |             |             |               |               |
| BROMODICHLOROMETHANE    |             |             |               |               |
| BROMOFORM               |             |             |               |               |
| BROMOMETHANE            |             |             |               |               |
| CARBON DISULFIDE        |             |             |               |               |
| CARBON TETRACHLORIDE    |             |             |               |               |
| CHLOROBENZENE           |             |             |               |               |
| CHLORODIBROMOMETHANE    |             |             |               |               |
| CHLOROETHANE            |             |             |               |               |
| CHLOROFORM              |             |             |               |               |
| CHLOROMETHANE           |             |             |               |               |
| CIS-1,2-DICHLOROETHENE  |             |             |               |               |
| CIS-1,3-DICHLOROPROPENE |             |             |               |               |
| DIBROMOMETHANE          |             |             |               |               |
| DICHLORODIFLUOROMETHANE |             |             |               |               |
| DIISOPROPYL ETHER       |             |             |               |               |
| ETHYL TERT-BUTYL ETHER  |             |             |               |               |
| ETHYLBENZENE            |             |             |               |               |
| FLUORODICHLOROMETHANE   |             |             |               |               |
| HEXACHLOROBUTADIENE     |             |             |               |               |
| ISOPROPYLBENZENE        |             |             |               |               |
| M+P-XYLENES             |             |             |               |               |
| METHYL TERT-BUTYL ETHER |             |             |               |               |
| METHYLENE CHLORIDE      |             |             |               |               |
| NAPHTHALENE             |             |             |               |               |
| N-BUTYLBENZENE          |             |             |               |               |
| N-PROPYLBENZENE         |             |             |               |               |
| O-XYLENE                |             |             |               |               |
| SEC-BUTYLBENZENE        |             |             |               |               |
| STYRENE                 |             |             |               |               |
| TERT-AMYL METHYL ETHER  |             |             |               |               |

| SB-405      | SB-405                 | SB-405                  | SB-405                             |
|-------------|------------------------|-------------------------|------------------------------------|
| SB-405-0405 | SB-405-0708            | F-SB-405RE-10           | F-SB-405RE-11                      |
| 10/16/2007  | 10/16/2007             | 9/22/2009               | 9/22/2009                          |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             |                        |                         |                                    |
|             | SB-405-0405 10/16/2007 | \$B-405-0405 10/16/2007 | \$B-405-0405 10/16/2007 10/16/2007 |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                 |                 |                  |                  |
|----------------------------------|-----------------|-----------------|------------------|------------------|
| 1-METHYLNAPHTHALENE              |                 |                 |                  |                  |
| 2-METHYLNAPHTHALENE              |                 |                 |                  |                  |
| ACENAPHTHENE                     |                 |                 |                  |                  |
| ACENAPHTHYLENE                   |                 |                 |                  |                  |
| ANTHRACENE                       |                 |                 |                  |                  |
| BAP EQUIVALENT-HALFND            | 330 [MDL=1.6]   | 230 [MDL=1.7]   | 30.281 [MDL=1.7] | 44.653 [MDL=1.8] |
| BAP EQUIVALENT-POS               | 330 [MDL=1.6]   | 230 [MDL=1.7]   | 29.431 [MDL=1.7] | 43.753 [MDL=1.8] |
| BAP EQUIVALENT-UCL               | 330 [MDL=1.6]   | 230 [MDL=1.7]   |                  |                  |
| BENZO(A)ANTHRACENE               |                 |                 | 31 [MDL=1.3]     | 52 [MDL=1.3]     |
| BENZO(A)PYRENE                   | 330 J [MDL=1.6] | 230 J [MDL=1.7] | 22 [MDL=1.7]     | 31 [MDL=1.8]     |
| BENZO(B)FLUORANTHENE             |                 |                 | 30 [MDL=1.6]     | 45 [MDL=1.6]     |
| BENZO(G,H,I)PERYLENE             |                 |                 |                  |                  |
| BENZO(K)FLUORANTHENE             |                 |                 | 20 [MDL=2.3]     | 20 [MDL=2.3]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                  |                  |
| C1-FLUORENES                     |                 |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C2-FLUORENES                     |                 |                 |                  |                  |
| C2-NAPHTHALENES                  |                 |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C3-FLUORENES                     |                 |                 |                  |                  |
| C3-NAPHTHALENES                  |                 |                 |                  |                  |

| LOCATION                         | SB-405        | SB-405        | SB-405          | SB-405          |
|----------------------------------|---------------|---------------|-----------------|-----------------|
| SAMPLE ID                        | SB-405-0405   | SB-405-0708   | F-SB-405RE-10   | F-SB-405RE-11   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 9/22/2009       | 9/22/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |                 |                 |
| C4-NAPHTHALENES                  |               |               |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |                 |                 |
| CHRYSENE                         |               |               | 31 [MDL=1.2]    | 53 [MDL=1.2]    |
| DIBENZO(A,H)ANTHRACENE           |               |               | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] |
| FLUORANTHENE                     |               |               |                 |                 |
| FLUORENE                         |               |               |                 |                 |
| INDENO(1,2,3-CD)PYRENE           |               |               | 11 [MDL=2]      | 28 [MDL=2]      |
| NAPHTHALENE                      |               |               |                 |                 |
| PHENANTHRENE                     |               |               |                 |                 |
| PYRENE                           |               |               |                 |                 |
| TOTAL PAHS                       | 330 [MDL=1.6] | 230 [MDL=1.7] | 145 [MDL=1.7]   | 229 [MDL=1.8]   |
| PESTICIDES/PCBS (UG/KG)          |               |               |                 |                 |
| 4,4'-DDD                         |               |               |                 |                 |
| 4,4'-DDE                         |               |               |                 |                 |
| 4,4'-DDT                         |               |               |                 |                 |
| ALDRIN                           |               |               |                 |                 |
| ALPHA-BHC                        |               |               |                 |                 |
| ALPHA-CHLORDANE                  |               |               |                 |                 |
| AROCLOR-1016                     | 40 U [MDL=13] | 43 U [MDL=14] |                 |                 |
| AROCLOR-1221                     | 40 U [MDL=16] | 43 U [MDL=17] |                 |                 |
| AROCLOR-1232                     | 40 U [MDL=14] | 43 U [MDL=16] |                 |                 |
| AROCLOR-1242                     | 40 U [MDL=17] | 43 U [MDL=18] |                 |                 |
| AROCLOR-1248                     | 40 U [MDL=18] | 43 U [MDL=19] |                 |                 |
| AROCLOR-1254                     | 40 U [MDL=11] | 43 U [MDL=11] |                 |                 |
| AROCLOR-1260                     | 40 U [MDL=12] | 43 U [MDL=13] |                 |                 |
| BETA-BHC                         |               |               |                 |                 |
| DELTA-BHC                        |               |               |                 |                 |
| DIELDRIN                         |               |               |                 |                 |
| ENDOSULFAN I                     |               |               |                 |                 |
| ENDOSULFAN II                    |               |               |                 |                 |
| ENDOSULFAN SULFATE               |               |               |                 |                 |
| ENDRIN                           |               |               |                 |                 |
| ENDRIN ALDEHYDE                  |               |               |                 |                 |
| ENDRIN KETONE                    |               |               |                 |                 |
| GAMMA-BHC (LINDANE)              |               |               |                 |                 |
| GAMMA-CHLORDANE                  |               |               |                 |                 |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-405       | SB-405       | SB-405        | SB-405        |
|--------------------------------|--------------|--------------|---------------|---------------|
| SAMPLE ID                      | SB-405-0405  | SB-405-0708  | F-SB-405RE-10 | F-SB-405RE-11 |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 9/22/2009     | 9/22/2009     |
| HEPTACHLOR                     |              |              |               |               |
| HEPTACHLOR EPOXIDE             |              |              |               |               |
| METHOXYCHLOR                   |              |              |               |               |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=14] |               |               |
| TOTAL DDT POS                  |              |              |               |               |
| TOXAPHENE                      |              |              |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |               |               |
| DIESEL RANGE ORGANICS          |              |              |               |               |
| GASOLINE RANGE ORGANICS        |              |              |               |               |
| TPH (C09-C36)                  |              |              |               |               |
|                                |              |              |               |               |

| LOCATION                     | SB-405        | SB-405        | SB-405          | SB-405       |
|------------------------------|---------------|---------------|-----------------|--------------|
| SAMPLE ID                    | F-SB-405RE-12 | F-SB-405RE-13 | F-SB-405RE-13-D | F-SB-405RE-9 |
| SAMPLE DATE                  | 9/22/2009     | 9/22/2009     | 9/22/2009       | 9/22/2009    |
| METALS (MG/KG)               | •             |               |                 | •            |
| ANTIMONY                     |               |               |                 |              |
| ARSENIC                      |               |               |                 |              |
| BARIUM                       |               |               |                 |              |
| BERYLLIUM                    |               |               |                 |              |
| CADMIUM                      |               |               |                 |              |
| CHROMIUM                     |               |               |                 |              |
| COBALT                       |               |               |                 |              |
| COPPER                       |               |               |                 |              |
| LEAD                         |               |               |                 |              |
| MERCURY                      |               |               |                 |              |
| MOLYBDENUM                   |               |               |                 |              |
| NICKEL                       |               |               |                 |              |
| SELENIUM                     |               |               |                 |              |
| SILVER                       |               |               |                 |              |
| THALLIUM                     |               |               |                 |              |
| VANADIUM                     |               |               |                 |              |
| ZINC                         |               |               |                 |              |
| MISCELLANEOUS PARAMETERS     |               |               |                 |              |
| PERCENT SOLIDS (%)           |               |               |                 |              |
| TOTAL SOLIDS (%)             |               |               |                 |              |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |                 |              |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |                 |              |
| PH (S.U.)                    |               |               |                 |              |
| MERCURY (METHYL) (UG/KG)     |               |               |                 |              |
| SEMIVOLATILES (UG/KG)        |               |               |                 |              |
| 1,1-BIPHENYL                 |               |               |                 |              |
| 1,2,4-TRICHLOROBENZENE       |               |               |                 |              |
| 1,2-DICHLOROBENZENE          |               |               |                 |              |
| 1,3-DICHLOROBENZENE          |               |               |                 |              |
| 1,4-DICHLOROBENZENE          |               |               |                 |              |
| 1,4-DIOXANE                  |               |               |                 |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |                 |              |
| 2,4,5-TRICHLOROPHENOL        |               |               |                 |              |
| 2,4,6-TRICHLOROPHENOL        |               |               |                 |              |
| 2,4-DICHLOROPHENOL           |               |               |                 |              |
| 2,4-DIMETHYLPHENOL           |               |               |                 |              |
| 2,4-DINITROPHENOL            |               |               |                 |              |

| LOCATION                    | SB-405        | SB-405        | SB-405          | SB-405       |
|-----------------------------|---------------|---------------|-----------------|--------------|
| SAMPLE ID                   | F-SB-405RE-12 | F-SB-405RE-13 | F-SB-405RE-13-D | F-SB-405RE-9 |
| SAMPLE DATE                 | 9/22/2009     | 9/22/2009     | 9/22/2009       | 9/22/2009    |
| 2,4-DINITROTOLUENE          |               |               |                 |              |
| 2,6-DINITROTOLUENE          |               |               |                 |              |
| 2-CHLORONAPHTHALENE         |               |               |                 |              |
| 2-CHLOROPHENOL              |               |               |                 |              |
| 2-METHYLPHENOL              |               |               |                 |              |
| 2-NITROANILINE              |               |               |                 |              |
| 2-NITROPHENOL               |               |               |                 |              |
| 3&4-METHYLPHENOL            |               |               |                 |              |
| 3,3'-DICHLOROBENZIDINE      |               |               |                 |              |
| 3-NITROANILINE              |               |               |                 |              |
| 4,6-DINITRO-2-METHYLPHENOL  |               |               |                 |              |
| 4-BROMOPHENYL PHENYL ETHER  |               |               |                 |              |
| 4-CHLORO-3-METHYLPHENOL     |               |               |                 |              |
| 4-CHLOROANILINE             |               |               |                 |              |
| 4-CHLOROPHENYL PHENYL ETHER |               |               |                 |              |
| 4-NITROANILINE              |               |               |                 |              |
| 4-NITROPHENOL               |               |               |                 |              |
| ACETOPHENONE                |               |               |                 |              |
| ANILINE                     |               |               |                 |              |
| ATRAZINE                    |               |               |                 |              |
| AZOBENZENE                  |               |               |                 |              |
| BENZIDINE                   |               |               |                 |              |
| BENZOIC ACID                |               |               |                 |              |
| BENZYL ALCOHOL              |               |               |                 |              |
| BIS(2-CHLOROETHOXY)METHANE  |               |               |                 |              |
| BIS(2-CHLOROETHYL)ETHER     |               |               |                 |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |               |                 |              |
| BUTYL BENZYL PHTHALATE      |               |               |                 |              |
| CAPROLACTAM                 |               |               |                 |              |
| CARBAZOLE                   |               |               |                 |              |
| DIBENZOFURAN                |               |               |                 |              |
| DIETHYL PHTHALATE           |               |               |                 |              |
| DIMETHYL PHTHALATE          |               |               |                 |              |
| DI-N-BUTYL PHTHALATE        |               |               |                 |              |
| DI-N-OCTYL PHTHALATE        |               |               |                 |              |
| HEXACHLOROBENZENE           |               |               |                 |              |
| HEXACHLOROBUTADIENE         |               |               |                 |              |
| HEXACHLOROCYCLOPENTADIENE   |               |               |                 |              |

| SB-405        | SB-405                  | SB-405                  | SB-405                                      |
|---------------|-------------------------|-------------------------|---------------------------------------------|
| F-SB-405RE-12 | F-SB-405RE-13           | F-SB-405RE-13-D         | F-SB-405RE-9                                |
| 9/22/2009     | 9/22/2009               | 9/22/2009               | 9/22/2009                                   |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
| •             | •                       |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               |                         |                         |                                             |
|               | F-SB-405RE-12 9/22/2009 | F-SB-405RE-12 9/22/2009 | F-SB-405RE-12 9/22/2009 9/22/2009 9/22/2009 |

February 2013 Page B-192

| CD 405 | CD 405 | CD 405                  | CD 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |                         | SB-405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |        |                         | F-SB-405RE-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |        | 9/22/2009               | 9/22/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        | F-SB-405RE-12 9/22/2009 | F-SB-405RE-12 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/22/2009 9/ |

| LOCATION                  | SB-405        | SB-405        | SB-405          | SB-405       |
|---------------------------|---------------|---------------|-----------------|--------------|
| SAMPLE ID                 | F-SB-405RE-12 | F-SB-405RE-13 | F-SB-405RE-13-D | F-SB-405RE-9 |
| SAMPLE DATE               | 9/22/2009     | 9/22/2009     | 9/22/2009       | 9/22/2009    |
| TERT-BUTYLBENZENE         |               |               |                 |              |
| TERTIARY-BUTYL ALCOHOL    |               |               |                 |              |
| TETRACHLOROETHENE         |               |               |                 |              |
| TOLUENE                   |               |               |                 |              |
| TOTAL 1,2-DICHLOROETHENE  |               |               |                 |              |
| TOTAL XYLENES             |               |               |                 |              |
| TRANS-1,2-DICHLOROETHENE  |               |               |                 |              |
| TRANS-1,3-DICHLOROPROPENE |               |               |                 |              |
| TRICHLOROETHENE           |               |               |                 |              |
| TRICHLOROFLUOROMETHANE    |               |               |                 |              |
| VINYL ACETATE             |               |               |                 |              |
| VINYL CHLORIDE            |               |               |                 |              |
|                           |               |               |                 |              |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                | ,                 |                  |                  |                  |
|----------------------------------|-------------------|------------------|------------------|------------------|
| 1-METHYLNAPHTHALENE              |                   |                  |                  |                  |
| 2-METHYLNAPHTHALENE              |                   |                  |                  |                  |
| ACENAPHTHENE                     |                   |                  |                  |                  |
| ACENAPHTHYLENE                   |                   |                  |                  |                  |
| ANTHRACENE                       |                   |                  |                  |                  |
| BAP EQUIVALENT-HALFND            | 13.5255 [MDL=1.8] | 52.706 [MDL=2.6] | 2.4 U [MDL=2.4]  | 2581.5 [MDL=8.2] |
| BAP EQUIVALENT-POS               | 12.514 [MDL=1.8]  | 51.406 [MDL=2.6] | 2.4 U [MDL=2.4]  | 2577.4 [MDL=8.2] |
| BAP EQUIVALENT-UCL               |                   |                  |                  |                  |
| BENZO(A)ANTHRACENE               | 12 [MDL=1.3]      | 35 J [MDL=1.9]   | 1.7 UJ [MDL=1.7] | 3000 [MDL=6]     |
| BENZO(A)PYRENE                   | 9.5 [MDL=1.8]     | 37 J [MDL=2.6]   | 2.4 UJ [MDL=2.4] | 1900 [MDL=8.2]   |
| BENZO(B)FLUORANTHENE             | 18 [MDL=1.6]      | 59 J [MDL=2.4]   | 2.2 UJ [MDL=2.2] | 2900 [MDL=7.6]   |
| BENZO(G,H,I)PERYLENE             |                   |                  |                  |                  |
| BENZO(K)FLUORANTHENE             | 2.3 U [MDL=2.3]   | 17 [MDL=3.5]     | 3.1 U [MDL=3.1]  | 1300 [MDL=11]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                   |                  |                  |                  |
| C1-FLUORENES                     |                   |                  |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                   |                  |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                  |
| C2-FLUORENES                     |                   |                  |                  |                  |
| C2-NAPHTHALENES                  |                   |                  |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                   |                  |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                  |
| C3-FLUORENES                     |                   |                  |                  |                  |
| C3-NAPHTHALENES                  |                   |                  |                  |                  |
|                                  |                   |                  |                  |                  |

| LOCATION                         | SB-405          | SB-405          | SB-405           | SB-405               |
|----------------------------------|-----------------|-----------------|------------------|----------------------|
| SAMPLE ID                        | F-SB-405RE-12   | F-SB-405RE-13   | F-SB-405RE-13-D  | F-SB-405RE-9         |
| SAMPLE DATE                      | 9/22/2009       | 9/22/2009       | 9/22/2009        | 9/22/2009            |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                      |
| C4-NAPHTHALENES                  |                 |                 |                  |                      |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                      |
| CHRYSENE                         | 14 [MDL=1.2]    | 36 J [MDL=1.8]  | 1.6 UJ [MDL=1.6] | 4400 [MDL=5.7]       |
| DIBENZO(A,H)ANTHRACENE           | 1.8 U [MDL=1.8] | 2.6 U [MDL=2.6] | 2.4 U [MDL=2.4]  | 8.200000 U [MDL=8.2] |
| FLUORANTHENE                     |                 |                 |                  |                      |
| FLUORENE                         |                 |                 |                  |                      |
| INDENO(1,2,3-CD)PYRENE           | 2.0 U [MDL=2]   | 48 J [MDL=3.1]  | 2.7 UJ [MDL=2.7] | 700 [MDL=9.5]        |
| NAPHTHALENE                      |                 |                 |                  |                      |
| PHENANTHRENE                     |                 |                 |                  |                      |
| PYRENE                           |                 |                 |                  |                      |
| TOTAL PAHS                       | 53.5 [MDL=1.8]  | 232 [MDL=2.6]   | 0 U [MDL=2.4]    | 14200 [MDL=8.2]      |
| PESTICIDES/PCBS (UG/KG)          |                 |                 | -                |                      |
| 4,4'-DDD                         |                 |                 |                  |                      |
| 4,4'-DDE                         |                 |                 |                  |                      |
| 4,4'-DDT                         |                 |                 |                  |                      |
| ALDRIN                           |                 |                 |                  |                      |
| ALPHA-BHC                        |                 |                 |                  |                      |
| ALPHA-CHLORDANE                  |                 |                 |                  |                      |
| AROCLOR-1016                     |                 |                 |                  |                      |
| AROCLOR-1221                     |                 |                 |                  |                      |
| AROCLOR-1232                     |                 |                 |                  |                      |
| AROCLOR-1242                     |                 |                 |                  |                      |
| AROCLOR-1248                     |                 |                 |                  |                      |
| AROCLOR-1254                     |                 |                 |                  |                      |
| AROCLOR-1260                     |                 |                 |                  |                      |
| BETA-BHC                         |                 |                 |                  |                      |
| DELTA-BHC                        |                 |                 |                  |                      |
| DIELDRIN                         |                 |                 |                  |                      |
| ENDOSULFAN I                     |                 |                 |                  |                      |
| ENDOSULFAN II                    |                 |                 |                  |                      |
| ENDOSULFAN SULFATE               |                 |                 |                  |                      |
| ENDRIN                           |                 |                 |                  |                      |
| ENDRIN ALDEHYDE                  |                 |                 |                  |                      |
| ENDRIN KETONE                    |                 |                 |                  |                      |
| GAMMA-BHC (LINDANE)              |                 |                 |                  |                      |
| GAMMA-CHLORDANE                  |                 |                 |                  |                      |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-405        | SB-405        | SB-405          | SB-405       |
|--------------------------------|---------------|---------------|-----------------|--------------|
| SAMPLE ID                      | F-SB-405RE-12 | F-SB-405RE-13 | F-SB-405RE-13-D | F-SB-405RE-9 |
| SAMPLE DATE                    | 9/22/2009     | 9/22/2009     | 9/22/2009       | 9/22/2009    |
| HEPTACHLOR                     |               |               |                 |              |
| HEPTACHLOR EPOXIDE             |               |               |                 |              |
| METHOXYCHLOR                   |               |               |                 |              |
| TOTAL AROCLOR                  |               |               |                 |              |
| TOTAL DDT POS                  |               |               |                 |              |
| TOXAPHENE                      |               |               |                 |              |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |                 |              |
| DIESEL RANGE ORGANICS          |               |               |                 |              |
| GASOLINE RANGE ORGANICS        |               |               |                 |              |
| TPH (C09-C36)                  |               |               |                 |              |
|                                |               |               |                 |              |

| SOIL                                  |               |               |               |               |
|---------------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                              | SB-406        | SB-406        | SB-406        | SB-406        |
| SAMPLE ID                             | SB-406-0102   | SB-406-0203   | SB-406-0405   | SB-406-0708   |
| SAMPLE DATE                           | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)                        |               |               |               |               |
| ANTIMONY                              |               |               |               |               |
| ARSENIC                               |               |               |               |               |
| BARIUM                                |               |               |               |               |
| BERYLLIUM                             |               |               |               |               |
| CADMIUM                               |               |               |               |               |
| CHROMIUM                              |               |               |               |               |
| COBALT                                |               |               |               |               |
| COPPER                                |               |               |               |               |
| LEAD                                  |               |               |               |               |
| MERCURY                               |               |               |               |               |
| MOLYBDENUM                            |               |               |               |               |
| NICKEL                                |               |               |               |               |
| SELENIUM                              |               |               |               |               |
| SILVER                                |               |               |               |               |
| THALLIUM                              |               |               |               |               |
| VANADIUM                              |               |               |               |               |
| ZINC                                  |               |               |               |               |
| MISCELLANEOUS PARAMETERS              |               |               |               |               |
| PERCENT SOLIDS (%)                    | 87.2 [MDL=10] | 87.5 [MDL=10] | 79.9 [MDL=10] | 78.3 [MDL=10] |
| TOTAL SOLIDS (%)                      |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)           |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG)          |               |               |               |               |
| PH (S.U.)                             |               |               |               |               |
| MERCURY (METHYL) (UG/KG)              |               |               |               |               |
| SEMIVOLATILES (UG/KG)                 |               |               |               |               |
| 1,1-BIPHENYL                          |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE                |               |               |               |               |
| 1,2-DICHLOROBENZENE                   |               |               |               |               |
| 1,3-DICHLOROBENZENE                   |               |               |               |               |
| 1,4-DICHLOROBENZENE                   |               |               |               |               |
| 1,4-DIOXANE                           |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE)          |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL                 |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL                 |               |               |               |               |
| 2,4-DICHLOROPHENOL                    |               |               |               |               |
| 2,4-DIMETHYLPHENOL                    |               |               |               |               |
| 2,4-DINITROPHENOL                     |               |               |               |               |
| · · · · · · · · · · · · · · · · · · · |               |               |               |               |

| LOCATION                    | SB-406      | SB-406      | SB-406      | SB-406      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-406-0102 | SB-406-0203 | SB-406-0405 | SB-406-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-406      | SB-406      | SB-406      | SB-406      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-406-0102 | SB-406-0203 | SB-406-0405 | SB-406-0708 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           | -           | •           | -           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| ·I                             |             |             |             |             |

February 2013 Page B-199

--

--

--

--

| LOCATION                | SB-406      | SB-406      | SB-406      | SB-406      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-406-0102 | SB-406-0203 | SB-406-0405 | SB-406-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-406      | SB-406      | SB-406      | SB-406      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-406-0102 | SB-406-0203 | SB-406-0405 | SB-406-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                | •             |                 |                |                |
|----------------------------------|---------------|-----------------|----------------|----------------|
| 1-METHYLNAPHTHALENE              |               |                 |                |                |
| 2-METHYLNAPHTHALENE              |               |                 |                |                |
| ACENAPHTHENE                     |               |                 |                |                |
| ACENAPHTHYLENE                   |               |                 |                |                |
| ANTHRACENE                       |               |                 |                |                |
| BAP EQUIVALENT-HALFND            | 510 [MDL=1.5] | 320 [MDL=1.5]   | 62 [MDL=1.6]   | 85 [MDL=1.7]   |
| BAP EQUIVALENT-POS               | 510 [MDL=1.5] | 320 [MDL=1.5]   | 62 [MDL=1.6]   | 85 [MDL=1.7]   |
| BAP EQUIVALENT-UCL               | 510 [MDL=1.5] | 320 [MDL=1.5]   | 62 [MDL=1.6]   | 85 [MDL=1.7]   |
| BENZO(A)ANTHRACENE               |               |                 |                |                |
| BENZO(A)PYRENE                   | 510 [MDL=1.5] | 320 J [MDL=1.5] | 62 J [MDL=1.6] | 85 J [MDL=1.7] |
| BENZO(B)FLUORANTHENE             |               |                 |                |                |
| BENZO(G,H,I)PERYLENE             |               |                 |                |                |
| BENZO(K)FLUORANTHENE             |               |                 |                |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |               |                 |                |                |
| C1-FLUORANTHENES/PYRENES         |               |                 |                |                |
| C1-FLUORENES                     |               |                 |                |                |
| C1-PHENANTHRENES/ANTHRACENES     |               |                 |                |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |               |                 |                |                |
| C2-FLUORENES                     |               |                 |                |                |
| C2-NAPHTHALENES                  |               |                 |                |                |
| C2-PHENANTHRENES/ANTHRACENES     |               |                 |                |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |               |                 |                |                |
| C3-FLUORENES                     |               |                 |                |                |
| C3-NAPHTHALENES                  |               |                 |                |                |
|                                  |               |                 |                |                |

| LOCATION                         | SB-406        | SB-406        | SB-406        | SB-406        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-406-0102   | SB-406-0203   | SB-406-0405   | SB-406-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               | -             |
| PHENANTHRENE                     |               |               |               | -             |
| PYRENE                           |               |               |               | -             |
| TOTAL PAHS                       | 510 [MDL=1.5] | 320 [MDL=1.5] | 62 [MDL=1.6]  | 85 [MDL=1.7]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               | 1             |
| ALPHA-BHC                        |               |               |               | 1             |
| ALPHA-CHLORDANE                  |               |               |               | -             |
| AROCLOR-1016                     | 38 U [MDL=13] | 38 U [MDL=13] | 41 U [MDL=14] | 42 U [MDL=14] |
| AROCLOR-1221                     | 38 U [MDL=15] | 38 U [MDL=15] | 41 U [MDL=16] | 42 U [MDL=17] |
| AROCLOR-1232                     | 38 U [MDL=14] | 38 U [MDL=14] | 41 U [MDL=15] | 42 U [MDL=15] |
| AROCLOR-1242                     | 38 U [MDL=16] | 38 U [MDL=16] | 41 U [MDL=18] | 42 U [MDL=18] |
| AROCLOR-1248                     | 38 U [MDL=17] | 38 U [MDL=17] | 41 U [MDL=19] | 42 U [MDL=19] |
| AROCLOR-1254                     | 38 U [MDL=10] | 38 U [MDL=10] | 41 U [MDL=11] | 42 U [MDL=11] |
| AROCLOR-1260                     | 38 U [MDL=11] | 21 J [MDL=11] | 41 U [MDL=12] | 42 U [MDL=13] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-406       | SB-406      | SB-406       | SB-406       |
|--------------------------------|--------------|-------------|--------------|--------------|
| SAMPLE ID                      | SB-406-0102  | SB-406-0203 | SB-406-0405  | SB-406-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007  | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |             |              |              |
| HEPTACHLOR EPOXIDE             |              |             |              |              |
| METHOXYCHLOR                   |              |             |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 21 [MDL=13] | 0 U [MDL=14] | 0 U [MDL=14] |
| TOTAL DDT POS                  |              |             |              |              |
| TOXAPHENE                      |              |             |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |             |              |              |
| DIESEL RANGE ORGANICS          |              |             |              |              |
| GASOLINE RANGE ORGANICS        |              |             |              |              |
| TPH (C09-C36)                  |              |             |              |              |
|                                | ·            | ·           | ·            |              |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-407        | SB-407        | SB-407        | SB-407        |
| SAMPLE ID                    | SB-407-0102   | SB-407-0203   | SB-407-0405   | SB-407-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 78.6 [MDL=10] | 78.1 [MDL=10] | 73.7 [MDL=10] | 72.7 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-407      | SB-407      | SB-407      | SB-407      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-407-0102 | SB-407-0203 | SB-407-0405 | SB-407-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| HEXACLOROFTHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCATION                       | SB-407      | SB-407      | SB-407      | SB-407      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACLOROFTHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                      | SB-407-0102 | SB-407-0203 | SB-407-0405 | SB-407-0708 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| NITROSODMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEXACHLOROETHANE               |             |             |             |             |
| NNTROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISOPHORONE                     |             |             |             |             |
| NNTROSODIN-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NITROBENZENE                   |             |             |             |             |
| NNTROSOUPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATILES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHENOL                         |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYRIDINE                       |             |             |             |             |
| 1.1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              | •           | •           |             |             |
| 1.1.2.TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-5-HANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3- | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-I-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2-4-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE <t< td=""><td>1,2,4-TRICHLOROBENZENE</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE <td>1,2-DIBROMO-3-CHLOROPROPANE</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPANE             1,3-DICHLOROPROPENE             1,4-DICHLOROBENZENE              1,4-DIOXANE               2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,4-DIOXANE                    |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-206

| LOCATION                | SB-407      | SB-407      | SB-407      | SB-407      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-407-0102 | SB-407-0203 | SB-407-0405 | SB-407-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-407      | SB-407      | SB-407      | SB-407      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-407-0102 | SB-407-0203 | SB-407-0405 | SB-407-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · · · · · · · · · · · · · · · · · · · |                 |                 |                 |                |
|---------------------------------------|-----------------|-----------------|-----------------|----------------|
| 1-METHYLNAPHTHALENE                   |                 |                 |                 |                |
| 2-METHYLNAPHTHALENE                   |                 |                 |                 |                |
| ACENAPHTHENE                          |                 |                 |                 |                |
| ACENAPHTHYLENE                        |                 |                 |                 |                |
| ANTHRACENE                            |                 |                 |                 |                |
| BAP EQUIVALENT-HALFND                 | 130 [MDL=1.7]   | 190 [MDL=1.7]   | 110 [MDL=1.8]   | 30 [MDL=1.8]   |
| BAP EQUIVALENT-POS                    | 130 [MDL=1.7]   | 190 [MDL=1.7]   | 110 [MDL=1.8]   | 30 [MDL=1.8]   |
| BAP EQUIVALENT-UCL                    | 130 [MDL=1.7]   | 190 [MDL=1.7]   | 110 [MDL=1.8]   | 30 [MDL=1.8]   |
| BENZO(A)ANTHRACENE                    |                 |                 |                 |                |
| BENZO(A)PYRENE                        | 130 J [MDL=1.7] | 190 J [MDL=1.7] | 110 J [MDL=1.8] | 30 J [MDL=1.8] |
| BENZO(B)FLUORANTHENE                  |                 |                 |                 |                |
| BENZO(G,H,I)PERYLENE                  |                 |                 |                 |                |
| BENZO(K)FLUORANTHENE                  |                 |                 |                 |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                 |                 |                |
| C1-FLUORANTHENES/PYRENES              |                 |                 |                 |                |
| C1-FLUORENES                          |                 |                 |                 |                |
| C1-PHENANTHRENES/ANTHRACENES          |                 |                 |                 |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                 |                 |                |
| C2-FLUORENES                          |                 |                 |                 |                |
| C2-NAPHTHALENES                       |                 |                 |                 |                |
| C2-PHENANTHRENES/ANTHRACENES          |                 |                 |                 |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES      |                 |                 |                 |                |
| C3-FLUORENES                          |                 |                 |                 |                |
| C3-NAPHTHALENES                       |                 |                 |                 |                |
|                                       |                 |                 |                 |                |

| LOCATION                         | SB-407        | SB-407        | SB-407        | SB-407        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-407-0102   | SB-407-0203   | SB-407-0405   | SB-407-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 130 [MDL=1.7] | 190 [MDL=1.7] | 110 [MDL=1.8] | 30 [MDL=1.8]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 42 U [MDL=14] | 42 U [MDL=14] | 45 U [MDL=15] | 45 U [MDL=15] |
| AROCLOR-1221                     | 42 U [MDL=17] | 42 U [MDL=17] | 45 U [MDL=18] | 45 U [MDL=18] |
| AROCLOR-1232                     | 42 U [MDL=15] | 42 U [MDL=15] | 45 U [MDL=16] | 45 U [MDL=17] |
| AROCLOR-1242                     | 42 U [MDL=18] | 42 U [MDL=18] | 45 U [MDL=19] | 45 U [MDL=19] |
| AROCLOR-1248                     | 42 U [MDL=19] | 42 U [MDL=19] | 45 U [MDL=20] | 45 U [MDL=21] |
| AROCLOR-1254                     | 42 U [MDL=11] | 42 U [MDL=11] | 45 U [MDL=12] | 45 U [MDL=12] |
| AROCLOR-1260                     | 42 U [MDL=12] | 42 U [MDL=13] | 45 U [MDL=13] | 45 U [MDL=13] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-407       | SB-407       | SB-407       | SB-407       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-407-0102  | SB-407-0203  | SB-407-0405  | SB-407-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=14] | 0 U [MDL=14] | 0 U [MDL=15] | 0 U [MDL=15] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
|                                |              |              |              | -            |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-408        | SB-408        | SB-408        | SB-408        |
| SAMPLE ID                    | SB-408-0102   | SB-408-0203   | SB-408-0405   | SB-408-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 81.8 [MDL=10] | 83.8 [MDL=10] | 86.1 [MDL=10] | 81.1 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               | -1            |               |               |
| 2,4-DIMETHYLPHENOL           |               | -1            |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |
| ·                            |               |               |               |               |

| LOCATION                    | SB-408      | SB-408      | SB-408      | SB-408      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-408-0102 | SB-408-0203 | SB-408-0405 | SB-408-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

2-CHLOROTOLUENE

| LOCATION                       | SB-408      | SB-408      | SB-408      | SB-408      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-408-0102 | SB-408-0203 | SB-408-0405 | SB-408-0708 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |

February 2013 Page B-213

--

--

--

--

| LOCATION                | SB-408      | SB-408      | SB-408      | SB-408      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-408-0102 | SB-408-0203 | SB-408-0405 | SB-408-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-408      | SB-408      | SB-408      | SB-408      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-408-0102 | SB-408-0203 | SB-408-0405 | SB-408-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                |                |                |                    |
|----------------------------------|----------------|----------------|----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                |                |                    |
| 2-METHYLNAPHTHALENE              |                |                |                |                    |
| ACENAPHTHENE                     |                |                |                |                    |
| ACENAPHTHYLENE                   |                |                |                |                    |
| ANTHRACENE                       |                |                |                |                    |
| BAP EQUIVALENT-HALFND            | 87 [MDL=1.6]   | 50 [MDL=1.6]   | 12 [MDL=1.5]   | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-POS               | 87 [MDL=1.6]   | 50 [MDL=1.6]   | 12 [MDL=1.5]   | 1.6 U [MDL=1.6]    |
| BAP EQUIVALENT-UCL               | 87 [MDL=1.6]   | 50 [MDL=1.6]   | 12 [MDL=1.5]   | 0.141068 [MDL=1.6] |
| BENZO(A)ANTHRACENE               |                |                |                |                    |
| BENZO(A)PYRENE                   | 87 J [MDL=1.6] | 50 J [MDL=1.6] | 12 J [MDL=1.5] | 1.6 U [MDL=1.6]    |
| BENZO(B)FLUORANTHENE             |                |                |                |                    |
| BENZO(G,H,I)PERYLENE             |                |                |                |                    |
| BENZO(K)FLUORANTHENE             |                |                |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C1-FLUORANTHENES/PYRENES         |                |                |                |                    |
| C1-FLUORENES                     |                |                |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C2-FLUORENES                     |                |                |                |                    |
| C2-NAPHTHALENES                  |                |                |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                |                    |
| C3-FLUORENES                     |                |                |                |                    |
| C3-NAPHTHALENES                  |                |                |                |                    |
|                                  | •              | -              | •              |                    |

| LOCATION                         | SB-408        | SB-408        | SB-408        | SB-408        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-408-0102   | SB-408-0203   | SB-408-0405   | SB-408-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 87 [MDL=1.6]  | 50 [MDL=1.6]  | 12 [MDL=1.5]  | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)          | •             |               | -             |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 40 U [MDL=13] | 39 U [MDL=13] | 38 U [MDL=13] | 41 U [MDL=14] |
| AROCLOR-1221                     | 40 U [MDL=16] | 39 U [MDL=16] | 38 U [MDL=15] | 41 U [MDL=16] |
| AROCLOR-1232                     | 40 U [MDL=15] | 39 U [MDL=14] | 38 U [MDL=14] | 41 U [MDL=15] |
| AROCLOR-1242                     | 40 U [MDL=17] | 39 U [MDL=17] | 38 U [MDL=16] | 41 U [MDL=17] |
| AROCLOR-1248                     | 40 U [MDL=18] | 39 U [MDL=18] | 38 U [MDL=17] | 41 U [MDL=18] |
| AROCLOR-1254                     | 40 U [MDL=11] | 39 U [MDL=10] | 38 U [MDL=10] | 41 U [MDL=11] |
| AROCLOR-1260                     | 40 U [MDL=12] | 39 U [MDL=12] | 15 J [MDL=11] | 41 U [MDL=12] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

| LOCATION                       | SB-408       | SB-408       | SB-408      | SB-408       |
|--------------------------------|--------------|--------------|-------------|--------------|
| SAMPLE ID                      | SB-408-0102  | SB-408-0203  | SB-408-0405 | SB-408-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007  | 10/16/2007   |
| HEPTACHLOR                     |              |              |             |              |
| HEPTACHLOR EPOXIDE             |              |              |             |              |
| METHOXYCHLOR                   |              |              |             |              |
| TOTAL AROCLOR                  | 0 U [MDL=13] | 0 U [MDL=13] | 15 [MDL=13] | 0 U [MDL=14] |
| TOTAL DDT POS                  |              |              |             |              |
| TOXAPHENE                      |              |              |             |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |             |              |
| DIESEL RANGE ORGANICS          |              |              |             |              |
| GASOLINE RANGE ORGANICS        |              |              |             |              |
| TPH (C09-C36)                  |              |              |             |              |
|                                |              | •            |             | •            |

| SUIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-409        | SB-409        | SB-409        | SB-409        |
| SAMPLE ID                    | SB-409-0102   | SB-409-0203   | SB-409-0405   | SB-409-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     | •             |               |               |               |
| PERCENT SOLIDS (%)           | 77.6 [MDL=10] | 81.6 [MDL=10] | 78.5 [MDL=10] | 73.5 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        | •             |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                    | SB-409      | SB-409      | SB-409      | SB-409      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | SB-409-0102 | SB-409-0203 | SB-409-0405 | SB-409-0708 |
| SAMPLE DATE                 | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-409      | SB-409      | SB-409      | SB-409      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | SB-409-0102 | SB-409-0203 | SB-409-0405 | SB-409-0708 |
| SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-220

| LOCATION                | SB-409      | SB-409      | SB-409      | SB-409      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-409-0102 | SB-409-0203 | SB-409-0405 | SB-409-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-409      | SB-409      | SB-409      | SB-409      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-409-0102 | SB-409-0203 | SB-409-0405 | SB-409-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                |                  |                |                    |
|----------------------------------|----------------|------------------|----------------|--------------------|
| 1-METHYLNAPHTHALENE              |                |                  |                |                    |
| 2-METHYLNAPHTHALENE              |                |                  |                |                    |
| ACENAPHTHENE                     |                |                  |                |                    |
| ACENAPHTHYLENE                   |                |                  |                |                    |
| ANTHRACENE                       |                |                  |                |                    |
| BAP EQUIVALENT-HALFND            | 39 [MDL=1.7]   | 1.6 U [MDL=1.6]  | 67 [MDL=1.7]   | 1.8 U [MDL=1.8]    |
| BAP EQUIVALENT-POS               | 39 [MDL=1.7]   | 1.6 U [MDL=1.6]  | 67 [MDL=1.7]   | 1.8 U [MDL=1.8]    |
| BAP EQUIVALENT-UCL               | 39 [MDL=1.7]   | 0.1536 [MDL=1.6] | 67 [MDL=1.7]   | 0.742372 [MDL=1.8] |
| BENZO(A)ANTHRACENE               |                |                  |                |                    |
| BENZO(A)PYRENE                   | 39 J [MDL=1.7] | 1.6 U [MDL=1.6]  | 67 J [MDL=1.7] | 1.8 U [MDL=1.8]    |
| BENZO(B)FLUORANTHENE             |                |                  |                |                    |
| BENZO(G,H,I)PERYLENE             |                |                  |                |                    |
| BENZO(K)FLUORANTHENE             |                |                  |                |                    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                |                  |                |                    |
| C1-FLUORANTHENES/PYRENES         |                |                  |                |                    |
| C1-FLUORENES                     |                |                  |                |                    |
| C1-PHENANTHRENES/ANTHRACENES     |                |                  |                |                    |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                |                  |                |                    |
| C2-FLUORENES                     |                |                  |                |                    |
| C2-NAPHTHALENES                  |                |                  |                |                    |
| C2-PHENANTHRENES/ANTHRACENES     |                |                  |                |                    |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                |                  |                |                    |
| C3-FLUORENES                     |                |                  |                |                    |
| C3-NAPHTHALENES                  |                |                  |                |                    |
|                                  |                |                  |                |                    |

| LOCATION                         | SB-409        | SB-409        | SB-409        | SB-409        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-409-0102   | SB-409-0203   | SB-409-0405   | SB-409-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 39 [MDL=1.7]  | 0 U [MDL=1.6] | 67 [MDL=1.7]  | 0 U [MDL=1.8] |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 43 U [MDL=14] | 40 U [MDL=13] | 42 U [MDL=14] | 45 U [MDL=15] |
| AROCLOR-1221                     | 43 U [MDL=17] | 40 U [MDL=16] | 42 U [MDL=17] | 45 U [MDL=18] |
| AROCLOR-1232                     | 43 U [MDL=15] | 40 U [MDL=15] | 42 U [MDL=15] | 45 U [MDL=16] |
| AROCLOR-1242                     | 43 U [MDL=18] | 40 U [MDL=17] | 42 U [MDL=18] | 45 U [MDL=19] |
| AROCLOR-1248                     | 43 U [MDL=19] | 40 U [MDL=18] | 42 U [MDL=19] | 45 U [MDL=20] |
| AROCLOR-1254                     | 43 U [MDL=11] | 40 U [MDL=11] | 42 U [MDL=11] | 45 U [MDL=12] |
| AROCLOR-1260                     | 43 U [MDL=13] | 40 U [MDL=12] | 42 U [MDL=12] | 45 U [MDL=13] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              |               |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-409       | SB-409       | SB-409       | SB-409       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-409-0102  | SB-409-0203  | SB-409-0405  | SB-409-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=14] | 0 U [MDL=13] | 0 U [MDL=14] | 0 U [MDL=15] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              | <br>         |              |              |
| 4                              |              |              |              |              |

| SOIL                         |               |               |               |               |
|------------------------------|---------------|---------------|---------------|---------------|
| LOCATION                     | SB-489        | SB-489        | SB-489        | SB-489        |
| SAMPLE ID                    | SB-489-0102   | SB-489-0203   | SB-489-0405   | SB-489-0708   |
| SAMPLE DATE                  | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| METALS (MG/KG)               |               |               |               |               |
| ANTIMONY                     |               |               |               |               |
| ARSENIC                      |               |               |               |               |
| BARIUM                       |               |               |               |               |
| BERYLLIUM                    |               |               |               |               |
| CADMIUM                      |               |               |               |               |
| CHROMIUM                     |               |               |               |               |
| COBALT                       |               |               |               |               |
| COPPER                       |               |               |               |               |
| LEAD                         |               |               |               |               |
| MERCURY                      |               |               |               |               |
| MOLYBDENUM                   |               |               |               |               |
| NICKEL                       |               |               |               |               |
| SELENIUM                     |               |               |               |               |
| SILVER                       |               |               |               |               |
| THALLIUM                     |               |               |               |               |
| VANADIUM                     |               |               |               |               |
| ZINC                         |               |               |               |               |
| MISCELLANEOUS PARAMETERS     |               |               |               |               |
| PERCENT SOLIDS (%)           | 79.8 [MDL=10] | 76.3 [MDL=10] | 79.3 [MDL=10] | 73.3 [MDL=10] |
| TOTAL SOLIDS (%)             |               |               |               |               |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |               |               |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |               |               |
| PH (S.U.)                    |               |               |               |               |
| MERCURY (METHYL) (UG/KG)     |               |               |               |               |
| SEMIVOLATILES (UG/KG)        |               |               |               |               |
| 1,1-BIPHENYL                 |               |               |               |               |
| 1,2,4-TRICHLOROBENZENE       |               |               |               |               |
| 1,2-DICHLOROBENZENE          |               |               |               |               |
| 1,3-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DICHLOROBENZENE          |               |               |               |               |
| 1,4-DIOXANE                  |               |               |               |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |               |               |
| 2,4,5-TRICHLOROPHENOL        |               |               |               |               |
| 2,4,6-TRICHLOROPHENOL        |               |               |               |               |
| 2,4-DICHLOROPHENOL           |               |               |               |               |
| 2,4-DIMETHYLPHENOL           |               |               |               |               |
| 2,4-DINITROPHENOL            |               |               |               |               |

| LOCATION                                           | SB-489       | SB-489       | SB-489      | SB-489      |
|----------------------------------------------------|--------------|--------------|-------------|-------------|
| SAMPLE ID                                          | SB-489-0102  | SB-489-0203  | SB-489-0405 | SB-489-0708 |
| SAMPLE DATE                                        | 10/16/2007   | 10/16/2007   | 10/16/2007  | 10/16/2007  |
| 2,4-DINITROTOLUENE                                 |              |              |             |             |
| 2,6-DINITROTOLUENE                                 |              |              |             |             |
| 2-CHLORONAPHTHALENE                                |              |              |             |             |
| 2-CHLOROPHENOL                                     |              |              |             |             |
| 2-METHYLPHENOL                                     |              |              |             |             |
| 2-NITROANILINE                                     |              |              |             |             |
| 2-NITROPHENOL                                      |              |              |             |             |
| 3&4-METHYLPHENOL                                   |              | <del></del>  |             |             |
| 3,3'-DICHLOROBENZIDINE                             |              |              |             |             |
| 3-NITROANILINE                                     |              |              |             |             |
| 4,6-DINITRO-2-METHYLPHENOL                         |              |              |             |             |
| 4-BROMOPHENYL PHENYL ETHER                         |              |              |             |             |
| 4-CHLORO-3-METHYLPHENOL                            |              |              |             |             |
| 4-CHLOROANILINE                                    |              | <u></u>      |             |             |
| 4-CHLOROPHENYL PHENYL ETHER                        |              |              |             |             |
| 4-NITROANILINE                                     |              |              |             |             |
| 4-NITROPHENOL                                      |              |              |             |             |
| ACETOPHENONE                                       |              | <br>         |             |             |
| ANILINE                                            |              |              |             |             |
| ATRAZINE                                           |              |              |             |             |
| AZOBENZENE                                         |              |              |             |             |
| BENZIDINE                                          |              |              |             |             |
| BENZOIC ACID                                       |              |              |             |             |
| BENZYL ALCOHOL                                     |              |              |             |             |
| BIS(2-CHLOROETHOXY)METHANE                         |              |              |             |             |
| BIS(2-CHLOROETHOXT)METHANE BIS(2-CHLOROETHYL)ETHER |              |              |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE                         |              |              |             |             |
| BUTYL BENZYL PHTHALATE                             |              |              |             |             |
| CAPROLACTAM                                        |              |              |             |             |
| CARBAZOLE                                          |              |              |             |             |
| DIBENZOFURAN                                       |              |              |             |             |
| DIETHYL PHTHALATE                                  |              |              |             |             |
| DIMETHYL PHTHALATE                                 |              |              |             |             |
| DI-N-BUTYL PHTHALATE                               |              |              |             |             |
| DI-N-BOTYL PHTHALATE DI-N-OCTYL PHTHALATE          | <del>-</del> | <del></del>  |             | -           |
|                                                    | <del></del>  | <del></del>  |             |             |
| HEXACHLOROBENZENE                                  | <del></del>  | <del></del>  |             |             |
| HEXACHLOROBUTADIENE                                | <del></del>  | <del>-</del> |             |             |
| HEXACHLOROCYCLOPENTADIENE                          |              |              |             |             |

| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATION                       | SB-489      | SB-489      | SB-489      | SB-489      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|
| HEXACLOROFTHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE ID                      | SB-489-0102 | SB-489-0203 | SB-489-0405 | SB-489-0708 |
| ISOPHORONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE DATE                    | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| NITROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEXACHLOROETHANE               |             |             |             |             |
| NNTROSODIMETHYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISOPHORONE                     |             |             |             |             |
| INNTROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NITROBENZENE                   |             |             |             |             |
| NATITGSOOIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-NITROSODIMETHYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PENTACHLOROPHENOL              |             |             |             |             |
| VOLATIES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PHENOL                         |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYRIDINE                       |             |             |             |             |
| 1.1.1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOLATILES (UG/KG)              |             | •           |             |             |
| 1.1.2.2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1.1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1.1.2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1.1-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1.1-DICHLOROPROPENE 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROPROPANE 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRIMETHYLBENZENE 1.2.4-TRIMETHYLBENZENE 1.2.4-TRIMETHYLBENZENE 1.2.4-TRIMETHYLBENZENE 1.3.4-TRIMETHYLBENZENE 1.3.4-TRIMETHYLBENZENE 1.4.4-TRIMETHYLBENZENE 1.5.4-TRIMETHYLBENZENE 1. | 1,1-DICHLOROETHANE             |             |             |             |             |
| 1.2.3-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROETHENE             |             |             |             |             |
| 1.2,3-TRICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2.4-TRIMETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,4-DICHLOROBENZENE            1,4-DIOXANE            2,2-DICHLOROPROPANE            2-BUTANONE            2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,4-DIOXANE           2,2-DICHLOROPROPANE           2-BUTANONE           2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3-DICHLOROPROPENE            |             |             |             |             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-DICHLOROBENZENE            |             |             |             |             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,4-DIOXANE                    |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-DICHLOROPROPANE            |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-CHLOROTOLUENE                |             |             |             |             |

February 2013 Page B-227

| LOCATION                | SB-489      | SB-489      | SB-489      | SB-489      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | SB-489-0102 | SB-489-0203 | SB-489-0405 | SB-489-0708 |
| SAMPLE DATE             | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-489      | SB-489      | SB-489      | SB-489      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | SB-489-0102 | SB-489-0203 | SB-489-0405 | SB-489-0708 |
| SAMPLE DATE               | 10/16/2007  | 10/16/2007  | 10/16/2007  | 10/16/2007  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| , ,                              |                 |                 |                 |                |
|----------------------------------|-----------------|-----------------|-----------------|----------------|
| 1-METHYLNAPHTHALENE              |                 |                 |                 |                |
| 2-METHYLNAPHTHALENE              |                 |                 |                 |                |
| ACENAPHTHENE                     |                 |                 |                 |                |
| ACENAPHTHYLENE                   |                 |                 |                 |                |
| ANTHRACENE                       |                 |                 |                 |                |
| BAP EQUIVALENT-HALFND            | 9.6 [MDL=1.6]   | 260 [MDL=1.7]   | 9.8 [MDL=1.6]   | 21 [MDL=1.8]   |
| BAP EQUIVALENT-POS               | 9.6 [MDL=1.6]   | 260 [MDL=1.7]   | 9.8 [MDL=1.6]   | 21 [MDL=1.8]   |
| BAP EQUIVALENT-UCL               | 9.6 [MDL=1.6]   | 260 [MDL=1.7]   | 9.8 [MDL=1.6]   | 21 [MDL=1.8]   |
| BENZO(A)ANTHRACENE               |                 |                 |                 |                |
| BENZO(A)PYRENE                   | 9.6 J [MDL=1.6] | 260 J [MDL=1.7] | 9.8 J [MDL=1.6] | 21 J [MDL=1.8] |
| BENZO(B)FLUORANTHENE             |                 |                 |                 |                |
| BENZO(G,H,I)PERYLENE             |                 |                 |                 |                |
| BENZO(K)FLUORANTHENE             |                 |                 |                 |                |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                 |                |
| C1-FLUORENES                     |                 |                 |                 |                |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                |
| C2-FLUORENES                     |                 |                 |                 |                |
| C2-NAPHTHALENES                  |                 |                 |                 |                |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                |
| C3-FLUORENES                     |                 |                 |                 |                |
| C3-NAPHTHALENES                  |                 |                 |                 |                |
|                                  |                 | -               |                 | •              |

| LOCATION                         | SB-489        | SB-489        | SB-489        | SB-489        |
|----------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                        | SB-489-0102   | SB-489-0203   | SB-489-0405   | SB-489-0708   |
| SAMPLE DATE                      | 10/16/2007    | 10/16/2007    | 10/16/2007    | 10/16/2007    |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |               |               |
| C4-NAPHTHALENES                  |               |               |               |               |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |               |               |
| CHRYSENE                         |               |               |               |               |
| DIBENZO(A,H)ANTHRACENE           |               |               |               |               |
| FLUORANTHENE                     |               |               |               |               |
| FLUORENE                         |               |               |               |               |
| INDENO(1,2,3-CD)PYRENE           |               |               |               |               |
| NAPHTHALENE                      |               |               |               |               |
| PHENANTHRENE                     |               |               |               |               |
| PYRENE                           |               |               |               |               |
| TOTAL PAHS                       | 9.6 [MDL=1.6] | 260 [MDL=1.7] | 9.8 [MDL=1.6] | 21 [MDL=1.8]  |
| PESTICIDES/PCBS (UG/KG)          |               |               |               |               |
| 4,4'-DDD                         |               |               |               |               |
| 4,4'-DDE                         |               |               |               |               |
| 4,4'-DDT                         |               |               |               |               |
| ALDRIN                           |               |               |               |               |
| ALPHA-BHC                        |               |               |               |               |
| ALPHA-CHLORDANE                  |               |               |               |               |
| AROCLOR-1016                     | 41 U [MDL=14] | 43 U [MDL=14] | 42 U [MDL=14] | 45 U [MDL=15] |
| AROCLOR-1221                     | 41 U [MDL=16] | 43 U [MDL=17] | 42 U [MDL=16] | 45 U [MDL=18] |
| AROCLOR-1232                     | 41 U [MDL=15] | 43 U [MDL=16] | 42 U [MDL=15] | 45 U [MDL=16] |
| AROCLOR-1242                     | 41 U [MDL=18] | 43 U [MDL=18] | 42 U [MDL=18] | 45 U [MDL=19] |
| AROCLOR-1248                     | 41 U [MDL=19] | 43 U [MDL=20] | 42 U [MDL=19] | 45 U [MDL=20] |
| AROCLOR-1254                     | 41 U [MDL=11] | 43 U [MDL=12] | 42 U [MDL=11] | 45 U [MDL=12] |
| AROCLOR-1260                     | 41 U [MDL=12] | 43 U [MDL=13] | 42 U [MDL=12] | 45 U [MDL=13] |
| BETA-BHC                         |               |               |               |               |
| DELTA-BHC                        |               |               |               |               |
| DIELDRIN                         |               |               |               |               |
| ENDOSULFAN I                     |               |               |               |               |
| ENDOSULFAN II                    |               |               |               |               |
| ENDOSULFAN SULFATE               |               |               |               |               |
| ENDRIN                           |               |               |               |               |
| ENDRIN ALDEHYDE                  |               |               |               |               |
| ENDRIN KETONE                    |               |               |               |               |
| GAMMA-BHC (LINDANE)              | <del></del>   |               |               |               |
| GAMMA-CHLORDANE                  |               |               |               |               |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-489       | SB-489       | SB-489       | SB-489       |
|--------------------------------|--------------|--------------|--------------|--------------|
| SAMPLE ID                      | SB-489-0102  | SB-489-0203  | SB-489-0405  | SB-489-0708  |
| SAMPLE DATE                    | 10/16/2007   | 10/16/2007   | 10/16/2007   | 10/16/2007   |
| HEPTACHLOR                     |              |              |              |              |
| HEPTACHLOR EPOXIDE             |              |              |              |              |
| METHOXYCHLOR                   |              |              |              |              |
| TOTAL AROCLOR                  | 0 U [MDL=14] | 0 U [MDL=14] | 0 U [MDL=14] | 0 U [MDL=15] |
| TOTAL DDT POS                  |              |              |              |              |
| TOXAPHENE                      |              |              |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |              |              |
| DIESEL RANGE ORGANICS          |              |              |              |              |
| GASOLINE RANGE ORGANICS        |              |              |              |              |
| TPH (C09-C36)                  |              |              |              |              |
| -                              | •            | •            | •            |              |

| JOIL                         |               |               |                  |                 |
|------------------------------|---------------|---------------|------------------|-----------------|
| LOCATION                     | SB-490        | SB-490        | SB-624           | SB-624          |
| SAMPLE ID                    | SB-490-0405   | SB-490-0708   | F-SB-624-1       | F-SB-624-2      |
| SAMPLE DATE                  | 10/17/2007    | 10/17/2007    | 9/21/2009        | 9/21/2009       |
| METALS (MG/KG)               |               |               |                  |                 |
| ANTIMONY                     |               |               |                  |                 |
| ARSENIC                      |               |               |                  |                 |
| BARIUM                       |               |               |                  |                 |
| BERYLLIUM                    |               |               |                  |                 |
| CADMIUM                      |               |               |                  |                 |
| CHROMIUM                     |               |               |                  |                 |
| COBALT                       |               |               |                  |                 |
| COPPER                       |               |               |                  |                 |
| LEAD                         |               |               |                  |                 |
| MERCURY                      |               |               | 0.035 [MDL=0.02] | 0.22 [MDL=0.02] |
| MOLYBDENUM                   |               |               |                  |                 |
| NICKEL                       |               |               |                  |                 |
| SELENIUM                     |               |               |                  |                 |
| SILVER                       |               |               |                  |                 |
| THALLIUM                     |               |               |                  |                 |
| VANADIUM                     |               |               |                  |                 |
| ZINC                         |               |               |                  |                 |
| MISCELLANEOUS PARAMETERS     | •             |               |                  |                 |
| PERCENT SOLIDS (%)           | 79.4 [MDL=10] | 86.6 [MDL=10] |                  |                 |
| TOTAL SOLIDS (%)             |               |               |                  |                 |
| HEXAVALENT CHROMIUM (MG/KG)  |               |               |                  |                 |
| TOTAL ORGANIC CARBON (MG/KG) |               |               |                  |                 |
| PH (S.U.)                    |               |               |                  |                 |
| MERCURY (METHYL) (UG/KG)     |               |               |                  |                 |
| SEMIVOLATILES (UG/KG)        | •             |               |                  |                 |
| 1,1-BIPHENYL                 |               |               |                  |                 |
| 1,2,4-TRICHLOROBENZENE       |               |               |                  |                 |
| 1,2-DICHLOROBENZENE          |               |               |                  |                 |
| 1,3-DICHLOROBENZENE          |               |               |                  |                 |
| 1,4-DICHLOROBENZENE          |               |               |                  |                 |
| 1,4-DIOXANE                  |               |               |                  |                 |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |               |                  |                 |
| 2,4,5-TRICHLOROPHENOL        |               |               |                  |                 |
| 2,4,6-TRICHLOROPHENOL        |               |               |                  |                 |
| 2,4-DICHLOROPHENOL           |               |               |                  |                 |
| 2,4-DIMETHYLPHENOL           |               |               |                  |                 |
| 2,4-DINITROPHENOL            |               |               |                  |                 |
|                              | L             |               | 1                |                 |

| SOIL                        | •           | •           | T          |            |
|-----------------------------|-------------|-------------|------------|------------|
| LOCATION                    | SB-490      | SB-490      | SB-624     | SB-624     |
| SAMPLE ID                   | SB-490-0405 | SB-490-0708 | F-SB-624-1 | F-SB-624-2 |
| SAMPLE DATE                 | 10/17/2007  | 10/17/2007  | 9/21/2009  | 9/21/2009  |
| 2,4-DINITROTOLUENE          |             |             |            |            |
| 2,6-DINITROTOLUENE          |             |             |            |            |
| 2-CHLORONAPHTHALENE         |             |             |            |            |
| 2-CHLOROPHENOL              |             |             |            |            |
| 2-METHYLPHENOL              |             |             |            |            |
| 2-NITROANILINE              |             |             |            |            |
| 2-NITROPHENOL               |             |             |            |            |
| 3&4-METHYLPHENOL            |             |             |            |            |
| 3,3'-DICHLOROBENZIDINE      |             |             |            |            |
| 3-NITROANILINE              |             |             |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |            |            |
| 4-CHLORO-3-METHYLPHENOL     |             |             |            |            |
| 4-CHLOROANILINE             |             |             |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |            |            |
| 4-NITROANILINE              |             |             |            |            |
| 4-NITROPHENOL               |             |             |            |            |
| ACETOPHENONE                |             |             |            |            |
| ANILINE                     |             |             |            |            |
| ATRAZINE                    |             |             |            |            |
| AZOBENZENE                  |             |             |            |            |
| BENZIDINE                   |             |             |            |            |
| BENZOIC ACID                |             |             |            |            |
| BENZYL ALCOHOL              |             |             |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |            |            |
| BIS(2-CHLOROETHYL)ETHER     |             |             |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |            |            |
| BUTYL BENZYL PHTHALATE      |             |             |            |            |
| CAPROLACTAM                 |             |             |            |            |
| CARBAZOLE                   |             |             |            |            |
| DIBENZOFURAN                |             |             |            |            |
| DIETHYL PHTHALATE           |             |             |            |            |
| DIMETHYL PHTHALATE          |             |             |            |            |
| DI-N-BUTYL PHTHALATE        |             |             |            |            |
| DI-N-OCTYL PHTHALATE        |             |             |            |            |
| HEXACHLOROBENZENE           |             |             |            |            |
| HEXACHLOROBUTADIENE         |             |             |            |            |
| HEXACHLOROCYCLOPENTADIENE   |             |             |            |            |

| LOCATION                       | SB-490      | SB-490      | SB-624     | SB-624      |
|--------------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                      | SB-490-0405 | SB-490-0708 | F-SB-624-1 | F-SB-624-2  |
| SAMPLE DATE                    | 10/17/2007  | 10/17/2007  | 9/21/2009  | 9/21/2009   |
| HEXACHLOROETHANE               |             |             |            |             |
| ISOPHORONE                     |             |             |            |             |
| NITROBENZENE                   |             |             |            |             |
| N-NITROSODIMETHYLAMINE         |             |             |            |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |            |             |
| N-NITROSODIPHENYLAMINE         |             |             |            | <del></del> |
| PENTACHLOROPHENOL              |             |             |            |             |
| PHENOL                         |             |             |            |             |
| PYRIDINE                       |             |             |            |             |
| VOLATILES (UG/KG)              |             | 1           |            |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,1-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,2-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |            |             |
| 1,1-DICHLOROETHANE             |             |             |            |             |
| 1,1-DICHLOROETHENE             |             |             |            |             |
| 1,1-DICHLOROPROPENE            |             |             |            |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |            |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |            |             |
| 1,2-DIBROMOETHANE              |             |             |            |             |
| 1,2-DICHLOROBENZENE            |             |             |            |             |
| 1,2-DICHLOROETHANE             |             |             |            | <del></del> |
| 1,2-DICHLOROPROPANE            |             |             |            | <del></del> |
| 1,3,5-TRIMETHYLBENZENE         |             |             |            | <del></del> |
| 1,3-DICHLOROBENZENE            |             |             |            |             |
| 1,3-DICHLOROPROPANE            |             |             |            |             |
| 1,3-DICHLOROPROPENE            |             |             |            |             |
| 1,4-DICHLOROBENZENE            |             |             |            |             |
| 1,4-DIOXANE                    |             |             |            |             |
| 2,2-DICHLOROPROPANE            |             |             |            |             |
| 2-BUTANONE                     |             |             |            |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |            |             |
| 2-CHLOROTOLUENE                |             |             |            | <del></del> |

| LOCATION                | SB-490      | SB-490      | SB-624     | SB-624     |
|-------------------------|-------------|-------------|------------|------------|
| SAMPLE ID               | SB-490-0405 | SB-490-0708 | F-SB-624-1 | F-SB-624-2 |
| SAMPLE DATE             | 10/17/2007  | 10/17/2007  | 9/21/2009  | 9/21/2009  |
| 2-HEXANONE              |             |             |            |            |
| 4-CHLOROTOLUENE         |             |             |            |            |
| 4-ISOPROPYLTOLUENE      |             |             |            |            |
| 4-METHYL-2-PENTANONE    |             |             |            |            |
| ACETONE                 |             |             |            |            |
| BENZENE                 |             |             |            |            |
| BROMOBENZENE            |             |             |            |            |
| BROMOCHLOROMETHANE      |             |             |            |            |
| BROMODICHLOROMETHANE    |             |             |            |            |
| BROMOFORM               |             |             |            |            |
| BROMOMETHANE            |             |             |            |            |
| CARBON DISULFIDE        |             |             |            |            |
| CARBON TETRACHLORIDE    |             |             |            |            |
| CHLOROBENZENE           |             |             |            |            |
| CHLORODIBROMOMETHANE    |             |             |            |            |
| CHLOROETHANE            |             |             |            |            |
| CHLOROFORM              |             |             |            |            |
| CHLOROMETHANE           |             |             |            |            |
| CIS-1,2-DICHLOROETHENE  |             |             |            |            |
| CIS-1,3-DICHLOROPROPENE |             |             |            |            |
| DIBROMOMETHANE          |             |             |            |            |
| DICHLORODIFLUOROMETHANE |             |             |            |            |
| DIISOPROPYL ETHER       |             |             |            |            |
| ETHYL TERT-BUTYL ETHER  |             |             |            |            |
| ETHYLBENZENE            |             |             |            |            |
| FLUORODICHLOROMETHANE   |             |             |            |            |
| HEXACHLOROBUTADIENE     |             |             |            |            |
| ISOPROPYLBENZENE        |             |             |            |            |
| M+P-XYLENES             |             |             |            |            |
| METHYL TERT-BUTYL ETHER |             |             |            |            |
| METHYLENE CHLORIDE      |             |             |            |            |
| NAPHTHALENE             |             |             |            |            |
| N-BUTYLBENZENE          |             |             |            |            |
| N-PROPYLBENZENE         |             |             |            |            |
| O-XYLENE                |             |             |            |            |
| SEC-BUTYLBENZENE        |             |             |            |            |
| STYRENE                 |             |             |            |            |
| TERT-AMYL METHYL ETHER  |             |             |            |            |

| LOCATION                  | SB-490      | SB-490      | SB-624     | SB-624     |
|---------------------------|-------------|-------------|------------|------------|
| SAMPLE ID                 | SB-490-0405 | SB-490-0708 | F-SB-624-1 | F-SB-624-2 |
| SAMPLE DATE               | 10/17/2007  | 10/17/2007  | 9/21/2009  | 9/21/2009  |
| TERT-BUTYLBENZENE         |             |             |            |            |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |            |
| TETRACHLOROETHENE         |             |             |            |            |
| TOLUENE                   |             |             |            |            |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |            |
| TOTAL XYLENES             |             |             |            |            |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |            |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |            |
| TRICHLOROETHENE           |             |             |            |            |
| TRICHLOROFLUOROMETHANE    |             |             |            |            |
| VINYL ACETATE             |             |             |            |            |
| VINYL CHLORIDE            |             |             |            |            |
|                           |             |             |            |            |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                |                 |                |      |
|----------------------------------|-----------------|----------------|------|
| 1-METHYLNAPHTHALENE              |                 |                | <br> |
| 2-METHYLNAPHTHALENE              |                 |                | <br> |
| ACENAPHTHENE                     |                 |                | <br> |
| ACENAPHTHYLENE                   |                 |                | <br> |
| ANTHRACENE                       |                 |                | <br> |
| BAP EQUIVALENT-HALFND            | 110 [MDL=1.6]   | 31 [MDL=1.5]   | <br> |
| BAP EQUIVALENT-POS               | 110 [MDL=1.6]   | 31 [MDL=1.5]   | <br> |
| BAP EQUIVALENT-UCL               | 110 [MDL=1.6]   | 31 [MDL=1.5]   | <br> |
| BENZO(A)ANTHRACENE               |                 |                | <br> |
| BENZO(A)PYRENE                   | 110 J [MDL=1.6] | 31 J [MDL=1.5] | <br> |
| BENZO(B)FLUORANTHENE             |                 |                | <br> |
| BENZO(G,H,I)PERYLENE             |                 |                | <br> |
| BENZO(K)FLUORANTHENE             |                 |                | <br> |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                | <br> |
| C1-FLUORANTHENES/PYRENES         |                 |                | <br> |
| C1-FLUORENES                     |                 |                | <br> |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                | <br> |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                | <br> |
| C2-FLUORENES                     |                 |                | <br> |
| C2-NAPHTHALENES                  |                 |                | <br> |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                | <br> |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                | <br> |
| C3-FLUORENES                     |                 |                | <br> |
| C3-NAPHTHALENES                  |                 |                | <br> |
|                                  |                 |                |      |

| LOCATION                         | SB-490        | SB-490        | SB-624     | SB-624     |
|----------------------------------|---------------|---------------|------------|------------|
| SAMPLE ID                        | SB-490-0405   | SB-490-0708   | F-SB-624-1 | F-SB-624-2 |
| SAMPLE DATE                      | 10/17/2007    | 10/17/2007    | 9/21/2009  | 9/21/2009  |
| C3-PHENANTHRENES/ANTHRACENES     |               |               |            |            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |               |            |            |
| C4-NAPHTHALENES                  |               |               |            |            |
| C4-PHENANTHRENES/ANTHRACENES     |               |               |            |            |
| CHRYSENE                         |               |               |            |            |
| DIBENZO(A,H)ANTHRACENE           |               |               |            |            |
| FLUORANTHENE                     |               |               |            |            |
| FLUORENE                         |               |               |            |            |
| INDENO(1,2,3-CD)PYRENE           |               |               |            |            |
| NAPHTHALENE                      |               |               |            |            |
| PHENANTHRENE                     |               |               |            |            |
| PYRENE                           |               |               |            |            |
| TOTAL PAHS                       | 110 [MDL=1.6] | 31 [MDL=1.5]  |            |            |
| PESTICIDES/PCBS (UG/KG)          |               |               |            |            |
| 4,4'-DDD                         |               |               |            |            |
| 4,4'-DDE                         |               |               |            |            |
| 4,4'-DDT                         |               |               |            |            |
| ALDRIN                           |               |               |            |            |
| ALPHA-BHC                        |               |               |            |            |
| ALPHA-CHLORDANE                  |               |               |            |            |
| AROCLOR-1016                     | 42 U [MDL=14] | 38 U [MDL=13] |            |            |
| AROCLOR-1221                     | 42 U [MDL=16] | 38 U [MDL=15] |            |            |
| AROCLOR-1232                     | 42 U [MDL=15] | 38 U [MDL=14] |            |            |
| AROCLOR-1242                     | 42 U [MDL=18] | 38 U [MDL=16] |            |            |
| AROCLOR-1248                     | 42 U [MDL=19] | 38 U [MDL=17] |            |            |
| AROCLOR-1254                     | 42 U [MDL=11] | 38 U [MDL=10] |            |            |
| AROCLOR-1260                     | 42 U [MDL=12] | 38 U [MDL=11] |            |            |
| BETA-BHC                         |               |               |            |            |
| DELTA-BHC                        |               |               |            |            |
| DIELDRIN                         |               |               |            |            |
| ENDOSULFAN I                     |               |               |            |            |
| ENDOSULFAN II                    |               |               |            |            |
| ENDOSULFAN SULFATE               |               |               |            |            |
| ENDRIN                           |               |               |            |            |
| ENDRIN ALDEHYDE                  |               |               |            |            |
| ENDRIN KETONE                    |               |               |            |            |
| GAMMA-BHC (LINDANE)              |               |               |            |            |
| GAMMA-CHLORDANE                  |               |               |            |            |

# Block F Soil Remedial Action Plan Appendix

| 0011 |  |
|------|--|
|      |  |
|      |  |
|      |  |

| LOCATION                       | SB-490       | SB-490       | SB-624     | SB-624     |
|--------------------------------|--------------|--------------|------------|------------|
| SAMPLE ID                      | SB-490-0405  | SB-490-0708  | F-SB-624-1 | F-SB-624-2 |
| SAMPLE DATE                    | 10/17/2007   | 10/17/2007   | 9/21/2009  | 9/21/2009  |
| HEPTACHLOR                     |              |              |            |            |
| HEPTACHLOR EPOXIDE             |              |              |            |            |
| METHOXYCHLOR                   |              |              |            |            |
| TOTAL AROCLOR                  | 0 U [MDL=14] | 0 U [MDL=13] |            |            |
| TOTAL DDT POS                  |              |              |            |            |
| TOXAPHENE                      |              |              |            |            |
| PETROLEUM HYDROCARBONS (UG/KG) |              |              |            |            |
| DIESEL RANGE ORGANICS          |              |              |            |            |
| GASOLINE RANGE ORGANICS        |              |              |            |            |
| TPH (C09-C36)                  |              |              |            |            |
| _                              | ·            |              | ·          | ·          |

| LOCATION                     | SB-625                | SB-625           | SB-626           | SB-626            |
|------------------------------|-----------------------|------------------|------------------|-------------------|
| SAMPLE ID                    | F-SB-625-1            | F-SB-625-2       | F-SB-626-1       | F-SB-626-2        |
| SAMPLE DATE                  | 9/21/2009             | 9/21/2009        | 9/22/2009        | 9/22/2009         |
| METALS (MG/KG)               |                       |                  |                  |                   |
| ANTIMONY                     |                       |                  |                  |                   |
| ARSENIC                      |                       |                  |                  |                   |
| BARIUM                       |                       |                  |                  |                   |
| BERYLLIUM                    |                       |                  |                  |                   |
| CADMIUM                      |                       |                  |                  |                   |
| CHROMIUM                     |                       |                  |                  |                   |
| COBALT                       |                       |                  |                  |                   |
| COPPER                       |                       |                  |                  |                   |
| LEAD                         |                       |                  |                  |                   |
| MERCURY                      | 0.020000 U [MDL=0.02] | 0.58 [MDL=0.019] | 2.2 L [MDL=0.04] | 2.7 L [MDL=0.041] |
| MOLYBDENUM                   |                       |                  |                  |                   |
| NICKEL                       |                       |                  |                  |                   |
| SELENIUM                     |                       |                  |                  |                   |
| SILVER                       |                       |                  |                  |                   |
| THALLIUM                     |                       |                  |                  |                   |
| VANADIUM                     |                       |                  |                  |                   |
| ZINC                         |                       |                  |                  |                   |
| MISCELLANEOUS PARAMETERS     |                       |                  |                  |                   |
| PERCENT SOLIDS (%)           |                       |                  |                  |                   |
| TOTAL SOLIDS (%)             |                       |                  |                  |                   |
| HEXAVALENT CHROMIUM (MG/KG)  |                       |                  |                  |                   |
| TOTAL ORGANIC CARBON (MG/KG) |                       |                  |                  |                   |
| PH (S.U.)                    |                       |                  |                  |                   |
| MERCURY (METHYL) (UG/KG)     |                       |                  |                  |                   |
| SEMIVOLATILES (UG/KG)        |                       |                  |                  |                   |
| 1,1-BIPHENYL                 |                       |                  |                  |                   |
| 1,2,4-TRICHLOROBENZENE       |                       |                  |                  |                   |
| 1,2-DICHLOROBENZENE          |                       |                  |                  |                   |
| 1,3-DICHLOROBENZENE          |                       |                  |                  |                   |
| 1,4-DICHLOROBENZENE          |                       |                  |                  |                   |
| 1,4-DIOXANE                  |                       |                  |                  |                   |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                       |                  |                  |                   |
| 2,4,5-TRICHLOROPHENOL        |                       |                  |                  |                   |
| 2,4,6-TRICHLOROPHENOL        |                       |                  |                  |                   |
| 2,4-DICHLOROPHENOL           |                       |                  |                  |                   |
| 2,4-DIMETHYLPHENOL           |                       |                  |                  |                   |
| 2,4-DINITROPHENOL            |                       |                  |                  |                   |

| LOCATION                    | SB-625     | SB-625     | SB-626     | SB-626     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-625-1 | F-SB-625-2 | F-SB-626-1 | F-SB-626-2 |
| SAMPLE DATE                 | 9/21/2009  | 9/21/2009  | 9/22/2009  | 9/22/2009  |
| 2,4-DINITROTOLUENE          |            |            |            |            |
| 2,6-DINITROTOLUENE          |            |            |            |            |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |

| SAMPLE DATE  HEXACHLOROETHANE  ISOPHORONE  NITROBENZENE  N-NITROSODIMETHYLAMINE  N-NITROSO-DI-N-PROPYLAMINE  N-NITROSODIPHENYLAMINE  PENTACHLOROPHENOL  PHENOL  PYRIDINE  VOLATILES (UG/KG)  1,1,1,2-TETRACHLOROETHANE | 3-625 S     | B-625       | SB-626      | SB-626    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-----------|
| HEXACHLOROETHANE ISOPHORONE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                        | 3-625-1 F-S | B-625-2 F-5 | SB-626-1 F- | -SB-626-2 |
| ISOPHORONE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                         | 1/2009 9/2  | 21/2009 9/  | /22/2009    | 9/22/2009 |
| NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                    |             |             |             |           |
| N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                                 |             |             |             |           |
| N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                                                        |             |             |             |           |
| N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL PHENOL PYRIDINE  VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                                                                                  |             |             |             |           |
| PENTACHLOROPHENOL PHENOL PYRIDINE VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                                                                                                          |             |             |             |           |
| PHENOL PYRIDINE  VOLATILES (UG/KG)  1,1,1,2-TETRACHLOROETHANE                                                                                                                                                          |             |             |             |           |
| PYRIDINE  VOLATILES (UG/KG)  1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                 |             |             |             |           |
| VOLATILES (UG/KG) 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                            |             |             |             |           |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                              |             |             |             |           |
|                                                                                                                                                                                                                        | •           | •           | •           |           |
|                                                                                                                                                                                                                        |             |             |             |           |
| 1,1,1-TRICHLOROETHANE                                                                                                                                                                                                  |             |             |             |           |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                              |             |             |             |           |
| 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                  |             |             |             |           |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                         |             |             |             |           |
| 1,1-DICHLOROETHANE                                                                                                                                                                                                     |             |             |             |           |
| 1,1-DICHLOROETHENE                                                                                                                                                                                                     |             |             |             |           |
| 1,1-DICHLOROPROPENE                                                                                                                                                                                                    |             |             |             |           |
| 1,2,3-TRICHLOROBENZENE                                                                                                                                                                                                 |             |             |             |           |
| 1,2,3-TRICHLOROPROPANE                                                                                                                                                                                                 |             |             |             |           |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                                                                                                 |             |             |             |           |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                 |             |             |             |           |
| 1,2,4-TRIMETHYLBENZENE                                                                                                                                                                                                 |             |             |             |           |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                                                                                            |             |             |             |           |
| 1,2-DIBROMOETHANE                                                                                                                                                                                                      |             |             |             |           |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                    |             |             |             |           |
| 1,2-DICHLOROETHANE                                                                                                                                                                                                     |             |             |             |           |
| 1,2-DICHLOROPROPANE                                                                                                                                                                                                    |             |             |             |           |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                                                                                                 |             |             |             |           |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                    |             |             |             |           |
| 1,3-DICHLOROPROPANE                                                                                                                                                                                                    |             |             |             |           |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                    |             |             |             |           |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                    |             |             |             |           |
| 1,4-DIOXANE                                                                                                                                                                                                            |             |             |             |           |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                    |             |             |             |           |
| 2-BUTANONE                                                                                                                                                                                                             |             |             |             |           |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                              |             |             | <br>        |           |
| 2-CHLOROTOLUENE                                                                                                                                                                                                        |             |             |             |           |

February 2013 Page B-241

| LOCATION                | SB-625     | SB-625     | SB-626     | SB-626     |
|-------------------------|------------|------------|------------|------------|
| SAMPLE ID               | F-SB-625-1 | F-SB-625-2 | F-SB-626-1 | F-SB-626-2 |
| SAMPLE DATE             | 9/21/2009  | 9/21/2009  | 9/22/2009  | 9/22/2009  |
| 2-HEXANONE              |            |            |            |            |
| 4-CHLOROTOLUENE         |            |            |            |            |
| 4-ISOPROPYLTOLUENE      |            |            |            |            |
| 4-METHYL-2-PENTANONE    |            |            |            |            |
| ACETONE                 |            |            |            |            |
| BENZENE                 |            |            |            |            |
| BROMOBENZENE            |            |            |            |            |
| BROMOCHLOROMETHANE      |            |            |            |            |
| BROMODICHLOROMETHANE    |            |            |            |            |
| BROMOFORM               |            |            |            |            |
| BROMOMETHANE            |            |            |            |            |
| CARBON DISULFIDE        |            |            |            |            |
| CARBON TETRACHLORIDE    |            |            |            |            |
| CHLOROBENZENE           |            |            |            |            |
| CHLORODIBROMOMETHANE    |            |            |            |            |
| CHLOROETHANE            |            |            |            |            |
| CHLOROFORM              |            |            |            |            |
| CHLOROMETHANE           |            |            |            |            |
| CIS-1,2-DICHLOROETHENE  |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE |            |            |            |            |
| DIBROMOMETHANE          |            |            |            |            |
| DICHLORODIFLUOROMETHANE |            |            |            |            |
| DIISOPROPYL ETHER       |            |            |            |            |
| ETHYL TERT-BUTYL ETHER  |            |            |            |            |
| ETHYLBENZENE            |            |            |            |            |
| FLUORODICHLOROMETHANE   |            |            |            |            |
| HEXACHLOROBUTADIENE     |            |            |            |            |
| ISOPROPYLBENZENE        |            |            |            |            |
| M+P-XYLENES             |            |            |            |            |
| METHYL TERT-BUTYL ETHER |            |            |            |            |
| METHYLENE CHLORIDE      |            |            |            |            |
| NAPHTHALENE             |            |            |            |            |
| N-BUTYLBENZENE          |            |            |            |            |
| N-PROPYLBENZENE         |            |            |            |            |
| O-XYLENE                |            |            |            |            |
| SEC-BUTYLBENZENE        |            |            |            |            |
| STYRENE                 |            |            |            |            |
| TERT-AMYL METHYL ETHER  |            |            |            |            |

| LOCATION                  | SB-625     | SB-625     | SB-626     | SB-626     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-625-1 | F-SB-625-2 | F-SB-626-1 | F-SB-626-2 |
| SAMPLE DATE               | 9/21/2009  | 9/21/2009  | 9/22/2009  | 9/22/2009  |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |
| TRICHLOROETHENE           |            |            |            |            |
| TRICHLOROFLUOROMETHANE    |            |            |            |            |
| VINYL ACETATE             |            |            |            |            |
| VINYL CHLORIDE            |            |            |            |            |
|                           |            |            |            |            |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ·                                | • |      |   |
|----------------------------------|---|------|---|
| 1-METHYLNAPHTHALENE              |   | <br> |   |
| 2-METHYLNAPHTHALENE              |   | <br> |   |
| ACENAPHTHENE                     |   | <br> |   |
| ACENAPHTHYLENE                   |   | <br> |   |
| ANTHRACENE                       |   | <br> |   |
| BAP EQUIVALENT-HALFND            |   | <br> |   |
| BAP EQUIVALENT-POS               |   | <br> |   |
| BAP EQUIVALENT-UCL               |   | <br> |   |
| BENZO(A)ANTHRACENE               |   | <br> |   |
| BENZO(A)PYRENE                   |   | <br> |   |
| BENZO(B)FLUORANTHENE             |   | <br> |   |
| BENZO(G,H,I)PERYLENE             |   | <br> |   |
| BENZO(K)FLUORANTHENE             |   | <br> |   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C1-FLUORANTHENES/PYRENES         |   | <br> |   |
| C1-FLUORENES                     |   | <br> |   |
| C1-PHENANTHRENES/ANTHRACENES     |   | <br> |   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C2-FLUORENES                     |   | <br> |   |
| C2-NAPHTHALENES                  |   | <br> |   |
| C2-PHENANTHRENES/ANTHRACENES     |   | <br> |   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C3-FLUORENES                     |   | <br> |   |
| C3-NAPHTHALENES                  |   | <br> |   |
|                                  |   |      | 1 |

| LOCATION                         | SB-625     | SB-625     | SB-626     | SB-626     |
|----------------------------------|------------|------------|------------|------------|
| SAMPLE ID                        | F-SB-625-1 | F-SB-625-2 | F-SB-626-1 | F-SB-626-2 |
| SAMPLE DATE                      | 9/21/2009  | 9/21/2009  | 9/22/2009  | 9/22/2009  |
| C3-PHENANTHRENES/ANTHRACENES     |            |            |            |            |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |            |            |            |            |
| C4-NAPHTHALENES                  |            |            |            |            |
| C4-PHENANTHRENES/ANTHRACENES     |            |            |            |            |
| CHRYSENE                         |            |            |            |            |
| DIBENZO(A,H)ANTHRACENE           |            |            |            |            |
| FLUORANTHENE                     |            |            |            |            |
| FLUORENE                         |            |            |            |            |
| INDENO(1,2,3-CD)PYRENE           |            |            |            |            |
| NAPHTHALENE                      |            |            |            |            |
| PHENANTHRENE                     |            |            |            |            |
| PYRENE                           |            |            |            |            |
| TOTAL PAHS                       |            |            |            |            |
| PESTICIDES/PCBS (UG/KG)          | •          |            |            |            |
| 4,4'-DDD                         |            |            |            |            |
| 4,4'-DDE                         |            |            |            |            |
| 4,4'-DDT                         |            |            |            |            |
| ALDRIN                           |            |            |            |            |
| ALPHA-BHC                        |            |            |            |            |
| ALPHA-CHLORDANE                  |            |            |            |            |
| AROCLOR-1016                     |            |            |            |            |
| AROCLOR-1221                     |            |            |            |            |
| AROCLOR-1232                     |            |            |            |            |
| AROCLOR-1242                     |            |            |            |            |
| AROCLOR-1248                     |            |            |            |            |
| AROCLOR-1254                     |            |            |            |            |
| AROCLOR-1260                     |            |            |            |            |
| BETA-BHC                         |            |            |            |            |
| DELTA-BHC                        |            |            |            |            |
| DIELDRIN                         |            |            |            |            |
| ENDOSULFAN I                     |            |            |            |            |
| ENDOSULFAN II                    |            |            |            |            |
| ENDOSULFAN SULFATE               |            |            |            |            |
| ENDRIN                           |            |            |            |            |
| ENDRIN ALDEHYDE                  |            |            |            |            |
| ENDRIN KETONE                    |            |            |            |            |
| GAMMA-BHC (LINDANE)              |            |            |            |            |
| GAMMA-CHLORDANE                  |            |            |            |            |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-625     | SB-625     | SB-626     | SB-626     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-625-1 | F-SB-625-2 | F-SB-626-1 | F-SB-626-2 |
| SAMPLE DATE                    | 9/21/2009  | 9/21/2009  | 9/22/2009  | 9/22/2009  |
| HEPTACHLOR                     |            |            |            |            |
| HEPTACHLOR EPOXIDE             |            |            |            |            |
| METHOXYCHLOR                   |            |            |            |            |
| TOTAL AROCLOR                  |            |            |            |            |
| TOTAL DDT POS                  |            |            |            |            |
| TOXAPHENE                      |            |            |            |            |
| PETROLEUM HYDROCARBONS (UG/KG) |            |            |            |            |
| DIESEL RANGE ORGANICS          |            |            |            |            |
| GASOLINE RANGE ORGANICS        |            |            |            |            |
| TPH (C09-C36)                  |            |            |            |            |
|                                |            |            |            |            |

| JUIL                         |                  |                  |                     |                 |
|------------------------------|------------------|------------------|---------------------|-----------------|
| LOCATION                     | SB-626           | SB-626           | SB-626              | SB-626B         |
| SAMPLE ID                    | F-SB-626-3       | F-SB-626-4       | F-SB-626-5          | F-SB-626B-(1-4) |
| SAMPLE DATE                  | 9/22/2009        | 9/22/2009        | 9/22/2009           | 11/11/2009      |
| METALS (MG/KG)               | •                |                  | •                   |                 |
| ANTIMONY                     |                  |                  |                     |                 |
| ARSENIC                      |                  |                  |                     |                 |
| BARIUM                       |                  |                  |                     |                 |
| BERYLLIUM                    |                  |                  |                     |                 |
| CADMIUM                      |                  |                  |                     |                 |
| CHROMIUM                     |                  |                  |                     |                 |
| COBALT                       |                  |                  |                     |                 |
| COPPER                       |                  |                  |                     |                 |
| LEAD                         |                  |                  |                     |                 |
| MERCURY                      | 0.60 [MDL=0.021] | 0.50 [MDL=0.021] | 0.019 U [MDL=0.019] | 1.2 [MDL=0.02]  |
| MOLYBDENUM                   |                  |                  |                     |                 |
| NICKEL                       |                  |                  |                     |                 |
| SELENIUM                     |                  |                  |                     |                 |
| SILVER                       |                  |                  |                     |                 |
| THALLIUM                     |                  |                  |                     |                 |
| VANADIUM                     |                  |                  |                     |                 |
| ZINC                         |                  |                  |                     |                 |
| MISCELLANEOUS PARAMETERS     | •                |                  |                     |                 |
| PERCENT SOLIDS (%)           |                  |                  |                     |                 |
| TOTAL SOLIDS (%)             |                  |                  |                     |                 |
| HEXAVALENT CHROMIUM (MG/KG)  |                  |                  |                     |                 |
| TOTAL ORGANIC CARBON (MG/KG) |                  |                  |                     |                 |
| PH (S.U.)                    |                  |                  |                     |                 |
| MERCURY (METHYL) (UG/KG)     |                  |                  |                     |                 |
| SEMIVOLATILES (UG/KG)        | •                |                  |                     |                 |
| 1,1-BIPHENYL                 |                  |                  |                     |                 |
| 1,2,4-TRICHLOROBENZENE       |                  |                  |                     |                 |
| 1,2-DICHLOROBENZENE          |                  |                  |                     |                 |
| 1,3-DICHLOROBENZENE          |                  |                  |                     |                 |
| 1,4-DICHLOROBENZENE          |                  |                  |                     |                 |
| 1,4-DIOXANE                  |                  |                  |                     |                 |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                  |                  |                     |                 |
| 2,4,5-TRICHLOROPHENOL        |                  |                  |                     |                 |
| 2,4,6-TRICHLOROPHENOL        |                  |                  |                     |                 |
| 2,4-DICHLOROPHENOL           |                  |                  |                     |                 |
| 2,4-DIMETHYLPHENOL           |                  |                  |                     |                 |
| 2,4-DINITROPHENOL            |                  |                  |                     |                 |

| LOCATION                    | SB-626     | SB-626     | SB-626     | SB-626B         |
|-----------------------------|------------|------------|------------|-----------------|
| SAMPLE ID                   | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE                 | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| 2,4-DINITROTOLUENE          |            |            |            |                 |
| 2,6-DINITROTOLUENE          |            |            |            |                 |
| 2-CHLORONAPHTHALENE         |            |            |            |                 |
| 2-CHLOROPHENOL              |            |            |            |                 |
| 2-METHYLPHENOL              |            |            |            |                 |
| 2-NITROANILINE              |            |            |            |                 |
| 2-NITROPHENOL               |            |            |            |                 |
| 3&4-METHYLPHENOL            |            |            |            |                 |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |                 |
| 3-NITROANILINE              |            |            |            |                 |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |                 |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |                 |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |                 |
| 4-CHLOROANILINE             |            |            |            |                 |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |                 |
| 4-NITROANILINE              |            |            |            |                 |
| 4-NITROPHENOL               |            |            |            |                 |
| ACETOPHENONE                |            |            |            |                 |
| ANILINE                     |            |            |            |                 |
| ATRAZINE                    |            |            |            |                 |
| AZOBENZENE                  |            |            |            |                 |
| BENZIDINE                   |            |            |            |                 |
| BENZOIC ACID                |            |            |            |                 |
| BENZYL ALCOHOL              |            |            |            |                 |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |                 |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |                 |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |                 |
| BUTYL BENZYL PHTHALATE      |            |            |            |                 |
| CAPROLACTAM                 |            |            |            |                 |
| CARBAZOLE                   |            |            |            |                 |
| DIBENZOFURAN                |            |            |            |                 |
| DIETHYL PHTHALATE           |            |            |            |                 |
| DIMETHYL PHTHALATE          |            |            |            |                 |
| DI-N-BUTYL PHTHALATE        |            |            |            |                 |
| DI-N-OCTYL PHTHALATE        |            |            |            |                 |
| HEXACHLOROBENZENE           |            |            |            |                 |
| HEXACHLOROBUTADIENE         |            |            |            |                 |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |                 |

2-CHLOROTOLUENE

| LOCATION                       | SB-626     | SB-626     | SB-626     | SB-626B         |
|--------------------------------|------------|------------|------------|-----------------|
| SAMPLE ID                      | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE                    | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| HEXACHLOROETHANE               |            |            |            |                 |
| ISOPHORONE                     |            |            |            |                 |
| NITROBENZENE                   |            |            |            |                 |
| N-NITROSODIMETHYLAMINE         |            |            |            |                 |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |                 |
| N-NITROSODIPHENYLAMINE         |            |            |            |                 |
| PENTACHLOROPHENOL              |            |            |            |                 |
| PHENOL                         |            |            |            |                 |
| PYRIDINE                       |            |            |            |                 |
| VOLATILES (UG/KG)              | •          | -          | •          | •               |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |                 |
| 1,1,1-TRICHLOROETHANE          |            |            |            |                 |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |                 |
| 1,1,2-TRICHLOROETHANE          |            |            |            |                 |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |                 |
| 1,1-DICHLOROETHANE             |            |            |            |                 |
| 1,1-DICHLOROETHENE             |            |            |            |                 |
| 1,1-DICHLOROPROPENE            |            |            |            |                 |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |                 |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |                 |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |                 |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |                 |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |                 |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |                 |
| 1,2-DIBROMOETHANE              |            |            |            |                 |
| 1,2-DICHLOROBENZENE            |            |            |            |                 |
| 1,2-DICHLOROETHANE             |            |            |            |                 |
| 1,2-DICHLOROPROPANE            |            |            |            |                 |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |                 |
| 1,3-DICHLOROBENZENE            |            |            |            |                 |
| 1,3-DICHLOROPROPANE            |            |            |            |                 |
| 1,3-DICHLOROPROPENE            |            |            |            |                 |
| 1,4-DICHLOROBENZENE            |            |            |            |                 |
| 1,4-DIOXANE                    |            |            |            |                 |
| 2,2-DICHLOROPROPANE            |            |            |            |                 |
| 2-BUTANONE                     |            |            |            |                 |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |                 |
|                                |            |            |            |                 |

February 2013 Page B-248

--

--

--

--

| LOCATION                | SB-626     | SB-626     | SB-626     | SB-626B         |
|-------------------------|------------|------------|------------|-----------------|
| SAMPLE ID               | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE             | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| 2-HEXANONE              |            |            |            |                 |
| 4-CHLOROTOLUENE         |            |            |            |                 |
| 4-ISOPROPYLTOLUENE      |            |            |            |                 |
| 4-METHYL-2-PENTANONE    |            |            |            |                 |
| ACETONE                 |            |            |            |                 |
| BENZENE                 |            |            |            |                 |
| BROMOBENZENE            |            |            |            |                 |
| BROMOCHLOROMETHANE      |            |            |            |                 |
| BROMODICHLOROMETHANE    |            |            |            |                 |
| BROMOFORM               |            |            |            |                 |
| BROMOMETHANE            |            |            |            |                 |
| CARBON DISULFIDE        |            |            |            |                 |
| CARBON TETRACHLORIDE    |            |            |            |                 |
| CHLOROBENZENE           |            |            |            |                 |
| CHLORODIBROMOMETHANE    |            |            |            |                 |
| CHLOROETHANE            |            |            |            |                 |
| CHLOROFORM              |            |            |            |                 |
| CHLOROMETHANE           |            |            |            |                 |
| CIS-1,2-DICHLOROETHENE  |            |            |            |                 |
| CIS-1,3-DICHLOROPROPENE |            |            |            |                 |
| DIBROMOMETHANE          |            |            |            |                 |
| DICHLORODIFLUOROMETHANE |            |            |            |                 |
| DIISOPROPYL ETHER       |            |            |            |                 |
| ETHYL TERT-BUTYL ETHER  |            |            |            |                 |
| ETHYLBENZENE            |            |            |            |                 |
| FLUORODICHLOROMETHANE   |            |            |            |                 |
| HEXACHLOROBUTADIENE     |            |            |            |                 |
| ISOPROPYLBENZENE        |            |            |            |                 |
| M+P-XYLENES             |            |            |            |                 |
| METHYL TERT-BUTYL ETHER |            |            |            |                 |
| METHYLENE CHLORIDE      |            |            |            |                 |
| NAPHTHALENE             |            |            |            |                 |
| N-BUTYLBENZENE          |            |            |            |                 |
| N-PROPYLBENZENE         |            |            |            |                 |
| O-XYLENE                |            |            |            |                 |
| SEC-BUTYLBENZENE        |            |            |            |                 |
| STYRENE                 |            |            |            |                 |
| TERT-AMYL METHYL ETHER  |            |            |            |                 |

| LOCATION                  | SB-626     | SB-626     | SB-626     | SB-626B         |
|---------------------------|------------|------------|------------|-----------------|
| SAMPLE ID                 | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE               | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| TERT-BUTYLBENZENE         |            |            |            |                 |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |                 |
| TETRACHLOROETHENE         |            |            |            |                 |
| TOLUENE                   |            |            |            |                 |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |                 |
| TOTAL XYLENES             |            |            |            |                 |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |                 |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |                 |
| TRICHLOROETHENE           |            |            |            |                 |
| TRICHLOROFLUOROMETHANE    |            |            |            |                 |
| VINYL ACETATE             |            |            |            |                 |
| VINYL CHLORIDE            |            |            |            |                 |
|                           |            |            |            |                 |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ·                                | • |      |   |
|----------------------------------|---|------|---|
| 1-METHYLNAPHTHALENE              |   | <br> |   |
| 2-METHYLNAPHTHALENE              |   | <br> |   |
| ACENAPHTHENE                     |   | <br> |   |
| ACENAPHTHYLENE                   |   | <br> |   |
| ANTHRACENE                       |   | <br> |   |
| BAP EQUIVALENT-HALFND            |   | <br> |   |
| BAP EQUIVALENT-POS               |   | <br> |   |
| BAP EQUIVALENT-UCL               |   | <br> |   |
| BENZO(A)ANTHRACENE               |   | <br> |   |
| BENZO(A)PYRENE                   |   | <br> |   |
| BENZO(B)FLUORANTHENE             |   | <br> |   |
| BENZO(G,H,I)PERYLENE             |   | <br> |   |
| BENZO(K)FLUORANTHENE             |   | <br> |   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C1-FLUORANTHENES/PYRENES         |   | <br> |   |
| C1-FLUORENES                     |   | <br> |   |
| C1-PHENANTHRENES/ANTHRACENES     |   | <br> |   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C2-FLUORENES                     |   | <br> |   |
| C2-NAPHTHALENES                  |   | <br> |   |
| C2-PHENANTHRENES/ANTHRACENES     |   | <br> |   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |   |
| C3-FLUORENES                     |   | <br> |   |
| C3-NAPHTHALENES                  |   | <br> |   |
|                                  |   |      | 1 |

| LOCATION                         | SB-626     | SB-626     | SB-626     | SB-626B         |
|----------------------------------|------------|------------|------------|-----------------|
| SAMPLE ID                        | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE                      | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| C3-PHENANTHRENES/ANTHRACENES     |            |            |            |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |            |            |            |                 |
| C4-NAPHTHALENES                  |            |            |            |                 |
| C4-PHENANTHRENES/ANTHRACENES     |            |            |            |                 |
| CHRYSENE                         |            |            |            |                 |
| DIBENZO(A,H)ANTHRACENE           |            |            |            |                 |
| FLUORANTHENE                     |            |            |            |                 |
| FLUORENE                         |            |            |            |                 |
| INDENO(1,2,3-CD)PYRENE           |            |            |            |                 |
| NAPHTHALENE                      |            |            |            |                 |
| PHENANTHRENE                     |            |            |            |                 |
| PYRENE                           |            |            |            |                 |
| TOTAL PAHS                       |            |            |            |                 |
| PESTICIDES/PCBS (UG/KG)          | •          | •          |            | •               |
| 4,4'-DDD                         |            |            |            |                 |
| 4,4'-DDE                         |            |            |            |                 |
| 4,4'-DDT                         |            |            |            |                 |
| ALDRIN                           |            |            |            |                 |
| ALPHA-BHC                        |            |            |            |                 |
| ALPHA-CHLORDANE                  |            |            |            |                 |
| AROCLOR-1016                     |            |            |            |                 |
| AROCLOR-1221                     |            |            |            |                 |
| AROCLOR-1232                     |            |            |            |                 |
| AROCLOR-1242                     |            |            |            |                 |
| AROCLOR-1248                     |            |            |            |                 |
| AROCLOR-1254                     |            |            |            |                 |
| AROCLOR-1260                     |            |            |            |                 |
| BETA-BHC                         |            |            |            |                 |
| DELTA-BHC                        |            |            |            |                 |
| DIELDRIN                         |            |            |            |                 |
| ENDOSULFAN I                     |            |            |            |                 |
| ENDOSULFAN II                    |            |            |            |                 |
| ENDOSULFAN SULFATE               |            |            |            |                 |
| ENDRIN                           |            |            |            |                 |
| ENDRIN ALDEHYDE                  |            |            |            |                 |
| ENDRIN KETONE                    |            |            |            |                 |
| GAMMA-BHC (LINDANE)              |            |            |            |                 |
| GAMMA-CHLORDANE                  |            |            |            |                 |

# Block F Soil Remedial Action Plan Appendix

#### SOIL

| LOCATION                       | SB-626     | SB-626     | SB-626     | SB-626B         |
|--------------------------------|------------|------------|------------|-----------------|
| SAMPLE ID                      | F-SB-626-3 | F-SB-626-4 | F-SB-626-5 | F-SB-626B-(1-4) |
| SAMPLE DATE                    | 9/22/2009  | 9/22/2009  | 9/22/2009  | 11/11/2009      |
| HEPTACHLOR                     |            |            |            |                 |
| HEPTACHLOR EPOXIDE             |            |            |            |                 |
| METHOXYCHLOR                   |            |            |            |                 |
| TOTAL AROCLOR                  |            |            |            |                 |
| TOTAL DDT POS                  |            |            |            |                 |
| TOXAPHENE                      |            |            |            |                 |
| PETROLEUM HYDROCARBONS (UG/KG) |            |            |            |                 |
| DIESEL RANGE ORGANICS          |            |            |            |                 |
| GASOLINE RANGE ORGANICS        |            |            |            |                 |
| TPH (C09-C36)                  |            |            |            |                 |
|                                |            |            |            |                 |

| LOCATION                     | SB-626C         | SB-626C         | SB-626D         | SB-626D        |
|------------------------------|-----------------|-----------------|-----------------|----------------|
| SAMPLE ID                    | F-SB-626C-1     | F-SB-626C-3     | F-SB-626D-1     | F-SB-626D-3    |
| SAMPLE DATE                  | 11/11/2009      | 11/11/2009      | 11/11/2009      | 11/11/2009     |
| METALS (MG/KG)               | •               | •               | •               |                |
| ANTIMONY                     |                 |                 |                 |                |
| ARSENIC                      |                 |                 |                 |                |
| BARIUM                       |                 |                 |                 |                |
| BERYLLIUM                    |                 |                 |                 |                |
| CADMIUM                      |                 |                 |                 |                |
| CHROMIUM                     |                 |                 |                 |                |
| COBALT                       |                 |                 |                 |                |
| COPPER                       |                 |                 |                 |                |
| LEAD                         |                 |                 |                 |                |
| MERCURY                      | 2.2 [MDL=0.023] | 0.13 [MDL=0.02] | 0.36 [MDL=0.02] | 1.0 [MDL=0.02] |
| MOLYBDENUM                   |                 |                 |                 |                |
| NICKEL                       |                 |                 |                 |                |
| SELENIUM                     |                 |                 |                 |                |
| SILVER                       |                 |                 |                 |                |
| THALLIUM                     |                 |                 |                 |                |
| VANADIUM                     |                 |                 |                 |                |
| ZINC                         |                 |                 |                 |                |
| MISCELLANEOUS PARAMETERS     |                 |                 |                 |                |
| PERCENT SOLIDS (%)           |                 |                 |                 |                |
| TOTAL SOLIDS (%)             |                 |                 |                 |                |
| HEXAVALENT CHROMIUM (MG/KG)  |                 |                 |                 |                |
| TOTAL ORGANIC CARBON (MG/KG) |                 |                 |                 |                |
| PH (S.U.)                    |                 |                 |                 |                |
| MERCURY (METHYL) (UG/KG)     |                 |                 |                 |                |
| SEMIVOLATILES (UG/KG)        |                 |                 |                 |                |
| 1,1-BIPHENYL                 |                 |                 |                 |                |
| 1,2,4-TRICHLOROBENZENE       |                 |                 |                 |                |
| 1,2-DICHLOROBENZENE          |                 |                 |                 |                |
| 1,3-DICHLOROBENZENE          |                 |                 |                 |                |
| 1,4-DICHLOROBENZENE          |                 |                 |                 |                |
| 1,4-DIOXANE                  |                 |                 |                 |                |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                 |                 |                 |                |
| 2,4,5-TRICHLOROPHENOL        |                 |                 |                 |                |
| 2,4,6-TRICHLOROPHENOL        |                 |                 |                 |                |
| 2,4-DICHLOROPHENOL           |                 |                 |                 |                |
| 2,4-DIMETHYLPHENOL           |                 |                 |                 |                |
| 2,4-DINITROPHENOL            |                 |                 |                 |                |

| LOCATION                    | SB-626C     | SB-626C     | SB-626D     | SB-626D     |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-626C-1 | F-SB-626C-3 | F-SB-626D-1 | F-SB-626D-3 |
| SAMPLE DATE                 | 11/11/2009  | 11/11/2009  | 11/11/2009  | 11/11/2009  |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SAMPLE DATE  HEXACHLOROETHANE  ISOPHORONE  NITROBENZENE  N-NITROSODIMETHYLAMINE  N-NITROSODIPHENYLAMINE  N-NITROSODIPHENYLAMINE  PENTACHLOROPHENOL | B-626C-1<br>111/2009<br><br><br><br> | F-SB-626C-3<br>11/11/2009<br><br><br> | F-SB-626D-1<br>11/11/2009<br><br><br> | F-SB-626D-3<br>11/11/2009<br><br> |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------|
| HEXACHLOROETHANE ISOPHORONE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                | <br><br>                             |                                       | <br><br>                              |                                   |
| ISOPHORONE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                                 |                                      |                                       |                                       |                                   |
| NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                                            |                                      |                                       |                                       |                                   |
| N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                                                         |                                      |                                       |                                       |                                   |
| N-NITROSO-DI-N-PROPYLAMINE N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                                                                                |                                      |                                       |                                       | 1 1                               |
| N-NITROSODIPHENYLAMINE PENTACHLOROPHENOL                                                                                                           |                                      | •                                     |                                       |                                   |
| PENTACHLOROPHENOL                                                                                                                                  |                                      |                                       |                                       |                                   |
|                                                                                                                                                    |                                      |                                       |                                       |                                   |
| ·                                                                                                                                                  |                                      |                                       |                                       |                                   |
| PHENOL                                                                                                                                             |                                      |                                       |                                       |                                   |
| PYRIDINE                                                                                                                                           |                                      |                                       |                                       |                                   |
| VOLATILES (UG/KG)                                                                                                                                  |                                      |                                       |                                       |                                   |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                          |                                      |                                       |                                       |                                   |
| 1,1,1-TRICHLOROETHANE                                                                                                                              |                                      |                                       |                                       |                                   |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                          |                                      |                                       |                                       |                                   |
| 1,1,2-TRICHLOROETHANE                                                                                                                              |                                      |                                       |                                       |                                   |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                     |                                      |                                       |                                       |                                   |
| 1,1-DICHLOROETHANE                                                                                                                                 |                                      |                                       |                                       |                                   |
| 1,1-DICHLOROETHENE                                                                                                                                 |                                      |                                       |                                       |                                   |
| 1,1-DICHLOROPROPENE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,2,3-TRICHLOROBENZENE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,2,3-TRICHLOROPROPANE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,2,3-TRIMETHYLBENZENE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,2,4-TRICHLOROBENZENE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,2,4-TRIMETHYLBENZENE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,2-DIBROMO-3-CHLOROPROPANE                                                                                                                        |                                      |                                       |                                       |                                   |
| 1,2-DIBROMOETHANE                                                                                                                                  |                                      |                                       |                                       |                                   |
| 1,2-DICHLOROBENZENE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,2-DICHLOROETHANE                                                                                                                                 |                                      |                                       |                                       |                                   |
| 1,2-DICHLOROPROPANE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,3,5-TRIMETHYLBENZENE                                                                                                                             |                                      |                                       |                                       |                                   |
| 1,3-DICHLOROBENZENE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,3-DICHLOROPROPANE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,3-DICHLOROPROPENE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,4-DICHLOROBENZENE                                                                                                                                |                                      |                                       |                                       |                                   |
| 1,4-DIOXANE                                                                                                                                        |                                      |                                       |                                       |                                   |
| 2,2-DICHLOROPROPANE                                                                                                                                |                                      |                                       |                                       |                                   |
| 2-BUTANONE                                                                                                                                         |                                      |                                       |                                       |                                   |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                          |                                      |                                       |                                       |                                   |
| 2-CHLOROTOLUENE                                                                                                                                    |                                      |                                       |                                       |                                   |

February 2013 Page B-255

| LOCATION                | SB-626C     | SB-626C     | SB-626D     | SB-626D     |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-626C-1 | F-SB-626C-3 | F-SB-626D-1 | F-SB-626D-3 |
| SAMPLE DATE             | 11/11/2009  | 11/11/2009  | 11/11/2009  | 11/11/2009  |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-626C     | SB-626C     | SB-626D     | SB-626D     |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-626C-1 | F-SB-626C-3 | F-SB-626D-1 | F-SB-626D-3 |
| SAMPLE DATE               | 11/11/2009  | 11/11/2009  | 11/11/2009  | 11/11/2009  |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| <br> | <br> |
|------|------|
| <br> | <br> |
|      |      |

| LOCATION                         | SB-626C     | SB-626C     | SB-626D     | SB-626D     |
|----------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                        | F-SB-626C-1 | F-SB-626C-3 | F-SB-626D-1 | F-SB-626D-3 |
| SAMPLE DATE                      | 11/11/2009  | 11/11/2009  | 11/11/2009  | 11/11/2009  |
| C3-PHENANTHRENES/ANTHRACENES     |             |             |             |             |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |             |             |             |             |
| C4-NAPHTHALENES                  |             |             |             |             |
| C4-PHENANTHRENES/ANTHRACENES     |             |             |             |             |
| CHRYSENE                         |             |             |             |             |
| DIBENZO(A,H)ANTHRACENE           |             |             |             |             |
| FLUORANTHENE                     |             |             |             |             |
| FLUORENE                         |             |             |             |             |
| INDENO(1,2,3-CD)PYRENE           |             |             |             |             |
| NAPHTHALENE                      |             |             |             |             |
| PHENANTHRENE                     |             |             |             |             |
| PYRENE                           |             |             |             |             |
| TOTAL PAHS                       |             |             |             |             |
| PESTICIDES/PCBS (UG/KG)          |             |             |             |             |
| 4,4'-DDD                         |             |             |             |             |
| 4,4'-DDE                         |             |             |             |             |
| 4,4'-DDT                         |             |             |             |             |
| ALDRIN                           |             |             |             |             |
| ALPHA-BHC                        |             |             |             |             |
| ALPHA-CHLORDANE                  |             |             |             |             |
| AROCLOR-1016                     |             |             |             |             |
| AROCLOR-1221                     |             |             |             |             |
| AROCLOR-1232                     |             |             |             |             |
| AROCLOR-1242                     |             |             |             |             |
| AROCLOR-1248                     |             |             |             |             |
| AROCLOR-1254                     |             |             |             |             |
| AROCLOR-1260                     |             |             |             |             |
| BETA-BHC                         |             |             |             |             |
| DELTA-BHC                        |             |             |             |             |
| DIELDRIN                         |             |             |             |             |
| ENDOSULFAN I                     |             |             |             |             |
| ENDOSULFAN II                    |             | <del></del> |             |             |
| ENDOSULFAN SULFATE               |             | <del></del> |             |             |
| ENDRIN                           |             | <del></del> |             |             |
| ENDRIN ALDEHYDE                  |             |             |             |             |
| ENDRIN KETONE                    |             |             |             |             |
| GAMMA-BHC (LINDANE)              |             | <del></del> |             |             |
| GAMMA-CHLORDANE                  |             |             |             |             |

# Block F Soil Remedial Action Plan Appendix

| ~ |  |
|---|--|
|   |  |
|   |  |

| LOCATION                       | SB-626C     | SB-626C     | SB-626D     | SB-626D     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-626C-1 | F-SB-626C-3 | F-SB-626D-1 | F-SB-626D-3 |
| SAMPLE DATE                    | 11/11/2009  | 11/11/2009  | 11/11/2009  | 11/11/2009  |
| HEPTACHLOR                     |             |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |             |
| METHOXYCHLOR                   |             |             |             |             |
| TOTAL AROCLOR                  |             |             |             |             |
| TOTAL DDT POS                  |             |             |             |             |
| TOXAPHENE                      |             |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |             |
| TPH (C09-C36)                  |             |             |             |             |
|                                |             |             |             |             |

| SOIL                         |                 |                   |                   |             |
|------------------------------|-----------------|-------------------|-------------------|-------------|
| LOCATION                     | SB-626D         | SB-627            | SB-627            | SB-628      |
| SAMPLE ID                    | F-SB-626D-3-D   | F-SB-627-1        | F-SB-627-2        | F-SB-628-10 |
| SAMPLE DATE                  | 11/11/2009      | 9/22/2009         | 9/22/2009         | 9/18/2009   |
| METALS (MG/KG)               | •               |                   |                   |             |
| ANTIMONY                     |                 |                   |                   |             |
| ARSENIC                      |                 |                   |                   |             |
| BARIUM                       |                 |                   |                   |             |
| BERYLLIUM                    |                 |                   |                   |             |
| CADMIUM                      |                 |                   |                   |             |
| CHROMIUM                     |                 |                   |                   |             |
| COBALT                       |                 |                   |                   |             |
| COPPER                       |                 |                   |                   |             |
| LEAD                         |                 |                   |                   |             |
| MERCURY                      | 0.72 [MDL=0.02] | 0.31 L [MDL=0.02] | 0.38 L [MDL=0.02] |             |
| MOLYBDENUM                   |                 |                   |                   |             |
| NICKEL                       |                 |                   |                   |             |
| SELENIUM                     |                 |                   |                   |             |
| SILVER                       |                 |                   |                   |             |
| THALLIUM                     |                 |                   |                   |             |
| VANADIUM                     |                 |                   |                   |             |
| ZINC                         |                 |                   |                   |             |
| MISCELLANEOUS PARAMETERS     |                 |                   |                   |             |
| PERCENT SOLIDS (%)           |                 |                   |                   |             |
| TOTAL SOLIDS (%)             |                 |                   |                   |             |
| HEXAVALENT CHROMIUM (MG/KG)  |                 |                   |                   |             |
| TOTAL ORGANIC CARBON (MG/KG) |                 |                   |                   |             |
| PH (S.U.)                    |                 |                   |                   |             |
| MERCURY (METHYL) (UG/KG)     |                 |                   |                   |             |
| SEMIVOLATILES (UG/KG)        |                 | •                 |                   |             |
| 1,1-BIPHENYL                 |                 |                   |                   |             |
| 1,2,4-TRICHLOROBENZENE       |                 |                   |                   |             |
| 1,2-DICHLOROBENZENE          |                 |                   |                   |             |
| 1,3-DICHLOROBENZENE          |                 |                   |                   |             |
| 1,4-DICHLOROBENZENE          |                 |                   |                   |             |
| 1,4-DIOXANE                  |                 |                   |                   |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                 |                   |                   |             |
| 2,4,5-TRICHLOROPHENOL        |                 |                   |                   |             |
| 2,4,6-TRICHLOROPHENOL        |                 |                   |                   |             |
| 2,4-DICHLOROPHENOL           |                 |                   |                   |             |
| 2,4-DIMETHYLPHENOL           |                 |                   |                   |             |
| 2,4-DINITROPHENOL            |                 |                   |                   |             |

| LOCATION                    | SB-626D       | SB-627     | SB-627     | SB-628      |
|-----------------------------|---------------|------------|------------|-------------|
| SAMPLE ID                   | F-SB-626D-3-D | F-SB-627-1 | F-SB-627-2 | F-SB-628-10 |
| SAMPLE DATE                 | 11/11/2009    | 9/22/2009  | 9/22/2009  | 9/18/2009   |
| 2,4-DINITROTOLUENE          |               |            |            |             |
| 2,6-DINITROTOLUENE          |               |            |            |             |
| 2-CHLORONAPHTHALENE         |               |            |            |             |
| 2-CHLOROPHENOL              |               |            |            |             |
| 2-METHYLPHENOL              |               |            |            |             |
| 2-NITROANILINE              |               |            |            |             |
| 2-NITROPHENOL               |               |            |            |             |
| 3&4-METHYLPHENOL            |               |            |            |             |
| 3,3'-DICHLOROBENZIDINE      |               |            |            |             |
| 3-NITROANILINE              |               |            |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |               |            |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |               |            |            |             |
| 4-CHLORO-3-METHYLPHENOL     |               |            |            |             |
| 4-CHLOROANILINE             |               |            |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |               |            |            |             |
| 4-NITROANILINE              |               |            |            |             |
| 4-NITROPHENOL               |               |            |            |             |
| ACETOPHENONE                |               |            |            |             |
| ANILINE                     |               |            |            |             |
| ATRAZINE                    |               |            |            |             |
| AZOBENZENE                  |               |            |            |             |
| BENZIDINE                   |               |            |            |             |
| BENZOIC ACID                |               |            |            |             |
| BENZYL ALCOHOL              |               |            |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |               |            |            |             |
| BIS(2-CHLOROETHYL)ETHER     |               |            |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |            |            |             |
| BUTYL BENZYL PHTHALATE      |               |            |            |             |
| CAPROLACTAM                 |               |            |            |             |
| CARBAZOLE                   |               |            |            |             |
| DIBENZOFURAN                |               |            |            |             |
| DIETHYL PHTHALATE           |               |            |            |             |
| DIMETHYL PHTHALATE          |               |            |            |             |
| DI-N-BUTYL PHTHALATE        |               |            |            |             |
| DI-N-OCTYL PHTHALATE        |               |            |            |             |
| HEXACHLOROBENZENE           |               |            |            |             |
| HEXACHLOROBUTADIENE         |               |            |            |             |
| HEXACHLOROCYCLOPENTADIENE   |               |            |            |             |

| SB-626D       | SB-627                   | SB-627                             | SB-628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|--------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-SB-626D-3-D | F-SB-627-1               | F-SB-627-2                         | F-SB-628-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/11/2009    | 9/22/2009                | 9/22/2009                          | 9/18/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | F-SB-626D-3-D 11/11/2009 | F-SB-626D-3-D 11/11/2009 9/22/2009 | F-SB-626D-3-D 11/11/2009  F-SB-627-1 9/22/2009  F-SB-627-1 9/22/2009  F-SB-627-2 F-SB-62 |

February 2013 Page B-262

| LOCATION                | SB-626D       | SB-627     | SB-627     | SB-628      |
|-------------------------|---------------|------------|------------|-------------|
| SAMPLE ID               | F-SB-626D-3-D | F-SB-627-1 | F-SB-627-2 | F-SB-628-10 |
| SAMPLE DATE             | 11/11/2009    | 9/22/2009  | 9/22/2009  | 9/18/2009   |
| 2-HEXANONE              |               |            |            |             |
| 4-CHLOROTOLUENE         |               |            |            |             |
| 4-ISOPROPYLTOLUENE      |               |            |            |             |
| 4-METHYL-2-PENTANONE    |               |            |            |             |
| ACETONE                 |               |            |            |             |
| BENZENE                 |               |            |            |             |
| BROMOBENZENE            |               |            |            |             |
| BROMOCHLOROMETHANE      |               |            |            |             |
| BROMODICHLOROMETHANE    |               |            |            |             |
| BROMOFORM               |               |            |            |             |
| BROMOMETHANE            |               |            |            |             |
| CARBON DISULFIDE        |               |            |            |             |
| CARBON TETRACHLORIDE    |               |            |            |             |
| CHLOROBENZENE           |               |            |            |             |
| CHLORODIBROMOMETHANE    |               |            |            |             |
| CHLOROETHANE            |               |            |            |             |
| CHLOROFORM              |               |            |            |             |
| CHLOROMETHANE           |               |            |            |             |
| CIS-1,2-DICHLOROETHENE  |               |            |            |             |
| CIS-1,3-DICHLOROPROPENE |               |            |            |             |
| DIBROMOMETHANE          |               |            |            |             |
| DICHLORODIFLUOROMETHANE |               |            |            |             |
| DIISOPROPYL ETHER       |               |            |            |             |
| ETHYL TERT-BUTYL ETHER  |               |            |            |             |
| ETHYLBENZENE            |               |            |            |             |
| FLUORODICHLOROMETHANE   |               |            |            |             |
| HEXACHLOROBUTADIENE     |               |            |            |             |
| ISOPROPYLBENZENE        |               |            |            |             |
| M+P-XYLENES             |               |            |            |             |
| METHYL TERT-BUTYL ETHER |               |            |            |             |
| METHYLENE CHLORIDE      |               |            |            |             |
| NAPHTHALENE             |               |            |            |             |
| N-BUTYLBENZENE          |               |            |            |             |
| N-PROPYLBENZENE         |               |            |            |             |
| O-XYLENE                |               |            |            |             |
| SEC-BUTYLBENZENE        |               |            |            |             |
| STYRENE                 |               |            |            |             |
| TERT-AMYL METHYL ETHER  |               |            |            |             |

| LOCATION                  | SB-626D       | SB-627     | SB-627     | SB-628      |
|---------------------------|---------------|------------|------------|-------------|
| SAMPLE ID                 | F-SB-626D-3-D | F-SB-627-1 | F-SB-627-2 | F-SB-628-10 |
| SAMPLE DATE               | 11/11/2009    | 9/22/2009  | 9/22/2009  | 9/18/2009   |
| TERT-BUTYLBENZENE         |               |            |            |             |
| TERTIARY-BUTYL ALCOHOL    |               |            |            |             |
| TETRACHLOROETHENE         |               |            |            |             |
| TOLUENE                   |               |            |            |             |
| TOTAL 1,2-DICHLOROETHENE  |               |            |            |             |
| TOTAL XYLENES             |               |            |            |             |
| TRANS-1,2-DICHLOROETHENE  |               |            |            |             |
| TRANS-1,3-DICHLOROPROPENE |               |            |            |             |
| TRICHLOROETHENE           |               |            |            |             |
| TRICHLOROFLUOROMETHANE    |               |            |            |             |
| VINYL ACETATE             |               |            |            |             |
| VINYL CHLORIDE            |               |            |            |             |
|                           |               |            |            |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              | • |      |                  |
|----------------------------------|---|------|------------------|
| 1-METHYLNAPHTHALENE              |   | <br> |                  |
| 2-METHYLNAPHTHALENE              |   | <br> |                  |
| ACENAPHTHENE                     |   | <br> |                  |
| ACENAPHTHYLENE                   |   | <br> |                  |
| ANTHRACENE                       |   | <br> |                  |
| BAP EQUIVALENT-HALFND            |   | <br> | 1.6 U [MDL=1.6]  |
| BAP EQUIVALENT-POS               |   | <br> | 1.6 U [MDL=1.6]  |
| BAP EQUIVALENT-UCL               |   | <br> |                  |
| BENZO(A)ANTHRACENE               |   | <br> | 1.20 U [MDL=1.2] |
| BENZO(A)PYRENE                   |   | <br> | 1.60 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE             |   | <br> | 1.50 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE             |   | <br> |                  |
| BENZO(K)FLUORANTHENE             |   | <br> | 2.10 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |                  |
| C1-FLUORANTHENES/PYRENES         |   | <br> |                  |
| C1-FLUORENES                     |   | <br> |                  |
| C1-PHENANTHRENES/ANTHRACENES     |   | <br> |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |                  |
| C2-FLUORENES                     |   | <br> |                  |
| C2-NAPHTHALENES                  |   | <br> |                  |
| C2-PHENANTHRENES/ANTHRACENES     |   | <br> |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |   | <br> |                  |
| C3-FLUORENES                     |   | <br> |                  |
| C3-NAPHTHALENES                  |   | <br> |                  |
|                                  |   |      |                  |

| LOCATION                         | SB-626D       | SB-627     | SB-627     | SB-628           |
|----------------------------------|---------------|------------|------------|------------------|
| SAMPLE ID                        | F-SB-626D-3-D | F-SB-627-1 | F-SB-627-2 | F-SB-628-10      |
| SAMPLE DATE                      | 11/11/2009    | 9/22/2009  | 9/22/2009  | 9/18/2009        |
| C3-PHENANTHRENES/ANTHRACENES     |               |            |            |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |               |            |            |                  |
| C4-NAPHTHALENES                  |               |            |            |                  |
| C4-PHENANTHRENES/ANTHRACENES     |               |            |            |                  |
| CHRYSENE                         |               |            |            | 1.10 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           |               |            |            | 1.60 U [MDL=1.6] |
| FLUORANTHENE                     |               |            |            |                  |
| FLUORENE                         |               |            |            |                  |
| INDENO(1,2,3-CD)PYRENE           |               |            |            | 1.90 U [MDL=1.9] |
| NAPHTHALENE                      |               |            |            |                  |
| PHENANTHRENE                     |               |            |            |                  |
| PYRENE                           |               |            |            |                  |
| TOTAL PAHS                       |               |            |            | 0 U [MDL=1.6]    |
| PESTICIDES/PCBS (UG/KG)          | •             |            |            |                  |
| 4,4'-DDD                         |               |            |            |                  |
| 4,4'-DDE                         |               |            |            |                  |
| 4,4'-DDT                         |               |            |            |                  |
| ALDRIN                           |               |            |            |                  |
| ALPHA-BHC                        |               |            |            |                  |
| ALPHA-CHLORDANE                  |               |            |            |                  |
| AROCLOR-1016                     |               |            |            |                  |
| AROCLOR-1221                     |               |            |            |                  |
| AROCLOR-1232                     |               |            |            |                  |
| AROCLOR-1242                     |               |            |            |                  |
| AROCLOR-1248                     |               |            |            |                  |
| AROCLOR-1254                     |               |            |            |                  |
| AROCLOR-1260                     |               |            |            |                  |
| BETA-BHC                         |               |            |            |                  |
| DELTA-BHC                        |               |            |            |                  |
| DIELDRIN                         |               |            |            |                  |
| ENDOSULFAN I                     |               |            |            |                  |
| ENDOSULFAN II                    |               |            |            |                  |
| ENDOSULFAN SULFATE               |               |            |            |                  |
| ENDRIN                           |               |            |            |                  |
| ENDRIN ALDEHYDE                  |               |            |            |                  |
| ENDRIN KETONE                    |               |            |            |                  |
| GAMMA-BHC (LINDANE)              |               |            |            |                  |
| GAMMA-CHLORDANE                  |               |            |            |                  |

## Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                       | SB-626D       | SB-627     | SB-627     | SB-628      |
|--------------------------------|---------------|------------|------------|-------------|
| SAMPLE ID                      | F-SB-626D-3-D | F-SB-627-1 | F-SB-627-2 | F-SB-628-10 |
| SAMPLE DATE                    | 11/11/2009    | 9/22/2009  | 9/22/2009  | 9/18/2009   |
| HEPTACHLOR                     |               |            |            |             |
| HEPTACHLOR EPOXIDE             |               |            |            |             |
| METHOXYCHLOR                   |               |            |            |             |
| TOTAL AROCLOR                  |               |            |            |             |
| TOTAL DDT POS                  |               |            |            |             |
| TOXAPHENE                      | 1             |            |            |             |
| PETROLEUM HYDROCARBONS (UG/KG) |               |            |            |             |
| DIESEL RANGE ORGANICS          |               |            |            |             |
| GASOLINE RANGE ORGANICS        |               |            |            |             |
| TPH (C09-C36)                  |               |            |            |             |
|                                |               |            |            |             |

| LOCATION                     | SB-628      | SB-629      | SB-629      | SB-630      |
|------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                    | F-SB-628-11 | F-SB-629-10 | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| METALS (MG/KG)               | •           | •           |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |

| LOCATION                    | SB-628      | SB-629      | SB-629      | SB-630      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-628-11 | F-SB-629-10 | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-628      | SB-629       | SB-629      | SB-630      |
|--------------------------------|-------------|--------------|-------------|-------------|
| SAMPLE ID                      | F-SB-628-11 | F-SB-629-10  | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009    | 9/18/2009   | 9/18/2009   |
| HEXACHLOROETHANE               |             |              |             |             |
| ISOPHORONE                     |             |              |             |             |
| NITROBENZENE                   |             | <del>-</del> |             |             |
| N-NITROSODIMETHYLAMINE         |             |              |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |              |             |             |
| N-NITROSODIPHENYLAMINE         |             |              |             |             |
| PENTACHLOROPHENOL              |             |              |             |             |
| PHENOL                         |             |              |             |             |
| PYRIDINE                       |             |              |             |             |
| VOLATILES (UG/KG)              | 1           |              |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |              |             |             |
| 1,1,1-TRICHLOROETHANE          |             |              |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |              |             |             |
| 1,1,2-TRICHLOROETHANE          |             |              |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |              |             |             |
| 1,1-DICHLOROETHANE             |             |              |             |             |
| 1,1-DICHLOROETHENE             |             |              |             |             |
| 1,1-DICHLOROPROPENE            |             |              |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |              |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |              |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |              |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |              |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |              |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |              |             |             |
| 1,2-DIBROMOETHANE              |             |              |             |             |
| 1,2-DICHLOROBENZENE            |             |              |             |             |
| 1,2-DICHLOROETHANE             |             |              |             |             |
| 1,2-DICHLOROPROPANE            |             |              |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |              |             |             |
| 1,3-DICHLOROBENZENE            |             |              |             |             |
| 1,3-DICHLOROPROPANE            |             |              |             |             |
| 1,3-DICHLOROPROPENE            |             |              |             |             |
| 1,4-DICHLOROBENZENE            |             |              |             |             |
| 1,4-DIOXANE                    |             |              |             |             |
| 2,2-DICHLOROPROPANE            |             |              |             |             |
| 2-BUTANONE                     |             |              |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |              |             |             |
| 2-CHLOROTOLUENE                |             |              |             |             |

| _ | _ |   |  |
|---|---|---|--|
| • | 7 | • |  |
|   |   |   |  |

| LOCATION                | SB-628      | SB-629      | SB-629      | SB-630      |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-628-11 | F-SB-629-10 | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE             | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-628      | SB-629      | SB-629      | SB-630      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-628-11 | F-SB-629-10 | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE               | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                  |                  |                  |                  |
|----------------------------------|------------------|------------------|------------------|------------------|
| 2-METHYLNAPHTHALENE              |                  |                  |                  |                  |
| ACENAPHTHENE                     |                  |                  |                  |                  |
| ACENAPHTHYLENE                   |                  |                  |                  |                  |
| ANTHRACENE                       |                  |                  |                  |                  |
| BAP EQUIVALENT-HALFND            | 1.7 U [MDL=1.7]  | 1.6 U [MDL=1.6]  | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-POS               | 1.7 U [MDL=1.7]  | 1.6 U [MDL=1.6]  | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  |
| BAP EQUIVALENT-UCL               |                  |                  |                  |                  |
| BENZO(A)ANTHRACENE               | 1.20 U [MDL=1.2] | 1.20 U [MDL=1.2] | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 1.70 U [MDL=1.7] | 1.60 U [MDL=1.6] | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                  |                  |                  |                  |
| BENZO(K)FLUORANTHENE             | 2.20 U [MDL=2.2] | 2.10 U [MDL=2.1] | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                  |                  |
| C1-FLUORENES                     |                  |                  |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                  |
| C2-FLUORENES                     |                  |                  |                  |                  |
| C2-NAPHTHALENES                  |                  |                  |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                  |
| C3-FLUORENES                     |                  |                  |                  |                  |
| C3-NAPHTHALENES                  |                  |                  |                  |                  |

| LOCATION                         | SB-628           | SB-629           | SB-629           | SB-630           |
|----------------------------------|------------------|------------------|------------------|------------------|
| SAMPLE ID                        | F-SB-628-11      | F-SB-629-10      | F-SB-629-11      | F-SB-630-10      |
| SAMPLE DATE                      | 9/18/2009        | 9/18/2009        | 9/18/2009        | 9/18/2009        |
| C3-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                  |
| C4-NAPHTHALENES                  |                  |                  |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                  |
| CHRYSENE                         | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.70 U [MDL=1.7] | 1.60 U [MDL=1.6] | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] |
| FLUORANTHENE                     |                  |                  |                  |                  |
| FLUORENE                         |                  |                  |                  |                  |
| INDENO(1,2,3-CD)PYRENE           | 1.90 U [MDL=1.9] | 1.80 U [MDL=1.8] | 1.80 U [MDL=1.8] | 1.80 U [MDL=1.8] |
| NAPHTHALENE                      |                  |                  |                  |                  |
| PHENANTHRENE                     |                  |                  |                  |                  |
| PYRENE                           |                  |                  |                  |                  |
| TOTAL PAHS                       | 0 U [MDL=1.7]    | 0 U [MDL=1.6]    | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    |
| PESTICIDES/PCBS (UG/KG)          |                  |                  |                  |                  |
| 4,4'-DDD                         |                  |                  |                  |                  |
| 4,4'-DDE                         |                  |                  |                  |                  |
| 4,4'-DDT                         |                  |                  |                  |                  |
| ALDRIN                           |                  |                  |                  |                  |
| ALPHA-BHC                        |                  |                  |                  |                  |
| ALPHA-CHLORDANE                  |                  |                  |                  |                  |
| AROCLOR-1016                     |                  |                  |                  |                  |
| AROCLOR-1221                     |                  |                  |                  |                  |
| AROCLOR-1232                     |                  |                  |                  |                  |
| AROCLOR-1242                     |                  |                  |                  |                  |
| AROCLOR-1248                     |                  |                  |                  |                  |
| AROCLOR-1254                     |                  |                  |                  |                  |
| AROCLOR-1260                     |                  |                  |                  |                  |
| BETA-BHC                         |                  |                  |                  |                  |
| DELTA-BHC                        |                  |                  |                  |                  |
| DIELDRIN                         |                  |                  |                  |                  |
| ENDOSULFAN I                     |                  |                  |                  |                  |
| ENDOSULFAN II                    |                  |                  |                  |                  |
| ENDOSULFAN SULFATE               |                  |                  |                  |                  |
| ENDRIN                           |                  |                  |                  |                  |
| ENDRIN ALDEHYDE                  |                  |                  |                  |                  |
| ENDRIN KETONE                    |                  |                  |                  |                  |
| GAMMA-BHC (LINDANE)              |                  |                  |                  |                  |
| GAMMA-CHLORDANE                  |                  |                  |                  |                  |

## Block F Soil Remedial Action Plan Appendix

| 0011 |  |
|------|--|
|      |  |
|      |  |
|      |  |

| LOCATION                       | SB-628      | SB-629      | SB-629      | SB-630      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-628-11 | F-SB-629-10 | F-SB-629-11 | F-SB-630-10 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/18/2009   |
| HEPTACHLOR                     |             |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |             |
| METHOXYCHLOR                   |             |             |             |             |
| TOTAL AROCLOR                  |             |             |             |             |
| TOTAL DDT POS                  |             |             |             |             |
| TOXAPHENE                      |             |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |             |
| TPH (C09-C36)                  |             |             |             |             |
|                                |             |             |             |             |

| LOCATION                     | SB-630      | SB-631      | SB-631      | SB-632      |
|------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                    | F-SB-630-11 | F-SB-631-10 | F-SB-631-11 | F-SB-632-10 |
| SAMPLE DATE                  | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/22/2009   |
| METALS (MG/KG)               |             |             | •           | •           |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |             |
| PERCENT SOLIDS (%)           | <del></del> |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) | <del></del> |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |

| _ | _ |   |  |
|---|---|---|--|
| • | 7 | • |  |
|   |   |   |  |

| LOCATION                    | SB-630      | SB-631      | SB-631      | SB-632      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-630-11 | F-SB-631-10 | F-SB-631-11 | F-SB-632-10 |
| SAMPLE DATE                 | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/22/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| LOCATION                       | SB-630      | SB-631      | SB-631      | SB-632      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-630-11 | F-SB-631-10 | F-SB-631-11 | F-SB-632-10 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/22/2009   |
| HEXACHLOROETHANE               |             |             |             |             |
| ISOPHORONE                     |             |             |             |             |
| NITROBENZENE                   |             |             |             |             |
| N-NITROSODIMETHYLAMINE         |             |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             | •           | •           |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |

| SB-630      | SB-631                | SB-631                | SB-632                                              |
|-------------|-----------------------|-----------------------|-----------------------------------------------------|
| F-SB-630-11 | F-SB-631-10           | F-SB-631-11           | F-SB-632-10                                         |
| 9/18/2009   | 9/18/2009             | 9/18/2009             | 9/22/2009                                           |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             |                       |                       |                                                     |
|             | F-SB-630-11 9/18/2009 | F-SB-630-11 9/18/2009 | F-SB-630-11 9/18/2009 9/18/2009 9/18/2009 9/18/2009 |

| LOCATION                  | SB-630      | SB-631      | SB-631      | SB-632      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-630-11 | F-SB-631-10 | F-SB-631-11 | F-SB-632-10 |
| SAMPLE DATE               | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/22/2009   |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| •                                |                  |                  |                  |                |
|----------------------------------|------------------|------------------|------------------|----------------|
| 1-METHYLNAPHTHALENE              |                  |                  |                  |                |
| 2-METHYLNAPHTHALENE              |                  |                  |                  |                |
| ACENAPHTHENE                     |                  |                  |                  |                |
| ACENAPHTHYLENE                   |                  |                  |                  |                |
| ANTHRACENE                       |                  |                  |                  |                |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 64.8 [MDL=1.6] |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5]  | 64 [MDL=1.6]   |
| BAP EQUIVALENT-UCL               |                  |                  |                  |                |
| BENZO(A)ANTHRACENE               | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 79 [MDL=1.2]   |
| BENZO(A)PYRENE                   | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 40 [MDL=1.6]   |
| BENZO(B)FLUORANTHENE             | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] | 1.40 U [MDL=1.4] | 120 [MDL=1.5]  |
| BENZO(G,H,I)PERYLENE             |                  |                  |                  |                |
| BENZO(K)FLUORANTHENE             | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   | 2.00 U [MDL=2]   | 59 [MDL=2.1]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                  |                |
| C1-FLUORENES                     |                  |                  |                  |                |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                |
| C2-FLUORENES                     |                  |                  |                  |                |
| C2-NAPHTHALENES                  |                  |                  |                  |                |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                |
| C3-FLUORENES                     |                  |                  |                  |                |
| C3-NAPHTHALENES                  |                  |                  |                  |                |
|                                  |                  |                  |                  |                |

| LOCATION                         | SB-630           | SB-631           | SB-631           | SB-632          |
|----------------------------------|------------------|------------------|------------------|-----------------|
| SAMPLE ID                        | F-SB-630-11      | F-SB-631-10      | F-SB-631-11      | F-SB-632-10     |
| SAMPLE DATE                      | 9/18/2009        | 9/18/2009        | 9/18/2009        | 9/22/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                  |                 |
| C4-NAPHTHALENES                  |                  |                  |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                  |                  |                  |                 |
| CHRYSENE                         | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 1.10 U [MDL=1.1] | 110 [MDL=1.1]   |
| DIBENZO(A,H)ANTHRACENE           | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 1.50 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                  |                  |                  |                 |
| FLUORENE                         |                  |                  |                  |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.80 U [MDL=1.8] | 1.80 U [MDL=1.8] | 1.80 U [MDL=1.8] | 34 [MDL=1.9]    |
| NAPHTHALENE                      |                  |                  |                  |                 |
| PHENANTHRENE                     |                  |                  |                  |                 |
| PYRENE                           |                  |                  |                  |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    | 0 U [MDL=1.5]    | 442 [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                  |                  |                  |                 |
| 4,4'-DDD                         |                  |                  |                  |                 |
| 4,4'-DDE                         |                  |                  |                  |                 |
| 4,4'-DDT                         |                  |                  |                  |                 |
| ALDRIN                           |                  |                  |                  |                 |
| ALPHA-BHC                        |                  |                  |                  |                 |
| ALPHA-CHLORDANE                  |                  |                  |                  |                 |
| AROCLOR-1016                     |                  |                  |                  |                 |
| AROCLOR-1221                     |                  |                  |                  |                 |
| AROCLOR-1232                     |                  |                  |                  |                 |
| AROCLOR-1242                     |                  |                  |                  |                 |
| AROCLOR-1248                     |                  |                  |                  |                 |
| AROCLOR-1254                     |                  |                  |                  |                 |
| AROCLOR-1260                     |                  |                  |                  |                 |
| BETA-BHC                         |                  |                  |                  |                 |
| DELTA-BHC                        |                  |                  |                  |                 |
| DIELDRIN                         |                  |                  |                  |                 |
| ENDOSULFAN I                     |                  |                  |                  |                 |
| ENDOSULFAN II                    |                  |                  |                  |                 |
| ENDOSULFAN SULFATE               |                  |                  |                  |                 |
| ENDRIN                           |                  |                  |                  |                 |
| ENDRIN ALDEHYDE                  |                  |                  |                  |                 |
| ENDRIN KETONE                    |                  |                  |                  |                 |
| GAMMA-BHC (LINDANE)              |                  |                  |                  |                 |
| GAMMA-CHLORDANE                  |                  |                  |                  |                 |

## Block F Soil Remedial Action Plan Appendix

| S | O | ı | L |
|---|---|---|---|
|   |   |   |   |

| LOCATION                       | SB-630      | SB-631      | SB-631      | SB-632      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-630-11 | F-SB-631-10 | F-SB-631-11 | F-SB-632-10 |
| SAMPLE DATE                    | 9/18/2009   | 9/18/2009   | 9/18/2009   | 9/22/2009   |
| HEPTACHLOR                     |             |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |             |
| METHOXYCHLOR                   |             |             |             |             |
| TOTAL AROCLOR                  |             |             |             |             |
| TOTAL DDT POS                  |             |             |             |             |
| TOXAPHENE                      |             |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |             |
| TPH (C09-C36)                  |             |             |             |             |
|                                |             |             |             |             |

| JOIL                         |            |             | _          |             |
|------------------------------|------------|-------------|------------|-------------|
| LOCATION                     | SB-632     | SB-633      | SB-633     | SB-634      |
| SAMPLE ID                    | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE                  | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| METALS (MG/KG)               |            |             |            |             |
| ANTIMONY                     |            |             |            |             |
| ARSENIC                      |            |             |            |             |
| BARIUM                       |            |             |            |             |
| BERYLLIUM                    |            |             |            |             |
| CADMIUM                      |            |             |            |             |
| CHROMIUM                     |            |             |            |             |
| COBALT                       |            |             |            |             |
| COPPER                       |            |             |            |             |
| LEAD                         |            |             |            |             |
| MERCURY                      |            |             |            |             |
| MOLYBDENUM                   |            |             |            |             |
| NICKEL                       |            |             |            |             |
| SELENIUM                     |            |             |            |             |
| SILVER                       |            |             |            |             |
| THALLIUM                     |            |             |            |             |
| VANADIUM                     |            |             |            |             |
| ZINC                         |            |             |            |             |
| MISCELLANEOUS PARAMETERS     |            | -           |            | •           |
| PERCENT SOLIDS (%)           |            |             |            |             |
| TOTAL SOLIDS (%)             |            |             |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |             |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |             |            |             |
| PH (S.U.)                    |            |             |            |             |
| MERCURY (METHYL) (UG/KG)     |            |             |            |             |
| SEMIVOLATILES (UG/KG)        |            | -           |            | •           |
| 1,1-BIPHENYL                 |            |             |            |             |
| 1,2,4-TRICHLOROBENZENE       |            |             |            |             |
| 1,2-DICHLOROBENZENE          |            |             |            |             |
| 1,3-DICHLOROBENZENE          |            |             |            |             |
| 1,4-DICHLOROBENZENE          |            |             |            |             |
| 1,4-DIOXANE                  |            |             |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |             |            |             |
| 2,4,5-TRICHLOROPHENOL        |            |             |            |             |
| 2,4,6-TRICHLOROPHENOL        |            |             |            |             |
| 2,4-DICHLOROPHENOL           |            |             |            |             |
| 2,4-DIMETHYLPHENOL           |            |             |            |             |
| 2,4-DINITROPHENOL            |            |             |            |             |
| ·                            | •          | •           | •          | •           |

| LOCATION                    | SB-632     | SB-633      | SB-633     | SB-634      |
|-----------------------------|------------|-------------|------------|-------------|
| SAMPLE ID                   | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE                 | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| 2,4-DINITROTOLUENE          |            |             |            |             |
| 2,6-DINITROTOLUENE          |            |             |            |             |
| 2-CHLORONAPHTHALENE         |            |             |            |             |
| 2-CHLOROPHENOL              |            |             |            |             |
| 2-METHYLPHENOL              |            |             |            |             |
| 2-NITROANILINE              |            |             |            |             |
| 2-NITROPHENOL               |            |             |            |             |
| 3&4-METHYLPHENOL            |            |             |            |             |
| 3,3'-DICHLOROBENZIDINE      |            |             |            |             |
| 3-NITROANILINE              |            |             |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |             |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |             |            |             |
| 4-CHLORO-3-METHYLPHENOL     |            |             |            |             |
| 4-CHLOROANILINE             |            |             |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |             |            |             |
| 4-NITROANILINE              |            |             |            |             |
| 4-NITROPHENOL               |            |             |            |             |
| ACETOPHENONE                |            |             |            |             |
| ANILINE                     |            |             |            |             |
| ATRAZINE                    |            |             |            |             |
| AZOBENZENE                  |            |             |            |             |
| BENZIDINE                   |            |             |            |             |
| BENZOIC ACID                |            |             |            |             |
| BENZYL ALCOHOL              |            |             |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |             |            |             |
| BIS(2-CHLOROETHYL)ETHER     |            |             |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |             |            |             |
| BUTYL BENZYL PHTHALATE      |            |             |            |             |
| CAPROLACTAM                 |            |             |            |             |
| CARBAZOLE                   |            |             |            |             |
| DIBENZOFURAN                |            |             |            |             |
| DIETHYL PHTHALATE           |            |             |            |             |
| DIMETHYL PHTHALATE          |            |             |            |             |
| DI-N-BUTYL PHTHALATE        |            |             |            |             |
| DI-N-OCTYL PHTHALATE        |            |             |            |             |
| HEXACHLOROBENZENE           |            |             |            |             |
| HEXACHLOROBUTADIENE         |            |             |            |             |
| HEXACHLOROCYCLOPENTADIENE   |            |             |            |             |

| LOCATION                       | SB-632     | SB-633      | SB-633     | SB-634      |
|--------------------------------|------------|-------------|------------|-------------|
| SAMPLE ID                      | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE                    | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| HEXACHLOROETHANE               |            |             |            |             |
| ISOPHORONE                     |            |             |            |             |
| NITROBENZENE                   |            |             |            |             |
| N-NITROSODIMETHYLAMINE         |            |             |            |             |
| N-NITROSO-DI-N-PROPYLAMINE     |            |             |            |             |
| N-NITROSODIPHENYLAMINE         |            |             |            |             |
| PENTACHLOROPHENOL              |            |             |            |             |
| PHENOL                         |            |             |            |             |
| PYRIDINE                       |            |             |            |             |
| VOLATILES (UG/KG)              | L          |             |            |             |
| 1,1,1,2-TETRACHLOROETHANE      |            |             |            |             |
| 1,1,1-TRICHLOROETHANE          |            |             |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |             |            |             |
| 1,1,2-TRICHLOROETHANE          |            |             |            | <del></del> |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |             |            |             |
| 1,1-DICHLOROETHANE             |            |             |            | <del></del> |
| 1,1-DICHLOROETHENE             |            |             |            | <del></del> |
| 1,1-DICHLOROPROPENE            |            |             |            |             |
| 1,2,3-TRICHLOROBENZENE         |            |             |            |             |
| 1,2,3-TRICHLOROPROPANE         |            |             |            |             |
| 1,2,3-TRIMETHYLBENZENE         |            |             |            |             |
| 1,2,4-TRICHLOROBENZENE         |            |             |            |             |
| 1,2,4-TRIMETHYLBENZENE         |            |             |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |             |            |             |
| 1,2-DIBROMOETHANE              |            |             |            |             |
| 1,2-DICHLOROBENZENE            |            |             |            |             |
| 1,2-DICHLOROETHANE             |            |             |            |             |
| 1,2-DICHLOROPROPANE            |            |             |            |             |
| 1,3,5-TRIMETHYLBENZENE         |            |             |            |             |
| 1,3-DICHLOROBENZENE            |            |             |            |             |
| 1,3-DICHLOROPROPANE            |            |             |            | <del></del> |
| 1,3-DICHLOROPROPENE            |            |             |            |             |
| 1,4-DICHLOROBENZENE            |            |             |            | -           |
| 1,4-DIOXANE                    |            |             |            | -           |
| 2,2-DICHLOROPROPANE            |            |             |            |             |
| 2-BUTANONE                     |            |             |            |             |
| 2-CHLOROETHYL VINYL ETHER      |            |             |            |             |
| 2-CHLOROTOLUENE                |            |             |            |             |

| LOCATION                | SB-632     | SB-633      | SB-633     | SB-634      |
|-------------------------|------------|-------------|------------|-------------|
| SAMPLE ID               | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE             | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| 2-HEXANONE              |            |             |            |             |
| 4-CHLOROTOLUENE         |            |             |            |             |
| 4-ISOPROPYLTOLUENE      |            |             |            |             |
| 4-METHYL-2-PENTANONE    |            |             |            |             |
| ACETONE                 |            |             |            |             |
| BENZENE                 |            |             |            |             |
| BROMOBENZENE            |            |             |            |             |
| BROMOCHLOROMETHANE      |            |             |            |             |
| BROMODICHLOROMETHANE    |            |             |            |             |
| BROMOFORM               |            |             |            |             |
| BROMOMETHANE            |            |             |            |             |
| CARBON DISULFIDE        |            |             |            |             |
| CARBON TETRACHLORIDE    |            |             |            |             |
| CHLOROBENZENE           |            |             |            |             |
| CHLORODIBROMOMETHANE    |            |             |            |             |
| CHLOROETHANE            |            |             |            |             |
| CHLOROFORM              |            |             |            |             |
| CHLOROMETHANE           |            |             |            |             |
| CIS-1,2-DICHLOROETHENE  |            |             |            |             |
| CIS-1,3-DICHLOROPROPENE |            |             |            |             |
| DIBROMOMETHANE          |            |             |            |             |
| DICHLORODIFLUOROMETHANE |            |             |            |             |
| DIISOPROPYL ETHER       |            |             |            |             |
| ETHYL TERT-BUTYL ETHER  |            |             |            |             |
| ETHYLBENZENE            |            |             |            |             |
| FLUORODICHLOROMETHANE   |            |             |            |             |
| HEXACHLOROBUTADIENE     |            |             |            |             |
| ISOPROPYLBENZENE        |            |             |            |             |
| M+P-XYLENES             |            |             |            |             |
| METHYL TERT-BUTYL ETHER |            |             |            |             |
| METHYLENE CHLORIDE      |            |             |            |             |
| NAPHTHALENE             |            |             |            |             |
| N-BUTYLBENZENE          |            |             |            |             |
| N-PROPYLBENZENE         |            |             |            |             |
| O-XYLENE                |            |             |            |             |
| SEC-BUTYLBENZENE        |            |             |            |             |
| STYRENE                 |            |             |            |             |
| TERT-AMYL METHYL ETHER  |            |             |            |             |

| LOCATION                  | SB-632     | SB-633      | SB-633     | SB-634      |
|---------------------------|------------|-------------|------------|-------------|
| SAMPLE ID                 | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE               | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| TERT-BUTYLBENZENE         |            |             |            |             |
| TERTIARY-BUTYL ALCOHOL    |            |             |            |             |
| TETRACHLOROETHENE         |            |             |            |             |
| TOLUENE                   |            |             |            |             |
| TOTAL 1,2-DICHLOROETHENE  |            |             |            |             |
| TOTAL XYLENES             |            |             |            |             |
| TRANS-1,2-DICHLOROETHENE  |            |             |            |             |
| TRANS-1,3-DICHLOROPROPENE |            |             |            |             |
| TRICHLOROETHENE           |            |             |            |             |
| TRICHLOROFLUOROMETHANE    |            |             |            |             |
| VINYL ACETATE             |            |             |            |             |
| VINYL CHLORIDE            |            |             |            |             |
|                           |            |             |            |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| · ·                              |                   |                 |                 |                 |
|----------------------------------|-------------------|-----------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                   |                 |                 |                 |
| 2-METHYLNAPHTHALENE              |                   |                 |                 |                 |
| ACENAPHTHENE                     |                   |                 |                 |                 |
| ACENAPHTHYLENE                   |                   |                 |                 |                 |
| ANTHRACENE                       |                   |                 |                 |                 |
| BAP EQUIVALENT-HALFND            | 2.65555 [MDL=1.5] | 1.7 U [MDL=1.7] | 1.6 U [MDL=1.6] | 1.8 U [MDL=1.8] |
| BAP EQUIVALENT-POS               | 1 [MDL=1.5]       | 1.7 U [MDL=1.7] | 1.6 U [MDL=1.6] | 1.8 U [MDL=1.8] |
| BAP EQUIVALENT-UCL               |                   |                 |                 |                 |
| BENZO(A)ANTHRACENE               | 1.1 U [MDL=1.1]   | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] | 1.3 U [MDL=1.3] |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5]   | 1.7 U [MDL=1.7] | 1.6 U [MDL=1.6] | 1.8 U [MDL=1.8] |
| BENZO(B)FLUORANTHENE             | 10 [MDL=1.4]      | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] |
| BENZO(G,H,I)PERYLENE             |                   |                 |                 |                 |
| BENZO(K)FLUORANTHENE             | 2.0 U [MDL=2]     | 2.2 U [MDL=2.2] | 2.1 U [MDL=2.1] | 2.4 U [MDL=2.4] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                   |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                   |                 |                 |                 |
| C1-FLUORENES                     |                   |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                   |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                   |                 |                 |                 |
| C2-FLUORENES                     |                   |                 |                 |                 |
| C2-NAPHTHALENES                  |                   |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                   |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                   |                 |                 |                 |
| C3-FLUORENES                     |                   |                 |                 |                 |
| C3-NAPHTHALENES                  |                   |                 |                 |                 |
|                                  |                   |                 |                 |                 |

| LOCATION                         | SB-632          | SB-633          | SB-633          | SB-634          |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-632-9      | F-SB-633-10     | F-SB-633-9      | F-SB-634-10     |
| SAMPLE DATE                      | 9/22/2009       | 9/22/2009       | 9/22/2009       | 9/22/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] | 1.3 U [MDL=1.3] |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] | 1.6 U [MDL=1.6] | 1.8 U [MDL=1.8] |
| FLUORANTHENE                     |                 |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] | 2.1 U [MDL=2.1] |
| NAPHTHALENE                      |                 |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |                 |
| PYRENE                           |                 |                 |                 |                 |
| TOTAL PAHS                       | 10 [MDL=1.5]    | 0 U [MDL=1.7]   | 0 U [MDL=1.6]   | 0 U [MDL=1.8]   |
| PESTICIDES/PCBS (UG/KG)          |                 | -               |                 |                 |
| 4,4'-DDD                         |                 |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |                 |

## Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                       | SB-632     | SB-633      | SB-633     | SB-634      |
|--------------------------------|------------|-------------|------------|-------------|
| SAMPLE ID                      | F-SB-632-9 | F-SB-633-10 | F-SB-633-9 | F-SB-634-10 |
| SAMPLE DATE                    | 9/22/2009  | 9/22/2009   | 9/22/2009  | 9/22/2009   |
| HEPTACHLOR                     |            |             |            |             |
| HEPTACHLOR EPOXIDE             |            |             |            |             |
| METHOXYCHLOR                   |            |             |            |             |
| TOTAL AROCLOR                  |            |             |            |             |
| TOTAL DDT POS                  |            |             |            |             |
| TOXAPHENE                      |            |             |            |             |
| PETROLEUM HYDROCARBONS (UG/KG) |            |             |            |             |
| DIESEL RANGE ORGANICS          |            |             |            |             |
| GASOLINE RANGE ORGANICS        |            |             |            |             |
| TPH (C09-C36)                  |            |             |            |             |
|                                |            |             |            |             |

| JOIL                         |            |             |               |             |
|------------------------------|------------|-------------|---------------|-------------|
| LOCATION                     | SB-634     | SB-635      | SB-635        | SB-635      |
| SAMPLE ID                    | F-SB-634-9 | F-SB-635-10 | F-SB-635-10-D | F-SB-635-11 |
| SAMPLE DATE                  | 9/22/2009  | 9/22/2009   | 9/22/2009     | 9/22/2009   |
| METALS (MG/KG)               |            |             |               |             |
| ANTIMONY                     |            |             |               |             |
| ARSENIC                      |            |             |               |             |
| BARIUM                       |            |             |               |             |
| BERYLLIUM                    |            |             |               |             |
| CADMIUM                      |            |             |               |             |
| CHROMIUM                     |            |             |               |             |
| COBALT                       |            |             |               |             |
| COPPER                       |            |             |               |             |
| LEAD                         |            |             |               |             |
| MERCURY                      |            |             |               |             |
| MOLYBDENUM                   |            |             |               |             |
| NICKEL                       |            |             |               |             |
| SELENIUM                     |            |             |               |             |
| SILVER                       |            |             |               |             |
| THALLIUM                     |            |             |               |             |
| VANADIUM                     |            |             |               |             |
| ZINC                         |            |             |               |             |
| MISCELLANEOUS PARAMETERS     | •          | •           | •             | -           |
| PERCENT SOLIDS (%)           |            |             |               |             |
| TOTAL SOLIDS (%)             |            |             |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |             |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |             |               |             |
| PH (S.U.)                    |            |             |               |             |
| MERCURY (METHYL) (UG/KG)     |            |             |               |             |
| SEMIVOLATILES (UG/KG)        | •          | •           | •             | -           |
| 1,1-BIPHENYL                 |            |             |               |             |
| 1,2,4-TRICHLOROBENZENE       |            |             |               |             |
| 1,2-DICHLOROBENZENE          |            |             |               |             |
| 1,3-DICHLOROBENZENE          |            |             |               |             |
| 1,4-DICHLOROBENZENE          |            |             |               |             |
| 1,4-DIOXANE                  |            |             |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |             |               |             |
| 2,4,5-TRICHLOROPHENOL        |            |             |               |             |
| 2,4,6-TRICHLOROPHENOL        |            |             |               |             |
| 2,4-DICHLOROPHENOL           |            |             |               |             |
| 2,4-DIMETHYLPHENOL           |            |             |               |             |
| 2,4-DINITROPHENOL            |            |             |               |             |
|                              |            |             |               |             |

| SB-635<br>F-SB-635-10<br>9/22/2009 | SB-635<br>F-SB-635-10-D | SB-635<br>F-SB-635-11 |
|------------------------------------|-------------------------|-----------------------|
|                                    |                         | F-SB-635-11           |
| 9/22/2009                          | 0/00/0000               | •                     |
|                                    | 9/22/2009               | 9/22/2009             |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |
|                                    |                         |                       |

| SB-634     | SB-635               | SB-635               | SB-635                                   |
|------------|----------------------|----------------------|------------------------------------------|
| F-SB-634-9 | F-SB-635-10          | F-SB-635-10-D        | F-SB-635-11                              |
| 9/22/2009  | 9/22/2009            | 9/22/2009            | 9/22/2009                                |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            |                      |                      |                                          |
|            | F-SB-634-9 9/22/2009 | F-SB-634-9 9/22/2009 | F-SB-634-9 9/22/2009 9/22/2009 9/22/2009 |

February 2013 Page B-290

| LOCATION                | SB-634     | SB-635      | SB-635        | SB-635      |
|-------------------------|------------|-------------|---------------|-------------|
| SAMPLE ID               | F-SB-634-9 | F-SB-635-10 | F-SB-635-10-D | F-SB-635-11 |
| SAMPLE DATE             | 9/22/2009  | 9/22/2009   | 9/22/2009     | 9/22/2009   |
| 2-HEXANONE              |            |             |               |             |
| 4-CHLOROTOLUENE         |            |             |               |             |
| 4-ISOPROPYLTOLUENE      |            |             |               |             |
| 4-METHYL-2-PENTANONE    |            |             |               |             |
| ACETONE                 |            |             |               |             |
| BENZENE                 |            |             |               |             |
| BROMOBENZENE            |            |             |               |             |
| BROMOCHLOROMETHANE      |            |             |               |             |
| BROMODICHLOROMETHANE    |            |             |               |             |
| BROMOFORM               |            |             |               |             |
| BROMOMETHANE            |            |             |               |             |
| CARBON DISULFIDE        |            |             |               |             |
| CARBON TETRACHLORIDE    |            |             |               |             |
| CHLOROBENZENE           |            |             |               |             |
| CHLORODIBROMOMETHANE    |            |             |               |             |
| CHLOROETHANE            |            |             |               |             |
| CHLOROFORM              |            |             |               |             |
| CHLOROMETHANE           |            |             |               |             |
| CIS-1,2-DICHLOROETHENE  |            |             |               |             |
| CIS-1,3-DICHLOROPROPENE |            |             |               |             |
| DIBROMOMETHANE          |            |             |               |             |
| DICHLORODIFLUOROMETHANE |            |             |               |             |
| DIISOPROPYL ETHER       |            |             |               |             |
| ETHYL TERT-BUTYL ETHER  |            |             |               |             |
| ETHYLBENZENE            |            |             |               |             |
| FLUORODICHLOROMETHANE   |            |             |               |             |
| HEXACHLOROBUTADIENE     |            |             |               |             |
| ISOPROPYLBENZENE        |            |             |               |             |
| M+P-XYLENES             |            |             |               |             |
| METHYL TERT-BUTYL ETHER |            |             |               |             |
| METHYLENE CHLORIDE      |            |             |               |             |
| NAPHTHALENE             |            |             |               |             |
| N-BUTYLBENZENE          |            |             |               |             |
| N-PROPYLBENZENE         |            |             |               |             |
| O-XYLENE                |            |             |               |             |
| SEC-BUTYLBENZENE        |            |             |               |             |
| STYRENE                 |            |             |               |             |
| TERT-AMYL METHYL ETHER  |            |             |               |             |

| LOCATION                  | SB-634     | SB-635      | SB-635        | SB-635      |
|---------------------------|------------|-------------|---------------|-------------|
| SAMPLE ID                 | F-SB-634-9 | F-SB-635-10 | F-SB-635-10-D | F-SB-635-11 |
| SAMPLE DATE               | 9/22/2009  | 9/22/2009   | 9/22/2009     | 9/22/2009   |
| TERT-BUTYLBENZENE         |            |             |               |             |
| TERTIARY-BUTYL ALCOHOL    |            |             |               |             |
| TETRACHLOROETHENE         |            |             |               |             |
| TOLUENE                   |            |             |               |             |
| TOTAL 1,2-DICHLOROETHENE  |            |             |               |             |
| TOTAL XYLENES             |            |             |               |             |
| TRANS-1,2-DICHLOROETHENE  |            |             |               |             |
| TRANS-1,3-DICHLOROPROPENE |            |             |               |             |
| TRICHLOROETHENE           |            |             |               |             |
| TRICHLOROFLUOROMETHANE    |            |             |               |             |
| VINYL ACETATE             |            |             |               |             |
| VINYL CHLORIDE            |            |             |               |             |
|                           |            |             |               |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                  |                  |                 |                 |
|----------------------------------|------------------|------------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| 2-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| ACENAPHTHENE                     |                  |                  |                 |                 |
| ACENAPHTHYLENE                   |                  |                  |                 |                 |
| ANTHRACENE                       |                  |                  |                 |                 |
| BAP EQUIVALENT-HALFND            | 2.9771 [MDL=1.7] | 1.5 U [MDL=1.5]  | 33.76 [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS               | 1.1 [MDL=1.7]    | 1.5 U [MDL=1.5]  | 32.96 [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL               |                  |                  |                 |                 |
| BENZO(A)ANTHRACENE               | 1.3 U [MDL=1.3]  | 1.1 UJ [MDL=1.1] | 31 J [MDL=1.2]  | 1.2 U [MDL=1.2] |
| BENZO(A)PYRENE                   | 1.7 U [MDL=1.7]  | 1.5 UJ [MDL=1.5] | 25 J [MDL=1.6]  | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE             | 11 [MDL=1.6]     | 1.4 UJ [MDL=1.4] | 34 J [MDL=1.5]  | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE             |                  |                  |                 |                 |
| BENZO(K)FLUORANTHENE             | 2.3 U [MDL=2.3]  | 2.0 UJ [MDL=2]   | 13 J [MDL=2.1]  | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                 |                 |
| C1-FLUORENES                     |                  |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C2-FLUORENES                     |                  |                  |                 |                 |
| C2-NAPHTHALENES                  |                  |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C3-FLUORENES                     |                  |                  |                 |                 |
| C3-NAPHTHALENES                  |                  |                  |                 |                 |

| LOCATION                         | SB-634          | SB-635           | SB-635          | SB-635          |
|----------------------------------|-----------------|------------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-634-9      | F-SB-635-10      | F-SB-635-10-D   | F-SB-635-11     |
| SAMPLE DATE                      | 9/22/2009       | 9/22/2009        | 9/22/2009       | 9/22/2009       |
| C3-PHENANTHRENES/ANTHRACENES     | <del></del>     |                  | <del></del>     | <del></del>     |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                  |                 |                 |
| C4-NAPHTHALENES                  |                 |                  |                 | <del></del>     |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                  |                 |                 |
| CHRYSENE                         | 1.2 U [MDL=1.2] | 1.1 UJ [MDL=1.1] | 30 J [MDL=1.1]  | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.7 U [MDL=1.7] | 1.5 UJ [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                  |                 |                 |
| FLUORENE                         |                 |                  |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 2.0 U [MDL=2]   | 1.8 UJ [MDL=1.8] | 13 J [MDL=1.9]  | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                  |                 |                 |
| PHENANTHRENE                     |                 |                  |                 |                 |
| PYRENE                           |                 |                  |                 |                 |
| TOTAL PAHS                       | 11 [MDL=1.7]    | 0 U [MDL=1.5]    | 146 [MDL=1.6]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                  |                 |                 |
| 4,4'-DDD                         |                 |                  |                 |                 |
| 4,4'-DDE                         |                 |                  |                 |                 |
| 4,4'-DDT                         |                 |                  |                 |                 |
| ALDRIN                           |                 |                  |                 |                 |
| ALPHA-BHC                        |                 |                  |                 |                 |
| ALPHA-CHLORDANE                  |                 |                  |                 |                 |
| AROCLOR-1016                     |                 |                  |                 |                 |
| AROCLOR-1221                     |                 |                  |                 |                 |
| AROCLOR-1232                     |                 |                  |                 |                 |
| AROCLOR-1242                     |                 |                  |                 |                 |
| AROCLOR-1248                     |                 |                  |                 |                 |
| AROCLOR-1254                     |                 |                  |                 |                 |
| AROCLOR-1260                     |                 |                  |                 |                 |
| BETA-BHC                         |                 |                  |                 |                 |
| DELTA-BHC                        |                 |                  |                 |                 |
| DIELDRIN                         |                 |                  |                 |                 |
| ENDOSULFAN I                     |                 |                  |                 |                 |
| ENDOSULFAN II                    |                 |                  |                 |                 |
| ENDOSULFAN SULFATE               |                 |                  |                 |                 |
| ENDRIN                           |                 |                  |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                  |                 |                 |
| ENDRIN KETONE                    |                 |                  |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                  |                 |                 |
| GAMMA-CHLORDANE                  |                 |                  |                 |                 |

# Block F Soil Remedial Action Plan Appendix

## SOIL

| LOCATION                              | SB-634     | SB-635      | SB-635        | SB-635      |
|---------------------------------------|------------|-------------|---------------|-------------|
| SAMPLE ID                             | F-SB-634-9 | F-SB-635-10 | F-SB-635-10-D | F-SB-635-11 |
| SAMPLE DATE                           | 9/22/2009  | 9/22/2009   | 9/22/2009     | 9/22/2009   |
| HEPTACHLOR                            |            |             |               |             |
| HEPTACHLOR EPOXIDE                    |            |             |               |             |
| METHOXYCHLOR                          |            |             |               |             |
| TOTAL AROCLOR                         |            |             |               |             |
| TOTAL DDT POS                         |            |             |               |             |
| TOXAPHENE                             |            |             |               |             |
| PETROLEUM HYDROCARBONS (UG/KG)        |            |             |               |             |
| DIESEL RANGE ORGANICS                 |            |             |               |             |
| GASOLINE RANGE ORGANICS               |            |             |               |             |
| TPH (C09-C36)                         |            |             |               |             |
| · · · · · · · · · · · · · · · · · · · |            |             |               |             |

| LOCATION                     | SB-635      | SB-635      | SB-635     | SB-635C     |
|------------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                    | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE                  | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| METALS (MG/KG)               |             |             | -          | •           |
| ANTIMONY                     |             |             |            |             |
| ARSENIC                      |             |             |            |             |
| BARIUM                       |             |             |            |             |
| BERYLLIUM                    |             |             |            |             |
| CADMIUM                      |             |             |            |             |
| CHROMIUM                     |             |             |            |             |
| COBALT                       |             |             |            |             |
| COPPER                       |             |             |            |             |
| LEAD                         |             |             |            |             |
| MERCURY                      |             |             |            |             |
| MOLYBDENUM                   |             |             |            |             |
| NICKEL                       |             |             |            |             |
| SELENIUM                     |             |             |            |             |
| SILVER                       |             |             |            |             |
| THALLIUM                     |             |             |            |             |
| VANADIUM                     |             |             |            |             |
| ZINC                         |             |             |            |             |
| MISCELLANEOUS PARAMETERS     |             |             |            |             |
| PERCENT SOLIDS (%)           |             |             |            |             |
| TOTAL SOLIDS (%)             |             |             |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |             |
| PH (S.U.)                    |             |             |            |             |
| MERCURY (METHYL) (UG/KG)     |             |             |            |             |
| SEMIVOLATILES (UG/KG)        |             |             |            |             |
| 1,1-BIPHENYL                 |             |             |            |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |             |
| 1,2-DICHLOROBENZENE          |             |             |            |             |
| 1,3-DICHLOROBENZENE          |             |             |            |             |
| 1,4-DICHLOROBENZENE          |             |             |            |             |
| 1,4-DIOXANE                  |             |             |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |            |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |            |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |            |             |
| 2,4-DICHLOROPHENOL           |             |             |            |             |
| 2,4-DIMETHYLPHENOL           |             |             |            |             |
| 2,4-DINITROPHENOL            |             |             |            |             |

| LOCATION                    | SB-635      | SB-635      | SB-635     | SB-635C     |
|-----------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                   | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE                 | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| 2,4-DINITROTOLUENE          |             |             |            |             |
| 2,6-DINITROTOLUENE          |             |             |            |             |
| 2-CHLORONAPHTHALENE         |             |             |            |             |
| 2-CHLOROPHENOL              |             |             |            |             |
| 2-METHYLPHENOL              |             |             |            |             |
| 2-NITROANILINE              |             |             |            |             |
| 2-NITROPHENOL               |             |             |            |             |
| 3&4-METHYLPHENOL            |             |             |            |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |            |             |
| 3-NITROANILINE              |             |             |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |            |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |            |             |
| 4-CHLOROANILINE             |             |             |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |            |             |
| 4-NITROANILINE              |             |             |            |             |
| 4-NITROPHENOL               |             |             |            |             |
| ACETOPHENONE                |             |             |            |             |
| ANILINE                     |             |             |            |             |
| ATRAZINE                    |             |             |            |             |
| AZOBENZENE                  |             |             |            |             |
| BENZIDINE                   |             |             |            |             |
| BENZOIC ACID                |             |             |            |             |
| BENZYL ALCOHOL              |             |             |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |            |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |            |             |
| BUTYL BENZYL PHTHALATE      |             |             |            |             |
| CAPROLACTAM                 |             |             |            |             |
| CARBAZOLE                   |             |             |            |             |
| DIBENZOFURAN                |             |             |            |             |
| DIETHYL PHTHALATE           |             |             |            |             |
| DIMETHYL PHTHALATE          |             |             |            |             |
| DI-N-BUTYL PHTHALATE        |             |             |            |             |
| DI-N-OCTYL PHTHALATE        |             |             |            |             |
| HEXACHLOROBENZENE           |             |             |            |             |
| HEXACHLOROBUTADIENE         |             |             |            |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |            |             |

| LOCATION                       | SB-635      | SB-635      | SB-635     | SB-635C     |
|--------------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                      | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE                    | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| HEXACHLOROETHANE               |             |             |            |             |
| ISOPHORONE                     |             |             |            |             |
| NITROBENZENE                   |             |             |            |             |
| N-NITROSODIMETHYLAMINE         |             |             |            |             |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |            |             |
| N-NITROSODIPHENYLAMINE         |             |             |            |             |
| PENTACHLOROPHENOL              |             |             |            |             |
| PHENOL                         |             |             |            |             |
| PYRIDINE                       |             |             |            |             |
| VOLATILES (UG/KG)              |             |             |            | <u> </u>    |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,1-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,2-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |            |             |
| 1,1-DICHLOROETHANE             |             |             |            |             |
| 1,1-DICHLOROETHENE             |             |             |            |             |
| 1,1-DICHLOROPROPENE            |             |             |            |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |            |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |            |             |
| 1,2-DIBROMOETHANE              |             |             |            |             |
| 1,2-DICHLOROBENZENE            |             |             |            |             |
| 1,2-DICHLOROETHANE             |             |             |            |             |
| 1,2-DICHLOROPROPANE            |             |             |            |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |            |             |
| 1,3-DICHLOROBENZENE            |             |             |            |             |
| 1,3-DICHLOROPROPANE            |             |             |            |             |
| 1,3-DICHLOROPROPENE            |             |             |            |             |
| 1,4-DICHLOROBENZENE            |             |             |            |             |
| 1,4-DIOXANE                    |             |             |            |             |
| 2,2-DICHLOROPROPANE            |             |             |            |             |
| 2-BUTANONE                     |             |             |            |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |            |             |
| 2-CHLOROTOLUENE                |             |             |            |             |

February 2013 Page B-297

| LOCATION                | SB-635      | SB-635      | SB-635     | SB-635C     |
|-------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID               | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE             | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| 2-HEXANONE              |             |             |            |             |
| 4-CHLOROTOLUENE         |             |             |            |             |
| 4-ISOPROPYLTOLUENE      |             |             |            |             |
| 4-METHYL-2-PENTANONE    |             |             |            |             |
| ACETONE                 |             |             |            |             |
| BENZENE                 |             |             |            |             |
| BROMOBENZENE            |             |             |            |             |
| BROMOCHLOROMETHANE      |             |             |            |             |
| BROMODICHLOROMETHANE    |             |             |            |             |
| BROMOFORM               |             |             |            |             |
| BROMOMETHANE            |             |             |            |             |
| CARBON DISULFIDE        |             |             |            |             |
| CARBON TETRACHLORIDE    |             |             |            |             |
| CHLOROBENZENE           |             |             |            |             |
| CHLORODIBROMOMETHANE    |             |             |            |             |
| CHLOROETHANE            |             |             |            |             |
| CHLOROFORM              |             |             |            |             |
| CHLOROMETHANE           |             |             |            |             |
| CIS-1,2-DICHLOROETHENE  |             |             |            |             |
| CIS-1,3-DICHLOROPROPENE |             |             |            |             |
| DIBROMOMETHANE          |             |             |            |             |
| DICHLORODIFLUOROMETHANE |             |             |            |             |
| DIISOPROPYL ETHER       |             |             |            |             |
| ETHYL TERT-BUTYL ETHER  |             |             |            |             |
| ETHYLBENZENE            |             |             |            |             |
| FLUORODICHLOROMETHANE   |             |             |            |             |
| HEXACHLOROBUTADIENE     |             |             |            |             |
| ISOPROPYLBENZENE        |             |             |            |             |
| M+P-XYLENES             |             |             |            |             |
| METHYL TERT-BUTYL ETHER |             |             |            |             |
| METHYLENE CHLORIDE      |             |             |            |             |
| NAPHTHALENE             |             |             |            |             |
| N-BUTYLBENZENE          |             |             |            |             |
| N-PROPYLBENZENE         |             |             |            |             |
| O-XYLENE                |             |             |            |             |
| SEC-BUTYLBENZENE        |             |             |            |             |
| STYRENE                 |             |             |            |             |
| TERT-AMYL METHYL ETHER  |             |             |            |             |

| LOCATION                  | SB-635      | SB-635      | SB-635     | SB-635C     |
|---------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                 | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE               | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| TERT-BUTYLBENZENE         |             |             |            |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |             |
| TETRACHLOROETHENE         |             |             |            |             |
| TOLUENE                   |             |             |            |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |             |
| TOTAL XYLENES             |             |             |            |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |             |
| TRICHLOROETHENE           |             |             |            |             |
| TRICHLOROFLUOROMETHANE    |             |             |            |             |
| VINYL ACETATE             |             |             |            |             |
| VINYL CHLORIDE            |             |             |            |             |
|                           |             |             |            |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                   |                  |                  |                   |
|----------------------------------|-------------------|------------------|------------------|-------------------|
| 2-METHYLNAPHTHALENE              |                   |                  |                  |                   |
| ACENAPHTHENE                     |                   |                  |                  |                   |
| ACENAPHTHYLENE                   |                   |                  |                  |                   |
| ANTHRACENE                       |                   |                  |                  |                   |
| BAP EQUIVALENT-HALFND            | 3.65605 [MDL=1.6] | 27.619 [MDL=1.6] | 275.61 [MDL=1.6] | 1266.69 [MDL=1.5] |
| BAP EQUIVALENT-POS               | 1.95 [MDL=1.6]    | 26.819 [MDL=1.6] | 274.81 [MDL=1.6] | 1266.69 [MDL=1.5] |
| BAP EQUIVALENT-UCL               |                   |                  |                  |                   |
| BENZO(A)ANTHRACENE               | 8.5 [MDL=1.2]     | 21 [MDL=1.2]     | 220 [MDL=1.1]    | 760 [MDL=1.1]     |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6]   | 20 [MDL=1.6]     | 210 [MDL=1.6]    | 870 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE             | 11 [MDL=1.5]      | 23 [MDL=1.5]     | 310 [MDL=1.4]    | 1200 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE             |                   |                  |                  |                   |
| BENZO(K)FLUORANTHENE             | 2.1 U [MDL=2.1]   | 10 [MDL=2.1]     | 150 [MDL=2.1]    | 390 [MDL=1.9]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                   |
| C1-FLUORANTHENES/PYRENES         |                   |                  |                  |                   |
| C1-FLUORENES                     |                   |                  |                  |                   |
| C1-PHENANTHRENES/ANTHRACENES     |                   |                  |                  |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                   |
| C2-FLUORENES                     |                   |                  |                  |                   |
| C2-NAPHTHALENES                  |                   |                  |                  |                   |
| C2-PHENANTHRENES/ANTHRACENES     |                   |                  |                  |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                   |                  |                  |                   |
| C3-FLUORENES                     |                   |                  |                  |                   |
| C3-NAPHTHALENES                  |                   |                  |                  |                   |

| LOCATION                         | SB-635          | SB-635          | SB-635          | SB-635C        |
|----------------------------------|-----------------|-----------------|-----------------|----------------|
| SAMPLE ID                        | F-SB-635-12     | F-SB-635-13     | F-SB-635-9      | F-SB-635C-1    |
| SAMPLE DATE                      | 9/22/2009       | 9/22/2009       | 9/22/2009       | 11/4/2009      |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                |
| C4-NAPHTHALENES                  |                 |                 |                 |                |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 19 [MDL=1.1]    | 310 [MDL=1.1]   | 790 [MDL=1]    |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 150 [MDL=1.5]  |
| FLUORANTHENE                     |                 |                 |                 |                |
| FLUORENE                         |                 |                 |                 |                |
| INDENO(1,2,3-CD)PYRENE           | 1.9 U [MDL=1.9] | 23 [MDL=1.8]    | 100 [MDL=1.8]   | 460 [MDL=1.7]  |
| NAPHTHALENE                      |                 |                 |                 |                |
| PHENANTHRENE                     |                 |                 |                 |                |
| PYRENE                           |                 |                 |                 |                |
| TOTAL PAHS                       | 19.5 [MDL=1.6]  | 116 [MDL=1.6]   | 1300 [MDL=1.6]  | 4620 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)          | •               |                 |                 |                |
| 4,4'-DDD                         |                 |                 |                 |                |
| 4,4'-DDE                         |                 |                 |                 |                |
| 4,4'-DDT                         |                 |                 |                 |                |
| ALDRIN                           |                 |                 |                 |                |
| ALPHA-BHC                        |                 |                 |                 |                |
| ALPHA-CHLORDANE                  |                 |                 |                 |                |
| AROCLOR-1016                     |                 |                 |                 |                |
| AROCLOR-1221                     |                 |                 |                 |                |
| AROCLOR-1232                     |                 |                 |                 |                |
| AROCLOR-1242                     |                 |                 |                 |                |
| AROCLOR-1248                     |                 |                 |                 |                |
| AROCLOR-1254                     |                 |                 |                 |                |
| AROCLOR-1260                     |                 |                 |                 |                |
| BETA-BHC                         |                 |                 |                 |                |
| DELTA-BHC                        |                 |                 |                 |                |
| DIELDRIN                         |                 |                 |                 |                |
| ENDOSULFAN I                     |                 |                 |                 |                |
| ENDOSULFAN II                    |                 |                 |                 |                |
| ENDOSULFAN SULFATE               |                 |                 |                 |                |
| ENDRIN                           |                 |                 |                 |                |
| ENDRIN ALDEHYDE                  |                 |                 |                 |                |
| ENDRIN KETONE                    |                 |                 |                 |                |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |                |
| GAMMA-CHLORDANE                  |                 |                 |                 |                |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-635      | SB-635      | SB-635     | SB-635C     |
|--------------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                      | F-SB-635-12 | F-SB-635-13 | F-SB-635-9 | F-SB-635C-1 |
| SAMPLE DATE                    | 9/22/2009   | 9/22/2009   | 9/22/2009  | 11/4/2009   |
| HEPTACHLOR                     |             |             |            |             |
| HEPTACHLOR EPOXIDE             |             |             |            |             |
| METHOXYCHLOR                   |             |             |            |             |
| TOTAL AROCLOR                  |             |             |            |             |
| TOTAL DDT POS                  |             |             |            |             |
| TOXAPHENE                      | 1           |             |            |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |            |             |
| DIESEL RANGE ORGANICS          | 1           |             |            |             |
| GASOLINE RANGE ORGANICS        |             |             |            |             |
| TPH (C09-C36)                  |             |             |            |             |
|                                |             |             |            |             |

| LOCATION                     | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|------------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                    | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE                  | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| METALS (MG/KG)               | •            |             |             |             |
| ANTIMONY                     |              |             |             |             |
| ARSENIC                      |              |             |             |             |
| BARIUM                       |              |             |             |             |
| BERYLLIUM                    |              |             |             |             |
| CADMIUM                      |              |             |             |             |
| CHROMIUM                     | <del></del>  |             |             |             |
| COBALT                       |              |             |             |             |
| COPPER                       |              |             |             |             |
| LEAD                         |              |             |             |             |
| MERCURY                      | <del></del>  |             |             |             |
| MOLYBDENUM                   | <del></del>  |             |             |             |
| NICKEL                       |              |             |             |             |
| SELENIUM                     |              |             |             |             |
| SILVER                       |              |             |             |             |
| THALLIUM                     |              |             |             |             |
| VANADIUM                     |              |             |             |             |
| ZINC                         |              | <del></del> |             |             |
| MISCELLANEOUS PARAMETERS     |              |             |             |             |
| PERCENT SOLIDS (%)           |              | <del></del> |             |             |
| TOTAL SOLIDS (%)             |              |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |             |             |             |
| PH (S.U.)                    |              |             |             |             |
| MERCURY (METHYL) (UG/KG)     |              |             |             |             |
| SEMIVOLATILES (UG/KG)        |              |             |             |             |
| 1,1-BIPHENYL                 |              |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |              |             |             |             |
| 1,2-DICHLOROBENZENE          |              |             |             |             |
| 1,3-DICHLOROBENZENE          |              |             |             |             |
| 1,4-DICHLOROBENZENE          |              |             |             |             |
| 1,4-DIOXANE                  |              |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |              |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |              |             |             |             |
| 2,4-DICHLOROPHENOL           |              | <del></del> |             |             |
| 2,4-DIMETHYLPHENOL           |              | <del></del> |             |             |
| 2,4-DINITROPHENOL            |              | <del></del> |             |             |

| LOCATION                    | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|-----------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE                 | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| 2,4-DINITROTOLUENE          |              |             |             |             |
| 2,6-DINITROTOLUENE          |              |             |             |             |
| 2-CHLORONAPHTHALENE         |              |             |             |             |
| 2-CHLOROPHENOL              |              |             |             |             |
| 2-METHYLPHENOL              |              |             |             |             |
| 2-NITROANILINE              |              |             |             |             |
| 2-NITROPHENOL               |              |             |             |             |
| 3&4-METHYLPHENOL            |              |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |              |             |             |             |
| 3-NITROANILINE              |              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |              |             |             |             |
| 4-CHLOROANILINE             |              |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |             |             |             |
| 4-NITROANILINE              |              |             |             |             |
| 4-NITROPHENOL               |              |             |             |             |
| ACETOPHENONE                |              |             |             |             |
| ANILINE                     |              |             |             |             |
| ATRAZINE                    |              |             |             |             |
| AZOBENZENE                  |              |             |             |             |
| BENZIDINE                   |              |             |             |             |
| BENZOIC ACID                |              |             |             |             |
| BENZYL ALCOHOL              |              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |              |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |             |             |             |
| BUTYL BENZYL PHTHALATE      |              |             |             |             |
| CAPROLACTAM                 |              |             |             |             |
| CARBAZOLE                   |              |             |             |             |
| DIBENZOFURAN                |              |             |             |             |
| DIETHYL PHTHALATE           |              |             |             |             |
| DIMETHYL PHTHALATE          |              |             |             |             |
| DI-N-BUTYL PHTHALATE        |              |             |             |             |
| DI-N-OCTYL PHTHALATE        |              |             |             |             |
| HEXACHLOROBENZENE           |              |             |             |             |
| HEXACHLOROBUTADIENE         |              |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |              |             |             |             |

2-CHLOROTOLUENE

| LOCATION                              | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|---------------------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                             | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE                           | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| HEXACHLOROETHANE                      |              |             |             |             |
| ISOPHORONE                            |              |             |             |             |
| NITROBENZENE                          |              |             |             |             |
| N-NITROSODIMETHYLAMINE                |              |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE            |              |             |             |             |
| N-NITROSODIPHENYLAMINE                |              |             |             |             |
| PENTACHLOROPHENOL                     |              |             |             |             |
| PHENOL                                |              |             |             |             |
| PYRIDINE                              |              |             |             |             |
| VOLATILES (UG/KG)                     | •            |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE             |              |             |             |             |
| 1,1,1-TRICHLOROETHANE                 |              |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE             |              |             |             |             |
| 1,1,2-TRICHLOROETHANE                 |              |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE        |              |             |             |             |
| 1,1-DICHLOROETHANE                    |              |             |             |             |
| 1,1-DICHLOROETHENE                    |              |             |             |             |
| 1,1-DICHLOROPROPENE                   |              |             |             |             |
| 1,2,3-TRICHLOROBENZENE                |              |             |             |             |
| 1,2,3-TRICHLOROPROPANE                |              |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                |              |             |             |             |
| 1,2,4-TRICHLOROBENZENE                |              |             |             |             |
| 1,2,4-TRIMETHYLBENZENE                |              |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE           |              |             |             |             |
| 1,2-DIBROMOETHANE                     |              |             |             |             |
| 1,2-DICHLOROBENZENE                   |              |             |             |             |
| 1,2-DICHLOROETHANE                    |              |             |             |             |
| 1,2-DICHLOROPROPANE                   |              |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                |              |             |             |             |
| 1,3-DICHLOROBENZENE                   |              |             |             |             |
| 1,3-DICHLOROPROPANE                   |              |             |             |             |
| 1,3-DICHLOROPROPENE                   |              |             |             |             |
| 1,4-DICHLOROBENZENE                   |              |             |             |             |
| 1,4-DIOXANE                           |              |             |             |             |
| 2,2-DICHLOROPROPANE                   |              |             |             |             |
| 2-BUTANONE                            |              |             |             |             |
| 2-CHLOROETHYL VINYL ETHER             |              |             |             |             |
| · · · · · · · · · · · · · · · · · · · |              |             |             |             |

February 2013 Page B-304

--

--

--

--

| LOCATION                | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|-------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE             | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| 2-HEXANONE              |              |             |             |             |
| 4-CHLOROTOLUENE         |              |             |             |             |
| 4-ISOPROPYLTOLUENE      |              |             |             |             |
| 4-METHYL-2-PENTANONE    |              |             |             |             |
| ACETONE                 |              |             |             |             |
| BENZENE                 |              |             |             |             |
| BROMOBENZENE            |              |             |             |             |
| BROMOCHLOROMETHANE      |              |             |             |             |
| BROMODICHLOROMETHANE    |              |             |             |             |
| BROMOFORM               |              |             |             |             |
| BROMOMETHANE            |              |             |             |             |
| CARBON DISULFIDE        |              |             |             |             |
| CARBON TETRACHLORIDE    |              |             |             |             |
| CHLOROBENZENE           |              |             |             |             |
| CHLORODIBROMOMETHANE    |              |             |             |             |
| CHLOROETHANE            |              |             |             |             |
| CHLOROFORM              |              |             |             |             |
| CHLOROMETHANE           |              |             |             |             |
| CIS-1,2-DICHLOROETHENE  |              |             |             |             |
| CIS-1,3-DICHLOROPROPENE |              |             |             |             |
| DIBROMOMETHANE          |              |             |             |             |
| DICHLORODIFLUOROMETHANE |              |             |             |             |
| DIISOPROPYL ETHER       |              |             |             |             |
| ETHYL TERT-BUTYL ETHER  |              |             |             |             |
| ETHYLBENZENE            |              |             |             |             |
| FLUORODICHLOROMETHANE   |              |             |             |             |
| HEXACHLOROBUTADIENE     |              |             |             |             |
| ISOPROPYLBENZENE        |              |             |             |             |
| M+P-XYLENES             |              |             |             |             |
| METHYL TERT-BUTYL ETHER |              |             |             |             |
| METHYLENE CHLORIDE      |              |             |             |             |
| NAPHTHALENE             |              |             |             |             |
| N-BUTYLBENZENE          |              |             |             |             |
| N-PROPYLBENZENE         |              |             |             |             |
| O-XYLENE                |              |             |             |             |
| SEC-BUTYLBENZENE        |              |             |             |             |
| STYRENE                 |              |             |             |             |
| TERT-AMYL METHYL ETHER  |              |             |             |             |

| LOCATION                  | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|---------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE               | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| TERT-BUTYLBENZENE         |              |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |              |             |             |             |
| TETRACHLOROETHENE         |              |             |             |             |
| TOLUENE                   |              |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |              |             |             |             |
| TOTAL XYLENES             |              |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |              |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |              |             |             |             |
| TRICHLOROETHENE           |              |             |             |             |
| TRICHLOROFLUOROMETHANE    |              |             |             |             |
| VINYL ACETATE             |              |             |             |             |
| VINYL CHLORIDE            |              |             |             |             |
|                           |              |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                 |                 |                  |                  |
|----------------------------------|-----------------|-----------------|------------------|------------------|
| 2-METHYLNAPHTHALENE              |                 |                 |                  |                  |
| ACENAPHTHENE                     |                 |                 |                  |                  |
| ACENAPHTHYLENE                   |                 |                 |                  |                  |
| ANTHRACENE                       |                 |                 |                  |                  |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6] | 26.21 [MDL=1.5] | 27.592 [MDL=1.5] | 52.006 [MDL=1.6] |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6] | 25.46 [MDL=1.5] | 26.842 [MDL=1.5] | 51.206 [MDL=1.6] |
| BAP EQUIVALENT-UCL               |                 |                 |                  |                  |
| BENZO(A)ANTHRACENE               | 1.1 U [MDL=1.1] | 18 [MDL=1.1]    | 18 [MDL=1.1]     | 55 J [MDL=1.2]   |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6] | 20 [MDL=1.5]    | 21 [MDL=1.5]     | 36 J [MDL=1.6]   |
| BENZO(B)FLUORANTHENE             | 1.4 U [MDL=1.4] | 21 [MDL=1.4]    | 26 [MDL=1.4]     | 75 J [MDL=1.5]   |
| BENZO(G,H,I)PERYLENE             |                 |                 |                  |                  |
| BENZO(K)FLUORANTHENE             | 2.1 U [MDL=2.1] | 14 [MDL=1.9]    | 12 [MDL=1.9]     | 24 J [MDL=2.1]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                  |                  |
| C1-FLUORENES                     |                 |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C2-FLUORENES                     |                 |                 |                  |                  |
| C2-NAPHTHALENES                  |                 |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C3-FLUORENES                     |                 |                 |                  |                  |
| C3-NAPHTHALENES                  |                 |                 |                  |                  |

| LOCATION                         | SB-635C         | SB-635C         | SB-635C         | SB-635C         |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-635C-11    | F-SB-635C-3     | F-SB-635C-5     | F-SB-635C-7     |
| SAMPLE DATE                      | 11/4/2009       | 11/4/2009       | 11/4/2009       | 11/4/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 20 [MDL=1]      | 22 [MDL=1]      | 66 J [MDL=1.1]  |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 14 [MDL=1.7]    | 13 [MDL=1.7]    | 19 J [MDL=1.9]  |
| NAPHTHALENE                      |                 |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |                 |
| PYRENE                           |                 |                 |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 107 [MDL=1.5]   | 112 [MDL=1.5]   | 275 [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                 | •               |                 |
| 4,4'-DDD                         |                 |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |                 |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-635C      | SB-635C     | SB-635C     | SB-635C     |
|--------------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-635C-11 | F-SB-635C-3 | F-SB-635C-5 | F-SB-635C-7 |
| SAMPLE DATE                    | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| HEPTACHLOR                     |              |             |             |             |
| HEPTACHLOR EPOXIDE             |              |             |             |             |
| METHOXYCHLOR                   |              |             |             |             |
| TOTAL AROCLOR                  |              |             |             |             |
| TOTAL DDT POS                  |              |             |             |             |
| TOXAPHENE                      |              |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |              |             |             |             |
| DIESEL RANGE ORGANICS          |              |             |             |             |
| GASOLINE RANGE ORGANICS        |              |             |             |             |
| TPH (C09-C36)                  |              |             |             |             |
|                                |              |             |             |             |

| JOIL                         |               |             |              |             |
|------------------------------|---------------|-------------|--------------|-------------|
| LOCATION                     | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
| SAMPLE ID                    | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE                  | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| METALS (MG/KG)               |               |             |              |             |
| ANTIMONY                     |               |             |              |             |
| ARSENIC                      |               |             |              |             |
| BARIUM                       |               |             |              |             |
| BERYLLIUM                    |               |             |              |             |
| CADMIUM                      |               |             |              |             |
| CHROMIUM                     |               |             |              |             |
| COBALT                       |               |             |              |             |
| COPPER                       |               |             |              |             |
| LEAD                         |               |             |              |             |
| MERCURY                      |               |             |              |             |
| MOLYBDENUM                   |               |             |              |             |
| NICKEL                       |               |             |              |             |
| SELENIUM                     |               |             |              |             |
| SILVER                       |               |             |              |             |
| THALLIUM                     |               |             |              |             |
| VANADIUM                     |               |             |              |             |
| ZINC                         |               |             |              |             |
| MISCELLANEOUS PARAMETERS     |               |             |              |             |
| PERCENT SOLIDS (%)           |               |             |              |             |
| TOTAL SOLIDS (%)             |               |             |              |             |
| HEXAVALENT CHROMIUM (MG/KG)  |               |             |              |             |
| TOTAL ORGANIC CARBON (MG/KG) |               |             |              |             |
| PH (S.U.)                    |               |             |              |             |
| MERCURY (METHYL) (UG/KG)     |               |             |              |             |
| SEMIVOLATILES (UG/KG)        | •             |             | •            |             |
| 1,1-BIPHENYL                 |               |             |              |             |
| 1,2,4-TRICHLOROBENZENE       |               |             |              |             |
| 1,2-DICHLOROBENZENE          |               |             |              |             |
| 1,3-DICHLOROBENZENE          |               |             |              |             |
| 1,4-DICHLOROBENZENE          |               |             |              |             |
| 1,4-DIOXANE                  |               |             |              |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |             |              |             |
| 2,4,5-TRICHLOROPHENOL        |               |             |              |             |
| 2,4,6-TRICHLOROPHENOL        |               |             |              |             |
| 2,4-DICHLOROPHENOL           |               |             |              |             |
| 2,4-DIMETHYLPHENOL           |               |             |              |             |
| 2,4-DINITROPHENOL            |               |             |              |             |
|                              |               |             |              |             |

| LOCATION                    | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
|-----------------------------|---------------|-------------|--------------|-------------|
| SAMPLE ID                   | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE                 | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| 2,4-DINITROTOLUENE          |               |             |              |             |
| 2,6-DINITROTOLUENE          |               |             |              |             |
| 2-CHLORONAPHTHALENE         |               |             |              |             |
| 2-CHLOROPHENOL              |               |             |              |             |
| 2-METHYLPHENOL              |               |             |              |             |
| 2-NITROANILINE              |               |             |              |             |
| 2-NITROPHENOL               |               |             |              |             |
| 3&4-METHYLPHENOL            |               |             |              |             |
| 3,3'-DICHLOROBENZIDINE      |               |             |              |             |
| 3-NITROANILINE              |               |             |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |               |             |              |             |
| 4-BROMOPHENYL PHENYL ETHER  |               |             |              |             |
| 4-CHLORO-3-METHYLPHENOL     |               |             |              |             |
| 4-CHLOROANILINE             |               |             |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |               |             |              |             |
| 4-NITROANILINE              |               |             |              |             |
| 4-NITROPHENOL               |               |             |              |             |
| ACETOPHENONE                |               |             |              |             |
| ANILINE                     |               |             |              |             |
| ATRAZINE                    |               |             |              |             |
| AZOBENZENE                  |               |             |              |             |
| BENZIDINE                   |               |             |              |             |
| BENZOIC ACID                |               |             |              |             |
| BENZYL ALCOHOL              |               |             |              |             |
| BIS(2-CHLOROETHOXY)METHANE  |               |             |              |             |
| BIS(2-CHLOROETHYL)ETHER     |               |             |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |             |              |             |
| BUTYL BENZYL PHTHALATE      |               |             |              |             |
| CAPROLACTAM                 |               |             |              |             |
| CARBAZOLE                   |               |             |              |             |
| DIBENZOFURAN                |               |             |              |             |
| DIETHYL PHTHALATE           |               |             |              |             |
| DIMETHYL PHTHALATE          |               |             |              |             |
| DI-N-BUTYL PHTHALATE        |               |             |              |             |
| DI-N-OCTYL PHTHALATE        |               |             |              |             |
| HEXACHLOROBENZENE           |               |             |              |             |
| HEXACHLOROBUTADIENE         |               |             |              |             |
| HEXACHLOROCYCLOPENTADIENE   |               |             |              |             |

| LOCATION                       | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
|--------------------------------|---------------|-------------|--------------|-------------|
| SAMPLE ID                      | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE                    | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| HEXACHLOROETHANE               |               |             |              |             |
| ISOPHORONE                     |               |             |              |             |
| NITROBENZENE                   |               |             |              |             |
| N-NITROSODIMETHYLAMINE         |               |             |              |             |
| N-NITROSO-DI-N-PROPYLAMINE     |               |             |              |             |
| N-NITROSODIPHENYLAMINE         |               |             |              |             |
| PENTACHLOROPHENOL              |               |             |              |             |
| PHENOL                         |               |             |              |             |
| PYRIDINE                       |               |             |              |             |
| VOLATILES (UG/KG)              |               |             |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |               |             |              |             |
| 1,1,1-TRICHLOROETHANE          |               |             |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |               |             |              |             |
| 1,1,2-TRICHLOROETHANE          |               |             |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |               |             |              |             |
| 1,1-DICHLOROETHANE             |               |             |              |             |
| 1,1-DICHLOROETHENE             |               |             |              |             |
| 1,1-DICHLOROPROPENE            |               |             |              |             |
| 1,2,3-TRICHLOROBENZENE         |               |             |              |             |
| 1,2,3-TRICHLOROPROPANE         |               |             |              |             |
| 1,2,3-TRIMETHYLBENZENE         |               |             |              |             |
| 1,2,4-TRICHLOROBENZENE         |               |             |              |             |
| 1,2,4-TRIMETHYLBENZENE         |               |             |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |               |             | <del></del>  |             |
| 1,2-DIBROMOETHANE              |               |             | <del></del>  |             |
| 1,2-DICHLOROBENZENE            |               |             |              |             |
| 1,2-DICHLOROETHANE             |               |             |              |             |
| 1,2-DICHLOROPROPANE            |               |             |              |             |
| 1,3,5-TRIMETHYLBENZENE         |               |             |              |             |
| 1,3-DICHLOROBENZENE            |               |             |              |             |
| 1,3-DICHLOROPROPANE            |               |             |              |             |
| 1,3-DICHLOROPROPENE            |               |             |              | <b></b>     |
| 1,4-DICHLOROBENZENE            |               |             |              | <b></b>     |
| 1,4-DIOXANE                    |               |             |              |             |
| 2,2-DICHLOROPROPANE            | <del></del>   | <u></u>     |              | <del></del> |
| 2-BUTANONE                     | <del></del>   | <u></u>     |              | <del></del> |
| 2-CHLOROETHYL VINYL ETHER      |               |             |              |             |
| 2-CHLOROTOLUENE                |               |             |              |             |

| LOCATION                | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
|-------------------------|---------------|-------------|--------------|-------------|
| SAMPLE ID               | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE             | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| 2-HEXANONE              |               |             |              |             |
| 4-CHLOROTOLUENE         |               |             |              |             |
| 4-ISOPROPYLTOLUENE      |               |             |              |             |
| 4-METHYL-2-PENTANONE    |               |             |              |             |
| ACETONE                 |               |             |              |             |
| BENZENE                 |               |             |              |             |
| BROMOBENZENE            |               |             |              |             |
| BROMOCHLOROMETHANE      |               |             |              |             |
| BROMODICHLOROMETHANE    |               |             |              |             |
| BROMOFORM               |               |             |              |             |
| BROMOMETHANE            |               |             |              |             |
| CARBON DISULFIDE        |               |             |              |             |
| CARBON TETRACHLORIDE    |               |             |              |             |
| CHLOROBENZENE           |               |             |              |             |
| CHLORODIBROMOMETHANE    |               |             |              |             |
| CHLOROETHANE            |               |             |              |             |
| CHLOROFORM              |               |             |              |             |
| CHLOROMETHANE           |               |             |              |             |
| CIS-1,2-DICHLOROETHENE  |               |             |              |             |
| CIS-1,3-DICHLOROPROPENE |               |             |              |             |
| DIBROMOMETHANE          |               |             |              |             |
| DICHLORODIFLUOROMETHANE |               |             |              |             |
| DIISOPROPYL ETHER       |               |             |              |             |
| ETHYL TERT-BUTYL ETHER  |               |             |              |             |
| ETHYLBENZENE            |               |             |              |             |
| FLUORODICHLOROMETHANE   |               |             |              |             |
| HEXACHLOROBUTADIENE     |               |             |              |             |
| ISOPROPYLBENZENE        |               |             |              |             |
| M+P-XYLENES             |               |             |              |             |
| METHYL TERT-BUTYL ETHER |               |             |              |             |
| METHYLENE CHLORIDE      |               |             |              |             |
| NAPHTHALENE             |               |             |              |             |
| N-BUTYLBENZENE          |               |             |              |             |
| N-PROPYLBENZENE         |               |             |              |             |
| O-XYLENE                |               |             |              |             |
| SEC-BUTYLBENZENE        |               |             |              |             |
| STYRENE                 |               |             |              |             |
| TERT-AMYL METHYL ETHER  |               |             |              |             |

| LOCATION                  | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
|---------------------------|---------------|-------------|--------------|-------------|
| SAMPLE ID                 | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE               | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| TERT-BUTYLBENZENE         |               |             |              |             |
| TERTIARY-BUTYL ALCOHOL    |               |             |              |             |
| TETRACHLOROETHENE         |               |             |              |             |
| TOLUENE                   |               |             |              |             |
| TOTAL 1,2-DICHLOROETHENE  |               |             |              |             |
| TOTAL XYLENES             |               |             |              |             |
| TRANS-1,2-DICHLOROETHENE  |               |             |              |             |
| TRANS-1,3-DICHLOROPROPENE |               |             |              |             |
| TRICHLOROETHENE           |               |             |              |             |
| TRICHLOROFLUOROMETHANE    |               |             |              |             |
| VINYL ACETATE             |               |             |              |             |
| VINYL CHLORIDE            |               |             |              |             |
|                           |               |             |              |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                  |                   |                 |                 |
|----------------------------------|------------------|-------------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                  |                   |                 |                 |
| 2-METHYLNAPHTHALENE              |                  |                   |                 |                 |
| ACENAPHTHENE                     |                  |                   |                 |                 |
| ACENAPHTHYLENE                   |                  |                   |                 |                 |
| ANTHRACENE                       |                  |                   |                 |                 |
| BAP EQUIVALENT-HALFND            | 218.61 [MDL=1.6] | 20.2071 [MDL=1.4] | 24.49 [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS               | 218.61 [MDL=1.6] | 19.4981 [MDL=1.4] | 23.6 [MDL=1.6]  | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL               |                  |                   |                 |                 |
| BENZO(A)ANTHRACENE               | 190 J [MDL=1.1]  | 11 [MDL=1]        | 11 [MDL=1.2]    | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 140 J [MDL=1.6]  | 16 [MDL=1.4]      | 21 [MDL=1.6]    | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE             | 300 J [MDL=1.4]  | 8.9 [MDL=1.3]     | 14 [MDL=1.5]    | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                  |                   |                 |                 |
| BENZO(K)FLUORANTHENE             | 94 J [MDL=2]     | 1.8 U [MDL=1.8]   | 8.8 [MDL=2.1]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                   |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                  |                   |                 |                 |
| C1-FLUORENES                     |                  |                   |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                   |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                   |                 |                 |
| C2-FLUORENES                     |                  |                   |                 |                 |
| C2-NAPHTHALENES                  |                  |                   |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                   |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                   |                 |                 |
| C3-FLUORENES                     |                  |                   |                 |                 |
| C3-NAPHTHALENES                  |                  |                   |                 |                 |

|                                  |                 | ī               |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| LOCATION                         | SB-635C         | SB-635D         | SB-635D         | SB-635D         |
| SAMPLE ID                        | F-SB-635C-7-D   | F-SB-635D-1     | F-SB-635D-11    | F-SB-635D-5     |
| SAMPLE DATE                      | 11/4/2009       | 11/10/2009      | 11/10/2009      | 11/10/2009      |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C4-NAPHTHALENES                  |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| CHRYSENE                         | 270 J [MDL=1.1] | 8.1 [MDL=0.95]  | 12 [MDL=1.1]    | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 22 [MDL=1.6]    | 1.4 U [MDL=1.4] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |                 |                 |                 |
| FLUORENE                         |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 64 J [MDL=1.8]  | 15 [MDL=1.6]    | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |                 |                 |                 |
| PHENANTHRENE                     |                 |                 |                 |                 |
| PYRENE                           |                 |                 |                 |                 |
| TOTAL PAHS                       | 1080 [MDL=1.6]  | 59 [MDL=1.4]    | 66.8 [MDL=1.6]  | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |                 | -               |
| 4,4'-DDD                         |                 |                 |                 |                 |
| 4,4'-DDE                         |                 |                 |                 |                 |
| 4,4'-DDT                         |                 |                 |                 |                 |
| ALDRIN                           |                 |                 |                 |                 |
| ALPHA-BHC                        |                 |                 |                 |                 |
| ALPHA-CHLORDANE                  |                 |                 |                 |                 |
| AROCLOR-1016                     |                 |                 |                 |                 |
| AROCLOR-1221                     |                 |                 |                 |                 |
| AROCLOR-1232                     |                 |                 |                 |                 |
| AROCLOR-1242                     |                 |                 |                 |                 |
| AROCLOR-1248                     |                 |                 |                 |                 |
| AROCLOR-1254                     |                 |                 |                 |                 |
| AROCLOR-1260                     |                 |                 |                 |                 |
| BETA-BHC                         |                 |                 |                 |                 |
| DELTA-BHC                        |                 |                 |                 |                 |
| DIELDRIN                         |                 |                 |                 |                 |
| ENDOSULFAN I                     |                 |                 |                 |                 |
| ENDOSULFAN II                    |                 |                 |                 |                 |
| ENDOSULFAN SULFATE               |                 |                 |                 |                 |
| ENDRIN                           |                 |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                 |                 |                 |                 |
| ENDRIN KETONE                    |                 |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |                 |                 |
| GAMMA-CHLORDANE                  |                 |                 |                 |                 |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-635C       | SB-635D     | SB-635D      | SB-635D     |
|--------------------------------|---------------|-------------|--------------|-------------|
| SAMPLE ID                      | F-SB-635C-7-D | F-SB-635D-1 | F-SB-635D-11 | F-SB-635D-5 |
| SAMPLE DATE                    | 11/4/2009     | 11/10/2009  | 11/10/2009   | 11/10/2009  |
| HEPTACHLOR                     |               |             |              |             |
| HEPTACHLOR EPOXIDE             |               |             |              |             |
| METHOXYCHLOR                   |               |             |              |             |
| TOTAL AROCLOR                  |               |             |              |             |
| TOTAL DDT POS                  |               |             |              |             |
| TOXAPHENE                      |               |             |              |             |
| PETROLEUM HYDROCARBONS (UG/KG) |               |             |              |             |
| DIESEL RANGE ORGANICS          |               |             |              |             |
| GASOLINE RANGE ORGANICS        |               |             |              |             |
| TPH (C09-C36)                  |               |             |              |             |
|                                |               |             |              |             |

| LOCATION                     | SB-635D     | SB-635D     | SB-636     | SB-636     |
|------------------------------|-------------|-------------|------------|------------|
| SAMPLE ID                    | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1 | F-SB-636-3 |
| SAMPLE DATE                  | 11/10/2009  | 11/10/2009  | 10/7/2009  | 10/7/2009  |
| METALS (MG/KG)               |             | •           | •          | •          |
| ANTIMONY                     |             |             |            |            |
| ARSENIC                      |             |             |            |            |
| BARIUM                       |             |             |            |            |
| BERYLLIUM                    |             |             |            |            |
| CADMIUM                      |             |             |            |            |
| CHROMIUM                     |             |             |            |            |
| COBALT                       |             |             |            |            |
| COPPER                       |             |             |            |            |
| LEAD                         |             |             |            |            |
| MERCURY                      |             |             |            |            |
| MOLYBDENUM                   |             |             |            |            |
| NICKEL                       |             |             |            |            |
| SELENIUM                     |             |             |            |            |
| SILVER                       |             |             |            |            |
| THALLIUM                     |             |             |            |            |
| VANADIUM                     |             |             |            |            |
| ZINC                         |             |             |            |            |
| MISCELLANEOUS PARAMETERS     |             |             |            |            |
| PERCENT SOLIDS (%)           |             |             |            |            |
| TOTAL SOLIDS (%)             |             |             |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |            |
| PH (S.U.)                    |             |             |            |            |
| MERCURY (METHYL) (UG/KG)     |             |             |            |            |
| SEMIVOLATILES (UG/KG)        |             |             |            |            |
| 1,1-BIPHENYL                 |             |             |            |            |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |            |
| 1,2-DICHLOROBENZENE          |             |             |            |            |
| 1,3-DICHLOROBENZENE          |             |             |            |            |
| 1,4-DICHLOROBENZENE          |             |             |            |            |
| 1,4-DIOXANE                  |             |             |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |            |            |
| 2,4,5-TRICHLOROPHENOL        |             |             |            |            |
| 2,4,6-TRICHLOROPHENOL        |             |             |            |            |
| 2,4-DICHLOROPHENOL           | <del></del> |             |            |            |
| 2,4-DIMETHYLPHENOL           |             |             |            |            |
| 2,4-DINITROPHENOL            |             |             |            |            |

| LOCATION                    | SB-635D     | SB-635D     | SB-636     | SB-636     |
|-----------------------------|-------------|-------------|------------|------------|
| SAMPLE ID                   | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1 | F-SB-636-3 |
| SAMPLE DATE                 | 11/10/2009  | 11/10/2009  | 10/7/2009  | 10/7/2009  |
| 2,4-DINITROTOLUENE          |             |             |            |            |
| 2,6-DINITROTOLUENE          |             |             |            |            |
| 2-CHLORONAPHTHALENE         |             |             |            |            |
| 2-CHLOROPHENOL              |             |             |            |            |
| 2-METHYLPHENOL              |             |             |            |            |
| 2-NITROANILINE              |             |             |            |            |
| 2-NITROPHENOL               |             |             |            |            |
| 3&4-METHYLPHENOL            |             |             |            |            |
| 3,3'-DICHLOROBENZIDINE      |             |             |            |            |
| 3-NITROANILINE              |             |             |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |            |            |
| 4-CHLORO-3-METHYLPHENOL     |             |             |            |            |
| 4-CHLOROANILINE             |             |             |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |            |            |
| 4-NITROANILINE              |             |             |            |            |
| 4-NITROPHENOL               |             |             |            |            |
| ACETOPHENONE                |             |             |            |            |
| ANILINE                     |             |             |            |            |
| ATRAZINE                    |             |             |            |            |
| AZOBENZENE                  |             |             |            |            |
| BENZIDINE                   |             |             |            |            |
| BENZOIC ACID                |             |             |            |            |
| BENZYL ALCOHOL              |             |             |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |            |            |
| BIS(2-CHLOROETHYL)ETHER     |             |             |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |            |            |
| BUTYL BENZYL PHTHALATE      |             |             |            |            |
| CAPROLACTAM                 |             |             |            |            |
| CARBAZOLE                   |             |             |            |            |
| DIBENZOFURAN                |             |             |            |            |
| DIETHYL PHTHALATE           |             |             |            |            |
| DIMETHYL PHTHALATE          |             |             |            |            |
| DI-N-BUTYL PHTHALATE        |             |             |            |            |
| DI-N-OCTYL PHTHALATE        |             |             |            |            |
| HEXACHLOROBENZENE           |             |             |            |            |
| HEXACHLOROBUTADIENE         |             |             |            |            |
| HEXACHLOROCYCLOPENTADIENE   |             |             |            |            |

| LOCATION                       | SB-635D     | SB-635D     | SB-636     | SB-636     |
|--------------------------------|-------------|-------------|------------|------------|
| SAMPLE ID                      | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1 | F-SB-636-3 |
| SAMPLE DATE                    | 11/10/2009  | 11/10/2009  | 10/7/2009  | 10/7/2009  |
| HEXACHLOROETHANE               |             |             |            |            |
| ISOPHORONE                     |             |             |            |            |
| NITROBENZENE                   |             |             |            |            |
| N-NITROSODIMETHYLAMINE         |             |             |            |            |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |            |            |
| N-NITROSODIPHENYLAMINE         |             |             |            |            |
| PENTACHLOROPHENOL              |             |             |            |            |
| PHENOL                         |             |             |            |            |
| PYRIDINE                       |             |             |            |            |
| VOLATILES (UG/KG)              |             | -           |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |            |            |
| 1,1,1-TRICHLOROETHANE          |             |             |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |            |            |
| 1,1,2-TRICHLOROETHANE          |             |             |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |            |            |
| 1,1-DICHLOROETHANE             |             |             |            |            |
| 1,1-DICHLOROETHENE             |             |             |            |            |
| 1,1-DICHLOROPROPENE            |             |             |            |            |
| 1,2,3-TRICHLOROBENZENE         |             |             |            |            |
| 1,2,3-TRICHLOROPROPANE         |             |             |            |            |
| 1,2,3-TRIMETHYLBENZENE         |             |             |            |            |
| 1,2,4-TRICHLOROBENZENE         |             |             |            |            |
| 1,2,4-TRIMETHYLBENZENE         |             |             |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |            |            |
| 1,2-DIBROMOETHANE              |             |             |            |            |
| 1,2-DICHLOROBENZENE            |             |             |            |            |
| 1,2-DICHLOROETHANE             |             |             |            |            |
| 1,2-DICHLOROPROPANE            |             |             |            |            |
| 1,3,5-TRIMETHYLBENZENE         |             |             |            |            |
| 1,3-DICHLOROBENZENE            |             |             |            | 1          |
| 1,3-DICHLOROPROPANE            |             |             |            |            |
| 1,3-DICHLOROPROPENE            |             |             |            |            |
| 1,4-DICHLOROBENZENE            |             |             |            |            |
| 1,4-DIOXANE                    |             |             |            |            |
| 2,2-DICHLOROPROPANE            |             |             |            |            |
| 2-BUTANONE                     |             |             |            |            |
| 2-CHLOROETHYL VINYL ETHER      |             |             |            |            |
| 2-CHLOROTOLUENE                |             |             |            |            |

| LOCATION                | SB-635D     | SB-635D     | SB-636     | SB-636     |
|-------------------------|-------------|-------------|------------|------------|
| SAMPLE ID               | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1 | F-SB-636-3 |
| SAMPLE DATE             | 11/10/2009  | 11/10/2009  | 10/7/2009  | 10/7/2009  |
| 2-HEXANONE              |             |             |            |            |
| 4-CHLOROTOLUENE         |             |             |            |            |
| 4-ISOPROPYLTOLUENE      |             |             |            |            |
| 4-METHYL-2-PENTANONE    |             |             |            |            |
| ACETONE                 |             |             |            |            |
| BENZENE                 |             |             |            |            |
| BROMOBENZENE            |             |             |            |            |
| BROMOCHLOROMETHANE      |             |             |            |            |
| BROMODICHLOROMETHANE    |             |             |            |            |
| BROMOFORM               |             |             |            |            |
| BROMOMETHANE            |             |             |            |            |
| CARBON DISULFIDE        |             |             |            |            |
| CARBON TETRACHLORIDE    |             |             |            |            |
| CHLOROBENZENE           |             |             |            |            |
| CHLORODIBROMOMETHANE    |             |             |            |            |
| CHLOROETHANE            |             |             |            |            |
| CHLOROFORM              |             |             |            |            |
| CHLOROMETHANE           |             |             |            |            |
| CIS-1,2-DICHLOROETHENE  |             |             |            |            |
| CIS-1,3-DICHLOROPROPENE |             |             |            |            |
| DIBROMOMETHANE          |             |             |            |            |
| DICHLORODIFLUOROMETHANE |             |             |            |            |
| DIISOPROPYL ETHER       |             |             |            |            |
| ETHYL TERT-BUTYL ETHER  |             |             |            |            |
| ETHYLBENZENE            |             |             |            |            |
| FLUORODICHLOROMETHANE   |             |             |            |            |
| HEXACHLOROBUTADIENE     |             |             |            |            |
| ISOPROPYLBENZENE        |             |             |            |            |
| M+P-XYLENES             |             |             |            |            |
| METHYL TERT-BUTYL ETHER |             |             |            |            |
| METHYLENE CHLORIDE      |             |             |            |            |
| NAPHTHALENE             |             |             |            |            |
| N-BUTYLBENZENE          |             |             |            |            |
| N-PROPYLBENZENE         |             |             |            |            |
| O-XYLENE                |             |             |            |            |
| SEC-BUTYLBENZENE        |             |             |            |            |
| STYRENE                 |             |             |            |            |
| TERT-AMYL METHYL ETHER  |             |             |            |            |

| LOCATION                  | SB-635D     | SB-635D     | SB-636     | SB-636     |
|---------------------------|-------------|-------------|------------|------------|
| SAMPLE ID                 | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1 | F-SB-636-3 |
| SAMPLE DATE               | 11/10/2009  | 11/10/2009  | 10/7/2009  | 10/7/2009  |
| TERT-BUTYLBENZENE         |             |             |            |            |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |            |
| TETRACHLOROETHENE         |             |             |            |            |
| TOLUENE                   |             |             |            |            |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |            |
| TOTAL XYLENES             |             |             |            |            |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |            |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |            |
| TRICHLOROETHENE           |             |             |            |            |
| TRICHLOROFLUOROMETHANE    |             |             |            |            |
| VINYL ACETATE             |             |             |            |            |
| VINYL CHLORIDE            |             |             |            |            |
|                           |             |             |            |            |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                 |                 |                  |                 |
|----------------------------------|-----------------|-----------------|------------------|-----------------|
| 1-METHYLNAPHTHALENE              |                 |                 |                  |                 |
| 2-METHYLNAPHTHALENE              |                 | -1              |                  |                 |
| ACENAPHTHENE                     |                 |                 |                  |                 |
| ACENAPHTHYLENE                   |                 |                 |                  |                 |
| ANTHRACENE                       |                 |                 |                  |                 |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 163.09 [MDL=1.5] | 115.8 [MDL=1.7] |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 163.09 [MDL=1.5] | 115.8 [MDL=1.7] |
| BAP EQUIVALENT-UCL               |                 |                 |                  |                 |
| BENZO(A)ANTHRACENE               | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] | 130 [MDL=1.1]    | 65 J [MDL=1.2]  |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 110 [MDL=1.5]    | 77 [MDL=1.7]    |
| BENZO(B)FLUORANTHENE             | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 140 [MDL=1.4]    | 91 [MDL=1.6]    |
| BENZO(G,H,I)PERYLENE             |                 |                 |                  |                 |
| BENZO(K)FLUORANTHENE             | 2.1 U [MDL=2.1] | 2.1 U [MDL=2.1] | 58 [MDL=2]       | 40 J [MDL=2.2]  |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                 |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                  |                 |
| C1-FLUORENES                     |                 |                 |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                 |
| C2-FLUORENES                     |                 |                 |                  |                 |
| C2-NAPHTHALENES                  |                 |                 |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                 |
| C3-FLUORENES                     |                 |                 |                  |                 |
| C3-NAPHTHALENES                  |                 |                 |                  |                 |
|                                  |                 |                 |                  |                 |

| LOCATION                         | SB-635D         | SB-635D         | SB-636        | SB-636          |
|----------------------------------|-----------------|-----------------|---------------|-----------------|
| SAMPLE ID                        | F-SB-635D-7     | F-SB-635D-9     | F-SB-636-1    | F-SB-636-3      |
| SAMPLE DATE                      | 11/10/2009      | 11/10/2009      | 10/7/2009     | 10/7/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                 |               |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |               |                 |
| C4-NAPHTHALENES                  |                 |                 |               |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                 |               |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 110 [MDL=1]   | 100 J [MDL=1.2] |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 19 [MDL=1.5]  | 17 [MDL=1.7]    |
| FLUORANTHENE                     |                 |                 |               |                 |
| FLUORENE                         |                 |                 |               |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 64 [MDL=1.7]  | 57 [MDL=2]      |
| NAPHTHALENE                      |                 |                 |               |                 |
| PHENANTHRENE                     |                 |                 |               |                 |
| PYRENE                           |                 |                 |               |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 0 U [MDL=1.6]   | 631 [MDL=1.5] | 447 [MDL=1.7]   |
| PESTICIDES/PCBS (UG/KG)          |                 |                 |               |                 |
| 4,4'-DDD                         |                 |                 |               |                 |
| 4,4'-DDE                         |                 |                 |               |                 |
| 4,4'-DDT                         |                 |                 |               |                 |
| ALDRIN                           |                 |                 |               |                 |
| ALPHA-BHC                        |                 |                 |               |                 |
| ALPHA-CHLORDANE                  |                 |                 |               |                 |
| AROCLOR-1016                     |                 |                 | 24 U [MDL=24] | 27 U [MDL=27]   |
| AROCLOR-1221                     |                 |                 | 19 U [MDL=19] | 21 U [MDL=21]   |
| AROCLOR-1232                     |                 |                 | 16 U [MDL=16] | 18 U [MDL=18]   |
| AROCLOR-1242                     |                 |                 | 15 U [MDL=15] | 17 U [MDL=17]   |
| AROCLOR-1248                     |                 |                 | 20 U [MDL=20] | 22 U [MDL=22]   |
| AROCLOR-1254                     |                 |                 | 20 U [MDL=20] | 22 U [MDL=22]   |
| AROCLOR-1260                     |                 |                 | 20 U [MDL=20] | 22 U [MDL=22]   |
| BETA-BHC                         |                 |                 |               |                 |
| DELTA-BHC                        |                 |                 |               |                 |
| DIELDRIN                         |                 |                 |               |                 |
| ENDOSULFAN I                     |                 |                 |               |                 |
| ENDOSULFAN II                    |                 |                 |               |                 |
| ENDOSULFAN SULFATE               |                 |                 |               |                 |
| ENDRIN                           |                 |                 |               |                 |
| ENDRIN ALDEHYDE                  |                 |                 |               |                 |
| ENDRIN KETONE                    |                 |                 |               |                 |
| GAMMA-BHC (LINDANE)              |                 |                 |               |                 |
| GAMMA-CHLORDANE                  |                 |                 |               |                 |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-635D     | SB-635D     | SB-636       | SB-636       |
|--------------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                      | F-SB-635D-7 | F-SB-635D-9 | F-SB-636-1   | F-SB-636-3   |
| SAMPLE DATE                    | 11/10/2009  | 11/10/2009  | 10/7/2009    | 10/7/2009    |
| HEPTACHLOR                     |             |             |              |              |
| HEPTACHLOR EPOXIDE             |             |             |              |              |
| METHOXYCHLOR                   |             |             |              |              |
| TOTAL AROCLOR                  |             |             | 0 U [MDL=24] | 0 U [MDL=27] |
| TOTAL DDT POS                  |             |             |              |              |
| TOXAPHENE                      |             |             |              |              |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |              |              |
| DIESEL RANGE ORGANICS          |             |             |              |              |
| GASOLINE RANGE ORGANICS        |             |             |              |              |
| TPH (C09-C36)                  |             |             |              |              |
| 4                              |             |             |              |              |

| JOIL                         |              |            |            |            |
|------------------------------|--------------|------------|------------|------------|
| LOCATION                     | SB-636       | SB-636     | SB-636     | SB-636     |
| SAMPLE ID                    | F-SB-636-3-D | F-SB-636-5 | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE                  | 10/7/2009    | 10/7/2009  | 10/19/2009 | 10/19/2009 |
| METALS (MG/KG)               |              |            |            |            |
| ANTIMONY                     |              |            |            |            |
| ARSENIC                      |              |            |            |            |
| BARIUM                       |              |            |            |            |
| BERYLLIUM                    |              |            |            |            |
| CADMIUM                      |              |            |            |            |
| CHROMIUM                     |              |            |            |            |
| COBALT                       |              |            |            |            |
| COPPER                       |              |            |            |            |
| LEAD                         |              |            |            |            |
| MERCURY                      |              |            |            |            |
| MOLYBDENUM                   |              |            |            |            |
| NICKEL                       |              |            |            |            |
| SELENIUM                     |              |            |            |            |
| SILVER                       |              |            |            |            |
| THALLIUM                     |              |            |            |            |
| VANADIUM                     |              |            |            |            |
| ZINC                         |              |            |            |            |
| MISCELLANEOUS PARAMETERS     |              |            | •          |            |
| PERCENT SOLIDS (%)           |              |            |            |            |
| TOTAL SOLIDS (%)             |              |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |              |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |              |            |            |            |
| PH (S.U.)                    |              |            |            |            |
| MERCURY (METHYL) (UG/KG)     |              |            |            |            |
| SEMIVOLATILES (UG/KG)        |              |            | •          |            |
| 1,1-BIPHENYL                 |              |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |              |            |            |            |
| 1,2-DICHLOROBENZENE          |              |            |            |            |
| 1,3-DICHLOROBENZENE          |              |            |            |            |
| 1,4-DICHLOROBENZENE          |              |            |            |            |
| 1,4-DIOXANE                  |              |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |              |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |              |            |            |            |
| 2,4-DICHLOROPHENOL           |              |            |            |            |
| 2,4-DIMETHYLPHENOL           |              |            |            |            |
| 2,4-DINITROPHENOL            |              |            |            |            |
|                              |              |            |            |            |

| LOCATION                    | SB-636       | SB-636     | SB-636     | SB-636     |
|-----------------------------|--------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-636-3-D | F-SB-636-5 | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE                 | 10/7/2009    | 10/7/2009  | 10/19/2009 | 10/19/2009 |
| 2,4-DINITROTOLUENE          |              |            |            |            |
| 2,6-DINITROTOLUENE          |              |            |            |            |
| 2-CHLORONAPHTHALENE         |              |            |            |            |
| 2-CHLOROPHENOL              |              |            |            |            |
| 2-METHYLPHENOL              |              |            |            |            |
| 2-NITROANILINE              |              |            |            |            |
| 2-NITROPHENOL               |              |            |            |            |
| 3&4-METHYLPHENOL            |              |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |              |            |            |            |
| 3-NITROANILINE              |              |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |              |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |              |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |              |            |            |            |
| 4-CHLOROANILINE             |              |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |              |            |            |            |
| 4-NITROANILINE              |              |            |            |            |
| 4-NITROPHENOL               |              |            |            |            |
| ACETOPHENONE                |              |            |            |            |
| ANILINE                     |              |            |            |            |
| ATRAZINE                    |              |            |            |            |
| AZOBENZENE                  |              |            |            |            |
| BENZIDINE                   |              |            |            |            |
| BENZOIC ACID                |              |            |            |            |
| BENZYL ALCOHOL              |              |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |              |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |              |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |            |            |            |
| BUTYL BENZYL PHTHALATE      |              |            |            |            |
| CAPROLACTAM                 |              |            |            |            |
| CARBAZOLE                   |              |            |            |            |
| DIBENZOFURAN                |              |            |            |            |
| DIETHYL PHTHALATE           |              |            |            |            |
| DIMETHYL PHTHALATE          |              |            |            |            |
| DI-N-BUTYL PHTHALATE        |              |            |            |            |
| DI-N-OCTYL PHTHALATE        |              |            |            |            |
| HEXACHLOROBENZENE           |              |            |            |            |
| HEXACHLOROBUTADIENE         |              |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |              |            |            |            |

2-CHLOROTOLUENE

| LOCATION                       | SB-636       | SB-636     | SB-636     | SB-636     |
|--------------------------------|--------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-636-3-D | F-SB-636-5 | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE                    | 10/7/2009    | 10/7/2009  | 10/19/2009 | 10/19/2009 |
| HEXACHLOROETHANE               |              |            |            |            |
| ISOPHORONE                     |              |            |            |            |
| NITROBENZENE                   |              |            |            |            |
| N-NITROSODIMETHYLAMINE         |              |            |            |            |
| N-NITROSO-DI-N-PROPYLAMINE     |              |            |            |            |
| N-NITROSODIPHENYLAMINE         |              |            |            |            |
| PENTACHLOROPHENOL              |              |            |            |            |
| PHENOL                         |              |            |            |            |
| PYRIDINE                       |              |            |            |            |
| VOLATILES (UG/KG)              |              | -          | •          |            |
| 1,1,1,2-TETRACHLOROETHANE      |              |            |            |            |
| 1,1,1-TRICHLOROETHANE          |              |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |              |            |            |            |
| 1,1,2-TRICHLOROETHANE          |              |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |            |            |            |
| 1,1-DICHLOROETHANE             |              |            |            |            |
| 1,1-DICHLOROETHENE             |              |            |            |            |
| 1,1-DICHLOROPROPENE            |              |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |              |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |              |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |              |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |              |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |              |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |            |            |            |
| 1,2-DIBROMOETHANE              |              |            |            |            |
| 1,2-DICHLOROBENZENE            |              |            |            |            |
| 1,2-DICHLOROETHANE             |              |            |            |            |
| 1,2-DICHLOROPROPANE            |              |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |              |            |            |            |
| 1,3-DICHLOROBENZENE            |              |            |            |            |
| 1,3-DICHLOROPROPANE            |              |            |            |            |
| 1,3-DICHLOROPROPENE            |              |            |            |            |
| 1,4-DICHLOROBENZENE            |              |            |            |            |
| 1,4-DIOXANE                    |              |            |            |            |
| 2,2-DICHLOROPROPANE            |              |            |            |            |
| 2-BUTANONE                     |              |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |              |            |            |            |
|                                |              |            |            |            |

February 2013 Page B-325

--

--

--

--

| LOCATION                | SB-636       | SB-636     | SB-636     | SB-636     |
|-------------------------|--------------|------------|------------|------------|
| SAMPLE ID               | F-SB-636-3-D | F-SB-636-5 | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE             | 10/7/2009    | 10/7/2009  | 10/19/2009 | 10/19/2009 |
| 2-HEXANONE              |              |            |            |            |
| 4-CHLOROTOLUENE         |              |            |            |            |
| 4-ISOPROPYLTOLUENE      |              |            |            |            |
| 4-METHYL-2-PENTANONE    |              |            |            |            |
| ACETONE                 |              |            |            |            |
| BENZENE                 |              |            |            |            |
| BROMOBENZENE            |              |            |            |            |
| BROMOCHLOROMETHANE      |              |            |            |            |
| BROMODICHLOROMETHANE    |              |            |            |            |
| BROMOFORM               |              |            |            |            |
| BROMOMETHANE            |              |            |            |            |
| CARBON DISULFIDE        |              |            |            |            |
| CARBON TETRACHLORIDE    |              |            |            |            |
| CHLOROBENZENE           |              |            |            |            |
| CHLORODIBROMOMETHANE    |              |            |            |            |
| CHLOROETHANE            |              |            |            |            |
| CHLOROFORM              |              |            |            |            |
| CHLOROMETHANE           |              |            |            |            |
| CIS-1,2-DICHLOROETHENE  |              |            |            |            |
| CIS-1,3-DICHLOROPROPENE |              |            |            |            |
| DIBROMOMETHANE          |              |            |            |            |
| DICHLORODIFLUOROMETHANE |              |            |            |            |
| DIISOPROPYL ETHER       |              |            |            |            |
| ETHYL TERT-BUTYL ETHER  |              |            |            |            |
| ETHYLBENZENE            |              |            |            |            |
| FLUORODICHLOROMETHANE   |              |            |            |            |
| HEXACHLOROBUTADIENE     |              |            |            |            |
| ISOPROPYLBENZENE        |              |            |            |            |
| M+P-XYLENES             |              |            |            |            |
| METHYL TERT-BUTYL ETHER |              |            |            |            |
| METHYLENE CHLORIDE      |              |            |            |            |
| NAPHTHALENE             |              |            |            |            |
| N-BUTYLBENZENE          |              |            |            |            |
| N-PROPYLBENZENE         |              |            |            |            |
| O-XYLENE                |              |            |            |            |
| SEC-BUTYLBENZENE        |              |            |            |            |
| STYRENE                 |              |            |            |            |
| TERT-AMYL METHYL ETHER  |              |            |            |            |

| LOCATION                  | SB-636       | SB-636     | SB-636     | SB-636     |
|---------------------------|--------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-636-3-D | F-SB-636-5 | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE               | 10/7/2009    | 10/7/2009  | 10/19/2009 | 10/19/2009 |
| TERT-BUTYLBENZENE         |              |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |              |            |            |            |
| TETRACHLOROETHENE         |              |            |            |            |
| TOLUENE                   |              |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |              |            |            |            |
| TOTAL XYLENES             |              |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |              |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |              |            |            |            |
| TRICHLOROETHENE           |              |            |            |            |
| TRICHLOROFLUOROMETHANE    |              |            |            |            |
| VINYL ACETATE             |              |            |            |            |
| VINYL CHLORIDE            |              |            |            |            |
|                           |              |            |            |            |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                  |                  |                 |                 |
|----------------------------------|------------------|------------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| 2-METHYLNAPHTHALENE              |                  |                  |                 |                 |
| ACENAPHTHENE                     |                  |                  |                 |                 |
| ACENAPHTHYLENE                   |                  |                  |                 |                 |
| ANTHRACENE                       |                  |                  |                 |                 |
| BAP EQUIVALENT-HALFND            | 86.452 [MDL=1.7] | 315.41 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS               | 86.452 [MDL=1.7] | 315.41 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL               |                  |                  |                 |                 |
| BENZO(A)ANTHRACENE               | 38 J [MDL=1.2]   | 230 [MDL=1.1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 53 [MDL=1.7]     | 220 [MDL=1.5]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE             | 79 [MDL=1.5]     | 290 [MDL=1.3]    | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                  |                  |                 |                 |
| BENZO(K)FLUORANTHENE             | 20 J [MDL=2.2]   | 120 [MDL=1.9]    | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                  |                  |                 |                 |
| C1-FLUORENES                     |                  |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C2-FLUORENES                     |                  |                  |                 |                 |
| C2-NAPHTHALENES                  |                  |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                  |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                  |                  |                 |                 |
| C3-FLUORENES                     |                  |                  |                 |                 |
| C3-NAPHTHALENES                  |                  |                  |                 |                 |

| LOCATION                         | SB-636         | SB-636         | SB-636          | SB-636          |
|----------------------------------|----------------|----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-636-3-D   | F-SB-636-5     | F-SB-636-7      | F-SB-636-9      |
| SAMPLE DATE                      | 10/7/2009      | 10/7/2009      | 10/19/2009      | 10/19/2009      |
| C3-PHENANTHRENES/ANTHRACENES     |                |                |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                |                 |                 |
| C4-NAPHTHALENES                  |                |                |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                |                |                 |                 |
| CHRYSENE                         | 52 J [MDL=1.2] | 210 [MDL=1]    | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 17 [MDL=1.7]   | 29 [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                |                |                 |                 |
| FLUORENE                         |                |                |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 45 [MDL=1.9]   | 130 [MDL=1.7]  | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                |                |                 |                 |
| PHENANTHRENE                     |                |                |                 |                 |
| PYRENE                           |                |                |                 |                 |
| TOTAL PAHS                       | 304 [MDL=1.7]  | 1229 [MDL=1.5] | 0 U [MDL=1.5]   | 0 U [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | -              |                | <u> </u>        |                 |
| 4,4'-DDD                         |                |                |                 |                 |
| 4,4'-DDE                         |                |                |                 |                 |
| 4,4'-DDT                         |                |                |                 |                 |
| ALDRIN                           |                |                |                 |                 |
| ALPHA-BHC                        |                |                |                 |                 |
| ALPHA-CHLORDANE                  |                |                |                 |                 |
| AROCLOR-1016                     | 27 U [MDL=27]  | 24 U [MDL=24]  |                 |                 |
| AROCLOR-1221                     | 21 U [MDL=21]  | 18 U [MDL=18]  |                 |                 |
| AROCLOR-1232                     | 18 U [MDL=18]  | 16 U [MDL=16]  |                 |                 |
| AROCLOR-1242                     | 17 U [MDL=17]  | 15 U [MDL=15]  |                 |                 |
| AROCLOR-1248                     | 22 U [MDL=22]  | 19 U [MDL=19]  |                 |                 |
| AROCLOR-1254                     | 22 U [MDL=22]  | 19 U [MDL=19]  |                 |                 |
| AROCLOR-1260                     | 22 U [MDL=22]  | 27 J [MDL=19]  |                 |                 |
| BETA-BHC                         |                |                |                 |                 |
| DELTA-BHC                        |                |                |                 |                 |
| DIELDRIN                         |                |                |                 |                 |
| ENDOSULFAN I                     |                |                |                 |                 |
| ENDOSULFAN II                    |                |                |                 |                 |
| ENDOSULFAN SULFATE               |                |                |                 |                 |
| ENDRIN                           |                |                |                 |                 |
| ENDRIN ALDEHYDE                  |                |                |                 |                 |
| ENDRIN KETONE                    |                |                |                 |                 |
| GAMMA-BHC (LINDANE)              |                |                |                 |                 |
| GAMMA-CHLORDANE                  |                |                |                 |                 |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-636       | SB-636      | SB-636     | SB-636     |
|--------------------------------|--------------|-------------|------------|------------|
| SAMPLE ID                      | F-SB-636-3-D | F-SB-636-5  | F-SB-636-7 | F-SB-636-9 |
| SAMPLE DATE                    | 10/7/2009    | 10/7/2009   | 10/19/2009 | 10/19/2009 |
| HEPTACHLOR                     |              |             |            |            |
| HEPTACHLOR EPOXIDE             |              |             |            |            |
| METHOXYCHLOR                   |              |             |            |            |
| TOTAL AROCLOR                  | 0 U [MDL=27] | 27 [MDL=24] |            |            |
| TOTAL DDT POS                  |              |             |            |            |
| TOXAPHENE                      |              |             |            |            |
| PETROLEUM HYDROCARBONS (UG/KG) |              |             |            |            |
| DIESEL RANGE ORGANICS          |              |             |            |            |
| GASOLINE RANGE ORGANICS        |              |             |            |            |
| TPH (C09-C36)                  |              |             |            |            |
| 1                              |              |             |            |            |

| JOIL                         |             |             |             |             |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-636A     | SB-636A     | SB-636A     | SB-636A     |
| SAMPLE ID                    | F-SB-636A-1 | F-SB-636A-3 | F-SB-636A-5 | F-SB-636A-7 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |             |             |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           | •           | •           |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           | •           | •           |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
|                              |             |             |             |             |

| LOCATION                    | SB-636A     | SB-636A     | SB-636A     | SB-636A     |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-636A-1 | F-SB-636A-3 | F-SB-636A-5 | F-SB-636A-7 |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SB-636A     | SB-636A               | SB-636A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB-636A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-SB-636A-1 | F-SB-636A-3           | F-SB-636A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F-SB-636A-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/5/2009   | 11/5/2009             | 11/5/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/5/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | F-SB-636A-1 11/5/2009 | F-SB-636A-1 11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009  11/5/2009 | F-SB-636A-1 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5 |

February 2013 Page B-332

| LOCATION                | SB-636A     | SB-636A     | SB-636A     | SB-636A     |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-636A-1 | F-SB-636A-3 | F-SB-636A-5 | F-SB-636A-7 |
| SAMPLE DATE             | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| LOCATION                  | SB-636A     | SB-636A     | SB-636A     | SB-636A     |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-636A-1 | F-SB-636A-3 | F-SB-636A-5 | F-SB-636A-7 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
| TRICHLOROETHENE           |             |             |             |             |
| TRICHLOROFLUOROMETHANE    |             |             |             |             |
| VINYL ACETATE             |             |             |             |             |
| VINYL CHLORIDE            |             |             |             |             |
|                           |             |             |             |             |

# POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                 |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| 1-METHYLNAPHTHALENE              |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE              |                 |                 |                 |                 |
| ACENAPHTHENE                     |                 |                 |                 |                 |
| ACENAPHTHYLENE                   |                 |                 |                 |                 |
| ANTHRACENE                       |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND            | 409.6 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS               | 409.6 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL               |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE               | 290 [MDL=1.1]   | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] |
| BENZO(A)PYRENE                   | 270 [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE             | 400 [MDL=1.4]   | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE             |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE             | 130 [MDL=2]     | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                 |                 |
| C1-FLUORENES                     |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C2-FLUORENES                     |                 |                 |                 |                 |
| C2-NAPHTHALENES                  |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C3-FLUORENES                     |                 |                 |                 |                 |
| C3-NAPHTHALENES                  |                 |                 |                 |                 |

| LOCATION                         | SB-636A        | SB-636A         | SB-636A         | SB-636A         |
|----------------------------------|----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-636A-1    | F-SB-636A-3     | F-SB-636A-5     | F-SB-636A-7     |
| SAMPLE DATE                      | 11/5/2009      | 11/5/2009       | 11/5/2009       | 11/5/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                |                 |                 | <del></del>     |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                |                 |                 |                 |
| C4-NAPHTHALENES                  |                |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                |                 |                 |                 |
| CHRYSENE                         | 300 [MDL=1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 53 [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                |                 |                 |                 |
| FLUORENE                         |                |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 160 [MDL=1.7]  | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                |                 |                 |                 |
| PHENANTHRENE                     |                |                 |                 |                 |
| PYRENE                           |                |                 |                 |                 |
| TOTAL PAHS                       | 1603 [MDL=1.5] | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | -              |                 |                 |                 |
| 4,4'-DDD                         |                |                 |                 |                 |
| 4,4'-DDE                         |                |                 |                 |                 |
| 4,4'-DDT                         |                |                 |                 |                 |
| ALDRIN                           |                |                 |                 |                 |
| ALPHA-BHC                        |                |                 |                 |                 |
| ALPHA-CHLORDANE                  |                |                 |                 |                 |
| AROCLOR-1016                     |                |                 |                 |                 |
| AROCLOR-1221                     |                |                 |                 |                 |
| AROCLOR-1232                     |                |                 |                 |                 |
| AROCLOR-1242                     |                |                 |                 |                 |
| AROCLOR-1248                     |                |                 |                 |                 |
| AROCLOR-1254                     |                |                 |                 |                 |
| AROCLOR-1260                     |                |                 |                 |                 |
| BETA-BHC                         |                |                 |                 |                 |
| DELTA-BHC                        |                |                 |                 |                 |
| DIELDRIN                         |                |                 |                 |                 |
| ENDOSULFAN I                     |                |                 |                 |                 |
| ENDOSULFAN II                    |                |                 |                 |                 |
| ENDOSULFAN SULFATE               |                |                 |                 |                 |
| ENDRIN                           |                |                 |                 |                 |
| ENDRIN ALDEHYDE                  |                |                 |                 |                 |
| ENDRIN KETONE                    |                |                 |                 |                 |
| GAMMA-BHC (LINDANE)              |                |                 |                 |                 |
| GAMMA-CHLORDANE                  |                |                 |                 |                 |

# Block F Soil Remedial Action Plan Appendix

# SOIL

| LOCATION                       | SB-636A     | SB-636A     | SB-636A     | SB-636A     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-636A-1 | F-SB-636A-3 | F-SB-636A-5 | F-SB-636A-7 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| HEPTACHLOR                     |             |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |             |
| METHOXYCHLOR                   |             |             |             |             |
| TOTAL AROCLOR                  |             |             |             |             |
| TOTAL DDT POS                  |             |             |             |             |
| TOXAPHENE                      |             |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |             |
| TPH (C09-C36)                  |             |             |             |             |
|                                |             |             |             |             |

| SOIL                         |               |             |             |             |
|------------------------------|---------------|-------------|-------------|-------------|
| LOCATION                     | SB-636A       | SB-636B     | SB-636B     | SB-636B     |
| SAMPLE ID                    | F-SB-636A-7-D | F-SB-636B-1 | F-SB-636B-3 | F-SB-636B-5 |
| SAMPLE DATE                  | 11/5/2009     | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |               |             |             |             |
| ANTIMONY                     |               |             |             |             |
| ARSENIC                      |               |             |             |             |
| BARIUM                       |               |             |             |             |
| BERYLLIUM                    |               |             |             |             |
| CADMIUM                      |               |             |             |             |
| CHROMIUM                     |               |             |             |             |
| COBALT                       |               |             |             |             |
| COPPER                       |               |             |             |             |
| LEAD                         |               |             |             |             |
| MERCURY                      |               |             |             |             |
| MOLYBDENUM                   |               |             |             |             |
| NICKEL                       |               |             |             |             |
| SELENIUM                     |               |             |             |             |
| SILVER                       |               |             |             |             |
| THALLIUM                     |               |             |             |             |
| VANADIUM                     |               |             |             |             |
| ZINC                         |               |             |             |             |
| MISCELLANEOUS PARAMETERS     | •             |             |             |             |
| PERCENT SOLIDS (%)           |               |             |             |             |
| TOTAL SOLIDS (%)             |               |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |               |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |               |             |             |             |
| PH (S.U.)                    |               |             |             |             |
| MERCURY (METHYL) (UG/KG)     |               |             |             |             |
| SEMIVOLATILES (UG/KG)        | •             |             |             |             |
| 1,1-BIPHENYL                 |               |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |               |             |             |             |
| 1,2-DICHLOROBENZENE          |               |             |             |             |
| 1,3-DICHLOROBENZENE          |               |             |             |             |
| 1,4-DICHLOROBENZENE          |               |             |             |             |
| 1,4-DIOXANE                  |               |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |               |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |               |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |               |             |             |             |
| 2,4-DICHLOROPHENOL           |               |             |             |             |
| 2,4-DIMETHYLPHENOL           |               |             |             |             |
| 2,4-DINITROPHENOL            |               |             |             |             |
|                              |               |             |             |             |

| LOCATION                    | SB-636A       | SB-636B     | SB-636B     | SB-636B     |
|-----------------------------|---------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-636A-7-D | F-SB-636B-1 | F-SB-636B-3 | F-SB-636B-5 |
| SAMPLE DATE                 | 11/5/2009     | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2,4-DINITROTOLUENE          |               |             |             |             |
| 2,6-DINITROTOLUENE          |               |             |             |             |
| 2-CHLORONAPHTHALENE         |               |             |             |             |
| 2-CHLOROPHENOL              |               |             |             |             |
| 2-METHYLPHENOL              |               |             |             |             |
| 2-NITROANILINE              |               |             |             |             |
| 2-NITROPHENOL               |               |             |             |             |
| 3&4-METHYLPHENOL            |               |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |               |             |             |             |
| 3-NITROANILINE              |               |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |               |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |               |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |               |             |             |             |
| 4-CHLOROANILINE             |               |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |               |             |             |             |
| 4-NITROANILINE              |               |             |             |             |
| 4-NITROPHENOL               |               |             |             |             |
| ACETOPHENONE                |               |             |             |             |
| ANILINE                     |               |             |             |             |
| ATRAZINE                    |               |             |             |             |
| AZOBENZENE                  |               |             |             |             |
| BENZIDINE                   |               |             |             |             |
| BENZOIC ACID                |               |             |             |             |
| BENZYL ALCOHOL              |               |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |               |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |               |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |               |             |             |             |
| BUTYL BENZYL PHTHALATE      |               |             |             |             |
| CAPROLACTAM                 |               |             |             |             |
| CARBAZOLE                   |               |             |             |             |
| DIBENZOFURAN                |               |             |             |             |
| DIETHYL PHTHALATE           |               |             |             |             |
| DIMETHYL PHTHALATE          |               |             |             |             |
| DI-N-BUTYL PHTHALATE        |               |             |             |             |
| DI-N-OCTYL PHTHALATE        |               |             |             |             |
| HEXACHLOROBENZENE           |               |             |             |             |
| HEXACHLOROBUTADIENE         |               |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |               |             |             |             |

| SOIL                           |               | 1           | 1           |             |
|--------------------------------|---------------|-------------|-------------|-------------|
| LOCATION                       | SB-636A       | SB-636B     | SB-636B     | SB-636B     |
| SAMPLE ID                      | F-SB-636A-7-D | F-SB-636B-1 | F-SB-636B-3 | F-SB-636B-5 |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| HEXACHLOROETHANE               |               |             |             |             |
| ISOPHORONE                     |               |             |             |             |
| NITROBENZENE                   |               |             |             |             |
| N-NITROSODIMETHYLAMINE         |               |             |             |             |
| N-NITROSO-DI-N-PROPYLAMINE     |               |             |             |             |
| N-NITROSODIPHENYLAMINE         |               |             |             |             |
| PENTACHLOROPHENOL              |               |             |             |             |
| PHENOL                         |               |             |             |             |
| PYRIDINE                       |               |             |             |             |
| VOLATILES (UG/KG)              |               |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |               |             |             |             |
| 1,1,1-TRICHLOROETHANE          |               |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |               |             |             |             |
| 1,1,2-TRICHLOROETHANE          |               |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |               |             |             |             |
| 1,1-DICHLOROETHANE             |               |             |             |             |
| 1,1-DICHLOROETHENE             |               |             |             |             |
| 1,1-DICHLOROPROPENE            |               |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |               |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |               |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |               |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |               |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |               |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |               |             |             |             |
| 1,2-DIBROMOETHANE              |               |             |             |             |
| 1,2-DICHLOROBENZENE            |               |             |             |             |
| 1,2-DICHLOROETHANE             |               |             |             |             |
| 1,2-DICHLOROPROPANE            |               |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |               |             |             |             |
| 1,3-DICHLOROBENZENE            |               |             |             |             |
| 1,3-DICHLOROPROPANE            |               |             |             |             |
| 1,3-DICHLOROPROPENE            |               |             |             |             |
| 1,4-DICHLOROBENZENE            |               |             |             |             |
| 1,4-DIOXANE                    |               |             |             |             |
| 2,2-DICHLOROPROPANE            |               |             |             |             |
| 2-BUTANONE                     |               |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |               |             |             |             |
| 2-CHLOROTOLUENE                |               |             |             |             |

February 2013 Page B-339

| SB-636A       | SB-636B                 | SB-636B                    | SB-636B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-SB-636A-7-D | F-SB-636B-1             | F-SB-636B-3                | F-SB-636B-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/5/2009     | 11/5/2009               | 11/5/2009                  | 11/5/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | F-SB-636A-7-D 11/5/2009 | F-SB-636A-7-D 11/5/2009  1 | F-SB-636A-7-D 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11 |

| LOCATION                  | SB-636A       | SB-636B     | SB-636B     | SB-636B     |
|---------------------------|---------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-636A-7-D | F-SB-636B-1 | F-SB-636B-3 | F-SB-636B-5 |
| SAMPLE DATE               | 11/5/2009     | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| TERT-BUTYLBENZENE         |               |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |               |             |             |             |
| TETRACHLOROETHENE         |               |             |             |             |
| TOLUENE                   |               |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |               |             |             |             |
| TOTAL XYLENES             |               |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |               |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |               |             |             |             |
| TRICHLOROETHENE           |               |             |             |             |
| TRICHLOROFLUOROMETHANE    |               |             |             |             |
| VINYL ACETATE             |               |             |             |             |
| VINYL CHLORIDE            |               |             |             |             |
|                           |               |             |             |             |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| 1-METHYLNAPHTHALENE              |                 |                 |                 |                 |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|
| 2-METHYLNAPHTHALENE              |                 |                 |                 |                 |
| ACENAPHTHENE                     |                 |                 |                 |                 |
| ACENAPHTHYLENE                   |                 |                 |                 |                 |
| ANTHRACENE                       |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND            | 1.6 U [MDL=1.6] | 1412.29 [MDL=3] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS               | 1.6 U [MDL=1.6] | 1412.29 [MDL=3] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL               |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE               | 1.2 U [MDL=1.2] | 790 [MDL=2.2]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                   | 1.6 U [MDL=1.6] | 950 [MDL=3]     | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE             | 1.5 U [MDL=1.5] | 1200 [MDL=2.8]  | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE             |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE             | 2.1 U [MDL=2.1] | 540 [MDL=4]     | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                 |                 |
| C1-FLUORENES                     |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 |                 |
| C2-FLUORENES                     |                 |                 |                 |                 |
| C2-NAPHTHALENES                  |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                 | ŀ               |
| C3-FLUORENES                     |                 |                 |                 |                 |
| C3-NAPHTHALENES                  |                 |                 |                 |                 |

| LOCATION                         | SB-636A         | SB-636B       | SB-636B         | SB-636B         |
|----------------------------------|-----------------|---------------|-----------------|-----------------|
| SAMPLE ID                        | F-SB-636A-7-D   | F-SB-636B-1   | F-SB-636B-3     | F-SB-636B-5     |
| SAMPLE DATE                      | 11/5/2009       | 11/5/2009     | 11/5/2009       | 11/5/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |               |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |               |                 |                 |
| C4-NAPHTHALENES                  |                 |               |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |               |                 |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 890 [MDL=2.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE           | 1.6 U [MDL=1.6] | 200 [MDL=3]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                     |                 |               |                 |                 |
| FLUORENE                         |                 |               |                 |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 570 [MDL=3.5] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                      |                 |               |                 |                 |
| PHENANTHRENE                     |                 |               |                 |                 |
| PYRENE                           |                 |               |                 |                 |
| TOTAL PAHS                       | 0 U [MDL=1.6]   | 5140 [MDL=3]  | 0 U [MDL=1.5]   | 0 U [MDL=1.6]   |
| PESTICIDES/PCBS (UG/KG)          | •               |               |                 |                 |
| 4,4'-DDD                         |                 |               |                 |                 |
| 4,4'-DDE                         |                 |               |                 |                 |
| 4,4'-DDT                         |                 |               |                 |                 |
| ALDRIN                           |                 |               |                 |                 |
| ALPHA-BHC                        |                 |               |                 |                 |
| ALPHA-CHLORDANE                  |                 |               |                 |                 |
| AROCLOR-1016                     |                 |               |                 |                 |
| AROCLOR-1221                     |                 |               |                 |                 |
| AROCLOR-1232                     |                 |               |                 |                 |
| AROCLOR-1242                     |                 |               |                 |                 |
| AROCLOR-1248                     |                 |               |                 |                 |
| AROCLOR-1254                     |                 |               |                 |                 |
| AROCLOR-1260                     |                 |               |                 |                 |
| BETA-BHC                         |                 |               |                 |                 |
| DELTA-BHC                        |                 |               |                 |                 |
| DIELDRIN                         |                 |               |                 |                 |
| ENDOSULFAN I                     |                 |               |                 |                 |
| ENDOSULFAN II                    |                 |               |                 |                 |
| ENDOSULFAN SULFATE               |                 |               |                 |                 |
| ENDRIN                           |                 |               |                 |                 |
| ENDRIN ALDEHYDE                  |                 |               |                 |                 |
| ENDRIN KETONE                    |                 |               |                 |                 |
| GAMMA-BHC (LINDANE)              |                 |               |                 |                 |
| GAMMA-CHLORDANE                  |                 |               |                 |                 |

| LOCATION                       | SB-636A       | SB-636B     | SB-636B     | SB-636B     |
|--------------------------------|---------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-636A-7-D | F-SB-636B-1 | F-SB-636B-3 | F-SB-636B-5 |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| HEPTACHLOR                     |               |             |             |             |
| HEPTACHLOR EPOXIDE             |               |             |             |             |
| METHOXYCHLOR                   |               |             |             |             |
| TOTAL AROCLOR                  |               |             |             |             |
| TOTAL DDT POS                  |               |             |             |             |
| TOXAPHENE                      |               |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |               |             |             |             |
| DIESEL RANGE ORGANICS          |               |             |             |             |
| GASOLINE RANGE ORGANICS        |               |             |             |             |
| TPH (C09-C36)                  |               |             |             |             |
|                                |               |             |             |             |

| JOIL                         | ·           |             |             | 1           |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-636B     | SB-636C     | SB-636C     | SB-636C     |
| SAMPLE ID                    | F-SB-636B-7 | F-SB-636C-1 | F-SB-636C-3 | F-SB-636C-5 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |             |             |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           |             | •           |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           | •           | •           |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |

| LOCATION                    | SB-636B     | SB-636C     | SB-636C     | SB-636C     |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-636B-7 | F-SB-636C-1 | F-SB-636C-3 | F-SB-636C-5 |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2,4-DINITROTOLUENE          |             |             |             |             |
| 2,6-DINITROTOLUENE          |             |             |             |             |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |

| SB-636B     | SB-636C               | SB-636C               | SB-636C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-SB-636B-7 | F-SB-636C-1           | F-SB-636C-3           | F-SB-636C-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/5/2009   | 11/5/2009             | 11/5/2009             | 11/5/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | •                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | F-SB-636B-7 11/5/2009 | F-SB-636B-7 11/5/2009 | F-SB-636C-1 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5 |

February 2013 Page B-346

| LOCATION                | SB-636B     | SB-636C     | SB-636C     | SB-636C     |
|-------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID               | F-SB-636B-7 | F-SB-636C-1 | F-SB-636C-3 | F-SB-636C-5 |
| SAMPLE DATE             | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2-HEXANONE              |             |             |             |             |
| 4-CHLOROTOLUENE         |             |             |             |             |
| 4-ISOPROPYLTOLUENE      |             |             |             |             |
| 4-METHYL-2-PENTANONE    |             |             |             |             |
| ACETONE                 |             |             |             |             |
| BENZENE                 |             |             |             |             |
| BROMOBENZENE            |             |             |             |             |
| BROMOCHLOROMETHANE      |             |             |             |             |
| BROMODICHLOROMETHANE    |             |             |             |             |
| BROMOFORM               |             |             |             |             |
| BROMOMETHANE            |             |             |             |             |
| CARBON DISULFIDE        |             |             |             |             |
| CARBON TETRACHLORIDE    |             |             |             |             |
| CHLOROBENZENE           |             |             |             |             |
| CHLORODIBROMOMETHANE    |             |             |             |             |
| CHLOROETHANE            |             |             |             |             |
| CHLOROFORM              |             |             |             |             |
| CHLOROMETHANE           |             |             |             |             |
| CIS-1,2-DICHLOROETHENE  |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE |             |             |             |             |
| DIBROMOMETHANE          |             |             |             |             |
| DICHLORODIFLUOROMETHANE |             |             |             |             |
| DIISOPROPYL ETHER       |             |             |             |             |
| ETHYL TERT-BUTYL ETHER  |             |             |             |             |
| ETHYLBENZENE            |             |             |             |             |
| FLUORODICHLOROMETHANE   |             |             |             |             |
| HEXACHLOROBUTADIENE     |             |             |             |             |
| ISOPROPYLBENZENE        |             |             |             |             |
| M+P-XYLENES             |             |             |             |             |
| METHYL TERT-BUTYL ETHER |             |             |             |             |
| METHYLENE CHLORIDE      |             |             |             |             |
| NAPHTHALENE             |             |             |             |             |
| N-BUTYLBENZENE          |             |             |             |             |
| N-PROPYLBENZENE         |             |             |             |             |
| O-XYLENE                |             |             |             |             |
| SEC-BUTYLBENZENE        |             |             |             |             |
| STYRENE                 |             |             |             |             |
| TERT-AMYL METHYL ETHER  |             |             |             |             |

| SB-636B     | SB-636C               | SB-636C               | SB-636C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-SB-636B-7 | F-SB-636C-1           | F-SB-636C-3           | F-SB-636C-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/5/2009   | 11/5/2009             | 11/5/2009             | 11/5/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | F-SB-636B-7 11/5/2009 | F-SB-636B-7 11/5/2009 | F-SB-636B-7 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5/2009 11/5 |

## POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| ,                                |                 |                 |                  |                  |
|----------------------------------|-----------------|-----------------|------------------|------------------|
| 1-METHYLNAPHTHALENE              |                 |                 |                  |                  |
| 2-METHYLNAPHTHALENE              |                 |                 |                  |                  |
| ACENAPHTHENE                     |                 |                 |                  |                  |
| ACENAPHTHYLENE                   |                 |                 |                  |                  |
| ANTHRACENE                       |                 |                 |                  |                  |
| BAP EQUIVALENT-HALFND            | 1.5 U [MDL=1.5] | 7120.2 [MDL=10] | 389.77 [MDL=1.5] | 38.412 [MDL=1.5] |
| BAP EQUIVALENT-POS               | 1.5 U [MDL=1.5] | 7120.2 [MDL=10] | 389.77 [MDL=1.5] | 37.662 [MDL=1.5] |
| BAP EQUIVALENT-UCL               |                 |                 |                  |                  |
| BENZO(A)ANTHRACENE               | 1.1 U [MDL=1.1] | 5700 [MDL=7.4]  | 310 [MDL=1.1]    | 24 [MDL=1.1]     |
| BENZO(A)PYRENE                   | 1.5 U [MDL=1.5] | 4800 [MDL=10]   | 260 [MDL=1.5]    | 30 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE             | 1.4 U [MDL=1.4] | 7000 [MDL=9.3]  | 350 [MDL=1.4]    | 29 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE             |                 |                 |                  |                  |
| BENZO(K)FLUORANTHENE             | 2.0 U [MDL=2]   | 2500 [MDL=13]   | 150 [MDL=2]      | 14 [MDL=2]       |
| C1-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES         |                 |                 |                  |                  |
| C1-FLUORENES                     |                 |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C2-FLUORENES                     |                 |                 |                  |                  |
| C2-NAPHTHALENES                  |                 |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES     |                 |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES |                 |                 |                  |                  |
| C3-FLUORENES                     |                 |                 |                  |                  |
| C3-NAPHTHALENES                  |                 |                 |                  |                  |

| LOCATION                         | SB-636B         | SB-636C        | SB-636C        | SB-636C         |
|----------------------------------|-----------------|----------------|----------------|-----------------|
| SAMPLE ID                        | F-SB-636B-7     | F-SB-636C-1    | F-SB-636C-3    | F-SB-636C-5     |
| SAMPLE DATE                      | 11/5/2009       | 11/5/2009      | 11/5/2009      | 11/5/2009       |
| C3-PHENANTHRENES/ANTHRACENES     |                 |                |                |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES |                 |                |                |                 |
| C4-NAPHTHALENES                  |                 |                |                |                 |
| C4-PHENANTHRENES/ANTHRACENES     |                 |                |                |                 |
| CHRYSENE                         | 1.1 U [MDL=1.1] | 5200 [MDL=7]   | 270 [MDL=1.1]  | 22 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE           | 1.5 U [MDL=1.5] | 750 [MDL=10]   | 48 [MDL=1.5]   | 1.5 U [MDL=1.5] |
| FLUORANTHENE                     |                 |                |                |                 |
| FLUORENE                         |                 |                |                |                 |
| INDENO(1,2,3-CD)PYRENE           | 1.8 U [MDL=1.8] | 2700 [MDL=12]  | 140 [MDL=1.8]  | 22 [MDL=1.8]    |
| NAPHTHALENE                      |                 |                |                |                 |
| PHENANTHRENE                     |                 |                |                |                 |
| PYRENE                           |                 |                |                |                 |
| TOTAL PAHS                       | 0 U [MDL=1.5]   | 28650 [MDL=10] | 1528 [MDL=1.5] | 141 [MDL=1.5]   |
| PESTICIDES/PCBS (UG/KG)          | •               |                |                |                 |
| 4,4'-DDD                         |                 |                |                |                 |
| 4,4'-DDE                         |                 |                |                |                 |
| 4,4'-DDT                         |                 |                |                |                 |
| ALDRIN                           |                 |                |                |                 |
| ALPHA-BHC                        |                 |                |                |                 |
| ALPHA-CHLORDANE                  |                 |                |                |                 |
| AROCLOR-1016                     |                 |                |                |                 |
| AROCLOR-1221                     |                 |                |                |                 |
| AROCLOR-1232                     |                 |                |                |                 |
| AROCLOR-1242                     |                 |                |                |                 |
| AROCLOR-1248                     |                 |                |                |                 |
| AROCLOR-1254                     |                 |                |                |                 |
| AROCLOR-1260                     |                 |                |                |                 |
| BETA-BHC                         |                 |                |                |                 |
| DELTA-BHC                        |                 |                |                |                 |
| DIELDRIN                         |                 |                |                |                 |
| ENDOSULFAN I                     |                 |                |                |                 |
| ENDOSULFAN II                    |                 |                |                |                 |
| ENDOSULFAN SULFATE               |                 |                |                |                 |
| ENDRIN                           |                 |                |                |                 |
| ENDRIN ALDEHYDE                  |                 |                |                |                 |
| ENDRIN KETONE                    |                 |                |                |                 |
| GAMMA-BHC (LINDANE)              |                 |                |                |                 |
| GAMMA-CHLORDANE                  |                 |                |                |                 |

#### SOIL

| LOCATION                       | SB-636B     | SB-636C     | SB-636C     | SB-636C     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-636B-7 | F-SB-636C-1 | F-SB-636C-3 | F-SB-636C-5 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| HEPTACHLOR                     |             |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |             |
| METHOXYCHLOR                   |             |             |             |             |
| TOTAL AROCLOR                  |             |             |             |             |
| TOTAL DDT POS                  |             |             |             |             |
| TOXAPHENE                      |             |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |             |
| TPH (C09-C36)                  |             |             |             |             |
|                                |             |             |             |             |

## SOIL

| SUIL                         |             |             |             |             |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-636C     | SB-636D     | SB-636D     | SB-636D     |
| SAMPLE ID                    | F-SB-636C-7 | F-SB-636D-1 | F-SB-636D-3 | F-SB-636D-5 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               | •           | •           | -           | •           |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             | •           |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           | •           |             | •           |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |

| LOCATION SAMPLE ID SAMPLE DATE  2-CHLORONAPHTHALENE 2-CHLOROPHENOL  2-METHYLPHENOL  2-NITROANILINE  2-NITROPHENOL  3&4-METHYLPHENOL  3,3'-DICHLOROBENZIDINE  3-NITROANILINE  4,6-DINITRO-2-METHYLPHENOL  4-BROMOPHENYL PHENYL ETHER | SB-636C F-SB-636C-7 11/5/2009 | SB-636D F-SB-636D-1 11/5/2009 | SB-636D F-SB-636D-3 11/5/2009 | SB-636D F-SB-636D-5 11/5/2009 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| SAMPLE DATE  2-CHLORONAPHTHALENE  2-CHLOROPHENOL  2-METHYLPHENOL  2-NITROANILINE  2-NITROPHENOL  3&4-METHYLPHENOL  3,3'-DICHLOROBENZIDINE  3-NITROANILINE  4,6-DINITRO-2-METHYLPHENOL                                               | 11/5/2009                     |                               | <br><br><br><br><br><br>      |                               |
| 2-CHLORONAPHTHALENE 2-CHLOROPHENOL 2-METHYLPHENOL 2-NITROANILINE 2-NITROPHENOL 3&4-METHYLPHENOL 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                    |                               | <br><br><br><br><br><br>      |                               |                               |
| 2-CHLOROPHENOL 2-METHYLPHENOL 2-NITROANILINE 2-NITROPHENOL 3&4-METHYLPHENOL 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                                        | <br><br><br><br><br>          |                               |                               |                               |
| 2-METHYLPHENOL 2-NITROANILINE 2-NITROPHENOL 3&4-METHYLPHENOL 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                                                       | <br><br><br><br><br>          |                               | <br><br><br>                  | <br><br><br><br>              |
| 2-NITROANILINE 2-NITROPHENOL 3&4-METHYLPHENOL 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                                                                      | <br><br><br><br>              | <br><br><br><br>              | <br><br><br>                  | <br><br>                      |
| 2-NITROPHENOL  3&4-METHYLPHENOL  3,3'-DICHLOROBENZIDINE  3-NITROANILINE  4,6-DINITRO-2-METHYLPHENOL                                                                                                                                 | <br><br><br><br>              | <br><br><br>                  | <br><br>                      | <br><br>                      |
| 3&4-METHYLPHENOL 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                                                                                                   | <br><br><br>                  | <br><br>                      |                               |                               |
| 3,3'-DICHLOROBENZIDINE 3-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL                                                                                                                                                                    | <br><br>                      |                               |                               |                               |
| 3-NITROANILINE<br>4,6-DINITRO-2-METHYLPHENOL                                                                                                                                                                                        | <br><br>                      |                               |                               |                               |
| 4,6-DINITRO-2-METHYLPHENOL                                                                                                                                                                                                          | <br>                          |                               |                               |                               |
|                                                                                                                                                                                                                                     |                               |                               |                               |                               |
| 4-BROMOPHENYL PHENYL ETHER                                                                                                                                                                                                          |                               |                               |                               |                               |
|                                                                                                                                                                                                                                     |                               |                               |                               |                               |
| 4-CHLORO-3-METHYLPHENOL                                                                                                                                                                                                             |                               |                               |                               |                               |
| 4-CHLOROANILINE                                                                                                                                                                                                                     |                               |                               |                               |                               |
| 4-CHLOROPHENYL PHENYL ETHER                                                                                                                                                                                                         |                               |                               |                               |                               |
| 4-NITROANILINE                                                                                                                                                                                                                      |                               |                               |                               |                               |
| 4-NITROPHENOL                                                                                                                                                                                                                       |                               |                               |                               |                               |
| ACETOPHENONE                                                                                                                                                                                                                        |                               |                               |                               |                               |
| ANILINE                                                                                                                                                                                                                             |                               |                               |                               |                               |
| ATRAZINE                                                                                                                                                                                                                            |                               |                               |                               |                               |
| AZOBENZENE                                                                                                                                                                                                                          |                               |                               |                               |                               |
| BENZIDINE                                                                                                                                                                                                                           |                               |                               |                               |                               |
| BENZOIC ACID                                                                                                                                                                                                                        |                               |                               |                               |                               |
| BENZYL ALCOHOL                                                                                                                                                                                                                      |                               |                               |                               |                               |
| BIS(2-CHLOROETHOXY)METHANE                                                                                                                                                                                                          |                               |                               |                               |                               |
| BIS(2-CHLOROETHYL)ETHER                                                                                                                                                                                                             |                               |                               |                               |                               |
| BIS(2-ETHYLHEXYL)PHTHALATE                                                                                                                                                                                                          |                               |                               |                               |                               |
| BUTYL BENZYL PHTHALATE                                                                                                                                                                                                              |                               |                               |                               |                               |
| CAPROLACTAM                                                                                                                                                                                                                         |                               |                               |                               |                               |
| CARBAZOLE                                                                                                                                                                                                                           |                               |                               |                               |                               |
| DIBENZOFURAN                                                                                                                                                                                                                        |                               |                               |                               |                               |
| DIETHYL PHTHALATE                                                                                                                                                                                                                   |                               |                               |                               |                               |
| DIMETHYL PHTHALATE                                                                                                                                                                                                                  |                               |                               |                               |                               |
| DI-N-BUTYL PHTHALATE                                                                                                                                                                                                                |                               |                               |                               |                               |
| DI-N-OCTYL PHTHALATE                                                                                                                                                                                                                |                               |                               |                               |                               |
| HEXACHLOROBENZENE                                                                                                                                                                                                                   |                               |                               |                               |                               |
| HEXACHLOROBUTADIENE                                                                                                                                                                                                                 |                               |                               |                               |                               |
| HEXACHLOROCYCLOPENTADIENE                                                                                                                                                                                                           |                               |                               |                               |                               |
| HEXACHLOROETHANE                                                                                                                                                                                                                    |                               |                               |                               |                               |
| ISOPHORONE                                                                                                                                                                                                                          |                               |                               |                               |                               |
| NITROBENZENE                                                                                                                                                                                                                        |                               |                               |                               |                               |
| N-NITROSODIMETHYLAMINE                                                                                                                                                                                                              |                               |                               |                               |                               |

## SOIL

| LOCATION                       | SB-636C     | SB-636D     | SB-636D     | SB-636D     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-636C-7 | F-SB-636D-1 | F-SB-636D-3 | F-SB-636D-5 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| SOIL                      |             |             |             |             |
|---------------------------|-------------|-------------|-------------|-------------|
| LOCATION                  | SB-636C     | SB-636D     | SB-636D     | SB-636D     |
| SAMPLE ID                 | F-SB-636C-7 | F-SB-636D-1 | F-SB-636D-3 | F-SB-636D-5 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

## SOIL

| LOCATION                                 | SB-636C         | SB-636D          | SB-636D          | SB-636D         |
|------------------------------------------|-----------------|------------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-636C-7     | F-SB-636D-1      | F-SB-636D-3      | F-SB-636D-5     |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009        | 11/5/2009        | 11/5/2009       |
| TRICHLOROETHENE                          |                 |                  |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                  |                  |                 |
| VINYL ACETATE                            |                 |                  |                  |                 |
| VINYL CHLORIDE                           |                 |                  |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                  |                  |                 |
| 1-METHYLNAPHTHALENE                      |                 |                  |                  |                 |
| 2-METHYLNAPHTHALENE                      |                 |                  |                  |                 |
| ACENAPHTHENE                             |                 |                  |                  |                 |
| ACENAPHTHYLENE                           |                 |                  |                  |                 |
| ANTHRACENE                               |                 |                  |                  |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 6756.9 [MDL=9.5] | 33.561 [MDL=1.7] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 6756.9 [MDL=9.5] | 32.711 [MDL=1.7] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                  |                  |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 4900 [MDL=7]     | 29 [MDL=1.2]     | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 4700 [MDL=9.5]   | 25 [MDL=1.7]     | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 6200 [MDL=8.8]   | 35 [MDL=1.5]     | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                  |                  |                 |
| BENZO(K)FLUORANTHENE                     | 1.9 U [MDL=1.9] | 2200 [MDL=12]    | 8.6 [MDL=2.2]    | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                  |                  |                 |
| C1-FLUORENES                             |                 |                  |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |                 |
| C2-FLUORENES                             |                 |                  |                  |                 |
| C2-NAPHTHALENES                          |                 |                  |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |                 |
| C3-FLUORENES                             |                 |                  |                  |                 |
| C3-NAPHTHALENES                          |                 |                  |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                  |                 |
| C4-NAPHTHALENES                          |                 |                  |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                  |                  |                 |
| CHRYSENE                                 | 1.0 U [MDL=1]   | 4900 [MDL=6.6]   | 25 [MDL=1.1]     | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 660 [MDL=9.5]    | 1.7 U [MDL=1.7]  | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                  |                  |                 |
| FLUORENE                                 |                 |                  |                  |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.7 U [MDL=1.7] | 2600 [MDL=11]    | 12 [MDL=1.9]     | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                 |                  |                  |                 |

## SOIL

| LOCATION                       | SB-636C       | SB-636D         | SB-636D                                        | SB-636D       |
|--------------------------------|---------------|-----------------|------------------------------------------------|---------------|
| SAMPLE ID                      | F-SB-636C-7   | F-SB-636D-1     | F-SB-636D-3                                    | F-SB-636D-5   |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009       | 11/5/2009                                      | 11/5/2009     |
| PHENANTHRENE                   |               |                 |                                                |               |
| PYRENE                         |               |                 |                                                |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 26160 [MDL=9.5] | 134.6 [MDL=1.7]                                | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             |                 | •                                              |               |
| 4,4'-DDD                       |               |                 |                                                |               |
| 4,4'-DDE                       |               |                 |                                                |               |
| 4,4'-DDT                       |               |                 |                                                |               |
| ALDRIN                         |               |                 |                                                |               |
| ALPHA-BHC                      |               |                 |                                                |               |
| ALPHA-CHLORDANE                |               |                 |                                                |               |
| AROCLOR-1016                   |               |                 |                                                |               |
| AROCLOR-1221                   |               |                 |                                                |               |
| AROCLOR-1232                   |               |                 |                                                |               |
| AROCLOR-1242                   |               |                 |                                                |               |
| AROCLOR-1248                   |               |                 |                                                |               |
| AROCLOR-1254                   |               |                 |                                                |               |
| AROCLOR-1260                   |               |                 |                                                |               |
| BETA-BHC                       |               |                 |                                                |               |
| DELTA-BHC                      |               |                 |                                                |               |
| DIELDRIN                       |               |                 |                                                |               |
| ENDOSULFAN I                   |               |                 |                                                |               |
| ENDOSULFAN II                  |               |                 |                                                |               |
| ENDOSULFAN SULFATE             |               |                 |                                                |               |
| ENDRIN                         |               |                 |                                                |               |
| ENDRIN ALDEHYDE                |               |                 |                                                |               |
| ENDRIN KETONE                  |               |                 |                                                |               |
| GAMMA-BHC (LINDANE)            |               |                 |                                                |               |
| GAMMA-CHLORDANE                |               |                 |                                                |               |
| HEPTACHLOR                     |               |                 |                                                |               |
| HEPTACHLOR EPOXIDE             |               |                 |                                                |               |
| METHOXYCHLOR                   |               |                 |                                                |               |
| TOTAL AROCLOR                  |               |                 |                                                |               |
| TOTAL DDT POS                  |               |                 |                                                |               |
| TOXAPHENE                      |               |                 |                                                |               |
| PETROLEUM HYDROCARBONS (UG/KG) | ·             | •               | <u>.                                      </u> |               |
| DIESEL RANGE ORGANICS          |               |                 |                                                |               |
| GASOLINE RANGE ORGANICS        |               |                 |                                                |               |
| TPH (C09-C36)                  |               |                 |                                                |               |
|                                |               |                 |                                                |               |

## SOIL

| SOIL                         |             |            |            |            |
|------------------------------|-------------|------------|------------|------------|
| LOCATION                     | SB-636D     | SB-637     | SB-637     | SB-637     |
| SAMPLE ID                    | F-SB-636D-7 | F-SB-637-1 | F-SB-637-3 | F-SB-637-5 |
| SAMPLE DATE                  | 11/5/2009   | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| METALS (MG/KG)               |             |            |            |            |
| ANTIMONY                     |             |            |            |            |
| ARSENIC                      |             |            |            |            |
| BARIUM                       |             |            |            |            |
| BERYLLIUM                    |             |            |            |            |
| CADMIUM                      |             |            |            |            |
| CHROMIUM                     |             |            |            |            |
| COBALT                       |             |            |            |            |
| COPPER                       |             |            |            |            |
| LEAD                         |             |            |            |            |
| MERCURY                      |             |            |            |            |
| MOLYBDENUM                   |             |            |            |            |
| NICKEL                       |             |            |            |            |
| SELENIUM                     |             |            |            |            |
| SILVER                       |             |            |            |            |
| THALLIUM                     |             |            |            |            |
| VANADIUM                     |             |            |            |            |
| ZINC                         |             |            |            |            |
| MISCELLANEOUS PARAMETERS     | •           | •          |            | •          |
| PERCENT SOLIDS (%)           |             |            |            |            |
| TOTAL SOLIDS (%)             |             |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |            |            |            |
| PH (S.U.)                    |             |            |            |            |
| MERCURY (METHYL) (UG/KG)     |             |            |            |            |
| SEMIVOLATILES (UG/KG)        | •           |            | •          |            |
| 1,1-BIPHENYL                 |             |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |             |            |            |            |
| 1,2-DICHLOROBENZENE          |             |            |            |            |
| 1,3-DICHLOROBENZENE          |             |            |            |            |
| 1,4-DICHLOROBENZENE          |             |            |            |            |
| 1,4-DIOXANE                  |             |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |             |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |             |            |            |            |
| 2,4-DICHLOROPHENOL           |             |            |            |            |
| 2,4-DIMETHYLPHENOL           |             |            |            |            |
| 2,4-DINITROPHENOL            |             |            |            |            |
| 2,4-DINITROTOLUENE           |             |            |            |            |
| 2,6-DINITROTOLUENE           |             |            |            |            |
| 7- 111-1                     |             | 1          |            | 1          |

| SOIL                        |             | _          |            |            |
|-----------------------------|-------------|------------|------------|------------|
| LOCATION                    | SB-636D     | SB-637     | SB-637     | SB-637     |
| SAMPLE ID                   | F-SB-636D-7 | F-SB-637-1 | F-SB-637-3 | F-SB-637-5 |
| SAMPLE DATE                 | 11/5/2009   | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| 2-CHLORONAPHTHALENE         |             |            |            |            |
| 2-CHLOROPHENOL              |             |            |            |            |
| 2-METHYLPHENOL              |             |            |            |            |
| 2-NITROANILINE              |             |            |            |            |
| 2-NITROPHENOL               |             |            |            |            |
| 3&4-METHYLPHENOL            |             |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |             |            |            |            |
| 3-NITROANILINE              |             |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |             |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |             |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |             |            |            |            |
| 4-CHLOROANILINE             |             |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |             |            |            |            |
| 4-NITROANILINE              |             |            |            |            |
| 4-NITROPHENOL               |             |            |            |            |
| ACETOPHENONE                |             |            |            |            |
| ANILINE                     |             |            |            |            |
| ATRAZINE                    |             |            |            |            |
| AZOBENZENE                  |             |            |            |            |
| BENZIDINE                   |             |            |            |            |
| BENZOIC ACID                |             |            |            |            |
| BENZYL ALCOHOL              |             |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |             |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |            |            |            |
| BUTYL BENZYL PHTHALATE      |             |            |            |            |
| CAPROLACTAM                 |             |            |            |            |
| CARBAZOLE                   |             |            |            |            |
| DIBENZOFURAN                |             |            |            |            |
| DIETHYL PHTHALATE           |             |            |            |            |
| DIMETHYL PHTHALATE          |             |            |            |            |
| DI-N-BUTYL PHTHALATE        |             |            |            |            |
| DI-N-OCTYL PHTHALATE        |             |            |            |            |
| HEXACHLOROBENZENE           |             |            |            |            |
| HEXACHLOROBUTADIENE         |             |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |             |            |            |            |
| HEXACHLOROETHANE            |             |            |            |            |
| ISOPHORONE                  |             |            |            |            |
| NITROBENZENE                |             |            |            |            |
| N-NITROSODIMETHYLAMINE      |             |            |            |            |
|                             | -           | •          | •          | -          |

#### SOIL

| LOCATION                       | SB-636D     | SB-637     | SB-637     | SB-637      |
|--------------------------------|-------------|------------|------------|-------------|
| SAMPLE ID                      | F-SB-636D-7 | F-SB-637-1 | F-SB-637-3 | F-SB-637-5  |
| SAMPLE DATE                    |             | 10/7/2009  | 10/7/2009  | 10/7/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     | 11/5/2009   |            |            |             |
| N-NITROSODIPHENYLAMINE         |             |            |            |             |
|                                |             |            |            |             |
| PENTACHLOROPHENOL              |             |            | -          |             |
| PHENOL                         |             |            |            |             |
| PYRIDINE  YOLATH FO (HOWA)     |             |            |            |             |
| VOLATILES (UG/KG)              |             |            |            |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |            |            |             |
| 1,1,1-TRICHLOROETHANE          |             |            |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |            |            |             |
| 1,1,2-TRICHLOROETHANE          |             |            |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |            |            |             |
| 1,1-DICHLOROETHANE             |             |            |            |             |
| 1,1-DICHLOROETHENE             |             |            |            |             |
| 1,1-DICHLOROPROPENE            |             |            |            | <del></del> |
| 1,2,3-TRICHLOROBENZENE         |             |            |            |             |
| 1,2,3-TRICHLOROPROPANE         |             |            |            |             |
| 1,2,3-TRIMETHYLBENZENE         |             |            |            |             |
| 1,2,4-TRICHLOROBENZENE         |             |            |            |             |
| 1,2,4-TRIMETHYLBENZENE         |             |            |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |            |            |             |
| 1,2-DIBROMOETHANE              |             |            |            |             |
| 1,2-DICHLOROBENZENE            |             |            |            |             |
| 1,2-DICHLOROETHANE             |             |            |            |             |
| 1,2-DICHLOROPROPANE            |             |            |            |             |
| 1,3,5-TRIMETHYLBENZENE         |             |            |            |             |
| 1,3-DICHLOROBENZENE            |             |            |            |             |
| 1,3-DICHLOROPROPANE            |             |            |            |             |
| 1,3-DICHLOROPROPENE            |             |            |            |             |
| 1,4-DICHLOROBENZENE            |             |            |            |             |
| 1,4-DIOXANE                    |             |            |            |             |
| 2,2-DICHLOROPROPANE            |             |            |            |             |
| 2-BUTANONE                     |             |            |            |             |
| 2-CHLOROETHYL VINYL ETHER      |             |            |            |             |
| 2-CHLOROTOLUENE                |             |            |            |             |
| 2-HEXANONE                     |             |            |            |             |
| 4-CHLOROTOLUENE                |             |            |            |             |
| 4-ISOPROPYLTOLUENE             |             |            |            |             |
| 4-METHYL-2-PENTANONE           |             |            |            |             |
| ACETONE                        |             |            |            |             |
| BENZENE                        |             |            |            |             |
| , <del></del>                  | •           |            |            |             |

## SOIL

| LOCATION                  | SB-636D     | SB-637     | SB-637     | SB-637     |
|---------------------------|-------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-636D-7 | F-SB-637-1 | F-SB-637-3 | F-SB-637-5 |
| SAMPLE DATE               | 11/5/2009   | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| BROMOBENZENE              |             |            |            |            |
| BROMOCHLOROMETHANE        |             |            |            |            |
| BROMODICHLOROMETHANE      |             |            |            |            |
| BROMOFORM                 |             |            |            |            |
| BROMOMETHANE              |             |            |            |            |
| CARBON DISULFIDE          |             |            |            |            |
| CARBON TETRACHLORIDE      |             |            |            |            |
| CHLOROBENZENE             |             |            |            |            |
| CHLORODIBROMOMETHANE      |             |            |            |            |
| CHLOROETHANE              |             |            |            |            |
| CHLOROFORM                |             |            |            |            |
| CHLOROMETHANE             |             |            |            |            |
| CIS-1,2-DICHLOROETHENE    |             |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |             |            |            |            |
| DIBROMOMETHANE            |             |            |            |            |
| DICHLORODIFLUOROMETHANE   |             |            |            |            |
| DIISOPROPYL ETHER         |             |            |            |            |
| ETHYL TERT-BUTYL ETHER    |             |            |            |            |
| ETHYLBENZENE              |             |            |            |            |
| FLUORODICHLOROMETHANE     |             |            |            |            |
| HEXACHLOROBUTADIENE       |             |            |            |            |
| ISOPROPYLBENZENE          |             |            |            |            |
| M+P-XYLENES               |             |            |            |            |
| METHYL TERT-BUTYL ETHER   |             |            |            |            |
| METHYLENE CHLORIDE        |             |            |            |            |
| NAPHTHALENE               |             |            |            |            |
| N-BUTYLBENZENE            |             |            |            |            |
| N-PROPYLBENZENE           |             |            |            |            |
| O-XYLENE                  |             |            |            |            |
| SEC-BUTYLBENZENE          |             |            |            |            |
| STYRENE                   |             |            |            |            |
| TERT-AMYL METHYL ETHER    |             |            |            |            |
| TERT-BUTYLBENZENE         |             |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |             |            |            |            |
| TETRACHLOROETHENE         |             |            |            |            |
| TOLUENE                   |             |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |             |            |            |            |
| TOTAL XYLENES             |             |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |             |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |             |            |            |            |

## SOIL

NAPHTHALENE

| LOCATION                                 | SB-636D         | SB-637            | SB-637           | SB-637          |
|------------------------------------------|-----------------|-------------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-636D-7     | F-SB-637-1        | F-SB-637-3       | F-SB-637-5      |
| SAMPLE DATE                              | 11/5/2009       | 10/7/2009         | 10/7/2009        | 10/7/2009       |
| TRICHLOROETHENE                          |                 |                   |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                  |                 |
| VINYL ACETATE                            |                 |                   |                  |                 |
| VINYL CHLORIDE                           |                 |                   |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                  |                 |
| -METHYLNAPHTHALENE                       |                 |                   |                  |                 |
| 2-METHYLNAPHTHALENE                      |                 |                   |                  |                 |
| ACENAPHTHENE                             |                 |                   |                  |                 |
| ACENAPHTHYLENE                           |                 |                   |                  |                 |
| ANTHRACENE                               |                 |                   |                  | -               |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1185.74 [MDL=1.5] | 3.7015 [MDL=1.6] | 68.15 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1185.74 [MDL=1.5] | 2.001 [MDL=1.6]  | 67.35 [MDL=1.6] |
| SAP EQUIVALENT-UCL                       |                 |                   |                  |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 900 [MDL=1.1]     | 8.9 [MDL=1.2]    | 54 [MDL=1.1]    |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 820 [MDL=1.5]     | 1.6 U [MDL=1.6]  | 51 [MDL=1.6]    |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 1100 [MDL=1.4]    | 11 [MDL=1.5]     | 79 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                  |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 390 [MDL=1.9]     | 2.1 U [MDL=2.1]  | 28 [MDL=2.1]    |
| 1-CHRYSENES/BENZO(A)ANTHRACENES          |                 |                   |                  |                 |
| 1-FLUORANTHENES/PYRENES                  |                 |                   |                  |                 |
| 1-FLUORENES                              |                 |                   |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C2-FLUORENES                             |                 |                   |                  |                 |
| C2-NAPHTHALENES                          |                 |                   |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C3-FLUORENES                             |                 |                   |                  |                 |
| C3-NAPHTHALENES                          |                 |                   |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C4-NAPHTHALENES                          |                 |                   |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 840 [MDL=1]       | 11 [MDL=1.1]     | 70 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6] | 120 [MDL=1.5]     | 1.6 U [MDL=1.6]  | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                 |                   |                  |                 |
| FLUORENE                                 |                 |                   |                  |                 |
| NDENO(1,2,3-CD)PYRENE                    | 1.8 U [MDL=1.8] | 410 [MDL=1.7]     | 1.8 U [MDL=1.8]  | 27 [MDL=1.8]    |
| NADUTUAL ENE                             |                 |                   |                  |                 |

## SOIL

| LOCATION                       | SB-636D       | SB-637         | SB-637         | SB-637        |
|--------------------------------|---------------|----------------|----------------|---------------|
| SAMPLE ID                      | F-SB-636D-7   | F-SB-637-1     | F-SB-637-3     | F-SB-637-5    |
| SAMPLE DATE                    | 11/5/2009     | 10/7/2009      | 10/7/2009      | 10/7/2009     |
| PHENANTHRENE                   |               |                |                | ī             |
| PYRENE                         |               |                |                |               |
| TOTAL PAHS                     | 0 U [MDL=1.6] | 4580 [MDL=1.5] | 30.9 [MDL=1.6] | 309 [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |               |                |                |               |
| 4,4'-DDD                       |               |                |                |               |
| 4,4'-DDE                       |               |                |                |               |
| 4,4'-DDT                       |               |                |                |               |
| ALDRIN                         |               |                |                |               |
| ALPHA-BHC                      |               |                |                |               |
| ALPHA-CHLORDANE                |               |                |                |               |
| AROCLOR-1016                   |               | 24 U [MDL=24]  | 26 U [MDL=26]  | 25 U [MDL=25] |
| AROCLOR-1221                   |               | 18 U [MDL=18]  | 19 U [MDL=19]  | 19 U [MDL=19] |
| AROCLOR-1232                   |               | 16 U [MDL=16]  | 17 U [MDL=17]  | 17 U [MDL=17] |
| AROCLOR-1242                   |               | 15 U [MDL=15]  | 16 U [MDL=16]  | 16 U [MDL=16] |
| AROCLOR-1248                   |               | 19 U [MDL=19]  | 21 U [MDL=21]  | 21 U [MDL=21] |
| AROCLOR-1254                   |               | 19 U [MDL=19]  | 21 U [MDL=21]  | 21 U [MDL=21] |
| AROCLOR-1260                   |               | 19 U [MDL=19]  | 21 U [MDL=21]  | 21 U [MDL=21] |
| BETA-BHC                       |               |                |                |               |
| DELTA-BHC                      |               |                |                |               |
| DIELDRIN                       |               |                |                |               |
| ENDOSULFAN I                   |               |                |                |               |
| ENDOSULFAN II                  |               |                |                |               |
| ENDOSULFAN SULFATE             |               |                |                |               |
| ENDRIN                         |               |                |                |               |
| ENDRIN ALDEHYDE                |               |                |                |               |
| ENDRIN KETONE                  |               |                |                |               |
| GAMMA-BHC (LINDANE)            |               |                |                |               |
| GAMMA-CHLORDANE                |               |                |                |               |
| HEPTACHLOR                     |               |                |                |               |
| HEPTACHLOR EPOXIDE             |               |                |                |               |
| METHOXYCHLOR                   |               |                |                |               |
| TOTAL AROCLOR                  |               | 0 U [MDL=24]   | 0 U [MDL=26]   | 0 U [MDL=25]  |
| TOTAL DDT POS                  |               |                |                |               |
| TOXAPHENE                      |               |                |                |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               | •              |                |               |
| DIESEL RANGE ORGANICS          |               |                |                |               |
| GASOLINE RANGE ORGANICS        |               |                |                |               |
| TPH (C09-C36)                  |               |                |                |               |
|                                |               |                |                |               |

## SOIL

| SOIL                                         |             | T           | T           |               |
|----------------------------------------------|-------------|-------------|-------------|---------------|
| LOCATION                                     | SB-637B     | SB-637B     | SB-637B     | SB-637B       |
| SAMPLE ID                                    | F-SB-637B-1 | F-SB-637B-3 | F-SB-637B-5 | F-SB-637B-5-D |
| SAMPLE DATE                                  | 11/6/2009   | 11/6/2009   | 11/6/2009   | 11/6/2009     |
| METALS (MG/KG)                               |             | 1           | _           |               |
| ANTIMONY                                     |             |             |             |               |
| ARSENIC                                      |             |             |             |               |
| BARIUM                                       |             |             |             |               |
| BERYLLIUM                                    |             |             |             |               |
| CADMIUM                                      |             |             |             |               |
| CHROMIUM                                     |             |             |             |               |
| COBALT                                       |             |             |             |               |
| COPPER                                       |             |             |             |               |
| LEAD                                         |             |             |             |               |
| MERCURY                                      |             |             |             |               |
| MOLYBDENUM                                   |             |             |             |               |
| NICKEL                                       |             |             |             |               |
| SELENIUM                                     |             |             |             |               |
| SILVER                                       |             |             |             |               |
| THALLIUM                                     |             |             |             |               |
| VANADIUM                                     |             |             |             |               |
| ZINC                                         |             |             |             |               |
| MISCELLANEOUS PARAMETERS                     |             |             |             |               |
| PERCENT SOLIDS (%)                           |             |             |             |               |
| TOTAL SOLIDS (%)                             |             |             |             |               |
| HEXAVALENT CHROMIUM (MG/KG)                  |             |             |             |               |
| TOTAL ORGANIC CARBON (MG/KG)                 |             |             |             |               |
| PH (S.U.)                                    |             |             |             |               |
| MERCURY (METHYL) (UG/KG)                     |             |             |             |               |
| SEMIVOLATILES (UG/KG)                        | •           | -           |             | •             |
| 1,1-BIPHENYL                                 |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE                       |             |             |             |               |
| 1,2-DICHLOROBENZENE                          |             |             |             |               |
| 1,3-DICHLOROBENZENE                          |             |             |             |               |
| 1,4-DICHLOROBENZENE                          |             |             |             |               |
| 1,4-DIOXANE                                  |             |             |             |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                 |             |             |             |               |
| 2,4,5-TRICHLOROPHENOL                        |             |             |             |               |
| 2,4,6-TRICHLOROPHENOL                        |             |             |             |               |
| 2,4-DICHLOROPHENOL                           |             |             |             |               |
| 2,4-DIMETHYLPHENOL                           |             |             |             |               |
| 2,4-DINITROPHENOL                            |             |             |             |               |
| 2,4-DINITROTOLUENE                           |             |             |             |               |
| 2,6-DINITROTOLUENE                           |             |             |             |               |
| <u>,                                    </u> | l .         |             |             | 1             |

| LOCATION                    | SB-637B     | SB-637B     | SB-637B     | SB-637B       |
|-----------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                   | F-SB-637B-1 | F-SB-637B-3 | F-SB-637B-5 | F-SB-637B-5-D |
| SAMPLE DATE                 | 11/6/2009   | 11/6/2009   | 11/6/2009   | 11/6/2009     |
| 2-CHLORONAPHTHALENE         |             |             |             |               |
| 2-CHLOROPHENOL              |             |             |             |               |
| 2-METHYLPHENOL              |             |             |             |               |
| 2-NITROANILINE              |             |             |             |               |
| 2-NITROPHENOL               |             |             |             |               |
| 3&4-METHYLPHENOL            |             |             |             |               |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |               |
| 3-NITROANILINE              |             |             |             |               |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |               |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |               |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |               |
| 4-CHLOROANILINE             |             |             |             |               |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |               |
| 4-NITROANILINE              |             |             |             |               |
| 4-NITROPHENOL               |             |             |             |               |
| ACETOPHENONE                |             |             |             |               |
| ANILINE                     |             |             |             |               |
| ATRAZINE                    |             |             |             |               |
| AZOBENZENE                  |             |             |             |               |
| BENZIDINE                   |             |             |             |               |
| BENZOIC ACID                |             |             |             |               |
| BENZYL ALCOHOL              |             |             |             |               |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |               |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |               |
| BUTYL BENZYL PHTHALATE      |             |             |             |               |
| CAPROLACTAM                 |             |             |             |               |
| CARBAZOLE                   |             |             |             |               |
| DIBENZOFURAN                |             |             |             |               |
| DIETHYL PHTHALATE           |             |             |             |               |
| DIMETHYL PHTHALATE          |             |             |             |               |
| DI-N-BUTYL PHTHALATE        |             |             |             |               |
| DI-N-OCTYL PHTHALATE        |             |             |             |               |
| HEXACHLOROBENZENE           |             |             |             |               |
| HEXACHLOROBUTADIENE         |             |             |             |               |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |               |
| HEXACHLOROETHANE            |             |             |             |               |
| ISOPHORONE                  |             |             |             |               |
| NITROBENZENE                |             |             |             |               |
| N-NITROSODIMETHYLAMINE      |             |             |             |               |

## SOIL

| LOCATION                      | SB-637B     | SB-637B     | SB-637B     | SB-637B       |
|-------------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                     | F-SB-637B-1 | F-SB-637B-3 | F-SB-637B-5 | F-SB-637B-5-D |
| SAMPLE DATE                   | 11/6/2009   | 11/6/2009   | 11/6/2009   | 11/6/2009     |
| N-NITROSO-DI-N-PROPYLAMINE    |             |             |             |               |
| N-NITROSODIPHENYLAMINE        |             |             |             |               |
| PENTACHLOROPHENOL             |             |             |             |               |
| PHENOL                        |             |             |             |               |
| PYRIDINE                      |             |             |             |               |
| OLATILES (UG/KG)              |             |             |             |               |
| ,1,1,2-TETRACHLOROETHANE      |             |             |             |               |
| ,1,1-TRICHLOROETHANE          |             |             |             |               |
| ,1,2,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,2-TRICHLOROETHANE         |             |             |             |               |
| ,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |               |
| ,1-DICHLOROETHANE             |             |             |             |               |
| ,1-DICHLOROETHENE             |             |             |             |               |
| ,1-DICHLOROPROPENE            |             |             |             |               |
| ,2,3-TRICHLOROBENZENE         |             |             |             |               |
| ,2,3-TRICHLOROPROPANE         |             |             |             |               |
| ,2,3-TRIMETHYLBENZENE         |             |             |             |               |
| ,2,4-TRICHLOROBENZENE         |             |             |             |               |
| ,2,4-TRIMETHYLBENZENE         |             |             |             |               |
| ,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |               |
| ,2-DIBROMOETHANE              |             |             |             |               |
| ,2-DICHLOROBENZENE            |             |             |             |               |
| ,2-DICHLOROETHANE             |             |             |             |               |
| ,2-DICHLOROPROPANE            |             |             |             |               |
| ,3,5-TRIMETHYLBENZENE         |             |             |             |               |
| ,3-DICHLOROBENZENE            |             |             |             |               |
| ,3-DICHLOROPROPANE            |             |             |             |               |
| ,3-DICHLOROPROPENE            |             |             |             |               |
| ,4-DICHLOROBENZENE            |             |             |             |               |
| ,4-DIOXANE                    |             |             |             |               |
| ,2-DICHLOROPROPANE            |             |             |             |               |
| -BUTANONE                     |             |             |             |               |
| -CHLOROETHYL VINYL ETHER      |             |             |             |               |
| -CHLOROTOLUENE                |             |             |             |               |
| -HEXANONE                     |             |             |             |               |
| -CHLOROTOLUENE                |             |             |             |               |
| -ISOPROPYLTOLUENE             |             |             |             |               |
| -METHYL-2-PENTANONE           |             |             |             |               |
| CETONE                        |             |             |             |               |
| BENZENE                       |             |             |             |               |

| LOCATION                  | SB-637B     | SB-637B     | SB-637B     | SB-637B       |
|---------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                 | F-SB-637B-1 | F-SB-637B-3 | F-SB-637B-5 | F-SB-637B-5-D |
| SAMPLE DATE               | 11/6/2009   | 11/6/2009   | 11/6/2009   | 11/6/2009     |
| BROMOBENZENE              | <del></del> |             |             | <del></del>   |
| BROMOCHLOROMETHANE        | <del></del> |             |             |               |
| BROMODICHLOROMETHANE      |             |             |             |               |
| BROMOFORM                 |             |             |             |               |
| BROMOMETHANE              |             |             |             |               |
| CARBON DISULFIDE          |             |             |             |               |
| CARBON TETRACHLORIDE      |             |             |             |               |
| CHLOROBENZENE             |             |             |             |               |
| CHLORODIBROMOMETHANE      |             |             |             |               |
| CHLOROETHANE              |             |             |             |               |
| CHLOROFORM                |             |             |             |               |
| CHLOROMETHANE             |             |             |             |               |
| CIS-1,2-DICHLOROETHENE    |             |             |             |               |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |               |
| DIBROMOMETHANE            |             |             |             |               |
| DICHLORODIFLUOROMETHANE   |             |             |             |               |
| DIISOPROPYL ETHER         |             |             |             |               |
| ETHYL TERT-BUTYL ETHER    |             |             |             |               |
| ETHYLBENZENE              |             |             |             |               |
| FLUORODICHLOROMETHANE     |             |             |             |               |
| HEXACHLOROBUTADIENE       |             |             |             |               |
| ISOPROPYLBENZENE          |             |             |             |               |
| M+P-XYLENES               |             |             |             |               |
| METHYL TERT-BUTYL ETHER   |             |             |             |               |
| METHYLENE CHLORIDE        |             |             |             |               |
| NAPHTHALENE               |             |             |             |               |
| N-BUTYLBENZENE            |             |             |             |               |
| N-PROPYLBENZENE           |             |             |             |               |
| O-XYLENE                  |             |             |             |               |
| SEC-BUTYLBENZENE          |             |             |             |               |
| STYRENE                   |             |             |             |               |
| TERT-AMYL METHYL ETHER    |             |             |             |               |
| TERT-BUTYLBENZENE         |             |             |             |               |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |               |
| TETRACHLOROETHENE         |             |             |             |               |
| TOLUENE                   |             |             |             |               |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |               |
| TOTAL XYLENES             |             |             |             |               |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |               |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |               |

## SOIL

| LOCATION                                 | SB-637B          | SB-637B         | SB-637B         | SB-637B         |
|------------------------------------------|------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-637B-1      | F-SB-637B-3     | F-SB-637B-5     | F-SB-637B-5-D   |
| SAMPLE DATE                              | 11/6/2009        | 11/6/2009       | 11/6/2009       | 11/6/2009       |
| TRICHLOROETHENE                          |                  |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                 |                 |
| VINYL ACETATE                            |                  |                 |                 |                 |
| VINYL CHLORIDE                           |                  |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                  |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                  |                 |                 |                 |
| ACENAPHTHENE                             |                  |                 |                 |                 |
| ACENAPHTHYLENE                           |                  |                 |                 |                 |
| ANTHRACENE                               |                  |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 6953.3 [MDL=7.8] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 6953.3 [MDL=7.8] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 6200 [MDL=5.7]   | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 4600 [MDL=7.8]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 6500 [MDL=7.2]   | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2800 [MDL=10]    | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |                 |
| C1-FLUORENES                             |                  |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                 |
| C2-FLUORENES                             |                  |                 |                 |                 |
| C2-NAPHTHALENES                          |                  |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                 |
| C3-FLUORENES                             |                  |                 |                 |                 |
| C3-NAPHTHALENES                          |                  |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                 |
| C4-NAPHTHALENES                          |                  |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                 |
| CHRYSENE                                 | 5300 [MDL=5.4]   | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 790 [MDL=7.8]    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                  |                 |                 |                 |
| FLUORENE                                 |                  |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 2600 [MDL=9]     | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                  |                 |                 |                 |

## SOIL

| LOCATION                       | SB-637B         | SB-637B       | SB-637B       | SB-637B       |
|--------------------------------|-----------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-637B-1     | F-SB-637B-3   | F-SB-637B-5   | F-SB-637B-5-D |
| SAMPLE DATE                    | 11/6/2009       | 11/6/2009     | 11/6/2009     | 11/6/2009     |
| PHENANTHRENE                   |                 |               |               |               |
| PYRENE                         |                 |               |               |               |
| TOTAL PAHS                     | 28790 [MDL=7.8] | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |                 |               |               |               |
| 4,4'-DDD                       |                 |               |               |               |
| 4,4'-DDE                       |                 |               |               |               |
| 4,4'-DDT                       |                 |               |               |               |
| ALDRIN                         |                 |               |               |               |
| ALPHA-BHC                      |                 |               |               |               |
| ALPHA-CHLORDANE                |                 |               |               |               |
| AROCLOR-1016                   |                 |               |               |               |
| AROCLOR-1221                   |                 |               |               |               |
| AROCLOR-1232                   |                 |               |               |               |
| AROCLOR-1242                   |                 |               |               |               |
| AROCLOR-1248                   |                 |               |               |               |
| AROCLOR-1254                   |                 |               |               |               |
| AROCLOR-1260                   |                 |               |               |               |
| BETA-BHC                       |                 |               |               |               |
| DELTA-BHC                      |                 |               |               |               |
| DIELDRIN                       |                 |               |               |               |
| ENDOSULFAN I                   |                 |               |               |               |
| ENDOSULFAN II                  |                 |               |               |               |
| ENDOSULFAN SULFATE             |                 |               |               |               |
| ENDRIN                         |                 |               |               |               |
| ENDRIN ALDEHYDE                |                 |               |               |               |
| ENDRIN KETONE                  |                 |               |               |               |
| GAMMA-BHC (LINDANE)            |                 |               |               |               |
| GAMMA-CHLORDANE                |                 |               |               |               |
| HEPTACHLOR                     |                 |               |               |               |
| HEPTACHLOR EPOXIDE             |                 |               |               |               |
| METHOXYCHLOR                   |                 |               |               |               |
| TOTAL AROCLOR                  |                 |               |               |               |
| TOTAL DDT POS                  |                 |               |               |               |
| TOXAPHENE                      |                 |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                 |               |               |               |
| DIESEL RANGE ORGANICS          |                 |               |               |               |
| GASOLINE RANGE ORGANICS        |                 |               |               |               |
| TPH (C09-C36)                  |                 |               |               |               |

## SOIL

| SOIL                         | 1           | 1           | 1           | •          |
|------------------------------|-------------|-------------|-------------|------------|
| LOCATION                     | SB-637C     | SB-637C     | SB-637C     | SB-638     |
| SAMPLE ID                    | F-SB-637C-1 | F-SB-637C-3 | F-SB-637C-5 | F-SB-638-1 |
| SAMPLE DATE                  | 11/6/2009   | 11/6/2009   | 11/6/2009   | 10/7/2009  |
| METALS (MG/KG)               |             |             |             |            |
| ANTIMONY                     |             |             |             |            |
| ARSENIC                      |             |             |             |            |
| BARIUM                       |             |             |             |            |
| BERYLLIUM                    |             |             |             |            |
| CADMIUM                      |             |             |             |            |
| CHROMIUM                     |             |             |             |            |
| COBALT                       |             |             |             |            |
| COPPER                       |             |             |             |            |
| EAD                          |             |             |             |            |
| MERCURY                      |             |             |             |            |
| MOLYBDENUM                   |             |             |             |            |
| NICKEL                       |             |             |             |            |
| SELENIUM                     |             |             |             |            |
| SILVER                       |             |             |             |            |
| THALLIUM                     |             |             |             |            |
| /ANADIUM                     |             |             |             |            |
| ZINC                         |             |             |             |            |
| MISCELLANEOUS PARAMETERS     |             |             |             | •          |
| PERCENT SOLIDS (%)           |             |             |             |            |
| TOTAL SOLIDS (%)             |             |             |             |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |            |
| PH (S.U.)                    |             |             |             |            |
| MERCURY (METHYL) (UG/KG)     |             |             |             |            |
| SEMIVOLATILES (UG/KG)        |             |             |             | •          |
| ,1-BIPHENYL                  |             |             |             |            |
| ,2,4-TRICHLOROBENZENE        |             |             |             |            |
| ,2-DICHLOROBENZENE           |             |             |             |            |
| ,3-DICHLOROBENZENE           |             |             |             |            |
| ,4-DICHLOROBENZENE           |             |             |             |            |
| ,4-DIOXANE                   |             |             |             |            |
| ,2'-OXYBIS(1-CHLOROPROPANE)  |             |             |             |            |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |            |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |            |
| 2,4-DICHLOROPHENOL           |             |             |             |            |
| 2,4-DIMETHYLPHENOL           |             |             |             |            |
| 2,4-DINITROPHENOL            |             |             |             |            |
| 2,4-DINITROTOLUENE           |             |             |             |            |
| 2,6-DINITROTOLUENE           |             |             |             |            |

| SOIL<br>LOCATION            | SB-637C     | SB-637C     | SB-637C     | SB-638     |
|-----------------------------|-------------|-------------|-------------|------------|
|                             |             |             |             |            |
| SAMPLE ID                   | F-SB-637C-1 | F-SB-637C-3 | F-SB-637C-5 | F-SB-638-1 |
| SAMPLE DATE                 | 11/6/2009   | 11/6/2009   | 11/6/2009   | 10/7/2009  |
| 2-CHLORONAPHTHALENE         |             |             |             |            |
| 2-CHLOROPHENOL              |             |             |             |            |
| 2-METHYLPHENOL              | <del></del> |             |             |            |
| 2-NITROANILINE              |             |             |             |            |
| 2-NITROPHENOL               |             |             |             |            |
| 3&4-METHYLPHENOL            |             |             |             |            |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |            |
| 3-NITROANILINE              |             |             |             |            |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |            |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |            |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |            |
| 4-CHLOROANILINE             |             |             |             |            |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |            |
| 4-NITROANILINE              |             |             |             |            |
| 4-NITROPHENOL               |             |             |             |            |
| ACETOPHENONE                |             |             |             |            |
| ANILINE                     |             |             |             |            |
| ATRAZINE                    |             |             |             |            |
| AZOBENZENE                  |             |             |             |            |
| BENZIDINE                   |             |             |             |            |
| BENZOIC ACID                |             |             |             |            |
| BENZYL ALCOHOL              |             |             |             |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |            |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |            |
| BUTYL BENZYL PHTHALATE      |             |             |             |            |
| CAPROLACTAM                 |             |             |             |            |
| CARBAZOLE                   |             |             |             |            |
| DIBENZOFURAN                |             |             |             |            |
| DIETHYL PHTHALATE           |             |             |             |            |
| DIMETHYL PHTHALATE          |             |             |             |            |
| DI-N-BUTYL PHTHALATE        |             |             |             |            |
| DI-N-OCTYL PHTHALATE        |             |             |             |            |
| HEXACHLOROBENZENE           |             |             |             |            |
| HEXACHLOROBUTADIENE         |             |             |             |            |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |            |
| HEXACHLOROETHANE            |             |             |             |            |
| ISOPHORONE                  |             |             |             |            |
| NITROBENZENE                |             |             |             |            |
|                             |             |             |             |            |
| N-NITROSODIMETHYLAMINE      |             |             |             |            |

#### SOIL

| LOCATION                                      | SB-637C      | SB-637C     | SB-637C     | SB-638     |
|-----------------------------------------------|--------------|-------------|-------------|------------|
| SAMPLE ID                                     | F-SB-637C-1  | F-SB-637C-3 | F-SB-637C-5 | F-SB-638-1 |
| SAMPLE DATE                                   | 11/6/2009    | 11/6/2009   | 11/6/2009   | 10/7/2009  |
| N-NITROSO-DI-N-PROPYLAMINE                    |              |             |             |            |
| N-NITROSODIPHENYLAMINE                        |              |             |             |            |
| PENTACHLOROPHENOL                             |              |             |             |            |
| PHENOL                                        |              |             |             |            |
| PYRIDINE                                      |              |             |             |            |
| VOLATILES (UG/KG)                             |              |             |             |            |
| 1,1,1,2-TETRACHLOROETHANE                     |              |             |             |            |
| 1,1,1-TRICHLOROETHANE                         |              |             |             |            |
| 1,1,2,2-TETRACHLOROETHANE                     |              |             |             |            |
| 1,1,2-TRICHLOROETHANE                         |              |             |             |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                |              |             |             |            |
| 1,1-DICHLOROETHANE                            |              |             |             |            |
| 1,1-DICHLOROETHENE                            |              |             |             |            |
| 1,1-DICHLOROPROPENE                           |              |             |             |            |
| 1,2,3-TRICHLOROBENZENE                        |              |             |             |            |
| 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE | <del></del>  |             |             | -          |
|                                               | <del>-</del> |             |             |            |
| 1,2,3-TRIMETHYLBENZENE                        |              |             | -           |            |
| 1,2,4-TRICHLOROBENZENE                        |              |             |             |            |
| 1,2,4-TRIMETHYLBENZENE                        |              |             |             |            |
| 1,2-DIBROMO-3-CHLOROPROPANE                   |              |             |             |            |
| 1,2-DIBROMOETHANE                             |              |             |             |            |
| 1,2-DICHLOROBENZENE                           |              |             |             |            |
| 1,2-DICHLOROETHANE                            |              |             |             |            |
| 1,2-DICHLOROPROPANE                           |              |             |             |            |
| 1,3,5-TRIMETHYLBENZENE                        |              |             |             |            |
| 1,3-DICHLOROBENZENE                           |              |             |             |            |
| 1,3-DICHLOROPROPANE                           |              |             |             |            |
| 1,3-DICHLOROPROPENE                           |              |             |             |            |
| 1,4-DICHLOROBENZENE                           |              |             |             |            |
| 1,4-DIOXANE                                   |              |             |             |            |
| 2,2-DICHLOROPROPANE                           |              |             |             |            |
| 2-BUTANONE                                    |              |             |             |            |
| 2-CHLOROETHYL VINYL ETHER                     |              |             |             |            |
| 2-CHLOROTOLUENE                               |              |             |             |            |
| 2-HEXANONE                                    |              |             |             |            |
| 4-CHLOROTOLUENE                               |              |             |             |            |
| 4-ISOPROPYLTOLUENE                            |              |             |             |            |
| 4-METHYL-2-PENTANONE                          |              |             |             |            |
| ACETONE                                       |              |             |             |            |
| BENZENE                                       |              |             |             |            |

## SOIL

| LOCATION                  | SB-637C     | SB-637C     | SB-637C     | SB-638     |
|---------------------------|-------------|-------------|-------------|------------|
| SAMPLE ID                 | F-SB-637C-1 | F-SB-637C-3 | F-SB-637C-5 | F-SB-638-1 |
| SAMPLE DATE               | 11/6/2009   | 11/6/2009   | 11/6/2009   | 10/7/2009  |
| BROMOBENZENE              |             |             |             |            |
| BROMOCHLOROMETHANE        |             |             |             |            |
| BROMODICHLOROMETHANE      |             |             |             |            |
| BROMOFORM                 |             |             |             |            |
| BROMOMETHANE              |             |             |             |            |
| CARBON DISULFIDE          |             |             |             |            |
| CARBON TETRACHLORIDE      |             |             |             |            |
| CHLOROBENZENE             |             |             |             |            |
| CHLORODIBROMOMETHANE      |             |             |             |            |
| CHLOROETHANE              |             |             |             |            |
| CHLOROFORM                |             |             |             |            |
| CHLOROMETHANE             |             |             |             |            |
| CIS-1,2-DICHLOROETHENE    |             |             |             |            |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |            |
| DIBROMOMETHANE            |             |             |             |            |
| DICHLORODIFLUOROMETHANE   |             |             |             |            |
| DIISOPROPYL ETHER         |             |             |             |            |
| ETHYL TERT-BUTYL ETHER    |             |             |             |            |
| ETHYLBENZENE              |             |             |             |            |
| FLUORODICHLOROMETHANE     |             |             |             |            |
| HEXACHLOROBUTADIENE       |             |             |             |            |
| ISOPROPYLBENZENE          |             |             |             |            |
| M+P-XYLENES               |             |             |             |            |
| METHYL TERT-BUTYL ETHER   |             |             |             |            |
| METHYLENE CHLORIDE        |             |             |             |            |
| NAPHTHALENE               |             |             |             |            |
| N-BUTYLBENZENE            |             |             |             |            |
| N-PROPYLBENZENE           |             |             |             |            |
| O-XYLENE                  |             |             |             |            |
| SEC-BUTYLBENZENE          |             |             |             |            |
| STYRENE                   |             |             |             |            |
| TERT-AMYL METHYL ETHER    |             |             |             |            |
| TERT-BUTYLBENZENE         |             |             |             |            |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |            |
| TETRACHLOROETHENE         |             |             |             |            |
| TOLUENE                   |             |             |             |            |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |            |
| TOTAL XYLENES             |             |             |             |            |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |            |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |            |

#### SOIL

| LOCATION                                 | SB-637C          | SB-637C         | SB-637C         | SB-638            |
|------------------------------------------|------------------|-----------------|-----------------|-------------------|
| SAMPLE ID                                | F-SB-637C-1      | F-SB-637C-3     | F-SB-637C-5     | F-SB-638-1        |
| SAMPLE DATE                              | 11/6/2009        | 11/6/2009       | 11/6/2009       | 10/7/2009         |
| TRICHLOROETHENE                          |                  |                 |                 |                   |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                 |                   |
| VINYL ACETATE                            |                  |                 |                 |                   |
| VINYL CHLORIDE                           |                  |                 |                 |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                 |                 |                   |
| 1-METHYLNAPHTHALENE                      |                  |                 |                 |                   |
| 2-METHYLNAPHTHALENE                      |                  |                 |                 |                   |
| ACENAPHTHENE                             |                  |                 |                 |                   |
| ACENAPHTHYLENE                           |                  |                 |                 |                   |
| ANTHRACENE                               |                  |                 |                 |                   |
| BAP EQUIVALENT-HALFND                    | 2075.2 [MDL=3.1] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   |
| BAP EQUIVALENT-POS                       | 2075.2 [MDL=3.1] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   |
| BAP EQUIVALENT-UCL                       |                  |                 |                 |                   |
| BENZO(A)ANTHRACENE                       | 1700 [MDL=2.3]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]     |
| BENZO(A)PYRENE                           | 1400 [MDL=3.1]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   |
| BENZO(B)FLUORANTHENE                     | 1900 [MDL=2.9]   | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.3 U [MDL=1.3]   |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                 |                   |
| BENZO(K)FLUORANTHENE                     | 870 [MDL=4.1]    | 1.9 U [MDL=1.9] | 2.0 U [MDL=2]   | 1.8 U [MDL=1.8]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                   |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |                   |
| C1-FLUORENES                             |                  |                 |                 |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                   |
| C2-FLUORENES                             |                  |                 |                 |                   |
| C2-NAPHTHALENES                          |                  |                 |                 |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                   |
| C3-FLUORENES                             |                  |                 |                 |                   |
| C3-NAPHTHALENES                          |                  |                 |                 |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                   |
| C4-NAPHTHALENES                          |                  |                 |                 |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                   |
| CHRYSENE                                 | 1500 [MDL=2.2]   | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 0.97 U [MDL=0.97] |
| DIBENZO(A,H)ANTHRACENE                   | 230 [MDL=3.1]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   |
| FLUORANTHENE                             |                  |                 |                 |                   |
| FLUORENE                                 |                  |                 |                 |                   |
| INDENO(1,2,3-CD)PYRENE                   | 750 [MDL=3.6]    | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 1.6 U [MDL=1.6]   |
| NAPHTHALENE                              |                  |                 |                 |                   |

#### SOIL

| LOCATION                       | SB-637C        | SB-637C       | SB-637C       | SB-638        |
|--------------------------------|----------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-637C-1    | F-SB-637C-3   | F-SB-637C-5   | F-SB-638-1    |
| SAMPLE DATE                    | 11/6/2009      | 11/6/2009     | 11/6/2009     | 10/7/2009     |
| PHENANTHRENE                   |                |               |               |               |
| PYRENE                         |                |               |               |               |
| TOTAL PAHS                     | 8350 [MDL=3.1] | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.4] |
| PESTICIDES/PCBS (UG/KG)        | •              |               |               |               |
| 4,4'-DDD                       |                |               |               |               |
| 4,4'-DDE                       |                |               |               |               |
| 4,4'-DDT                       |                |               |               |               |
| ALDRIN                         |                |               |               |               |
| ALPHA-BHC                      |                |               |               |               |
| ALPHA-CHLORDANE                |                |               |               |               |
| AROCLOR-1016                   |                |               |               | 23 U [MDL=23] |
| AROCLOR-1221                   |                |               |               | 17 U [MDL=17] |
| AROCLOR-1232                   |                |               |               | 15 U [MDL=15] |
| AROCLOR-1242                   |                |               |               | 14 U [MDL=14] |
| AROCLOR-1248                   |                |               |               | 18 U [MDL=18] |
| AROCLOR-1254                   |                |               |               | 18 U [MDL=18] |
| AROCLOR-1260                   |                |               |               | 18 U [MDL=18] |
| BETA-BHC                       |                |               |               |               |
| DELTA-BHC                      |                |               |               |               |
| DIELDRIN                       |                |               |               |               |
| ENDOSULFAN I                   |                |               |               |               |
| ENDOSULFAN II                  |                |               |               |               |
| ENDOSULFAN SULFATE             |                |               |               |               |
| ENDRIN                         |                |               |               |               |
| ENDRIN ALDEHYDE                |                |               |               |               |
| ENDRIN KETONE                  |                |               |               |               |
| GAMMA-BHC (LINDANE)            |                |               |               |               |
| GAMMA-CHLORDANE                |                |               |               |               |
| HEPTACHLOR                     |                |               |               |               |
| HEPTACHLOR EPOXIDE             |                |               |               |               |
| METHOXYCHLOR                   |                |               |               |               |
| TOTAL AROCLOR                  |                |               |               | 0 U [MDL=23]  |
| TOTAL DDT POS                  |                |               |               |               |
| TOXAPHENE                      |                |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |               |               |               |
| DIESEL RANGE ORGANICS          |                |               |               |               |
| GASOLINE RANGE ORGANICS        |                |               |               |               |
| TPH (C09-C36)                  |                |               |               |               |
|                                |                |               |               |               |

#### SOIL

| SUIL                         | T          | 1            | T          | T          |
|------------------------------|------------|--------------|------------|------------|
| LOCATION                     | SB-638     | SB-638       | SB-638     | SB-639     |
| SAMPLE ID                    | F-SB-638-3 | F-SB-638-3-D | F-SB-638-5 | F-SB-639-1 |
| SAMPLE DATE                  | 10/7/2009  | 10/7/2009    | 10/7/2009  | 10/7/2009  |
| METALS (MG/KG)               |            | T            | <b>T</b>   | ,          |
| ANTIMONY                     |            |              |            |            |
| ARSENIC                      |            |              |            |            |
| BARIUM                       |            |              |            |            |
| BERYLLIUM                    |            |              |            |            |
| CADMIUM                      |            |              |            |            |
| CHROMIUM                     |            |              |            |            |
| COBALT                       |            |              |            |            |
| COPPER                       |            |              |            |            |
| LEAD                         |            |              |            |            |
| MERCURY                      |            |              |            |            |
| MOLYBDENUM                   |            |              |            |            |
| NICKEL                       |            |              |            |            |
| SELENIUM                     |            |              |            |            |
| SILVER                       |            |              |            |            |
| THALLIUM                     |            |              |            |            |
| /ANADIUM                     |            |              |            |            |
| ZINC                         |            |              |            |            |
| MISCELLANEOUS PARAMETERS     |            |              |            |            |
| PERCENT SOLIDS (%)           |            |              |            |            |
| TOTAL SOLIDS (%)             |            |              |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |              |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |              |            |            |
| PH (S.U.)                    |            |              |            |            |
| MERCURY (METHYL) (UG/KG)     |            |              |            |            |
| SEMIVOLATILES (UG/KG)        |            |              |            |            |
| 1,1-BIPHENYL                 |            |              |            |            |
| 1,2,4-TRICHLOROBENZENE       |            |              |            |            |
| 1,2-DICHLOROBENZENE          |            |              |            |            |
| 1,3-DICHLOROBENZENE          |            |              |            |            |
| 1,4-DICHLOROBENZENE          |            |              |            |            |
| 1,4-DIOXANE                  |            |              |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |              |            |            |
| 2,4,5-TRICHLOROPHENOL        |            |              |            |            |
| 2,4,6-TRICHLOROPHENOL        |            |              |            |            |
| 2,4-DICHLOROPHENOL           |            |              |            |            |
| 2,4-DIMETHYLPHENOL           |            |              |            |            |
| 2,4-DINITROPHENOL            |            |              |            |            |
| 2,4-DINITROTOLUENE           |            |              |            |            |
| 2,6-DINITROTOLUENE           |            |              |            |            |

|      | •••• | <br> | - |  |
|------|------|------|---|--|
| SOIL |      |      |   |  |

| LOCATION                    | SB-638     | SB-638       | SB-638     | SB-639     |
|-----------------------------|------------|--------------|------------|------------|
| SAMPLE ID                   | F-SB-638-3 | F-SB-638-3-D | F-SB-638-5 | F-SB-639-1 |
| SAMPLE DATE                 | 10/7/2009  | 10/7/2009    | 10/7/2009  | 10/7/2009  |
| 2-CHLORONAPHTHALENE         |            |              |            |            |
| 2-CHLOROPHENOL              |            |              |            |            |
| 2-METHYLPHENOL              |            |              |            |            |
| 2-NITROANILINE              |            |              |            |            |
| 2-NITROPHENOL               |            |              |            |            |
| 3&4-METHYLPHENOL            |            |              |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |              |            |            |
| 3-NITROANILINE              |            |              |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |              |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |              |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |              |            |            |
| 4-CHLOROANILINE             |            |              |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |              |            |            |
| 4-NITROANILINE              |            |              |            |            |
| 4-NITROPHENOL               |            |              |            |            |
| ACETOPHENONE                |            |              |            |            |
| ANILINE                     |            |              |            |            |
| ATRAZINE                    |            |              |            |            |
| AZOBENZENE                  |            |              |            |            |
| BENZIDINE                   |            |              |            |            |
| BENZOIC ACID                |            |              |            |            |
| BENZYL ALCOHOL              |            |              |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |              |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |              |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |              |            |            |
| BUTYL BENZYL PHTHALATE      |            |              |            |            |
| CAPROLACTAM                 |            |              |            |            |
| CARBAZOLE                   |            |              |            |            |
| DIBENZOFURAN                |            |              |            |            |
| DIETHYL PHTHALATE           |            |              |            |            |
| DIMETHYL PHTHALATE          |            |              |            |            |
| DI-N-BUTYL PHTHALATE        |            |              |            |            |
| DI-N-OCTYL PHTHALATE        |            |              |            |            |
| HEXACHLOROBENZENE           |            |              |            |            |
| HEXACHLOROBUTADIENE         |            |              |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |              |            |            |
| HEXACHLOROETHANE            |            |              |            |            |
| ISOPHORONE                  |            |              |            |            |
| NITROBENZENE                |            |              |            |            |
| N-NITROSODIMETHYLAMINE      |            |              |            |            |

#### SOIL

| LOCATION                       | SB-638     | SB-638       | SB-638     | SB-639     |
|--------------------------------|------------|--------------|------------|------------|
| SAMPLE ID                      | F-SB-638-3 | F-SB-638-3-D | F-SB-638-5 | F-SB-639-1 |
| SAMPLE DATE                    | 10/7/2009  | 10/7/2009    | 10/7/2009  | 10/7/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |              |            |            |
| N-NITROSODIPHENYLAMINE         |            |              |            |            |
| PENTACHLOROPHENOL              |            |              |            |            |
| PHENOL                         |            |              |            |            |
| PYRIDINE                       |            |              |            |            |
| VOLATILES (UG/KG)              | •          |              | •          |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |              |            |            |
| 1,1,1-TRICHLOROETHANE          |            |              |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |              |            |            |
| 1,1,2-TRICHLOROETHANE          |            |              |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |              |            |            |
| 1,1-DICHLOROETHANE             |            |              |            |            |
| 1,1-DICHLOROETHENE             |            |              |            |            |
| 1,1-DICHLOROPROPENE            |            |              |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |              |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |              |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |              |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |              |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |              |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |              |            |            |
| 1,2-DIBROMOETHANE              |            |              |            |            |
| 1,2-DICHLOROBENZENE            |            |              |            |            |
| 1,2-DICHLOROETHANE             |            |              |            |            |
| 1,2-DICHLOROPROPANE            |            |              |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |              |            |            |
| 1,3-DICHLOROBENZENE            |            |              |            |            |
| 1,3-DICHLOROPROPANE            |            |              |            |            |
| 1,3-DICHLOROPROPENE            |            |              |            |            |
| 1,4-DICHLOROBENZENE            |            |              |            |            |
| 1,4-DIOXANE                    |            |              |            |            |
| 2,2-DICHLOROPROPANE            |            |              |            |            |
| 2-BUTANONE                     |            |              |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |              |            |            |
| 2-CHLOROTOLUENE                |            |              |            |            |
| 2-HEXANONE                     |            |              |            |            |
| 4-CHLOROTOLUENE                |            |              |            |            |
| 4-ISOPROPYLTOLUENE             |            |              |            |            |
| 4-METHYL-2-PENTANONE           |            |              |            |            |
| ACETONE                        |            |              |            |            |
| BENZENE                        |            |              |            |            |

| SOIL                      |            |              |            |            |
|---------------------------|------------|--------------|------------|------------|
| LOCATION                  | SB-638     | SB-638       | SB-638     | SB-639     |
| SAMPLE ID                 | F-SB-638-3 | F-SB-638-3-D | F-SB-638-5 | F-SB-639-1 |
| SAMPLE DATE               | 10/7/2009  | 10/7/2009    | 10/7/2009  | 10/7/2009  |
| BROMOBENZENE              |            |              |            |            |
| BROMOCHLOROMETHANE        |            |              |            |            |
| BROMODICHLOROMETHANE      |            |              |            |            |
| BROMOFORM                 |            |              |            |            |
| BROMOMETHANE              |            |              |            |            |
| CARBON DISULFIDE          |            |              |            |            |
| CARBON TETRACHLORIDE      |            |              |            |            |
| CHLOROBENZENE             |            |              |            |            |
| CHLORODIBROMOMETHANE      |            |              |            |            |
| CHLOROETHANE              |            |              |            |            |
| CHLOROFORM                |            |              |            |            |
| CHLOROMETHANE             |            |              |            |            |
| CIS-1,2-DICHLOROETHENE    |            |              |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |              |            |            |
| DIBROMOMETHANE            |            |              |            |            |
| DICHLORODIFLUOROMETHANE   |            |              |            |            |
| DIISOPROPYL ETHER         |            |              |            |            |
| ETHYL TERT-BUTYL ETHER    |            |              |            |            |
| ETHYLBENZENE              |            |              |            |            |
| FLUORODICHLOROMETHANE     |            |              |            |            |
| HEXACHLOROBUTADIENE       |            |              |            |            |
| ISOPROPYLBENZENE          |            |              |            |            |
| M+P-XYLENES               |            |              |            |            |
| METHYL TERT-BUTYL ETHER   |            |              |            |            |
| METHYLENE CHLORIDE        |            |              |            |            |
| NAPHTHALENE               |            |              |            |            |
| N-BUTYLBENZENE            |            |              |            |            |
| N-PROPYLBENZENE           |            |              |            |            |
| O-XYLENE                  |            |              |            |            |
| SEC-BUTYLBENZENE          |            |              |            |            |
| STYRENE                   |            |              |            |            |
| TERT-AMYL METHYL ETHER    |            |              |            |            |
| TERT-BUTYLBENZENE         |            |              |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |              |            |            |
| TETRACHLOROETHENE         |            |              |            |            |
| TOLUENE                   |            |              |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |              |            |            |
| TOTAL XYLENES             |            |              |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |              |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |              |            |            |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-638          | SB-638          | SB-638          | SB-639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE ID                                | F-SB-638-3      | F-SB-638-3-D    | F-SB-638-5      | F-SB-639-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLE DATE                              | 10/7/2009       | 10/7/2009       | 10/7/2009       | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TRICHLOROETHENE                          |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VINYL ACETATE                            |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VINYL CHLORIDE                           |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 | •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACENAPHTHENE                             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACENAPHTHYLENE                           |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANTHRACENE                               |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 78.536 [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 77.786 [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 62 [MDL=1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 59 [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 88 [MDL=1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 1.9 U [MDL=1.9] | 32 [MDL=2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1-FLUORENES                             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2-FLUORENES                             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2-NAPHTHALENES                          |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C3-FLUORENES                             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C3-NAPHTHALENES                          |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C4-NAPHTHALENES                          |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   | 66 [MDL=1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FLUORANTHENE                             |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FLUORENE                                 |                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] | 34 [MDL=1.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I                                        | •               | •               |                 | The state of the s |

#### SOIL

| LOCATION                       | SB-638        | SB-638        | SB-638        | SB-639        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-638-3    | F-SB-638-3-D  | F-SB-638-5    | F-SB-639-1    |
| SAMPLE DATE                    | 10/7/2009     | 10/7/2009     | 10/7/2009     | 10/7/2009     |
| PHENANTHRENE                   |               |               |               |               |
| YRENE                          |               |               |               |               |
| OTAL PAHS                      | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 341 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             | •             |               |               |
| ,4'-DDD                        |               |               |               |               |
| ,4'-DDE                        |               |               |               |               |
| ,4'-DDT                        |               |               |               |               |
| LDRIN                          |               |               |               |               |
| LPHA-BHC                       |               |               |               |               |
| LPHA-CHLORDANE                 |               |               |               |               |
| ROCLOR-1016                    | 25 U [MDL=25] | 24 U [MDL=24] | 24 U [MDL=24] | 24 U [MDL=24] |
| ROCLOR-1221                    | 19 U [MDL=19] | 19 U [MDL=19] | 18 U [MDL=18] | 18 U [MDL=18] |
| ROCLOR-1232                    | 16 U [MDL=16] | 16 U [MDL=16] | 16 U [MDL=16] | 16 U [MDL=16] |
| ROCLOR-1242                    | 15 U [MDL=15] | 15 U [MDL=15] | 15 U [MDL=15] | 15 U [MDL=15] |
| ROCLOR-1248                    | 20 U [MDL=20] | 20 U [MDL=20] | 19 U [MDL=19] | 20 U [MDL=20] |
| ROCLOR-1254                    | 20 U [MDL=20] | 20 U [MDL=20] | 19 U [MDL=19] | 20 U [MDL=20] |
| ROCLOR-1260                    | 20 U [MDL=20] | 20 U [MDL=20] | 19 U [MDL=19] | 20 U [MDL=20] |
| ETA-BHC                        |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| NDOSULFAN I                    |               |               |               |               |
| NDOSULFAN II                   |               |               |               |               |
| NDOSULFAN SULFATE              |               |               |               |               |
| NDRIN                          |               |               |               |               |
| NDRIN ALDEHYDE                 |               |               |               |               |
| NDRIN KETONE                   |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   | 0 U [MDL=25]  | 0 U [MDL=24]  | 0 U [MDL=24]  | 0 U [MDL=24]  |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| ASOLINE RANGE ORGANICS         |               |               |               |               |
| ГРН (C09-C36)                  |               |               |               |               |

#### SOIL

| SOIL                         |            |            |            |            |
|------------------------------|------------|------------|------------|------------|
| LOCATION                     | SB-639     | SB-639     | SB-640     | SB-640     |
| SAMPLE ID                    | F-SB-639-3 | F-SB-639-5 | F-SB-640-1 | F-SB-640-3 |
| SAMPLE DATE                  | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| METALS (MG/KG)               |            | _          |            |            |
| ANTIMONY                     |            |            |            |            |
| ARSENIC                      |            |            |            |            |
| BARIUM                       |            |            |            |            |
| BERYLLIUM                    |            |            |            |            |
| CADMIUM                      |            |            |            |            |
| CHROMIUM                     |            |            |            |            |
| COBALT                       |            |            |            |            |
| COPPER                       |            |            |            |            |
| LEAD                         |            |            |            |            |
| MERCURY                      |            |            |            |            |
| MOLYBDENUM                   |            |            |            |            |
| NICKEL                       |            |            |            |            |
| SELENIUM                     |            |            |            |            |
| SILVER                       |            |            |            |            |
| THALLIUM                     |            |            |            |            |
| VANADIUM                     |            |            |            |            |
| ZINC                         |            |            |            |            |
| MISCELLANEOUS PARAMETERS     |            |            |            |            |
| PERCENT SOLIDS (%)           |            |            |            |            |
| TOTAL SOLIDS (%)             |            |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |            |
| PH (S.U.)                    |            |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |            |
| SEMIVOLATILES (UG/KG)        | •          | •          | •          | •          |
| 1,1-BIPHENYL                 |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DIOXANE                  |            |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |            |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |            |            |            |            |
| 2,4-DICHLOROPHENOL           |            |            |            |            |
| 2,4-DIMETHYLPHENOL           |            |            |            |            |
| 2,4-DINITROPHENOL            |            |            |            |            |
| 2,4-DINITROTOLUENE           |            |            |            |            |
| 2,6-DINITROTOLUENE           |            |            |            |            |
| <u>. :</u>                   | ı          | i .        | ı          | ı          |

#### SOIL

| LOCATION                    | SB-639     | SB-639     | SB-640     | SB-640     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-639-3 | F-SB-639-5 | F-SB-640-1 | F-SB-640-3 |
| SAMPLE DATE                 | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| LOCATION                       | SB-639     | SB-639     | SB-640     | SB-640     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-639-3 | F-SB-639-5 | F-SB-640-1 | F-SB-640-3 |
| SAMPLE DATE                    | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              | •          |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |

#### SOIL

| LOCATION                  | SB-639     | SB-639     | SB-640     | SB-640     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-639-3 | F-SB-639-5 | F-SB-640-1 | F-SB-640-3 |
| SAMPLE DATE               | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| BROMOBENZENE              |            |            |            |            |
| BROMOCHLOROMETHANE        |            |            |            |            |
| BROMODICHLOROMETHANE      |            |            |            |            |
| BROMOFORM                 |            |            |            |            |
| BROMOMETHANE              |            |            |            |            |
| CARBON DISULFIDE          |            |            |            |            |
| CARBON TETRACHLORIDE      |            |            |            |            |
| CHLOROBENZENE             |            |            |            |            |
| CHLORODIBROMOMETHANE      |            |            |            |            |
| CHLOROETHANE              |            |            |            |            |
| CHLOROFORM                |            |            |            |            |
| CHLOROMETHANE             |            |            |            |            |
| CIS-1,2-DICHLOROETHENE    |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |            |
| DIBROMOMETHANE            |            |            |            |            |
| DICHLORODIFLUOROMETHANE   |            |            |            |            |
| DIISOPROPYL ETHER         |            |            |            |            |
| ETHYL TERT-BUTYL ETHER    |            |            |            |            |
| ETHYLBENZENE              |            |            |            |            |
| FLUORODICHLOROMETHANE     |            |            |            |            |
| HEXACHLOROBUTADIENE       |            |            |            |            |
| ISOPROPYLBENZENE          |            |            |            |            |
| M+P-XYLENES               |            |            |            |            |
| METHYL TERT-BUTYL ETHER   |            |            |            |            |
| METHYLENE CHLORIDE        |            |            |            |            |
| NAPHTHALENE               |            |            |            |            |
| N-BUTYLBENZENE            |            |            |            |            |
| N-PROPYLBENZENE           |            |            |            |            |
| O-XYLENE                  |            |            |            |            |
| SEC-BUTYLBENZENE          |            |            |            |            |
| STYRENE                   |            |            |            |            |
| TERT-AMYL METHYL ETHER    |            |            |            |            |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |
|                           |            |            |            |            |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-639          | SB-639            | SB-640           | SB-640          |
|------------------------------------------|-----------------|-------------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-639-3      | F-SB-639-5        | F-SB-640-1       | F-SB-640-3      |
| SAMPLE DATE                              | 10/7/2009       | 10/7/2009         | 10/7/2009        | 10/7/2009       |
| TRICHLOROETHENE                          |                 |                   |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                  |                 |
| VINYL ACETATE                            |                 |                   |                  |                 |
| VINYL CHLORIDE                           |                 |                   |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                  |                 |
| 1-METHYLNAPHTHALENE                      |                 |                   |                  |                 |
| 2-METHYLNAPHTHALENE                      |                 |                   |                  |                 |
| ACENAPHTHENE                             |                 |                   |                  |                 |
| ACENAPHTHYLENE                           |                 |                   |                  |                 |
| ANTHRACENE                               |                 |                   |                  |                 |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 2.43555 [MDL=1.5] | 73.797 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 0.78 [MDL=1.5]    | 73.047 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                   |                  |                 |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1]   | 52 [MDL=1.1]     | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5]   | 55 [MDL=1.5]     | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 7.8 [MDL=1.4]     | 88 [MDL=1.4]     | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                  |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]     | 29 [MDL=2]       | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                   |                  |                 |
| C1-FLUORENES                             |                 |                   |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C2-FLUORENES                             |                 |                   |                  |                 |
| C2-NAPHTHALENES                          |                 |                   |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C3-FLUORENES                             |                 |                   |                  |                 |
| C3-NAPHTHALENES                          |                 |                   |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                  |                 |
| C4-NAPHTHALENES                          |                 |                   |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   |                  |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1]   | 57 [MDL=1]       | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]  | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                   |                  |                 |
| FLUORENE                                 |                 |                   |                  |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8]   | 37 [MDL=1.7]     | 1.8 U [MDL=1.8] |

#### SOIL

| LOCATION                       | SB-639        | SB-639        | SB-640        | SB-640        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-639-3    | F-SB-639-5    | F-SB-640-1    | F-SB-640-3    |
| SAMPLE DATE                    | 10/7/2009     | 10/7/2009     | 10/7/2009     | 10/7/2009     |
| HENANTHRENE                    |               |               |               |               |
| YRENE                          |               |               |               |               |
| OTAL PAHS                      | 0 U [MDL=1.6] | 7.8 [MDL=1.5] | 318 [MDL=1.5] | 0 U [MDL=1.5] |
| ESTICIDES/PCBS (UG/KG)         |               |               |               |               |
| ,4'-DDD                        |               |               |               |               |
| ,4'-DDE                        |               |               |               |               |
| ,4'-DDT                        |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| LPHA-BHC                       |               |               |               |               |
| LPHA-CHLORDANE                 |               |               |               |               |
| AROCLOR-1016                   | 26 U [MDL=26] | 25 U [MDL=25] | 24 U [MDL=24] | 25 U [MDL=25] |
| AROCLOR-1221                   | 20 U [MDL=20] | 19 U [MDL=19] | 18 U [MDL=18] | 19 U [MDL=19] |
| AROCLOR-1232                   | 17 U [MDL=17] | 16 U [MDL=16] | 16 U [MDL=16] | 16 U [MDL=16] |
| ROCLOR-1242                    | 16 U [MDL=16] | 15 U [MDL=15] | 15 U [MDL=15] | 15 U [MDL=15] |
| ROCLOR-1248                    | 21 U [MDL=21] | 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20] |
| ROCLOR-1254                    | 21 U [MDL=21] | 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20] |
| ROCLOR-1260                    | 21 U [MDL=21] | 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20] |
| ETA-BHC                        |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| IELDRIN                        |               |               |               |               |
| NDOSULFAN I                    |               |               |               |               |
| NDOSULFAN II                   |               |               |               |               |
| NDOSULFAN SULFATE              |               |               |               |               |
| NDRIN                          |               |               | 1             | 1             |
| NDRIN ALDEHYDE                 |               |               | 1             | 1             |
| NDRIN KETONE                   |               |               |               |               |
| SAMMA-BHC (LINDANE)            |               |               | 1             | -             |
| GAMMA-CHLORDANE                |               |               |               |               |
| IEPTACHLOR                     |               |               |               |               |
| EPTACHLOR EPOXIDE              |               |               | 1             | -             |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   | 0 U [MDL=26]  | 0 U [MDL=25]  | 0 U [MDL=24]  | 0 U [MDL=25]  |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               | 1-            | -             |
| ГРН (C09-C36)                  |               |               |               |               |

#### SOIL

| LOCATION                     | SB-640      | SB-641     | SB-641     | SB-641     |
|------------------------------|-------------|------------|------------|------------|
| SAMPLE ID                    | F-SB-640-5  | F-SB-641-1 | F-SB-641-3 | F-SB-641-5 |
| SAMPLE ID SAMPLE DATE        | 10/7/2009   | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| METALS (MG/KG)               | 10/7/2009   | 10/6/2009  | 10/6/2009  | 10/0/2009  |
| ANTIMONY                     |             |            |            |            |
| ARSENIC                      |             |            |            |            |
| BARIUM                       |             |            |            |            |
| BERYLLIUM                    |             |            |            |            |
| CADMIUM                      |             |            |            |            |
| CHROMIUM                     |             |            |            |            |
| COBALT                       |             |            |            |            |
| COPPER                       |             |            |            |            |
| LEAD                         |             |            |            |            |
| MERCURY                      |             |            |            |            |
| MOLYBDENUM                   |             |            |            |            |
| NICKEL                       |             |            |            |            |
|                              | <del></del> |            |            |            |
| SELENIUM                     | <del></del> |            | -          |            |
| SILVER                       |             |            |            |            |
| THALLIUM                     | <del></del> |            |            |            |
| VANADIUM                     |             |            |            |            |
| ZINC                         |             |            |            |            |
| MISCELLANEOUS PARAMETERS     |             | T          |            | 1          |
| PERCENT SOLIDS (%)           |             |            |            |            |
| TOTAL SOLIDS (%)             |             |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |             |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |             |            |            |            |
| PH (S.U.)                    |             |            |            |            |
| MERCURY (METHYL) (UG/KG)     |             |            |            |            |
| SEMIVOLATILES (UG/KG)        |             |            |            |            |
| 1,1-BIPHENYL                 |             |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |             |            |            |            |
| 1,2-DICHLOROBENZENE          |             |            |            |            |
| 1,3-DICHLOROBENZENE          |             |            |            |            |
| 1,4-DICHLOROBENZENE          |             |            |            |            |
| 1,4-DIOXANE                  |             |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |             |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |             |            |            |            |
| 2,4-DICHLOROPHENOL           |             |            |            |            |
| 2,4-DIMETHYLPHENOL           |             |            |            |            |
| 2,4-DINITROPHENOL            |             |            |            |            |
| 2,4-DINITROTOLUENE           |             |            |            |            |
| 2,6-DINITROTOLUENE           |             |            |            |            |

#### SOIL

| LOCATION                    | SB-640     | SB-641     | SB-641     | SB-641     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-640-5 | F-SB-641-1 | F-SB-641-3 | F-SB-641-5 |
| SAMPLE DATE                 | 10/7/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| LOCATION                       | SB-640     | SB-641     | SB-641     | SB-641     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-640-5 | F-SB-641-1 | F-SB-641-3 | F-SB-641-5 |
| SAMPLE DATE                    | 10/7/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              | •          |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |

| SOIL<br>LOCATION          | SB-640     | SB-641     | SB-641     | SB-641     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-640-5 | F-SB-641-1 | F-SB-641-3 | F-SB-641-5 |
|                           |            |            |            |            |
| SAMPLE DATE BROMOBENZENE  | 10/7/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
|                           |            |            |            |            |
| BROMOCHLOROMETHANE        |            |            |            |            |
| BROMODICHLOROMETHANE      |            |            |            |            |
| BROMOFORM                 |            |            |            |            |
| BROMOMETHANE              |            |            |            |            |
| CARBON DISULFIDE          |            |            |            |            |
| CARBON TETRACHLORIDE      |            |            |            |            |
| CHLOROBENZENE             |            |            |            |            |
| CHLORODIBROMOMETHANE      |            |            |            |            |
| CHLOROETHANE              |            |            |            |            |
| CHLOROFORM                |            |            |            |            |
| CHLOROMETHANE             |            |            |            |            |
| CIS-1,2-DICHLOROETHENE    |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |            |
| DIBROMOMETHANE            |            |            |            |            |
| DICHLORODIFLUOROMETHANE   |            |            |            |            |
| DIISOPROPYL ETHER         |            |            |            |            |
| ETHYL TERT-BUTYL ETHER    |            |            |            |            |
| ETHYLBENZENE              |            |            |            |            |
| FLUORODICHLOROMETHANE     |            |            |            |            |
| HEXACHLOROBUTADIENE       |            |            |            |            |
| ISOPROPYLBENZENE          |            |            |            |            |
| M+P-XYLENES               |            |            |            |            |
| METHYL TERT-BUTYL ETHER   |            |            |            |            |
| METHYLENE CHLORIDE        |            |            |            |            |
| NAPHTHALENE               |            |            |            |            |
| N-BUTYLBENZENE            |            |            |            |            |
| N-PROPYLBENZENE           |            |            |            |            |
| O-XYLENE                  |            |            |            |            |
| SEC-BUTYLBENZENE          |            |            |            |            |
| STYRENE                   |            |            |            |            |
| TERT-AMYL METHYL ETHER    |            |            |            |            |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |

#### SOIL

| LOCATION                                 | SB-640          | SB-641             | SB-641           | SB-641            |
|------------------------------------------|-----------------|--------------------|------------------|-------------------|
| SAMPLE ID                                | F-SB-640-5      | F-SB-641-1         | F-SB-641-3       | F-SB-641-5        |
| SAMPLE DATE                              | 10/7/2009       | 10/6/2009          | 10/6/2009        | 10/6/2009         |
| TRICHLOROETHENE                          |                 |                    |                  |                   |
| TRICHLOROFLUOROMETHANE                   |                 |                    |                  |                   |
| VINYL ACETATE                            |                 |                    |                  |                   |
| VINYL CHLORIDE                           |                 |                    |                  |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                    |                  | •                 |
| 1-METHYLNAPHTHALENE                      |                 |                    |                  |                   |
| 2-METHYLNAPHTHALENE                      |                 |                    |                  |                   |
| ACENAPHTHENE                             |                 |                    |                  |                   |
| ACENAPHTHYLENE                           |                 |                    |                  |                   |
| ANTHRACENE                               |                 |                    |                  |                   |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1363.848 [MDL=2.1] | 7.4024 [MDL=2.1] | 2.2 U [MDL=2.2]   |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1363.84 [MDL=2.1]  | 6.5444 [MDL=2.1] | 2.2 U [MDL=2.2]   |
| BAP EQUIVALENT-UCL                       |                 |                    |                  |                   |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 960 [MDL=1.2]      | 4.9 J [MDL=1.2]  | 1.3 U [MDL=1.3]   |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 860 [MDL=2.1]      | 4.7 J [MDL=2.1]  | 2.2 U [MDL=2.2]   |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1300 [MDL=1.5]     | 8.1 [MDL=1.5]    | 1.6 U [MDL=1.6]   |
| BENZO(G,H,I)PERYLENE                     |                 |                    |                  |                   |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 1.6 U [MDL=1.6]    | 1.6 U [MDL=1.6]  | 1.6 U [MDL=1.6]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                    |                  |                   |
| C1-FLUORANTHENES/PYRENES                 |                 |                    |                  |                   |
| C1-FLUORENES                             |                 |                    |                  |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                    |                  |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                    |                  |                   |
| C2-FLUORENES                             |                 |                    |                  |                   |
| C2-NAPHTHALENES                          |                 |                    |                  |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                    |                  |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                    | <del></del>      |                   |
| C3-FLUORENES                             |                 |                    | <del></del>      |                   |
| C3-NAPHTHALENES                          |                 |                    | <del></del>      |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                    | <del></del>      |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                    | <del></del>      |                   |
| C4-NAPHTHALENES                          |                 |                    | <del></del>      |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                    |                  |                   |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 840 [MDL=1.3]      | 4.4 J [MDL=1.3]  | 1.4 U [MDL=1.4]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 210 [MDL=1.6]      | 1.7 U [MDL=1.7]  | 1.7 U [MDL=1.7]   |
| FLUORANTHENE                             |                 |                    |                  |                   |
| FLUORENE                                 |                 |                    |                  |                   |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 670 [MDL=0.41]     | 5.4 J [MDL=0.41] | 0.43 U [MDL=0.43] |
| NAPHTHALENE                              |                 |                    | -1               |                   |

#### SOIL

| LOCATION                       | SB-640        | SB-641         | SB-641         | SB-641        |
|--------------------------------|---------------|----------------|----------------|---------------|
| SAMPLE ID                      | F-SB-640-5    | F-SB-641-1     | F-SB-641-3     | F-SB-641-5    |
| SAMPLE DATE                    | 10/7/2009     | 10/6/2009      | 10/6/2009      | 10/6/2009     |
| PHENANTHRENE                   |               |                |                |               |
| PYRENE                         |               |                |                |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 4840 [MDL=2.1] | 27.5 [MDL=2.1] | 0 U [MDL=2.2] |
| PESTICIDES/PCBS (UG/KG)        | •             | •              |                |               |
| 4,4'-DDD                       |               |                |                |               |
| 4,4'-DDE                       |               |                |                |               |
| 4,4'-DDT                       |               |                |                |               |
| ALDRIN                         |               |                |                |               |
| ALPHA-BHC                      |               |                |                |               |
| ALPHA-CHLORDANE                |               |                |                |               |
| AROCLOR-1016                   | 25 U [MDL=25] |                |                |               |
| AROCLOR-1221                   | 19 U [MDL=19] |                |                |               |
| AROCLOR-1232                   | 17 U [MDL=17] |                |                |               |
| AROCLOR-1242                   | 15 U [MDL=15] |                |                |               |
| AROCLOR-1248                   | 20 U [MDL=20] |                |                |               |
| AROCLOR-1254                   | 20 U [MDL=20] |                |                |               |
| AROCLOR-1260                   | 20 U [MDL=20] |                |                |               |
| BETA-BHC                       |               |                |                |               |
| DELTA-BHC                      |               |                |                |               |
| DIELDRIN                       |               |                |                |               |
| ENDOSULFAN I                   |               |                |                |               |
| ENDOSULFAN II                  |               |                |                |               |
| ENDOSULFAN SULFATE             |               |                |                |               |
| ENDRIN                         |               |                |                |               |
| ENDRIN ALDEHYDE                |               |                |                |               |
| ENDRIN KETONE                  |               |                |                |               |
| GAMMA-BHC (LINDANE)            |               |                |                |               |
| GAMMA-CHLORDANE                |               |                |                |               |
| HEPTACHLOR                     |               |                |                |               |
| HEPTACHLOR EPOXIDE             |               |                |                |               |
| METHOXYCHLOR                   |               |                |                |               |
| TOTAL AROCLOR                  | 0 U [MDL=25]  |                |                |               |
| TOTAL DDT POS                  |               |                |                |               |
| TOXAPHENE                      |               |                |                |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |                |                |               |
| DIESEL RANGE ORGANICS          |               |                |                |               |
| GASOLINE RANGE ORGANICS        |               |                |                |               |
| TPH (C09-C36)                  |               |                |                |               |
|                                |               |                |                |               |

#### SOIL

| SB-641A     | SB-641A   | SB-641B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E 0D 0444 4 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SB-641B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F-SB-641B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11/4/2009   | 11/4/2009 | 11/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           | 11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009 | 11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009 |

| SOIL                        |             |             |             |             |
|-----------------------------|-------------|-------------|-------------|-------------|
| LOCATION                    | SB-641A     | SB-641A     | SB-641B     | SB-641B     |
| SAMPLE ID                   | F-SB-641A-1 | F-SB-641A-3 | F-SB-641B-1 | F-SB-641B-3 |
| SAMPLE DATE                 | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             |             |             |             |
| ISOPHORONE                  |             |             |             |             |
| NITROBENZENE                |             |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |
|                             |             | •           | •           | -           |

#### SOIL

| LOCATION                       | SB-641A     | SB-641A     | SB-641B     | SB-641B     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-641A-1 | F-SB-641A-3 | F-SB-641B-1 | F-SB-641B-3 |
| SAMPLE DATE                    | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           | •           | •           |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

# SOIL

| LOCATION                  | SB-641A     | SB-641A     | SB-641B     | SB-641B     |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-641A-1 | F-SB-641A-3 | F-SB-641B-1 | F-SB-641B-3 |
| SAMPLE DATE               | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

# SOIL

NAPHTHALENE

| LOCATION                                 | SB-641A                               | SB-641A         | SB-641B          | SB-641B         |
|------------------------------------------|---------------------------------------|-----------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-641A-1                           | F-SB-641A-3     | F-SB-641B-1      | F-SB-641B-3     |
| SAMPLE DATE                              | 11/4/2009                             | 11/4/2009       | 11/4/2009        | 11/4/2009       |
| TRICHLOROETHENE                          |                                       |                 |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                                       |                 |                  |                 |
| VINYL ACETATE                            |                                       |                 |                  |                 |
| VINYL CHLORIDE                           |                                       |                 |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                                       |                 |                  |                 |
| 1-METHYLNAPHTHALENE                      |                                       |                 |                  |                 |
| 2-METHYLNAPHTHALENE                      |                                       |                 |                  |                 |
| ACENAPHTHENE                             |                                       |                 |                  |                 |
| ACENAPHTHYLENE                           |                                       |                 |                  |                 |
| ANTHRACENE                               |                                       |                 |                  |                 |
| BAP EQUIVALENT-HALFND                    | 41.373 [MDL=1.5]                      | 1.5 U [MDL=1.5] | 289.14 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 40.623 [MDL=1.5]                      | 1.5 U [MDL=1.5] | 289.14 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                                       |                 |                  |                 |
| BENZO(A)ANTHRACENE                       | 31 [MDL=1.1]                          | 1.1 U [MDL=1.1] | 190 [MDL=1.1]    | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 32 [MDL=1.5]                          | 1.5 U [MDL=1.5] | 200 [MDL=1.5]    | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 38 [MDL=1.3]                          | 1.4 U [MDL=1.4] | 290 [MDL=1.4]    | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                                       |                 |                  |                 |
| BENZO(K)FLUORANTHENE                     | 19 [MDL=1.9]                          | 2.0 U [MDL=2]   | 95 [MDL=1.9]     | 1.9 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                                       |                 |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |                                       |                 |                  |                 |
| C1-FLUORENES                             |                                       |                 |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                                       |                 |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                                       |                 |                  |                 |
| C2-FLUORENES                             |                                       |                 |                  |                 |
| C2-NAPHTHALENES                          |                                       |                 |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                                       |                 |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                                       |                 |                  |                 |
| C3-FLUORENES                             |                                       |                 |                  |                 |
| C3-NAPHTHALENES                          |                                       |                 |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                                       |                 |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                                       |                 |                  |                 |
| C4-NAPHTHALENES                          |                                       |                 |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                                       |                 |                  |                 |
| CHRYSENE                                 | 33 [MDL=1]                            | 1.1 U [MDL=1.1] | 190 [MDL=1]      | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5]                       | 1.5 U [MDL=1.5] | 30 [MDL=1.5]     | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                                       |                 |                  |                 |
| FLUORENE                                 |                                       |                 |                  |                 |
| INDENO(1,2,3-CD)PYRENE                   | 15 [MDL=1.7]                          | 1.8 U [MDL=1.8] | 100 [MDL=1.7]    | 1.7 U [MDL=1.7] |
|                                          | · · · · · · · · · · · · · · · · · · · |                 |                  |                 |

#### SOIL

| LOCATION                       | SB-641A       | SB-641A       | SB-641B        | SB-641B       |
|--------------------------------|---------------|---------------|----------------|---------------|
| SAMPLE ID                      | F-SB-641A-1   | F-SB-641A-3   | F-SB-641B-1    | F-SB-641B-3   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009     | 11/4/2009      | 11/4/2009     |
| PHENANTHRENE                   |               |               |                |               |
| PYRENE                         |               |               |                |               |
| TOTAL PAHS                     | 168 [MDL=1.5] | 0 U [MDL=1.5] | 1095 [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             |               |                |               |
| 4,4'-DDD                       |               |               |                |               |
| 4,4'-DDE                       |               |               |                |               |
| 4,4'-DDT                       |               |               |                |               |
| ALDRIN                         |               |               |                |               |
| ALPHA-BHC                      |               |               |                |               |
| ALPHA-CHLORDANE                |               |               |                |               |
| AROCLOR-1016                   |               |               |                |               |
| AROCLOR-1221                   |               |               |                |               |
| AROCLOR-1232                   |               |               |                |               |
| AROCLOR-1242                   |               |               |                |               |
| AROCLOR-1248                   |               |               |                |               |
| AROCLOR-1254                   |               |               |                |               |
| AROCLOR-1260                   |               |               |                |               |
| BETA-BHC                       |               |               |                |               |
| DELTA-BHC                      |               |               |                |               |
| DIELDRIN                       |               |               |                |               |
| ENDOSULFAN I                   |               |               |                |               |
| ENDOSULFAN II                  |               |               |                |               |
| ENDOSULFAN SULFATE             |               |               |                |               |
| ENDRIN                         |               |               |                |               |
| ENDRIN ALDEHYDE                |               |               |                |               |
| ENDRIN KETONE                  |               |               |                |               |
| GAMMA-BHC (LINDANE)            |               |               |                |               |
| GAMMA-CHLORDANE                |               |               |                |               |
| HEPTACHLOR                     |               |               |                |               |
| HEPTACHLOR EPOXIDE             |               |               |                |               |
| METHOXYCHLOR                   |               |               |                |               |
| TOTAL AROCLOR                  |               |               |                |               |
| TOTAL DDT POS                  |               |               |                |               |
| TOXAPHENE                      |               |               |                |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |                |               |
| DIESEL RANGE ORGANICS          |               |               |                |               |
| GASOLINE RANGE ORGANICS        |               |               |                |               |
| TPH (C09-C36)                  |               |               |                |               |
|                                |               |               |                |               |

#### SOIL

| SUIL                         | 00.0440     | 00.0440     | 00.040     | 00.040      |
|------------------------------|-------------|-------------|------------|-------------|
| LOCATION                     | SB-641C     | SB-641C     | SB-642     | SB-642      |
| SAMPLE ID                    | F-SB-641C-1 | F-SB-641C-3 | F-SB-642-1 | F-SB-642-11 |
| SAMPLE DATE                  | 11/4/2009   | 11/4/2009   | 10/19/2009 | 10/19/2009  |
| METALS (MG/KG)               |             | T           | T          | T           |
| ANTIMONY                     |             |             |            |             |
| ARSENIC                      |             |             |            |             |
| BARIUM                       |             |             |            |             |
| BERYLLIUM                    |             |             |            |             |
| CADMIUM                      |             |             |            |             |
| CHROMIUM                     |             |             |            |             |
| COBALT                       |             |             |            |             |
| COPPER                       |             |             |            |             |
| LEAD                         |             |             |            |             |
| MERCURY                      |             |             |            |             |
| MOLYBDENUM                   |             |             |            |             |
| NICKEL                       |             |             |            |             |
| SELENIUM                     |             |             |            |             |
| SILVER                       |             |             |            |             |
| THALLIUM                     |             |             |            |             |
| VANADIUM                     |             |             |            |             |
| ZINC                         |             |             |            |             |
| MISCELLANEOUS PARAMETERS     |             |             |            |             |
| PERCENT SOLIDS (%)           |             |             |            |             |
| TOTAL SOLIDS (%)             |             |             |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |             |
| PH (S.U.)                    |             |             |            |             |
| MERCURY (METHYL) (UG/KG)     |             |             |            |             |
| SEMIVOLATILES (UG/KG)        | •           |             |            |             |
| 1,1-BIPHENYL                 |             |             |            |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |             |
| 1,2-DICHLOROBENZENE          |             |             |            |             |
| 1,3-DICHLOROBENZENE          |             |             |            |             |
| 1,4-DICHLOROBENZENE          |             |             |            |             |
| 1,4-DIOXANE                  |             |             |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |            |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |            |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |            |             |
| 2,4-DICHLOROPHENOL           |             |             |            |             |
| 2,4-DIMETHYLPHENOL           |             |             |            |             |
| 2,4-DINITROPHENOL            |             |             |            |             |
| 2,4-DINITROTOLUENE           |             |             |            |             |
| 2,6-DINITROTOLUENE           |             |             |            |             |

| SOIL                        |             |             |            | T           |
|-----------------------------|-------------|-------------|------------|-------------|
| LOCATION                    | SB-641C     | SB-641C     | SB-642     | SB-642      |
| SAMPLE ID                   | F-SB-641C-1 | F-SB-641C-3 | F-SB-642-1 | F-SB-642-11 |
| SAMPLE DATE                 | 11/4/2009   | 11/4/2009   | 10/19/2009 | 10/19/2009  |
| 2-CHLORONAPHTHALENE         |             |             |            |             |
| 2-CHLOROPHENOL              |             |             |            |             |
| 2-METHYLPHENOL              |             |             |            |             |
| 2-NITROANILINE              |             |             |            |             |
| 2-NITROPHENOL               |             |             |            |             |
| 3&4-METHYLPHENOL            |             |             |            |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |            |             |
| 3-NITROANILINE              |             |             |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |            |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |            |             |
| 4-CHLOROANILINE             |             |             |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |            |             |
| 4-NITROANILINE              |             |             |            |             |
| 4-NITROPHENOL               |             |             |            |             |
| ACETOPHENONE                |             |             |            |             |
| ANILINE                     |             |             |            |             |
| ATRAZINE                    |             |             |            |             |
| AZOBENZENE                  |             |             |            |             |
| BENZIDINE                   |             |             |            |             |
| BENZOIC ACID                |             |             |            |             |
| BENZYL ALCOHOL              |             |             |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |            |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |            |             |
| BUTYL BENZYL PHTHALATE      |             |             |            |             |
| CAPROLACTAM                 |             |             |            |             |
| CARBAZOLE                   |             |             |            |             |
| DIBENZOFURAN                |             |             |            |             |
| DIETHYL PHTHALATE           |             |             |            |             |
| DIMETHYL PHTHALATE          |             |             |            |             |
| DI-N-BUTYL PHTHALATE        |             |             |            |             |
| DI-N-OCTYL PHTHALATE        |             |             |            |             |
| HEXACHLOROBENZENE           |             |             |            |             |
| HEXACHLOROBUTADIENE         |             |             |            |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |            |             |
| HEXACHLOROETHANE            |             |             |            |             |
| ISOPHORONE                  |             |             |            |             |
| NITROBENZENE                |             |             |            |             |
| N-NITROSODIMETHYLAMINE      |             |             |            |             |

#### SOIL

| LOCATION                       | SB-641C     | SB-641C     | SB-642     | SB-642      |
|--------------------------------|-------------|-------------|------------|-------------|
| SAMPLE ID                      | F-SB-641C-1 | F-SB-641C-3 | F-SB-642-1 | F-SB-642-11 |
| SAMPLE DATE                    | 11/4/2009   | 11/4/2009   | 10/19/2009 | 10/19/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |            |             |
| N-NITROSODIPHENYLAMINE         |             |             |            |             |
| PENTACHLOROPHENOL              |             |             |            |             |
| PHENOL                         |             |             |            |             |
| PYRIDINE                       |             |             |            |             |
| VOLATILES (UG/KG)              |             | •           |            | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,1-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |            |             |
| 1,1,2-TRICHLOROETHANE          |             |             |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |            |             |
| 1,1-DICHLOROETHANE             |             |             |            |             |
| 1,1-DICHLOROETHENE             |             |             |            |             |
| 1,1-DICHLOROPROPENE            |             |             |            |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |            |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |            |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |            |             |
| 1,2-DIBROMOETHANE              |             |             |            |             |
| 1,2-DICHLOROBENZENE            |             |             |            |             |
| 1,2-DICHLOROETHANE             |             |             |            |             |
| 1,2-DICHLOROPROPANE            |             |             |            |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |            |             |
| 1,3-DICHLOROBENZENE            |             |             |            |             |
| 1,3-DICHLOROPROPANE            |             |             |            |             |
| 1,3-DICHLOROPROPENE            |             |             |            |             |
| 1,4-DICHLOROBENZENE            |             |             |            |             |
| 1,4-DIOXANE                    |             |             |            |             |
| 2,2-DICHLOROPROPANE            |             |             |            |             |
| 2-BUTANONE                     |             |             |            |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |            |             |
| 2-CHLOROTOLUENE                |             |             |            |             |
| 2-HEXANONE                     |             |             |            |             |
| 4-CHLOROTOLUENE                |             |             |            |             |
| 4-ISOPROPYLTOLUENE             |             |             |            |             |
| 4-METHYL-2-PENTANONE           |             |             |            |             |
| ACETONE                        |             |             |            |             |
| BENZENE                        |             |             |            |             |

| SOIL                      |             |             |            |             |
|---------------------------|-------------|-------------|------------|-------------|
| LOCATION                  | SB-641C     | SB-641C     | SB-642     | SB-642      |
| SAMPLE ID                 | F-SB-641C-1 | F-SB-641C-3 | F-SB-642-1 | F-SB-642-11 |
| SAMPLE DATE               | 11/4/2009   | 11/4/2009   | 10/19/2009 | 10/19/2009  |
| BROMOBENZENE              |             |             |            |             |
| BROMOCHLOROMETHANE        |             |             |            |             |
| BROMODICHLOROMETHANE      |             |             |            |             |
| BROMOFORM                 |             |             |            |             |
| BROMOMETHANE              |             |             |            |             |
| CARBON DISULFIDE          |             |             |            |             |
| CARBON TETRACHLORIDE      |             |             |            |             |
| CHLOROBENZENE             |             |             |            |             |
| CHLORODIBROMOMETHANE      |             |             |            |             |
| CHLOROETHANE              |             |             |            |             |
| CHLOROFORM                |             |             |            |             |
| CHLOROMETHANE             |             |             |            |             |
| CIS-1,2-DICHLOROETHENE    |             |             |            |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |            |             |
| DIBROMOMETHANE            |             |             |            |             |
| DICHLORODIFLUOROMETHANE   |             |             |            |             |
| DIISOPROPYL ETHER         |             |             |            |             |
| ETHYL TERT-BUTYL ETHER    |             |             |            |             |
| ETHYLBENZENE              |             |             |            |             |
| FLUORODICHLOROMETHANE     |             |             |            |             |
| HEXACHLOROBUTADIENE       |             |             |            |             |
| ISOPROPYLBENZENE          |             |             |            |             |
| M+P-XYLENES               |             |             |            |             |
| METHYL TERT-BUTYL ETHER   |             |             |            |             |
| METHYLENE CHLORIDE        |             |             |            |             |
| NAPHTHALENE               |             |             |            |             |
| N-BUTYLBENZENE            |             |             |            |             |
| N-PROPYLBENZENE           |             |             |            |             |
| O-XYLENE                  |             |             |            |             |
| SEC-BUTYLBENZENE          |             |             |            |             |
| STYRENE                   |             |             |            |             |
| TERT-AMYL METHYL ETHER    |             |             |            |             |
| TERT-BUTYLBENZENE         |             |             |            |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |             |
| TETRACHLOROETHENE         |             |             |            |             |
| TOLUENE                   |             |             |            |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |             |
| TOTAL XYLENES             |             |             |            |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |             |
|                           |             |             |            | 1           |

#### SOIL

| LOCATION                                 | SB-641C         | SB-641C         | SB-642            | SB-642          |
|------------------------------------------|-----------------|-----------------|-------------------|-----------------|
| SAMPLE ID                                | F-SB-641C-1     | F-SB-641C-3     | F-SB-642-1        | F-SB-642-11     |
| SAMPLE DATE                              | 11/4/2009       | 11/4/2009       | 10/19/2009        | 10/19/2009      |
| TRICHLOROETHENE                          |                 |                 |                   |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                   |                 |
| VINYL ACETATE                            |                 |                 |                   |                 |
| VINYL CHLORIDE                           |                 |                 |                   |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 | •               |                   |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                   |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                   |                 |
| ACENAPHTHENE                             |                 |                 |                   |                 |
| ACENAPHTHYLENE                           |                 |                 |                   |                 |
| ANTHRACENE                               |                 |                 |                   |                 |
| BAP EQUIVALENT-HALFND                    | 9111.3 [MDL=10] | 1.5 U [MDL=1.5] | 1495.18 [MDL=1.4] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 9111.3 [MDL=10] | 1.5 U [MDL=1.5] | 1495.18 [MDL=1.4] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                   |                 |
| BENZO(A)ANTHRACENE                       | 7400 [MDL=7.4]  | 1.1 U [MDL=1.1] | 1100 [MDL=1.1]    | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 6300 [MDL=10]   | 1.5 U [MDL=1.5] | 1000 [MDL=1.4]    | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 8900 [MDL=9.3]  | 1.4 U [MDL=1.4] | 1200 [MDL=1.3]    | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                   |                 |
| BENZO(K)FLUORANTHENE                     | 3500 [MDL=13]   | 1.9 U [MDL=1.9] | 620 [MDL=1.9]     | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                   |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                   |                 |
| C1-FLUORENES                             |                 |                 |                   |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                   |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                   |                 |
| C2-FLUORENES                             |                 |                 |                   |                 |
| C2-NAPHTHALENES                          |                 |                 |                   |                 |
| C2-PHENANTHRENES/ANTHRACENES             | <del></del>     |                 |                   |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                   |                 |
| C3-FLUORENES                             | <del></del>     |                 |                   |                 |
| C3-NAPHTHALENES                          | <del></del>     |                 |                   |                 |
| C3-PHENANTHRENES/ANTHRACENES             | <del></del>     |                 |                   |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         | <del></del>     |                 |                   |                 |
| C4-NAPHTHALENES                          | <del></del>     |                 |                   |                 |
| C4-PHENANTHRENES/ANTHRACENES             | <del></del>     |                 |                   |                 |
| CHRYSENE                                 | 6300 [MDL=7]    | 1.0 U [MDL=1]   | 980 [MDL=1]       | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 840 [MDL=10]    | 1.5 U [MDL=1.5] | 200 [MDL=1.4]     | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                 |                   |                 |
| FLUORENE                                 |                 |                 |                   |                 |
| INDENO(1,2,3-CD)PYRENE                   | 3000 [MDL=12]   | 1.7 U [MDL=1.7] | 580 [MDL=1.7]     | 1.8 U [MDL=1.8] |
| NAPHTHALENE                              | <del></del>     |                 |                   |                 |

#### SOIL

| LOCATION                       | SB-641C        | SB-641C       | SB-642         | SB-642        |
|--------------------------------|----------------|---------------|----------------|---------------|
| SAMPLE ID                      | F-SB-641C-1    | F-SB-641C-3   | F-SB-642-1     | F-SB-642-11   |
| SAMPLE DATE                    | 11/4/2009      | 11/4/2009     | 10/19/2009     | 10/19/2009    |
| PHENANTHRENE                   |                |               |                |               |
| PYRENE                         |                |               |                |               |
| TOTAL PAHS                     | 36240 [MDL=10] | 0 U [MDL=1.5] | 5680 [MDL=1.4] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |                |               |                |               |
| 4,4'-DDD                       |                |               |                |               |
| 4,4'-DDE                       |                |               |                |               |
| 4,4'-DDT                       |                |               |                |               |
| ALDRIN                         |                |               |                |               |
| ALPHA-BHC                      |                |               |                |               |
| ALPHA-CHLORDANE                |                |               |                |               |
| AROCLOR-1016                   |                |               |                |               |
| AROCLOR-1221                   |                |               |                |               |
| AROCLOR-1232                   |                |               |                |               |
| AROCLOR-1242                   |                |               |                |               |
| AROCLOR-1248                   |                |               |                |               |
| AROCLOR-1254                   |                |               |                |               |
| AROCLOR-1260                   |                |               |                |               |
| BETA-BHC                       |                |               |                |               |
| DELTA-BHC                      |                |               |                |               |
| DIELDRIN                       |                |               |                |               |
| ENDOSULFAN I                   |                |               |                |               |
| ENDOSULFAN II                  |                |               |                |               |
| ENDOSULFAN SULFATE             |                |               |                |               |
| ENDRIN                         |                |               |                |               |
| ENDRIN ALDEHYDE                |                |               |                |               |
| ENDRIN KETONE                  |                |               |                |               |
| GAMMA-BHC (LINDANE)            |                |               |                |               |
| GAMMA-CHLORDANE                |                |               |                |               |
| HEPTACHLOR                     |                |               |                |               |
| HEPTACHLOR EPOXIDE             |                |               |                |               |
| METHOXYCHLOR                   |                |               |                |               |
| TOTAL AROCLOR                  |                |               |                |               |
| TOTAL DDT POS                  |                |               |                |               |
| TOXAPHENE                      |                |               |                |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |               |                |               |
| DIESEL RANGE ORGANICS          |                |               |                |               |
| GASOLINE RANGE ORGANICS        |                |               |                |               |
| TPH (C09-C36)                  |                |               |                |               |
|                                |                |               |                |               |

#### SOIL

| SB-642      | CD 640      | 00.040     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | SB-642      | SB-642     | SB-642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F-SB-642-13 | F-SB-642-15 | F-SB-642-3 | F-SB-642-3-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10/19/2009  | 10/19/2009  | 10/19/2009 | 10/19/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del></del> |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del></del> |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | •           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 10/19/2009  | 10/19/2009 | 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 10/19/2009 |

#### SOIL

| LOCATION                    | SB-642      | SB-642      | SB-642     | SB-642       |
|-----------------------------|-------------|-------------|------------|--------------|
| SAMPLE ID                   | F-SB-642-13 | F-SB-642-15 | F-SB-642-3 | F-SB-642-3-D |
| SAMPLE DATE                 | 10/19/2009  | 10/19/2009  | 10/19/2009 | 10/19/2009   |
| 2-CHLORONAPHTHALENE         |             |             |            |              |
| 2-CHLOROPHENOL              |             |             |            |              |
| 2-METHYLPHENOL              |             |             |            |              |
| 2-NITROANILINE              |             |             |            |              |
| 2-NITROPHENOL               |             |             |            |              |
| 3&4-METHYLPHENOL            |             |             |            |              |
| 3,3'-DICHLOROBENZIDINE      |             |             |            |              |
| 3-NITROANILINE              |             |             |            |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |            |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |            |              |
| 4-CHLORO-3-METHYLPHENOL     |             |             |            |              |
| 4-CHLOROANILINE             |             |             |            |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |            |              |
| 4-NITROANILINE              |             |             |            |              |
| 4-NITROPHENOL               |             |             |            |              |
| ACETOPHENONE                |             |             |            |              |
| ANILINE                     |             |             |            |              |
| ATRAZINE                    |             |             |            |              |
| AZOBENZENE                  |             |             |            |              |
| BENZIDINE                   |             |             |            |              |
| BENZOIC ACID                |             |             |            |              |
| BENZYL ALCOHOL              |             |             |            |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |            |              |
| BIS(2-CHLOROETHYL)ETHER     |             |             |            |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |            |              |
| BUTYL BENZYL PHTHALATE      |             |             |            |              |
| CAPROLACTAM                 |             |             |            |              |
| CARBAZOLE                   |             |             |            |              |
| DIBENZOFURAN                |             |             |            |              |
| DIETHYL PHTHALATE           |             |             |            |              |
| DIMETHYL PHTHALATE          |             |             |            |              |
| DI-N-BUTYL PHTHALATE        |             |             |            |              |
| DI-N-OCTYL PHTHALATE        |             |             |            |              |
| HEXACHLOROBENZENE           |             |             |            |              |
| HEXACHLOROBUTADIENE         |             |             |            |              |
| HEXACHLOROCYCLOPENTADIENE   |             |             |            |              |
| HEXACHLOROETHANE            |             |             |            |              |
| ISOPHORONE                  |             |             |            |              |
| NITROBENZENE                |             |             |            |              |
| N-NITROSODIMETHYLAMINE      |             |             |            |              |

#### SOIL

| LOCATION                       | SB-642      | SB-642      | SB-642     | SB-642       |
|--------------------------------|-------------|-------------|------------|--------------|
| SAMPLE ID                      | F-SB-642-13 | F-SB-642-15 | F-SB-642-3 | F-SB-642-3-D |
| SAMPLE DATE                    | 10/19/2009  | 10/19/2009  | 10/19/2009 | 10/19/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |            |              |
| N-NITROSODIPHENYLAMINE         |             |             |            |              |
| PENTACHLOROPHENOL              |             |             |            |              |
| PHENOL                         |             |             |            |              |
| PYRIDINE                       |             |             |            |              |
| VOLATILES (UG/KG)              |             |             |            |              |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |            |              |
| 1,1,1-TRICHLOROETHANE          |             |             |            |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |            |              |
| 1,1,2-TRICHLOROETHANE          |             |             |            |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |            |              |
| 1,1-DICHLOROETHANE             |             |             |            |              |
| 1,1-DICHLOROETHENE             |             |             |            |              |
| 1,1-DICHLOROPROPENE            |             |             |            |              |
| 1,2,3-TRICHLOROBENZENE         |             |             |            |              |
| 1,2,3-TRICHLOROPROPANE         |             |             |            |              |
| 1,2,3-TRIMETHYLBENZENE         |             |             |            |              |
| 1,2,4-TRICHLOROBENZENE         |             |             |            |              |
| 1,2,4-TRIMETHYLBENZENE         |             |             |            |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |            |              |
| 1,2-DIBROMOETHANE              |             |             |            |              |
| 1,2-DICHLOROBENZENE            |             |             |            |              |
| 1,2-DICHLOROETHANE             |             |             |            |              |
| 1,2-DICHLOROPROPANE            |             |             |            |              |
| 1,3,5-TRIMETHYLBENZENE         |             |             |            |              |
| 1,3-DICHLOROBENZENE            |             |             |            |              |
| 1,3-DICHLOROPROPANE            |             |             |            |              |
| 1,3-DICHLOROPROPENE            |             |             |            |              |
| 1,4-DICHLOROBENZENE            |             |             |            |              |
| 1,4-DIOXANE                    |             |             |            |              |
| 2,2-DICHLOROPROPANE            |             |             |            |              |
| 2-BUTANONE                     |             |             |            |              |
| 2-CHLOROETHYL VINYL ETHER      |             |             |            |              |
| 2-CHLOROTOLUENE                |             |             |            |              |
| 2-HEXANONE                     |             |             |            |              |
| 4-CHLOROTOLUENE                |             |             |            |              |
| 4-ISOPROPYLTOLUENE             |             |             |            |              |
| 4-METHYL-2-PENTANONE           |             |             |            |              |
| ACETONE                        |             |             |            |              |
| BENZENE                        |             |             |            |              |

#### SOIL

| LOCATION                  | SB-642      | SB-642      | SB-642     | SB-642       |
|---------------------------|-------------|-------------|------------|--------------|
| SAMPLE ID                 | F-SB-642-13 | F-SB-642-15 | F-SB-642-3 | F-SB-642-3-D |
| SAMPLE DATE               | 10/19/2009  | 10/19/2009  | 10/19/2009 | 10/19/2009   |
| BROMOBENZENE              |             |             |            |              |
| BROMOCHLOROMETHANE        |             |             |            |              |
| BROMODICHLOROMETHANE      |             |             |            |              |
| BROMOFORM                 |             |             |            |              |
| BROMOMETHANE              |             |             |            |              |
| CARBON DISULFIDE          |             |             |            |              |
| CARBON TETRACHLORIDE      |             |             |            |              |
| CHLOROBENZENE             |             |             |            |              |
| CHLORODIBROMOMETHANE      |             |             |            |              |
| CHLOROETHANE              |             |             |            |              |
| CHLOROFORM                |             |             |            |              |
| CHLOROMETHANE             |             |             |            |              |
| CIS-1,2-DICHLOROETHENE    |             |             |            |              |
| CIS-1.3-DICHLOROPROPENE   |             |             |            |              |
| DIBROMOMETHANE            |             |             |            |              |
| DICHLORODIFLUOROMETHANE   |             |             |            |              |
| DIISOPROPYL ETHER         |             |             |            |              |
| ETHYL TERT-BUTYL ETHER    |             |             |            |              |
| ETHYLBENZENE              |             |             |            |              |
| FLUORODICHLOROMETHANE     |             |             |            |              |
| HEXACHLOROBUTADIENE       |             |             |            |              |
| ISOPROPYLBENZENE          |             |             |            |              |
| M+P-XYLENES               |             |             |            |              |
| METHYL TERT-BUTYL ETHER   |             |             |            |              |
| METHYLENE CHLORIDE        |             |             |            |              |
| NAPHTHALENE               |             |             |            |              |
| N-BUTYLBENZENE            |             |             |            |              |
| N-PROPYLBENZENE           |             |             |            |              |
| O-XYLENE                  |             |             |            |              |
| SEC-BUTYLBENZENE          |             |             |            |              |
| STYRENE                   |             |             |            |              |
| TERT-AMYL METHYL ETHER    |             |             |            |              |
| TERT-BUTYLBENZENE         |             |             |            |              |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |              |
| TETRACHLOROETHENE         |             |             |            |              |
| TOLUENE                   |             |             |            |              |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |              |
| TOTAL XYLENES             |             |             |            |              |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |              |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |              |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-642           | SB-642           | SB-642          | SB-642          |
|------------------------------------------|------------------|------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642-13      | F-SB-642-15      | F-SB-642-3      | F-SB-642-3-D    |
| SAMPLE DATE                              | 10/19/2009       | 10/19/2009       | 10/19/2009      | 10/19/2009      |
| TRICHLOROETHENE                          |                  |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                  |                 |                 |
| VINYL ACETATE                            |                  |                  |                 |                 |
| VINYL CHLORIDE                           |                  |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                  |                 |                 |
| 1-METHYLNAPHTHALENE                      |                  |                  |                 |                 |
| 2-METHYLNAPHTHALENE                      |                  |                  |                 |                 |
| ACENAPHTHENE                             |                  |                  |                 |                 |
| ACENAPHTHYLENE                           |                  |                  |                 |                 |
| ANTHRACENE                               |                  |                  |                 |                 |
| BAP EQUIVALENT-HALFND                    | 191.16 [MDL=1.6] | 27.939 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 191.16 [MDL=1.6] | 27.139 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                  |                 |                 |
| BENZO(A)ANTHRACENE                       | 110 [MDL=1.2]    | 18 [MDL=1.1]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 130 [MDL=1.6]    | 21 [MDL=1.6]     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 170 [MDL=1.5]    | 28 [MDL=1.4]     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                  |                 |                 |
| BENZO(K)FLUORANTHENE                     | 73 [MDL=2.1]     | 12 [MDL=2.1]     | 1.9 U [MDL=1.9] | 1.9 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                  |                 |                 |
| C1-FLUORENES                             |                  |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C2-FLUORENES                             |                  |                  |                 |                 |
| C2-NAPHTHALENES                          |                  |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C3-FLUORENES                             |                  |                  |                 |                 |
| C3-NAPHTHALENES                          |                  |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C4-NAPHTHALENES                          |                  |                  |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| CHRYSENE                                 | 130 [MDL=1.1]    | 19 [MDL=1.1]     | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 24 [MDL=1.6]     | 1.6 U [MDL=1.6]  | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                  |                  |                 |                 |
| FLUORENE                                 |                  |                  |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 83 [MDL=1.9]     | 14 [MDL=1.8]     | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] |
| <u> </u>                                 |                  |                  |                 |                 |

#### SOIL

| LOCATION                       | SB-642        | SB-642        | SB-642        | SB-642        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-642-13   | F-SB-642-15   | F-SB-642-3    | F-SB-642-3-D  |
| SAMPLE DATE                    | 10/19/2009    | 10/19/2009    | 10/19/2009    | 10/19/2009    |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 720 [MDL=1.6] | 112 [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |               | , ,           | • •           |
| I,4'-DDD                       |               |               |               |               |
| I,4'-DDE                       |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               | <del></del>   |
| GAMMA-BHC (LINDANE)            |               |               |               | <del></del>   |
| GAMMA-CHLORDANE                |               |               |               | <del></del>   |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               | ==            |
| OXAPHENE                       |               |               |               | ==            |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

| SUIL                         | 00.040     | 00.040     | T 00 040   | 00.0404     |
|------------------------------|------------|------------|------------|-------------|
| LOCATION                     | SB-642     | SB-642     | SB-642     | SB-642A     |
| SAMPLE ID                    | F-SB-642-5 | F-SB-642-7 | F-SB-642-9 | F-SB-642A-1 |
| SAMPLE DATE                  | 10/19/2009 | 10/19/2009 | 10/19/2009 | 11/4/2009   |
| METALS (MG/KG)               |            | 1          | T          | I           |
| ANTIMONY                     |            |            |            |             |
| ARSENIC                      |            |            |            |             |
| BARIUM                       |            |            |            |             |
| BERYLLIUM                    |            |            |            |             |
| CADMIUM                      |            |            |            |             |
| CHROMIUM                     |            |            |            |             |
| COBALT                       |            |            |            |             |
| COPPER                       |            |            |            |             |
| LEAD                         |            |            |            |             |
| MERCURY                      |            |            |            |             |
| MOLYBDENUM                   |            |            |            |             |
| NICKEL                       |            |            |            |             |
| SELENIUM                     |            |            |            |             |
| SILVER                       |            |            |            |             |
| THALLIUM                     |            |            |            |             |
| VANADIUM                     |            |            |            |             |
| ZINC                         |            |            |            |             |
| MISCELLANEOUS PARAMETERS     |            |            |            |             |
| PERCENT SOLIDS (%)           |            |            |            |             |
| TOTAL SOLIDS (%)             |            |            |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |             |
| PH (S.U.)                    |            |            |            |             |
| MERCURY (METHYL) (UG/KG)     |            |            |            |             |
| SEMIVOLATILES (UG/KG)        |            |            |            |             |
| 1,1-BIPHENYL                 |            |            |            |             |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |             |
| 1,2-DICHLOROBENZENE          |            |            |            |             |
| 1,3-DICHLOROBENZENE          |            |            |            |             |
| 1,4-DICHLOROBENZENE          |            |            |            |             |
| 1,4-DIOXANE                  |            |            |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |             |
| 2,4,5-TRICHLOROPHENOL        |            |            |            |             |
| 2,4,6-TRICHLOROPHENOL        |            |            |            |             |
| 2,4-DICHLOROPHENOL           |            |            |            |             |
| 2,4-DIMETHYLPHENOL           |            |            |            |             |
| 2,4-DINITROPHENOL            |            |            |            |             |
| 2,4-DINITROTOLUENE           |            |            |            |             |
| 2,6-DINITROTOLUENE           |            |            |            |             |

N-NITROSODIMETHYLAMINE

| LOCATION                    | SB-642     | SB-642     | SB-642     | SB-642A     |
|-----------------------------|------------|------------|------------|-------------|
| SAMPLE ID                   | F-SB-642-5 | F-SB-642-7 | F-SB-642-9 | F-SB-642A-1 |
| SAMPLE DATE                 | 10/19/2009 | 10/19/2009 | 10/19/2009 | 11/4/2009   |
| 2-CHLORONAPHTHALENE         |            |            |            |             |
| 2-CHLOROPHENOL              |            |            |            |             |
| 2-METHYLPHENOL              |            |            |            |             |
| 2-NITROANILINE              |            |            |            |             |
| 2-NITROPHENOL               |            |            |            |             |
| 3&4-METHYLPHENOL            |            |            |            |             |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |             |
| 3-NITROANILINE              |            |            |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |             |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |             |
| 4-CHLOROANILINE             |            |            |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |             |
| 4-NITROANILINE              |            |            |            |             |
| 4-NITROPHENOL               |            |            |            |             |
| ACETOPHENONE                |            |            |            |             |
| ANILINE                     |            |            |            |             |
| ATRAZINE                    |            |            |            |             |
| AZOBENZENE                  |            |            |            |             |
| BENZIDINE                   |            |            |            |             |
| BENZOIC ACID                |            |            |            |             |
| BENZYL ALCOHOL              |            |            |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |             |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |             |
| BUTYL BENZYL PHTHALATE      |            |            |            |             |
| CAPROLACTAM                 |            |            |            |             |
| CARBAZOLE                   |            |            |            |             |
| DIBENZOFURAN                |            |            |            |             |
| DIETHYL PHTHALATE           |            |            |            |             |
| DIMETHYL PHTHALATE          |            |            |            |             |
| DI-N-BUTYL PHTHALATE        |            |            |            |             |
| DI-N-OCTYL PHTHALATE        |            |            |            |             |
| HEXACHLOROBENZENE           |            |            |            |             |
| HEXACHLOROBUTADIENE         |            |            |            |             |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |             |
| HEXACHLOROETHANE            |            |            |            |             |
| ISOPHORONE                  |            |            |            |             |
| NITROBENZENE                |            |            |            |             |
|                             |            |            |            |             |

#### SOIL

| LOCATION                       | SB-642     | SB-642     | SB-642     | SB-642A     |
|--------------------------------|------------|------------|------------|-------------|
|                                |            |            |            |             |
| SAMPLE ID                      | F-SB-642-5 | F-SB-642-7 | F-SB-642-9 | F-SB-642A-1 |
| SAMPLE DATE                    | 10/19/2009 | 10/19/2009 | 10/19/2009 | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |             |
| N-NITROSODIPHENYLAMINE         |            |            |            |             |
| PENTACHLOROPHENOL              |            |            |            |             |
| PHENOL                         |            |            |            |             |
| PYRIDINE                       |            |            |            |             |
| VOLATILES (UG/KG)              |            |            |            |             |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |             |
| 1,1,1-TRICHLOROETHANE          |            |            |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |             |
| 1,1,2-TRICHLOROETHANE          |            |            |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |             |
| 1,1-DICHLOROETHANE             |            |            |            |             |
| 1,1-DICHLOROETHENE             |            |            |            |             |
| 1,1-DICHLOROPROPENE            |            |            |            |             |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |             |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |             |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |             |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |             |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |             |
| 1,2-DIBROMOETHANE              |            |            |            |             |
| 1,2-DICHLOROBENZENE            |            |            |            |             |
| 1,2-DICHLOROETHANE             |            |            |            |             |
| 1,2-DICHLOROPROPANE            |            |            |            |             |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |             |
| 1,3-DICHLOROBENZENE            |            |            |            |             |
| 1,3-DICHLOROPROPANE            |            |            |            |             |
| 1,3-DICHLOROPROPENE            |            |            |            |             |
| 1,4-DICHLOROBENZENE            |            |            |            |             |
| 1,4-DIOXANE                    |            |            |            |             |
| 2,2-DICHLOROPROPANE            |            |            |            |             |
| 2-BUTANONE                     |            |            |            |             |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |             |
| 2-CHLOROTOLUENE                |            |            |            |             |
| 2-HEXANONE                     |            |            |            |             |
| 4-CHLOROTOLUENE                |            |            |            |             |
| 4-ISOPROPYLTOLUENE             |            |            |            |             |
| 4-METHYL-2-PENTANONE           |            |            |            |             |
| ACETONE                        |            |            |            |             |
| BENZENE                        |            |            |            |             |
| DLIVALIVE                      |            |            |            |             |

#### SOIL

| LOCATION                  | SB-642     | SB-642     | SB-642     | SB-642A     |
|---------------------------|------------|------------|------------|-------------|
| SAMPLE ID                 | F-SB-642-5 | F-SB-642-7 | F-SB-642-9 | F-SB-642A-1 |
| SAMPLE DATE               | 10/19/2009 | 10/19/2009 | 10/19/2009 | 11/4/2009   |
| BROMOBENZENE              |            |            |            |             |
| BROMOCHLOROMETHANE        |            |            |            |             |
| BROMODICHLOROMETHANE      |            |            |            |             |
| BROMOFORM                 |            |            |            |             |
| BROMOMETHANE              |            |            |            |             |
| CARBON DISULFIDE          |            |            |            |             |
| CARBON TETRACHLORIDE      |            |            |            |             |
| CHLOROBENZENE             |            |            |            |             |
| CHLORODIBROMOMETHANE      |            |            |            |             |
| CHLOROETHANE              |            |            |            |             |
| CHLOROFORM                |            |            |            |             |
| CHLOROMETHANE             |            |            |            |             |
| CIS-1,2-DICHLOROETHENE    |            |            |            |             |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |             |
| DIBROMOMETHANE            |            |            |            |             |
| DICHLORODIFLUOROMETHANE   |            |            |            |             |
| DIISOPROPYL ETHER         |            |            |            |             |
| ETHYL TERT-BUTYL ETHER    |            |            |            |             |
| ETHYLBENZENE              |            |            |            |             |
| FLUORODICHLOROMETHANE     |            |            |            |             |
| HEXACHLOROBUTADIENE       |            |            |            |             |
| ISOPROPYLBENZENE          |            |            |            |             |
| M+P-XYLENES               |            |            |            |             |
| METHYL TERT-BUTYL ETHER   |            |            |            |             |
| METHYLENE CHLORIDE        |            |            |            |             |
| NAPHTHALENE               |            |            |            |             |
| N-BUTYLBENZENE            |            |            |            |             |
| N-PROPYLBENZENE           |            |            |            |             |
| O-XYLENE                  |            |            |            |             |
| SEC-BUTYLBENZENE          |            |            |            |             |
| STYRENE                   |            |            |            |             |
| TERT-AMYL METHYL ETHER    |            |            |            |             |
| TERT-BUTYLBENZENE         |            |            |            |             |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |             |
| TETRACHLOROETHENE         |            |            |            |             |
| TOLUENE                   |            |            |            |             |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |             |
| TOTAL XYLENES             |            |            |            |             |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |             |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |             |

## SOIL

| LOCATION                                 | SB-642          | SB-642          | SB-642           | SB-642A         |
|------------------------------------------|-----------------|-----------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-642-5      | F-SB-642-7      | F-SB-642-9       | F-SB-642A-1     |
| SAMPLE DATE                              | 10/19/2009      | 10/19/2009      | 10/19/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                 |                 |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                  |                 |
| VINYL ACETATE                            |                 |                 |                  |                 |
| VINYL CHLORIDE                           |                 |                 |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                  |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                  |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                  |                 |
| ACENAPHTHENE                             |                 |                 |                  |                 |
| ACENAPHTHYLENE                           |                 |                 |                  |                 |
| ANTHRACENE                               |                 |                 |                  |                 |
| BAP EQUIVALENT-HALFND                    | 27.59 [MDL=1.5] | 1.5 U [MDL=1.5] | 576.55 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 26.84 [MDL=1.5] | 1.5 U [MDL=1.5] | 576.55 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                  |                 |
| BENZO(A)ANTHRACENE                       | 19 [MDL=1.1]    | 1.1 U [MDL=1.1] | 350 [MDL=1.1]    | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 21 [MDL=1.5]    | 1.5 U [MDL=1.5] | 410 [MDL=1.5]    | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 26 [MDL=1.4]    | 1.4 U [MDL=1.4] | 500 [MDL=1.4]    | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                  |                 |
| BENZO(K)FLUORANTHENE                     | 12 [MDL=2]      | 2.0 U [MDL=2]   | 220 [MDL=2]      | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                  |                 |
| C1-FLUORENES                             |                 |                 |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                 |
| C2-FLUORENES                             |                 |                 |                  |                 |
| C2-NAPHTHALENES                          |                 |                 |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                 |
| C3-FLUORENES                             |                 |                 |                  |                 |
| C3-NAPHTHALENES                          |                 |                 |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                 |
| C4-NAPHTHALENES                          |                 |                 |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                 |
| CHRYSENE                                 | 20 [MDL=1.1]    | 1.1 U [MDL=1.1] | 350 [MDL=1.1]    | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 54 [MDL=1.5]     | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                 |                  |                 |
| FLUORENE                                 |                 |                 |                  |                 |
| INDENO(1,2,3-CD)PYRENE                   | 12 [MDL=1.8]    | 1.8 U [MDL=1.8] | 250 [MDL=1.8]    | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                 |                 |                  |                 |

#### SOIL

| LOCATION                       | SB-642        | SB-642        | SB-642         | SB-642A       |
|--------------------------------|---------------|---------------|----------------|---------------|
| SAMPLE ID                      | F-SB-642-5    | F-SB-642-7    | F-SB-642-9     | F-SB-642A-1   |
| SAMPLE DATE                    | 10/19/2009    | 10/19/2009    | 10/19/2009     | 11/4/2009     |
| PHENANTHRENE                   |               |               |                |               |
| PYRENE                         |               |               |                |               |
| TOTAL PAHS                     | 110 [MDL=1.5] | 0 U [MDL=1.5] | 2134 [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             |               | •              |               |
| 4,4'-DDD                       |               |               |                |               |
| 4,4'-DDE                       |               |               |                |               |
| 4,4'-DDT                       |               |               |                |               |
| ALDRIN                         |               |               |                |               |
| ALPHA-BHC                      |               |               |                |               |
| ALPHA-CHLORDANE                |               |               |                |               |
| AROCLOR-1016                   |               |               |                |               |
| AROCLOR-1221                   |               |               |                |               |
| AROCLOR-1232                   |               |               |                |               |
| AROCLOR-1242                   |               |               |                |               |
| AROCLOR-1248                   |               |               |                |               |
| AROCLOR-1254                   |               |               |                |               |
| AROCLOR-1260                   |               |               |                |               |
| BETA-BHC                       |               |               |                |               |
| DELTA-BHC                      |               |               |                |               |
| DIELDRIN                       |               |               |                |               |
| ENDOSULFAN I                   |               |               |                |               |
| ENDOSULFAN II                  |               |               |                |               |
| ENDOSULFAN SULFATE             |               |               |                |               |
| ENDRIN                         |               |               |                |               |
| ENDRIN ALDEHYDE                |               |               |                |               |
| ENDRIN KETONE                  |               |               |                |               |
| GAMMA-BHC (LINDANE)            |               |               |                |               |
| GAMMA-CHLORDANE                |               |               |                |               |
| HEPTACHLOR                     |               |               |                |               |
| HEPTACHLOR EPOXIDE             |               |               |                |               |
| METHOXYCHLOR                   |               |               |                |               |
| TOTAL AROCLOR                  |               |               |                |               |
| TOTAL DDT POS                  |               |               |                |               |
| TOXAPHENE                      |               |               |                |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |                |               |
| DIESEL RANGE ORGANICS          |               |               |                |               |
| GASOLINE RANGE ORGANICS        |               |               |                |               |
| TPH (C09-C36)                  |               |               |                |               |
|                                |               |               |                |               |

#### SOIL

| SAMPLE ID F-SB-642A-11 F-SB-642A-13 F-SB-642A-15 F-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B-642A   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| SAMPLE DATE         11/4/2009         11/4/2009         1 1/4/2009         1           METALS (MG/KG)           ANTIMONY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| METALS (MG/KG)  ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CADMIUM COBALT COPPER COPPER COPPER COPPER COPPER COPPER COPPER CONTROMICH | B-642A-3 |
| ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM COBALT COPPER COPPER COPPER COPPER COPPER COPPER COPPER CONTROM CONT | 1/4/2009 |
| ARSENIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| BARIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| BERYLLIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| CADMIUM <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| CHROMIUM  COBALT  COPPER  COPPER   LEAD  MERCURY  MOLYBDENUM  NICKEL  SELENIUM  SILVER  THALLIUM  VANADIUM  THALLIUM  VANADIUM  INCRECLEANEOUS PARAMETERS   MISCELLANEOUS PARAMETERS   SINC   SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SINC  SI             |          |
| COBALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| COPPER <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| LEAD                                                                                                             -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| MERCURY <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| MOLYBDENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| NICKEL <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| SELENIUM                                                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| SILVER <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| THALLIUM                                                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| VANADIUM                                                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| ZINC MISCELLANEOUS PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| MISCELLANEOUS PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| PERCENT SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TOTAL SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| HEXAVALENT CHROMIUM (MG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| TOTAL ORGANIC CARBON (MG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| PH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| MERCURY (METHYL) (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| SEMIVOLATILES (UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 1,1-BIPHENYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 2,4,5-TRICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 2,4,6-TRICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 2,4-DICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 2,4-DIMETHYLPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 2,4-DINITROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 2,4-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 2,6-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |

| SOIL                        |              |              | T            | T           |
|-----------------------------|--------------|--------------|--------------|-------------|
| LOCATION                    | SB-642A      | SB-642A      | SB-642A      | SB-642A     |
| SAMPLE ID                   | F-SB-642A-11 | F-SB-642A-13 | F-SB-642A-15 | F-SB-642A-3 |
| SAMPLE DATE                 | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| 2-CHLORONAPHTHALENE         |              |              |              |             |
| 2-CHLOROPHENOL              |              |              |              |             |
| 2-METHYLPHENOL              |              |              |              |             |
| 2-NITROANILINE              |              |              |              |             |
| 2-NITROPHENOL               |              |              |              |             |
| 3&4-METHYLPHENOL            |              |              |              |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |             |
| 3-NITROANILINE              |              |              |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |             |
| 4-CHLOROANILINE             |              |              |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |             |
| 4-NITROANILINE              |              |              |              |             |
| 4-NITROPHENOL               |              |              |              |             |
| ACETOPHENONE                |              |              |              |             |
| ANILINE                     |              |              |              |             |
| ATRAZINE                    |              |              |              |             |
| AZOBENZENE                  |              |              |              |             |
| BENZIDINE                   |              |              |              |             |
| BENZOIC ACID                |              |              |              |             |
| BENZYL ALCOHOL              |              |              |              |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |             |
| BUTYL BENZYL PHTHALATE      |              |              |              |             |
| CAPROLACTAM                 |              |              |              |             |
| CARBAZOLE                   |              |              |              |             |
| DIBENZOFURAN                |              |              |              |             |
| DIETHYL PHTHALATE           |              |              |              |             |
| DIMETHYL PHTHALATE          |              |              |              |             |
| DI-N-BUTYL PHTHALATE        |              |              |              |             |
| DI-N-OCTYL PHTHALATE        |              |              |              |             |
| HEXACHLOROBENZENE           |              |              |              |             |
| HEXACHLOROBUTADIENE         |              |              |              |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |             |
| HEXACHLOROETHANE            |              |              |              |             |
| ISOPHORONE                  |              |              |              |             |
| NITROBENZENE                |              |              |              |             |
| N-NITROSODIMETHYLAMINE      |              |              |              |             |

#### SOIL

| LOCATION                      | SB-642A      | SB-642A      | SB-642A      | SB-642A     |
|-------------------------------|--------------|--------------|--------------|-------------|
| SAMPLE ID                     | F-SB-642A-11 | F-SB-642A-13 | F-SB-642A-15 | F-SB-642A-3 |
| SAMPLE DATE                   | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE    |              |              |              |             |
| N-NITROSODIPHENYLAMINE        |              |              |              |             |
| PENTACHLOROPHENOL             |              |              |              |             |
| PHENOL                        |              |              |              |             |
| PYRIDINE                      |              |              |              |             |
| /OLATILES (UG/KG)             |              |              |              |             |
| ,1,1,2-TETRACHLOROETHANE      |              |              |              |             |
| 1,1,1-TRICHLOROETHANE         |              |              |              |             |
| ,1,2,2-TETRACHLOROETHANE      |              |              |              |             |
| ,1,2-TRICHLOROETHANE          |              |              |              |             |
| ,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |             |
| ,1-DICHLOROETHANE             |              |              |              |             |
| ,1-DICHLOROETHENE             |              |              |              |             |
| ,1-DICHLOROPROPENE            |              |              |              |             |
| ,2,3-TRICHLOROBENZENE         |              |              |              |             |
| ,2,3-TRICHLOROPROPANE         |              |              |              |             |
| ,2,3-TRIMETHYLBENZENE         |              |              |              |             |
| ,2,4-TRICHLOROBENZENE         |              |              |              |             |
| ,2,4-TRIMETHYLBENZENE         |              |              |              |             |
| ,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |             |
| ,2-DIBROMOETHANE              |              |              |              |             |
| ,2-DICHLOROBENZENE            |              |              |              |             |
| ,2-DICHLOROETHANE             |              |              |              |             |
| 1,2-DICHLOROPROPANE           |              |              |              |             |
| I,3,5-TRIMETHYLBENZENE        |              |              |              |             |
| ,3-DICHLOROBENZENE            |              |              |              |             |
| ,3-DICHLOROPROPANE            |              |              |              |             |
| ,3-DICHLOROPROPENE            |              |              |              |             |
| ,4-DICHLOROBENZENE            |              |              |              |             |
| ,4-DIOXANE                    |              |              |              |             |
| 2,2-DICHLOROPROPANE           |              |              |              |             |
| -BUTANONE                     |              |              |              |             |
| -CHLOROETHYL VINYL ETHER      |              |              |              |             |
| -CHLOROTOLUENE                |              |              |              |             |
| -HEXANONE                     |              |              |              |             |
| I-CHLOROTOLUENE               |              |              |              |             |
| -ISOPROPYLTOLUENE             |              |              |              |             |
| -METHYL-2-PENTANONE           |              |              |              |             |
| CETONE                        |              |              | -            |             |
| BENZENE                       |              |              |              |             |

| SOIL                      |              |              |              |             |
|---------------------------|--------------|--------------|--------------|-------------|
| LOCATION                  | SB-642A      | SB-642A      | SB-642A      | SB-642A     |
| SAMPLE ID                 | F-SB-642A-11 | F-SB-642A-13 | F-SB-642A-15 | F-SB-642A-3 |
| SAMPLE DATE               | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| BROMOBENZENE              |              |              |              |             |
| BROMOCHLOROMETHANE        |              |              |              |             |
| BROMODICHLOROMETHANE      |              |              |              |             |
| BROMOFORM                 |              |              |              |             |
| BROMOMETHANE              |              |              |              |             |
| CARBON DISULFIDE          |              |              |              |             |
| CARBON TETRACHLORIDE      |              |              |              |             |
| CHLOROBENZENE             |              |              |              |             |
| CHLORODIBROMOMETHANE      |              |              |              |             |
| CHLOROETHANE              |              |              |              |             |
| CHLOROFORM                |              |              |              |             |
| CHLOROMETHANE             |              |              |              |             |
| CIS-1,2-DICHLOROETHENE    |              |              |              |             |
| CIS-1,3-DICHLOROPROPENE   |              |              |              |             |
| DIBROMOMETHANE            |              |              |              |             |
| DICHLORODIFLUOROMETHANE   |              |              |              |             |
| DIISOPROPYL ETHER         |              |              |              |             |
| ETHYL TERT-BUTYL ETHER    |              |              |              |             |
| ETHYLBENZENE              |              |              |              |             |
| FLUORODICHLOROMETHANE     |              |              |              |             |
| HEXACHLOROBUTADIENE       |              |              |              |             |
| ISOPROPYLBENZENE          |              |              |              |             |
| M+P-XYLENES               |              |              |              |             |
| METHYL TERT-BUTYL ETHER   |              |              |              |             |
| METHYLENE CHLORIDE        |              |              |              |             |
| NAPHTHALENE               |              |              |              |             |
| N-BUTYLBENZENE            |              |              |              |             |
| N-PROPYLBENZENE           |              |              |              |             |
| O-XYLENE                  |              |              |              |             |
| SEC-BUTYLBENZENE          |              |              |              |             |
| STYRENE                   |              |              |              |             |
| TERT-AMYL METHYL ETHER    |              |              |              |             |
| TERT-BUTYLBENZENE         |              |              |              |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |              |             |
| TETRACHLOROETHENE         |              |              |              |             |
| TOLUENE                   |              |              |              |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |              |             |
| TOTAL XYLENES             |              |              |              |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |              |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |              |             |
|                           | 1            | f.           | t .          |             |

## SOIL

| LOCATION                                 | SB-642A         | SB-642A         | SB-642A         | SB-642A         |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642A-11    | F-SB-642A-13    | F-SB-642A-15    | F-SB-642A-3     |
| SAMPLE DATE                              | 11/4/2009       | 11/4/2009       | 11/4/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             | <del></del>     |                 |                 |                 |
| FLUORENE                                 | <del></del>     |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                 |                 |                 |                 |

#### SOIL

| LOCATION                       | SB-642A       | SB-642A       | SB-642A                                        | SB-642A       |
|--------------------------------|---------------|---------------|------------------------------------------------|---------------|
| SAMPLE ID                      | F-SB-642A-11  | F-SB-642A-13  | F-SB-642A-15                                   | F-SB-642A-3   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009     | 11/4/2009                                      | 11/4/2009     |
| PHENANTHRENE                   |               |               |                                                |               |
| PYRENE                         |               |               |                                                |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.5]                                  | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             |               |                                                |               |
| 4,4'-DDD                       |               |               |                                                |               |
| 4,4'-DDE                       |               |               |                                                |               |
| 4,4'-DDT                       |               |               |                                                |               |
| ALDRIN                         |               |               |                                                |               |
| ALPHA-BHC                      |               |               |                                                |               |
| ALPHA-CHLORDANE                |               |               |                                                |               |
| AROCLOR-1016                   |               |               |                                                |               |
| AROCLOR-1221                   |               |               |                                                |               |
| AROCLOR-1232                   |               |               |                                                |               |
| AROCLOR-1242                   |               |               |                                                |               |
| AROCLOR-1248                   |               |               |                                                |               |
| AROCLOR-1254                   |               |               |                                                |               |
| AROCLOR-1260                   |               |               |                                                |               |
| BETA-BHC                       |               |               |                                                |               |
| DELTA-BHC                      |               |               |                                                |               |
| DIELDRIN                       |               |               |                                                |               |
| ENDOSULFAN I                   |               |               |                                                |               |
| ENDOSULFAN II                  |               |               |                                                |               |
| ENDOSULFAN SULFATE             |               |               |                                                |               |
| ENDRIN                         |               |               |                                                |               |
| ENDRIN ALDEHYDE                |               |               |                                                |               |
| ENDRIN KETONE                  |               |               |                                                |               |
| GAMMA-BHC (LINDANE)            |               |               |                                                |               |
| GAMMA-CHLORDANE                |               |               |                                                |               |
| HEPTACHLOR                     |               |               |                                                |               |
| HEPTACHLOR EPOXIDE             |               |               |                                                |               |
| METHOXYCHLOR                   |               |               |                                                |               |
| TOTAL AROCLOR                  |               |               |                                                |               |
| TOTAL DDT POS                  |               |               |                                                |               |
| TOXAPHENE                      |               |               |                                                |               |
| PETROLEUM HYDROCARBONS (UG/KG) | ·             | •             | <u>.                                      </u> |               |
| DIESEL RANGE ORGANICS          |               |               |                                                |               |
| GASOLINE RANGE ORGANICS        |               |               |                                                |               |
| TPH (C09-C36)                  |               |               |                                                |               |
|                                |               |               |                                                |               |

#### SOIL

| SOIL                         |             |             | T           |             |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-642A     | SB-642A     | SB-642A     | SB-642B     |
| SAMPLE ID                    | F-SB-642A-5 | F-SB-642A-7 | F-SB-642A-9 | F-SB-642B-1 |
| SAMPLE DATE                  | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| METALS (MG/KG)               |             | _           | _           |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           |             |             | •           |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           |             |             | •           |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |
| _,0                          |             |             |             |             |

| SOIL<br>LOCATION                              | SB-642A      | SB-642A     | SB-642A     | SB-642B     |
|-----------------------------------------------|--------------|-------------|-------------|-------------|
|                                               |              |             |             |             |
| SAMPLE ID                                     | F-SB-642A-5  | F-SB-642A-7 | F-SB-642A-9 | F-SB-642B-1 |
| SAMPLE DATE                                   | 11/4/2009    | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| 2-CHLORONAPHTHALENE                           |              |             |             |             |
| 2-CHLOROPHENOL                                |              |             |             |             |
| 2-METHYLPHENOL                                |              |             |             |             |
| 2-NITROANILINE                                |              |             |             |             |
| 2-NITROPHENOL                                 |              |             |             |             |
| 3&4-METHYLPHENOL                              |              |             |             |             |
| 3,3'-DICHLOROBENZIDINE                        |              |             |             |             |
| 3-NITROANILINE                                |              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL                    |              |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER                    |              |             |             |             |
| 4-CHLORO-3-METHYLPHENOL                       |              |             |             |             |
| 4-CHLOROANILINE                               |              |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER                   |              |             |             |             |
| 4-NITROANILINE                                |              |             |             |             |
| 4-NITROPHENOL                                 |              |             |             |             |
| ACETOPHENONE                                  |              |             |             |             |
| ANILINE                                       |              |             |             |             |
| ATRAZINE                                      |              |             |             |             |
| AZOBENZENE                                    |              |             |             |             |
| BENZIDINE                                     |              |             |             |             |
| BENZOIC ACID                                  |              |             |             |             |
| BENZYL ALCOHOL                                |              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE                    |              |             |             |             |
| BIS(2-CHLOROETHYL)ETHER                       |              |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE                    |              |             |             |             |
| BUTYL BENZYL PHTHALATE                        |              |             |             |             |
| CAPROLACTAM                                   |              |             |             |             |
| CARBAZOLE                                     |              |             |             |             |
| DIBENZOFURAN                                  |              |             |             |             |
| DIETHYL PHTHALATE                             |              |             |             |             |
| DIMETHYL PHTHALATE                            |              |             |             |             |
| DI-N-BUTYL PHTHALATE                          |              |             |             |             |
| DI-N-OCTYL PHTHALATE                          | -            |             | -           |             |
|                                               |              |             |             |             |
| HEXACHLOROBENZENE HEXACHLOROBUTADIENE         |              |             |             |             |
| HEXACHLOROBOTADIENE HEXACHLOROCYCLOPENTADIENE |              |             | -           |             |
|                                               | <del></del>  |             |             |             |
| HEXACHLOROETHANE                              | <del>-</del> |             |             |             |
| ISOPHORONE                                    |              |             |             |             |
| NITROBENZENE                                  |              |             |             |             |
| N-NITROSODIMETHYLAMINE                        |              |             |             |             |

#### SOIL

| LOCATION                       | SB-642A     | SB-642A     | SB-642A     | SB-642B     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-642A-5 | F-SB-642A-7 | F-SB-642A-9 | F-SB-642B-1 |
| SAMPLE DATE                    | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             | •           | -           | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| SOIL LOCATION             | SB-642A     | SB-642A     | SB-642A     | SB-642B     |
|---------------------------|-------------|-------------|-------------|-------------|
|                           |             |             |             |             |
| SAMPLE ID                 | F-SB-642A-5 | F-SB-642A-7 | F-SB-642A-9 | F-SB-642B-1 |
| SAMPLE DATE               | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

## SOIL

NAPHTHALENE

| LOCATION                                 | SB-642A                               | SB-642A         | SB-642A         | SB-642B          |
|------------------------------------------|---------------------------------------|-----------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-642A-5                           | F-SB-642A-7     | F-SB-642A-9     | F-SB-642B-1      |
| SAMPLE DATE                              | 11/4/2009                             | 11/4/2009       | 11/4/2009       | 11/4/2009        |
| TRICHLOROETHENE                          |                                       |                 |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                                       |                 |                 |                  |
| VINYL ACETATE                            |                                       |                 |                 |                  |
| VINYL CHLORIDE                           |                                       |                 |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                                       |                 |                 |                  |
| 1-METHYLNAPHTHALENE                      |                                       |                 |                 |                  |
| 2-METHYLNAPHTHALENE                      |                                       |                 |                 |                  |
| ACENAPHTHENE                             |                                       |                 |                 |                  |
| ACENAPHTHYLENE                           |                                       |                 |                 |                  |
| ANTHRACENE                               |                                       |                 |                 |                  |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6]                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 56.598 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6]                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 55.848 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       | ŀ                                     |                 |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2]                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 42 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6]                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 44 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5]                       | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 48 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     | -                                     |                 |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1]                       | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 40 [MDL=2]       |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         | ŀ                                     |                 |                 |                  |
| C1-FLUORANTHENES/PYRENES                 | -                                     |                 |                 |                  |
| C1-FLUORENES                             | -                                     |                 |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             | -                                     |                 |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         | ŀ                                     |                 |                 |                  |
| C2-FLUORENES                             | ŀ                                     |                 |                 |                  |
| C2-NAPHTHALENES                          | -                                     |                 |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             | -                                     |                 |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         | -                                     |                 |                 |                  |
| C3-FLUORENES                             | -                                     |                 |                 |                  |
| C3-NAPHTHALENES                          |                                       |                 |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             | -                                     |                 |                 |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         | -                                     |                 |                 |                  |
| C4-NAPHTHALENES                          | -                                     |                 |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             | -                                     |                 |                 |                  |
| CHRYSENE                                 | 1.1 U [MDL=1.1]                       | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 48 [MDL=1]       |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6]                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5]  |
| FLUORANTHENE                             |                                       |                 |                 |                  |
| FLUORENE                                 |                                       |                 |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8]                       | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 24 [MDL=1.7]     |
|                                          | · · · · · · · · · · · · · · · · · · · | •               | •               |                  |

#### SOIL

| LOCATION                       | SB-642A       | SB-642A       | SB-642A       | SB-642B       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-642A-5   | F-SB-642A-7   | F-SB-642A-9   | F-SB-642B-1   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009     | 11/4/2009     | 11/4/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 246 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | -             |
| 1,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               |               |
| 4,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               | <del></del>   |
| ENDOSULFAN SULFATE             |               |               |               | <del></del>   |
| ENDRIN                         |               |               |               | <del></del>   |
| ENDRIN ALDEHYDE                |               |               |               | <del></del>   |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   |               |               |               |               |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               | <del></del>   |

#### SOIL

|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB-642B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-SB-642B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/4/2009 | 11/4/2009 | 11/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •         |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -         | •         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           | F-SB-642B-11 11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009 | F-SB-642B-11 11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009  11/4/2009 |

| SOIL                        |              |              | T            | T           |
|-----------------------------|--------------|--------------|--------------|-------------|
| LOCATION                    | SB-642B      | SB-642B      | SB-642B      | SB-642B     |
| SAMPLE ID                   | F-SB-642B-11 | F-SB-642B-13 | F-SB-642B-15 | F-SB-642B-3 |
| SAMPLE DATE                 | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| 2-CHLORONAPHTHALENE         |              |              |              |             |
| 2-CHLOROPHENOL              |              |              |              |             |
| 2-METHYLPHENOL              |              |              |              |             |
| 2-NITROANILINE              |              |              |              |             |
| 2-NITROPHENOL               |              |              |              |             |
| 3&4-METHYLPHENOL            |              |              |              |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |             |
| 3-NITROANILINE              |              |              |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |             |
| 4-CHLOROANILINE             |              |              |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |             |
| 4-NITROANILINE              |              |              |              |             |
| 4-NITROPHENOL               |              |              |              |             |
| ACETOPHENONE                |              |              |              |             |
| ANILINE                     |              |              |              |             |
| ATRAZINE                    |              |              |              |             |
| AZOBENZENE                  |              |              |              |             |
| BENZIDINE                   |              |              |              |             |
| BENZOIC ACID                |              |              |              |             |
| BENZYL ALCOHOL              |              |              |              |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |             |
| BUTYL BENZYL PHTHALATE      |              |              |              |             |
| CAPROLACTAM                 |              |              |              |             |
| CARBAZOLE                   |              |              |              |             |
| DIBENZOFURAN                |              |              |              |             |
| DIETHYL PHTHALATE           |              |              |              |             |
| DIMETHYL PHTHALATE          |              |              |              |             |
| DI-N-BUTYL PHTHALATE        |              |              |              |             |
| DI-N-OCTYL PHTHALATE        |              |              |              |             |
| HEXACHLOROBENZENE           |              |              |              |             |
| HEXACHLOROBUTADIENE         |              |              |              |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |             |
| HEXACHLOROETHANE            |              |              |              |             |
| ISOPHORONE                  |              |              |              |             |
| NITROBENZENE                |              |              |              |             |
| N-NITROSODIMETHYLAMINE      |              |              |              |             |

#### SOIL

| LOCATION                       | SB-642B      | SB-642B      | SB-642B      | SB-642B     |
|--------------------------------|--------------|--------------|--------------|-------------|
| SAMPLE ID                      | F-SB-642B-11 | F-SB-642B-13 | F-SB-642B-15 | F-SB-642B-3 |
| SAMPLE DATE                    | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |             |
| N-NITROSODIPHENYLAMINE         |              |              |              |             |
| PENTACHLOROPHENOL              |              |              |              |             |
| PHENOL                         |              |              |              |             |
| PYRIDINE                       |              |              |              |             |
| VOLATILES (UG/KG)              |              |              |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |             |
| 1,1,1-TRICHLOROETHANE          |              |              |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |              |             |
| 1,1,2-TRICHLOROETHANE          |              |              |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |             |
| 1,1-DICHLOROETHANE             |              |              |              |             |
| 1,1-DICHLOROETHENE             |              |              |              |             |
| 1,1-DICHLOROPROPENE            |              |              |              |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |              |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |              |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |              |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |             |
| 1,2-DIBROMOETHANE              |              |              |              |             |
| 1,2-DICHLOROBENZENE            |              |              |              |             |
| 1,2-DICHLOROETHANE             |              |              |              |             |
| 1,2-DICHLOROPROPANE            |              |              |              |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |              |             |
| 1,3-DICHLOROBENZENE            |              |              |              |             |
| 1,3-DICHLOROPROPANE            |              |              |              |             |
| 1,3-DICHLOROPROPENE            |              |              |              |             |
| 1,4-DICHLOROBENZENE            |              |              |              |             |
| 1,4-DIOXANE                    |              |              |              |             |
| 2,2-DICHLOROPROPANE            |              |              |              |             |
| 2-BUTANONE                     |              |              |              |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |             |
| 2-CHLOROTOLUENE                |              |              |              |             |
| 2-HEXANONE                     |              |              |              |             |
| 4-CHLOROTOLUENE                |              |              |              |             |
| 4-ISOPROPYLTOLUENE             |              |              |              |             |
| 4-METHYL-2-PENTANONE           |              |              |              |             |
| ACETONE                        |              |              |              |             |
| BENZENE                        |              |              |              |             |

| SOIL                      | 00.0400      | D 0100       | 00.0400      | 00.0400     |
|---------------------------|--------------|--------------|--------------|-------------|
| LOCATION                  | SB-642B      | SB-642B      | SB-642B      | SB-642B     |
| SAMPLE ID                 | F-SB-642B-11 | F-SB-642B-13 | F-SB-642B-15 | F-SB-642B-3 |
| SAMPLE DATE               | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| BROMOBENZENE              |              |              |              |             |
| BROMOCHLOROMETHANE        |              |              |              |             |
| BROMODICHLOROMETHANE      |              |              |              |             |
| BROMOFORM                 |              |              |              |             |
| BROMOMETHANE              |              |              |              |             |
| CARBON DISULFIDE          |              |              |              |             |
| CARBON TETRACHLORIDE      |              |              |              |             |
| CHLOROBENZENE             |              |              |              |             |
| CHLORODIBROMOMETHANE      |              |              |              |             |
| CHLOROETHANE              |              |              |              |             |
| CHLOROFORM                |              |              |              |             |
| CHLOROMETHANE             |              |              |              |             |
| CIS-1,2-DICHLOROETHENE    |              |              |              |             |
| CIS-1,3-DICHLOROPROPENE   |              |              |              |             |
| DIBROMOMETHANE            |              |              |              |             |
| DICHLORODIFLUOROMETHANE   |              |              |              |             |
| DIISOPROPYL ETHER         |              |              |              |             |
| ETHYL TERT-BUTYL ETHER    |              |              |              |             |
| ETHYLBENZENE              |              |              |              |             |
| FLUORODICHLOROMETHANE     |              |              |              |             |
| HEXACHLOROBUTADIENE       |              |              |              |             |
| ISOPROPYLBENZENE          |              |              |              |             |
| M+P-XYLENES               |              |              |              |             |
| METHYL TERT-BUTYL ETHER   |              |              |              |             |
| METHYLENE CHLORIDE        |              |              |              |             |
| NAPHTHALENE               |              |              |              |             |
| N-BUTYLBENZENE            |              |              |              |             |
| N-PROPYLBENZENE           |              |              |              |             |
| O-XYLENE                  |              |              |              |             |
| SEC-BUTYLBENZENE          |              |              |              |             |
| STYRENE                   |              |              |              |             |
| TERT-AMYL METHYL ETHER    |              |              |              |             |
| TERT-BUTYLBENZENE         |              |              |              |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |              |             |
| TETRACHLOROETHENE         |              |              |              |             |
| TOLUENE                   |              |              |              |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |              |             |
| TOTAL XYLENES             |              |              |              |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |              |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |              |             |

## SOIL

| LOCATION                                 | SB-642B         | SB-642B           | SB-642B         | SB-642B         |
|------------------------------------------|-----------------|-------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642B-11    | F-SB-642B-13      | F-SB-642B-15    | F-SB-642B-3     |
| SAMPLE DATE                              | 11/4/2009       | 11/4/2009         | 11/4/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                 |                   |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                 |                 |
| VINYL ACETATE                            |                 |                   |                 |                 |
| VINYL CHLORIDE                           |                 |                   |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                   |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                   |                 |                 |
| ACENAPHTHENE                             |                 |                   |                 |                 |
| ACENAPHTHYLENE                           |                 |                   |                 |                 |
| ANTHRACENE                               |                 |                   |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 12.3183 [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 11.4183 [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                   |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2] | 9.1 [MDL=1.1]     | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 9.5 [MDL=1.6]     | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 10 [MDL=1.4]      | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]     | 2.1 U [MDL=2.1] | 1.9 U [MDL=1.9] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                   |                 |                 |
| C1-FLUORENES                             |                 |                   |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C2-FLUORENES                             |                 |                   |                 |                 |
| C2-NAPHTHALENES                          |                 |                   |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C3-FLUORENES                             |                 |                   | <del></del>     |                 |
| C3-NAPHTHALENES                          |                 |                   |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C4-NAPHTHALENES                          |                 |                   | <del></del>     |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   | -               |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 8.3 [MDL=1.1]     | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                   |                 |                 |
| FLUORENE                                 |                 |                   |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8]   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                 |                   |                 |                 |

#### SOIL

| LOCATION                       | SB-642B       | SB-642B        | SB-642B       | SB-642B       |
|--------------------------------|---------------|----------------|---------------|---------------|
| SAMPLE ID                      | F-SB-642B-11  | F-SB-642B-13   | F-SB-642B-15  | F-SB-642B-3   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009      | 11/4/2009     | 11/4/2009     |
| PHENANTHRENE                   |               |                |               |               |
| PYRENE                         |               |                |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.6] | 36.9 [MDL=1.6] | 0 U [MDL=1.6] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |                |               | -             |
| 1,4'-DDD                       |               |                |               |               |
| I,4'-DDE                       |               |                |               |               |
| 1,4'-DDT                       |               |                |               |               |
| ALDRIN                         |               |                |               |               |
| ALPHA-BHC                      |               |                |               |               |
| ALPHA-CHLORDANE                |               |                |               |               |
| AROCLOR-1016                   |               |                |               |               |
| AROCLOR-1221                   |               |                |               |               |
| AROCLOR-1232                   |               |                |               |               |
| AROCLOR-1242                   |               |                |               |               |
| AROCLOR-1248                   |               |                |               |               |
| ROCLOR-1254                    |               |                |               |               |
| AROCLOR-1260                   |               |                |               |               |
| BETA-BHC                       |               |                |               |               |
| DELTA-BHC                      |               |                |               |               |
| DIELDRIN                       |               |                |               |               |
| ENDOSULFAN I                   |               |                |               |               |
| ENDOSULFAN II                  |               |                |               |               |
| ENDOSULFAN SULFATE             |               |                |               |               |
| NDRIN                          |               |                |               |               |
| ENDRIN ALDEHYDE                |               |                |               |               |
| ENDRIN KETONE                  |               |                |               |               |
| GAMMA-BHC (LINDANE)            |               |                |               |               |
| GAMMA-CHLORDANE                |               |                |               |               |
| HEPTACHLOR                     |               |                |               |               |
| HEPTACHLOR EPOXIDE             |               |                |               |               |
| METHOXYCHLOR                   |               |                |               |               |
| OTAL AROCLOR                   |               |                |               |               |
| OTAL DDT POS                   |               |                |               |               |
| OXAPHENE                       |               |                |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |                |               |               |
| DIESEL RANGE ORGANICS          |               |                |               |               |
| GASOLINE RANGE ORGANICS        |               |                |               |               |
| TPH (C09-C36)                  |               |                |               |               |

#### SOIL

| SOIL                         |             |             | T           |             |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-642B     | SB-642B     | SB-642B     | SB-642C     |
| SAMPLE ID                    | F-SB-642B-5 | F-SB-642B-7 | F-SB-642B-9 | F-SB-642C-1 |
| SAMPLE DATE                  | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| METALS (MG/KG)               |             | 1           |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           | •           |             | •           |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           | •           |             | •           |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |
| <u> </u>                     | ı           | i           | 1           | ı           |

| SOIL<br>LOCATION                              | 00.0400     | 00.0400     | 00.0400      | DD 0400     |
|-----------------------------------------------|-------------|-------------|--------------|-------------|
|                                               | SB-642B     | SB-642B     | SB-642B      | SB-642C     |
| SAMPLE ID                                     | F-SB-642B-5 | F-SB-642B-7 | F-SB-642B-9  | F-SB-642C-1 |
| SAMPLE DATE                                   | 11/4/2009   | 11/4/2009   | 11/4/2009    | 11/4/2009   |
| 2-CHLORONAPHTHALENE                           |             |             |              |             |
| 2-CHLOROPHENOL                                |             |             |              |             |
| 2-METHYLPHENOL                                |             |             |              |             |
| 2-NITROANILINE                                |             |             |              |             |
| 2-NITROPHENOL                                 |             |             |              |             |
| 3&4-METHYLPHENOL                              |             |             |              |             |
| 3,3'-DICHLOROBENZIDINE                        |             |             |              |             |
| 3-NITROANILINE                                |             |             |              |             |
| 4,6-DINITRO-2-METHYLPHENOL                    |             |             |              |             |
| 4-BROMOPHENYL PHENYL ETHER                    |             |             |              |             |
| 4-CHLORO-3-METHYLPHENOL                       |             |             |              |             |
| 4-CHLOROANILINE                               |             |             |              |             |
| 4-CHLOROPHENYL PHENYL ETHER                   |             |             |              |             |
| 4-NITROANILINE                                |             |             |              |             |
| 4-NITROPHENOL                                 |             |             |              |             |
| ACETOPHENONE                                  |             |             |              |             |
| ANILINE                                       |             |             |              |             |
| ATRAZINE                                      |             |             |              |             |
| AZOBENZENE                                    |             |             |              |             |
| BENZIDINE                                     |             |             |              |             |
| BENZOIC ACID                                  |             |             |              |             |
| BENZYL ALCOHOL                                |             |             |              |             |
| BIS(2-CHLOROETHOXY)METHANE                    |             |             |              |             |
| BIS(2-CHLOROETHYL)ETHER                       |             |             |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE                    |             |             |              |             |
| BUTYL BENZYL PHTHALATE                        |             |             |              |             |
| CAPROLACTAM                                   |             |             |              |             |
| CARBAZOLE                                     |             |             |              |             |
| DIBENZOFURAN                                  |             |             |              |             |
| DIETHYL PHTHALATE                             |             |             |              |             |
| DIMETHYL PHTHALATE                            |             |             |              |             |
| DI-N-BUTYL PHTHALATE                          |             |             |              |             |
| DI-N-OCTYL PHTHALATE                          | -           |             |              |             |
|                                               |             |             |              |             |
| HEXACHLOROBENZENE HEXACHLOROBUTADIENE         |             |             |              |             |
| HEXACHLOROBOTADIENE HEXACHLOROCYCLOPENTADIENE |             |             | <del>-</del> |             |
|                                               | <del></del> |             |              |             |
| HEXACHLOROETHANE                              |             |             |              |             |
| ISOPHORONE                                    |             |             |              |             |
| NITROBENZENE                                  |             |             |              |             |
| N-NITROSODIMETHYLAMINE                        |             |             |              |             |

#### SOIL

| LOCATION                       | SB-642B     | SB-642B     | SB-642B     | SB-642C     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-642B-5 | F-SB-642B-7 | F-SB-642B-9 | F-SB-642C-1 |
| SAMPLE DATE                    | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              | •           |             | •           | •           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| SOIL                     |             |             |             |             |  |
|--------------------------|-------------|-------------|-------------|-------------|--|
| LOCATION                 | SB-642B     | SB-642B     | SB-642B     | SB-642C     |  |
| SAMPLE ID                | F-SB-642B-5 | F-SB-642B-7 | F-SB-642B-9 | F-SB-642C-1 |  |
| SAMPLE DATE              | 11/4/2009   | 11/4/2009   | 11/4/2009   | 11/4/2009   |  |
| BROMOBENZENE             |             |             |             |             |  |
| BROMOCHLOROMETHANE       |             |             |             |             |  |
| BROMODICHLOROMETHANE     |             |             |             |             |  |
| BROMOFORM                |             |             |             |             |  |
| BROMOMETHANE             |             |             |             |             |  |
| CARBON DISULFIDE         |             |             |             |             |  |
| CARBON TETRACHLORIDE     |             |             |             |             |  |
| CHLOROBENZENE            |             |             |             |             |  |
| CHLORODIBROMOMETHANE     |             |             |             |             |  |
| CHLOROETHANE             |             |             |             |             |  |
| CHLOROFORM               |             |             |             |             |  |
| CHLOROMETHANE            |             |             |             |             |  |
| CIS-1,2-DICHLOROETHENE   |             |             |             |             |  |
| CIS-1,3-DICHLOROPROPENE  |             |             |             |             |  |
| DIBROMOMETHANE           |             |             |             |             |  |
| DICHLORODIFLUOROMETHANE  |             |             |             |             |  |
| DIISOPROPYL ETHER        |             |             |             |             |  |
| ETHYL TERT-BUTYL ETHER   |             |             |             |             |  |
| ETHYLBENZENE             |             |             |             |             |  |
| FLUORODICHLOROMETHANE    |             |             |             |             |  |
| HEXACHLOROBUTADIENE      |             |             |             |             |  |
| ISOPROPYLBENZENE         |             |             |             |             |  |
| M+P-XYLENES              |             |             |             |             |  |
| METHYL TERT-BUTYL ETHER  |             |             |             |             |  |
| METHYLENE CHLORIDE       |             |             |             |             |  |
| NAPHTHALENE              |             |             |             |             |  |
| N-BUTYLBENZENE           |             |             |             |             |  |
| N-PROPYLBENZENE          |             |             |             |             |  |
| O-XYLENE                 |             |             |             |             |  |
| SEC-BUTYLBENZENE         |             |             |             |             |  |
| STYRENE                  |             |             |             |             |  |
| TERT-AMYL METHYL ETHER   |             |             |             |             |  |
| TERT-BUTYLBENZENE        |             |             |             |             |  |
| TERTIARY-BUTYL ALCOHOL   |             |             |             |             |  |
| TETRACHLOROETHENE        |             |             |             |             |  |
| TOLUENE                  |             |             |             |             |  |
| TOTAL 1,2-DICHLOROETHENE |             |             |             |             |  |
| TOTAL XYLENES            |             |             |             |             |  |
| TRANS-1,2-DICHLOROETHENE |             |             |             |             |  |
|                          |             |             |             |             |  |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-642B          | SB-642B           | SB-642B         | SB-642C         |
|------------------------------------------|------------------|-------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642B-5      | F-SB-642B-7       | F-SB-642B-9     | F-SB-642C-1     |
| SAMPLE DATE                              | 11/4/2009        | 11/4/2009         | 11/4/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                  |                   |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                   |                 |                 |
| VINYL ACETATE                            |                  |                   |                 |                 |
| VINYL CHLORIDE                           |                  |                   |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                   | •               |                 |
| 1-METHYLNAPHTHALENE                      |                  |                   |                 |                 |
| 2-METHYLNAPHTHALENE                      |                  |                   |                 |                 |
| ACENAPHTHENE                             |                  |                   |                 |                 |
| ACENAPHTHYLENE                           |                  |                   |                 |                 |
| ANTHRACENE                               |                  |                   |                 |                 |
| BAP EQUIVALENT-HALFND                    | 201.22 [MDL=1.6] | 9.80555 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.737 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 201.22 [MDL=1.6] | 8.9 [MDL=1.5]     | 1.5 U [MDL=1.5] | 0.012 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                   |                 |                 |
| BENZO(A)ANTHRACENE                       | 130 [MDL=1.2]    | 1.1 U [MDL=1.1]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 140 [MDL=1.6]    | 7.8 [MDL=1.5]     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 180 [MDL=1.5]    | 11 [MDL=1.4]      | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                  |                   |                 |                 |
| BENZO(K)FLUORANTHENE                     | 89 [MDL=2.1]     | 2.0 U [MDL=2]     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                   |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                   |                 |                 |
| C1-FLUORENES                             |                  |                   |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                   |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                   |                 |                 |
| C2-FLUORENES                             |                  |                   |                 |                 |
| C2-NAPHTHALENES                          |                  |                   |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                   |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                   |                 |                 |
| C3-FLUORENES                             |                  |                   |                 |                 |
| C3-NAPHTHALENES                          |                  |                   |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                   |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                   |                 |                 |
| C4-NAPHTHALENES                          |                  |                   |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                   |                 |                 |
| CHRYSENE                                 | 130 [MDL=1.1]    | 1.1 U [MDL=1.1]   | 1.1 U [MDL=1.1] | 12 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE                   | 21 [MDL=1.6]     | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                  |                   |                 |                 |
| FLUORENE                                 |                  |                   |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 82 [MDL=1.8]     | 1.8 U [MDL=1.8]   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
|                                          | l .              |                   |                 |                 |

#### SOIL

| LOCATION                       | SB-642B       | SB-642B                               | SB-642B       | SB-642C      |
|--------------------------------|---------------|---------------------------------------|---------------|--------------|
| SAMPLE ID                      | F-SB-642B-5   | F-SB-642B-7                           | F-SB-642B-9   | F-SB-642C-1  |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009                             | 11/4/2009     | 11/4/2009    |
| PHENANTHRENE                   |               |                                       |               |              |
| PYRENE                         |               |                                       |               | <del></del>  |
| TOTAL PAHS                     | 772 [MDL=1.6] | 18.8 [MDL=1.5]                        | 0 U [MDL=1.5] | 12 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |                                       |               | •            |
| 4,4'-DDD                       |               |                                       |               |              |
| 4,4'-DDE                       |               |                                       |               |              |
| 4,4'-DDT                       |               |                                       |               |              |
| ALDRIN                         |               |                                       |               |              |
| ALPHA-BHC                      |               |                                       |               |              |
| ALPHA-CHLORDANE                |               |                                       |               |              |
| AROCLOR-1016                   |               |                                       |               |              |
| AROCLOR-1221                   |               |                                       |               |              |
| AROCLOR-1232                   |               |                                       |               |              |
| AROCLOR-1242                   |               |                                       |               |              |
| AROCLOR-1248                   |               |                                       |               |              |
| AROCLOR-1254                   |               |                                       |               |              |
| AROCLOR-1260                   |               |                                       |               |              |
| BETA-BHC                       |               |                                       |               |              |
| DELTA-BHC                      |               |                                       |               |              |
| DIELDRIN                       |               |                                       |               |              |
| ENDOSULFAN I                   |               |                                       |               |              |
| ENDOSULFAN II                  |               |                                       |               |              |
| ENDOSULFAN SULFATE             |               |                                       |               |              |
| ENDRIN                         |               |                                       |               |              |
| ENDRIN ALDEHYDE                |               |                                       |               |              |
| ENDRIN KETONE                  |               |                                       |               |              |
| GAMMA-BHC (LINDANE)            |               |                                       |               |              |
| GAMMA-CHLORDANE                |               |                                       |               |              |
| HEPTACHLOR                     |               |                                       |               |              |
| HEPTACHLOR EPOXIDE             |               |                                       |               |              |
| METHOXYCHLOR                   |               |                                       |               |              |
| TOTAL AROCLOR                  |               |                                       |               |              |
| TOTAL DDT POS                  |               |                                       |               |              |
| TOXAPHENE                      |               |                                       |               |              |
| PETROLEUM HYDROCARBONS (UG/KG) |               |                                       |               |              |
| DIESEL RANGE ORGANICS          |               |                                       |               |              |
| GASOLINE RANGE ORGANICS        |               |                                       |               |              |
| TPH (C09-C36)                  |               |                                       |               |              |
|                                |               | · · · · · · · · · · · · · · · · · · · |               | -            |

#### SOIL

| SUIL                         |              |              |              | 7           |
|------------------------------|--------------|--------------|--------------|-------------|
| LOCATION                     | SB-642C      | SB-642C      | SB-642C      | SB-642C     |
| SAMPLE ID                    | F-SB-642C-11 | F-SB-642C-13 | F-SB-642C-15 | F-SB-642C-3 |
| SAMPLE DATE                  | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| METALS (MG/KG)               |              |              |              |             |
| ANTIMONY                     |              |              |              |             |
| ARSENIC                      |              |              |              |             |
| BARIUM                       |              |              |              |             |
| BERYLLIUM                    |              |              |              |             |
| CADMIUM                      |              |              |              |             |
| CHROMIUM                     |              |              |              |             |
| COBALT                       |              |              |              |             |
| COPPER                       |              |              |              |             |
| LEAD                         |              |              |              |             |
| MERCURY                      |              |              |              |             |
| MOLYBDENUM                   |              |              |              |             |
| NICKEL                       |              |              |              |             |
| SELENIUM                     |              |              |              |             |
| SILVER                       |              |              |              |             |
| THALLIUM                     |              |              |              |             |
| VANADIUM                     |              |              |              |             |
| ZINC                         |              |              |              |             |
| MISCELLANEOUS PARAMETERS     |              |              | •            |             |
| PERCENT SOLIDS (%)           |              |              |              |             |
| TOTAL SOLIDS (%)             |              |              |              |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |              |              |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |              |              |             |
| PH (S.U.)                    |              |              |              |             |
| MERCURY (METHYL) (UG/KG)     |              |              |              |             |
| SEMIVOLATILES (UG/KG)        | •            |              | •            |             |
| 1,1-BIPHENYL                 |              |              |              |             |
| 1,2,4-TRICHLOROBENZENE       |              |              |              |             |
| 1,2-DICHLOROBENZENE          |              |              |              |             |
| 1,3-DICHLOROBENZENE          |              |              |              |             |
| 1,4-DICHLOROBENZENE          |              |              |              |             |
| 1,4-DIOXANE                  |              |              |              |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |              |              |             |
| 2,4,5-TRICHLOROPHENOL        |              |              |              |             |
| 2,4,6-TRICHLOROPHENOL        |              |              |              |             |
| 2,4-DICHLOROPHENOL           |              |              |              |             |
| 2,4-DIMETHYLPHENOL           |              |              |              |             |
| 2,4-DINITROPHENOL            |              |              |              |             |
| 2,4-DINITROTOLUENE           |              |              |              |             |
| 2,6-DINITROTOLUENE           |              |              |              |             |

| SOIL                        |              |              |              |             |
|-----------------------------|--------------|--------------|--------------|-------------|
| LOCATION                    | SB-642C      | SB-642C      | SB-642C      | SB-642C     |
| SAMPLE ID                   | F-SB-642C-11 | F-SB-642C-13 | F-SB-642C-15 | F-SB-642C-3 |
| SAMPLE DATE                 | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| 2-CHLORONAPHTHALENE         |              |              |              |             |
| 2-CHLOROPHENOL              |              |              |              |             |
| 2-METHYLPHENOL              |              |              |              |             |
| 2-NITROANILINE              |              |              |              |             |
| 2-NITROPHENOL               |              |              |              |             |
| 3&4-METHYLPHENOL            |              |              |              |             |
| 3,3'-DICHLOROBENZIDINE      |              |              |              |             |
| 3-NITROANILINE              |              |              |              |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |              |              |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |              |              |             |
| 4-CHLORO-3-METHYLPHENOL     |              |              |              |             |
| 4-CHLOROANILINE             |              |              |              |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |              |              |             |
| 4-NITROANILINE              |              |              |              |             |
| 4-NITROPHENOL               |              |              |              |             |
| ACETOPHENONE                |              |              |              |             |
| ANILINE                     |              |              |              |             |
| ATRAZINE                    |              |              |              |             |
| AZOBENZENE                  |              |              |              |             |
| BENZIDINE                   |              |              |              |             |
| BENZOIC ACID                |              |              |              |             |
| BENZYL ALCOHOL              |              |              |              |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |              |              |             |
| BIS(2-CHLOROETHYL)ETHER     |              |              |              |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |              |              |             |
| BUTYL BENZYL PHTHALATE      |              |              |              |             |
| CAPROLACTAM                 |              |              |              |             |
| CARBAZOLE                   |              |              |              |             |
| DIBENZOFURAN                |              |              |              |             |
| DIETHYL PHTHALATE           |              |              |              |             |
| DIMETHYL PHTHALATE          |              |              |              |             |
| DI-N-BUTYL PHTHALATE        |              |              |              |             |
| DI-N-OCTYL PHTHALATE        |              |              |              |             |
| HEXACHLOROBENZENE           |              |              |              |             |
| HEXACHLOROBUTADIENE         |              |              |              |             |
| HEXACHLOROCYCLOPENTADIENE   |              |              |              |             |
| HEXACHLOROETHANE            |              |              |              |             |
| ISOPHORONE                  |              |              |              |             |
| NITROBENZENE                |              |              |              |             |
| N-NITROSODIMETHYLAMINE      |              |              |              |             |
|                             | •            | •            | •            | •           |

#### SOIL

| SOIL                           |              |              | T            | 1           |
|--------------------------------|--------------|--------------|--------------|-------------|
| LOCATION                       | SB-642C      | SB-642C      | SB-642C      | SB-642C     |
| SAMPLE ID                      | F-SB-642C-11 | F-SB-642C-13 | F-SB-642C-15 | F-SB-642C-3 |
| SAMPLE DATE                    | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |              |              |              |             |
| N-NITROSODIPHENYLAMINE         |              |              |              |             |
| PENTACHLOROPHENOL              |              |              |              |             |
| PHENOL                         |              |              |              |             |
| PYRIDINE                       |              |              |              |             |
| VOLATILES (UG/KG)              |              |              |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |              |              |             |
| 1,1,1-TRICHLOROETHANE          |              |              |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |              |              |             |
| 1,1,2-TRICHLOROETHANE          |              |              |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |              |              |             |
| 1,1-DICHLOROETHANE             |              |              |              |             |
| 1,1-DICHLOROETHENE             |              |              |              |             |
| 1,1-DICHLOROPROPENE            |              |              |              |             |
| 1,2,3-TRICHLOROBENZENE         |              |              |              |             |
| 1,2,3-TRICHLOROPROPANE         |              |              |              |             |
| 1,2,3-TRIMETHYLBENZENE         |              |              |              |             |
| 1,2,4-TRICHLOROBENZENE         |              |              |              |             |
| 1,2,4-TRIMETHYLBENZENE         |              |              |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |              |              |             |
| 1,2-DIBROMOETHANE              |              |              |              |             |
| 1,2-DICHLOROBENZENE            |              |              |              |             |
| 1,2-DICHLOROETHANE             |              |              |              |             |
| 1,2-DICHLOROPROPANE            |              |              |              |             |
| 1,3,5-TRIMETHYLBENZENE         |              |              |              |             |
| 1,3-DICHLOROBENZENE            |              |              |              |             |
| 1,3-DICHLOROPROPANE            |              |              |              |             |
| 1,3-DICHLOROPROPENE            |              |              |              |             |
| 1,4-DICHLOROBENZENE            |              |              |              |             |
| 1,4-DIOXANE                    |              |              |              |             |
| 2,2-DICHLOROPROPANE            |              |              |              |             |
| 2-BUTANONE                     |              |              |              |             |
| 2-CHLOROETHYL VINYL ETHER      |              |              |              |             |
| 2-CHLOROTOLUENE                |              |              |              |             |
| 2-HEXANONE                     |              |              |              |             |
| 4-CHLOROTOLUENE                |              |              |              |             |
| 4-ISOPROPYLTOLUENE             |              |              |              |             |
| 4-METHYL-2-PENTANONE           |              |              |              |             |
| ACETONE                        |              |              |              |             |
| BENZENE                        |              |              |              |             |
| 1:                             | i            | 1            | i e          | i e         |

| SOIL                      |              | 1            |              |             |
|---------------------------|--------------|--------------|--------------|-------------|
| LOCATION                  | SB-642C      | SB-642C      | SB-642C      | SB-642C     |
| SAMPLE ID                 | F-SB-642C-11 | F-SB-642C-13 | F-SB-642C-15 | F-SB-642C-3 |
| SAMPLE DATE               | 11/4/2009    | 11/4/2009    | 11/4/2009    | 11/4/2009   |
| BROMOBENZENE              |              |              |              |             |
| BROMOCHLOROMETHANE        |              |              |              |             |
| BROMODICHLOROMETHANE      |              |              |              |             |
| BROMOFORM                 |              |              |              |             |
| BROMOMETHANE              |              |              |              |             |
| CARBON DISULFIDE          |              |              |              |             |
| CARBON TETRACHLORIDE      |              |              |              |             |
| CHLOROBENZENE             |              |              |              |             |
| CHLORODIBROMOMETHANE      |              |              |              |             |
| CHLOROETHANE              |              |              |              |             |
| CHLOROFORM                |              |              |              |             |
| CHLOROMETHANE             |              |              |              |             |
| CIS-1,2-DICHLOROETHENE    |              |              |              |             |
| CIS-1,3-DICHLOROPROPENE   |              |              |              |             |
| DIBROMOMETHANE            |              |              |              |             |
| DICHLORODIFLUOROMETHANE   |              |              |              |             |
| DIISOPROPYL ETHER         |              |              |              |             |
| ETHYL TERT-BUTYL ETHER    |              |              |              |             |
| ETHYLBENZENE              |              |              |              |             |
| FLUORODICHLOROMETHANE     |              |              |              |             |
| HEXACHLOROBUTADIENE       |              |              |              |             |
| ISOPROPYLBENZENE          |              |              |              |             |
| M+P-XYLENES               |              |              |              |             |
| METHYL TERT-BUTYL ETHER   |              |              |              |             |
| METHYLENE CHLORIDE        |              |              |              |             |
| NAPHTHALENE               |              |              |              |             |
| N-BUTYLBENZENE            |              |              |              |             |
| N-PROPYLBENZENE           |              |              |              |             |
| O-XYLENE                  |              |              |              |             |
| SEC-BUTYLBENZENE          |              |              |              |             |
| STYRENE                   |              |              |              |             |
| TERT-AMYL METHYL ETHER    |              |              |              |             |
| TERT-BUTYLBENZENE         |              |              |              |             |
| TERTIARY-BUTYL ALCOHOL    |              |              |              |             |
| TETRACHLOROETHENE         |              |              |              |             |
| TOLUENE                   |              |              |              |             |
| TOTAL 1,2-DICHLOROETHENE  |              |              |              |             |
| TOTAL XYLENES             |              |              |              |             |
| TRANS-1,2-DICHLOROETHENE  |              |              |              |             |
| TRANS-1,3-DICHLOROPROPENE |              |              |              |             |

### SOIL

| LOCATION                                 | SB-642C         | SB-642C           | SB-642C         | SB-642C         |
|------------------------------------------|-----------------|-------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642C-11    | F-SB-642C-13      | F-SB-642C-15    | F-SB-642C-3     |
| SAMPLE DATE                              | 11/4/2009       | 11/4/2009         | 11/4/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                 |                   |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                 |                 |
| VINYL ACETATE                            |                 |                   |                 |                 |
| VINYL CHLORIDE                           |                 |                   |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                   |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                   |                 |                 |
| ACENAPHTHENE                             |                 |                   |                 |                 |
| ACENAPHTHYLENE                           |                 |                   |                 |                 |
| ANTHRACENE                               |                 |                   |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 2.58555 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 0.83 [MDL=1.6]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                   |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 8.3 [MDL=1.4]     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                   |                 |                 |
| C1-FLUORENES                             |                 |                   |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C2-FLUORENES                             |                 |                   |                 |                 |
| C2-NAPHTHALENES                          |                 |                   |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C3-FLUORENES                             |                 |                   |                 |                 |
| C3-NAPHTHALENES                          |                 |                   |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                 |
| C4-NAPHTHALENES                          |                 |                   |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1]   | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                   |                 |                 |
| FLUORENE                                 |                 |                   | <del></del>     |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8]   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] |
| NAPHTHALENE                              |                 |                   |                 |                 |

#### SOIL

| LOCATION                       | SB-642C       | SB-642C       | SB-642C       | SB-642C       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-642C-11  | F-SB-642C-13  | F-SB-642C-15  | F-SB-642C-3   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009     | 11/4/2009     | 11/4/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 8.3 [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               | -             |               | -             |
| 1,4'-DDD                       |               |               |               |               |
| 1,4'-DDE                       |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| ROCLOR-1254                    |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| NDOSULFAN I                    |               |               |               |               |
| ENDOSULFAN II                  |               |               |               | ŀ             |
| ENDOSULFAN SULFATE             |               |               |               | -             |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               | ŀ             |
| ENDRIN KETONE                  |               |               |               | -             |
| GAMMA-BHC (LINDANE)            |               |               |               | -             |
| GAMMA-CHLORDANE                |               |               |               | -             |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               | -             |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   |               |               |               |               |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

| SUIL                         |             |              |               |             |
|------------------------------|-------------|--------------|---------------|-------------|
| LOCATION                     | SB-642C     | SB-642C      | SB-642C       | SB-642C     |
| SAMPLE ID                    | F-SB-642C-5 | F-SB-642C-7  | F-SB-642C-7-D | F-SB-642C-9 |
| SAMPLE DATE                  | 11/4/2009   | 11/4/2009    | 11/4/2009     | 11/4/2009   |
| METALS (MG/KG)               |             | <del>-</del> |               |             |
| ANTIMONY                     |             |              |               |             |
| ARSENIC                      |             |              |               |             |
| BARIUM                       |             |              |               |             |
| BERYLLIUM                    |             |              |               |             |
| CADMIUM                      |             |              |               |             |
| CHROMIUM                     |             |              |               |             |
| COBALT                       |             |              |               |             |
| COPPER                       |             |              |               | -           |
| LEAD                         |             |              |               | -           |
| MERCURY                      |             |              |               |             |
| MOLYBDENUM                   |             |              |               |             |
| NICKEL                       |             |              |               | -           |
| SELENIUM                     |             |              |               | -           |
| SILVER                       |             |              |               |             |
| THALLIUM                     |             |              |               |             |
| VANADIUM                     |             |              |               |             |
| ZINC                         |             |              |               |             |
| MISCELLANEOUS PARAMETERS     | •           |              |               |             |
| PERCENT SOLIDS (%)           |             |              |               |             |
| TOTAL SOLIDS (%)             |             |              |               |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |              |               |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |              |               |             |
| PH (S.U.)                    |             |              |               |             |
| MERCURY (METHYL) (UG/KG)     |             |              |               |             |
| SEMIVOLATILES (UG/KG)        |             | •            |               |             |
| 1,1-BIPHENYL                 |             |              |               |             |
| 1,2,4-TRICHLOROBENZENE       |             |              |               |             |
| 1,2-DICHLOROBENZENE          |             |              |               |             |
| 1,3-DICHLOROBENZENE          |             |              |               |             |
| 1,4-DICHLOROBENZENE          |             |              |               |             |
| 1,4-DIOXANE                  |             |              |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |              |               |             |
| 2,4,5-TRICHLOROPHENOL        |             |              |               |             |
| 2,4,6-TRICHLOROPHENOL        |             |              |               |             |
| 2,4-DICHLOROPHENOL           |             |              |               |             |
| 2,4-DIMETHYLPHENOL           |             |              |               |             |
| 2,4-DINITROPHENOL            |             |              |               |             |
| 2,4-DINITROTOLUENE           |             |              |               |             |
| 2,6-DINITROTOLUENE           |             |              |               |             |

| SOIL                        |             |             |               |             |  |  |
|-----------------------------|-------------|-------------|---------------|-------------|--|--|
| LOCATION                    | SB-642C     | SB-642C     | SB-642C       | SB-642C     |  |  |
| SAMPLE ID                   | F-SB-642C-5 | F-SB-642C-7 | F-SB-642C-7-D | F-SB-642C-9 |  |  |
| SAMPLE DATE                 | 11/4/2009   | 11/4/2009   | 11/4/2009     | 11/4/2009   |  |  |
| 2-CHLORONAPHTHALENE         |             |             |               |             |  |  |
| 2-CHLOROPHENOL              |             |             |               |             |  |  |
| 2-METHYLPHENOL              |             |             |               |             |  |  |
| 2-NITROANILINE              |             |             |               |             |  |  |
| 2-NITROPHENOL               |             |             |               |             |  |  |
| 3&4-METHYLPHENOL            |             |             |               |             |  |  |
| 3,3'-DICHLOROBENZIDINE      |             |             |               |             |  |  |
| 3-NITROANILINE              |             |             |               |             |  |  |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |               |             |  |  |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |               |             |  |  |
| 4-CHLORO-3-METHYLPHENOL     |             |             |               |             |  |  |
| 4-CHLOROANILINE             |             |             |               |             |  |  |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |               |             |  |  |
| 4-NITROANILINE              |             |             |               |             |  |  |
| 4-NITROPHENOL               |             |             |               |             |  |  |
| ACETOPHENONE                |             |             |               |             |  |  |
| ANILINE                     |             |             |               |             |  |  |
| ATRAZINE                    |             |             |               |             |  |  |
| AZOBENZENE                  |             |             |               |             |  |  |
| BENZIDINE                   |             |             |               |             |  |  |
| BENZOIC ACID                |             |             |               |             |  |  |
| BENZYL ALCOHOL              |             |             |               |             |  |  |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |               |             |  |  |
| BIS(2-CHLOROETHYL)ETHER     |             |             |               |             |  |  |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |               |             |  |  |
| BUTYL BENZYL PHTHALATE      |             |             |               |             |  |  |
| CAPROLACTAM                 |             |             |               |             |  |  |
| CARBAZOLE                   |             |             |               |             |  |  |
| DIBENZOFURAN                |             |             |               |             |  |  |
| DIETHYL PHTHALATE           |             |             |               |             |  |  |
| DIMETHYL PHTHALATE          |             |             |               |             |  |  |
| DI-N-BUTYL PHTHALATE        |             |             |               |             |  |  |
| DI-N-OCTYL PHTHALATE        |             |             |               |             |  |  |
| HEXACHLOROBENZENE           |             |             |               |             |  |  |
| HEXACHLOROBUTADIENE         |             |             |               |             |  |  |
| HEXACHLOROCYCLOPENTADIENE   |             |             |               |             |  |  |
| HEXACHLOROETHANE            |             |             |               |             |  |  |
| ISOPHORONE                  |             |             |               |             |  |  |
| NITROBENZENE                |             |             |               |             |  |  |
| N-NITROSODIMETHYLAMINE      |             |             |               |             |  |  |
|                             |             | 1           |               | •           |  |  |

#### SOIL

| LOCATION                       | SB-642C     | SB-642C     | SB-642C       | SB-642C     |
|--------------------------------|-------------|-------------|---------------|-------------|
| SAMPLE ID                      | F-SB-642C-5 | F-SB-642C-7 | F-SB-642C-7-D | F-SB-642C-9 |
| SAMPLE DATE                    | 11/4/2009   | 11/4/2009   | 11/4/2009     | 11/4/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |               |             |
| N-NITROSODIPHENYLAMINE         |             |             |               |             |
| PENTACHLOROPHENOL              |             |             |               |             |
| PHENOL                         |             |             |               |             |
| PYRIDINE                       |             |             |               |             |
| VOLATILES (UG/KG)              |             | •           | •             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |               |             |
| 1,1,1-TRICHLOROETHANE          |             |             |               |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |               |             |
| 1,1,2-TRICHLOROETHANE          |             |             |               |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |               |             |
| 1,1-DICHLOROETHANE             |             |             |               |             |
| 1,1-DICHLOROETHENE             |             |             |               |             |
| 1,1-DICHLOROPROPENE            |             |             |               |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |               |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |               |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |               |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |               |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |               |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |               |             |
| 1,2-DIBROMOETHANE              |             |             |               |             |
| 1,2-DICHLOROBENZENE            |             |             |               |             |
| 1,2-DICHLOROETHANE             |             |             |               |             |
| 1,2-DICHLOROPROPANE            |             |             |               |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |               |             |
| 1,3-DICHLOROBENZENE            |             |             |               |             |
| 1,3-DICHLOROPROPANE            |             |             |               |             |
| 1,3-DICHLOROPROPENE            |             |             |               |             |
| 1,4-DICHLOROBENZENE            |             |             |               |             |
| 1,4-DIOXANE                    |             |             |               |             |
| 2,2-DICHLOROPROPANE            |             |             |               |             |
| 2-BUTANONE                     |             |             |               |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |               |             |
| 2-CHLOROTOLUENE                |             |             |               |             |
| 2-HEXANONE                     |             |             |               |             |
| 4-CHLOROTOLUENE                |             |             |               |             |
| 4-ISOPROPYLTOLUENE             |             |             |               |             |
| 4-METHYL-2-PENTANONE           |             |             |               |             |
| ACETONE                        |             |             |               |             |
| BENZENE                        |             |             |               |             |

| SOIL                      |             |             |               |             |
|---------------------------|-------------|-------------|---------------|-------------|
| LOCATION                  | SB-642C     | SB-642C     | SB-642C       | SB-642C     |
| SAMPLE ID                 | F-SB-642C-5 | F-SB-642C-7 | F-SB-642C-7-D | F-SB-642C-9 |
| SAMPLE DATE               | 11/4/2009   | 11/4/2009   | 11/4/2009     | 11/4/2009   |
| BROMOBENZENE              |             |             |               |             |
| BROMOCHLOROMETHANE        |             |             |               |             |
| BROMODICHLOROMETHANE      |             |             |               |             |
| BROMOFORM                 |             |             |               |             |
| BROMOMETHANE              |             |             |               |             |
| CARBON DISULFIDE          |             |             |               |             |
| CARBON TETRACHLORIDE      |             |             |               |             |
| CHLOROBENZENE             |             |             |               |             |
| CHLORODIBROMOMETHANE      |             |             |               |             |
| CHLOROETHANE              |             |             |               |             |
| CHLOROFORM                |             |             |               |             |
| CHLOROMETHANE             |             |             |               |             |
| CIS-1,2-DICHLOROETHENE    |             |             |               |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |               |             |
| DIBROMOMETHANE            |             |             |               |             |
| DICHLORODIFLUOROMETHANE   |             |             |               |             |
| DIISOPROPYL ETHER         |             |             |               |             |
| ETHYL TERT-BUTYL ETHER    |             |             |               |             |
| ETHYLBENZENE              |             |             |               |             |
| FLUORODICHLOROMETHANE     |             |             |               |             |
| HEXACHLOROBUTADIENE       |             |             |               |             |
| ISOPROPYLBENZENE          |             |             |               |             |
| M+P-XYLENES               |             |             |               |             |
| METHYL TERT-BUTYL ETHER   |             |             |               |             |
| METHYLENE CHLORIDE        |             |             |               |             |
| NAPHTHALENE               |             |             |               |             |
| N-BUTYLBENZENE            |             |             |               |             |
| N-PROPYLBENZENE           |             |             |               |             |
| O-XYLENE                  |             |             |               |             |
| SEC-BUTYLBENZENE          |             |             |               |             |
| STYRENE                   |             |             |               |             |
| TERT-AMYL METHYL ETHER    |             |             |               |             |
| TERT-BUTYLBENZENE         |             |             |               |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |               |             |
| TETRACHLOROETHENE         |             |             |               |             |
| TOLUENE                   |             |             |               |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |               |             |
| TOTAL XYLENES             |             |             |               |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |               |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |               |             |
| •                         |             | 1           | 1             |             |

### SOIL

| LOCATION                                 | SB-642C         | SB-642C         | SB-642C         | SB-642C         |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-642C-5     | F-SB-642C-7     | F-SB-642C-7-D   | F-SB-642C-9     |
| SAMPLE DATE                              | 11/4/2009       | 11/4/2009       | 11/4/2009       | 11/4/2009       |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       | <del></del>     |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                 |                 |                 |                 |
| FLUORENE                                 | <del></del>     |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                              |                 |                 |                 |                 |

#### SOIL

| LOCATION                       | SB-642C       | SB-642C       | SB-642C       | SB-642C       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-642C-5   | F-SB-642C-7   | F-SB-642C-7-D | F-SB-642C-9   |
| SAMPLE DATE                    | 11/4/2009     | 11/4/2009     | 11/4/2009     | 11/4/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.6] | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               |               |
| 4,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               |               |
| 4,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

| SUIL                         |            |             |             |             |
|------------------------------|------------|-------------|-------------|-------------|
| LOCATION                     | SB-643     | SB-643      | SB-643      | SB-643      |
| SAMPLE ID                    | F-SB-643-1 | F-SB-643-11 | F-SB-643-13 | F-SB-643-15 |
| SAMPLE DATE                  | 10/16/2009 | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| METALS (MG/KG)               |            |             |             |             |
| ANTIMONY                     |            |             |             |             |
| ARSENIC                      |            |             |             |             |
| BARIUM                       |            |             |             |             |
| BERYLLIUM                    |            |             |             |             |
| CADMIUM                      |            |             |             |             |
| CHROMIUM                     |            |             |             |             |
| COBALT                       |            |             |             |             |
| COPPER                       |            |             |             |             |
| LEAD                         |            |             |             |             |
| MERCURY                      |            |             |             |             |
| MOLYBDENUM                   |            |             |             |             |
| NICKEL                       |            |             |             |             |
| SELENIUM                     |            |             |             |             |
| SILVER                       |            |             |             |             |
| THALLIUM                     |            |             |             |             |
| /ANADIUM                     |            |             |             |             |
| ZINC                         |            |             |             |             |
| MISCELLANEOUS PARAMETERS     |            | •           | •           | -           |
| PERCENT SOLIDS (%)           |            |             |             |             |
| FOTAL SOLIDS (%)             |            |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |             |             |             |
| PH (S.U.)                    |            |             |             |             |
| MERCURY (METHYL) (UG/KG)     |            |             |             |             |
| SEMIVOLATILES (UG/KG)        | •          |             |             |             |
| 1,1-BIPHENYL                 |            |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |            |             |             |             |
| 1,2-DICHLOROBENZENE          |            |             |             |             |
| 1,3-DICHLOROBENZENE          |            |             |             |             |
| 1,4-DICHLOROBENZENE          |            |             |             |             |
| I,4-DIOXANE                  |            |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |            |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |            |             |             |             |
| 2,4-DICHLOROPHENOL           |            |             |             |             |
| 2,4-DIMETHYLPHENOL           |            |             |             |             |
| 2,4-DINITROPHENOL            |            |             |             |             |
| 2,4-DINITROTOLUENE           |            |             |             |             |
| 2,6-DINITROTOLUENE           |            |             |             |             |

#### SOIL

| LOCATION                    | SB-643     | SB-643      | SB-643      | SB-643      |
|-----------------------------|------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-643-1 | F-SB-643-11 | F-SB-643-13 | F-SB-643-15 |
| SAMPLE DATE                 | 10/16/2009 | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| 2-CHLORONAPHTHALENE         |            |             |             |             |
| 2-CHLOROPHENOL              |            |             |             |             |
| 2-METHYLPHENOL              |            |             |             |             |
| 2-NITROANILINE              |            |             |             |             |
| 2-NITROPHENOL               |            |             |             |             |
| 3&4-METHYLPHENOL            |            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |            |             |             |             |
| 3-NITROANILINE              |            |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |            |             |             |             |
| 4-CHLOROANILINE             |            |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |             |             |             |
| 4-NITROANILINE              |            |             |             |             |
| 4-NITROPHENOL               |            |             |             |             |
| ACETOPHENONE                |            |             |             |             |
| ANILINE                     |            |             |             |             |
| ATRAZINE                    |            |             |             |             |
| AZOBENZENE                  |            |             |             |             |
| BENZIDINE                   |            |             |             |             |
| BENZOIC ACID                |            |             |             |             |
| BENZYL ALCOHOL              |            |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |            |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |             |             |             |
| BUTYL BENZYL PHTHALATE      |            |             |             |             |
| CAPROLACTAM                 |            |             |             |             |
| CARBAZOLE                   |            |             |             |             |
| DIBENZOFURAN                |            |             |             |             |
| DIETHYL PHTHALATE           |            |             |             |             |
| DIMETHYL PHTHALATE          |            |             |             |             |
| DI-N-BUTYL PHTHALATE        |            |             |             |             |
| DI-N-OCTYL PHTHALATE        |            |             |             |             |
| HEXACHLOROBENZENE           |            |             |             |             |
| HEXACHLOROBUTADIENE         |            |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |            |             |             |             |
| HEXACHLOROETHANE            |            |             |             |             |
| ISOPHORONE                  |            |             |             |             |
| NITROBENZENE                |            |             |             |             |
| N-NITROSODIMETHYLAMINE      |            |             |             |             |

#### SOIL

| LOCATION                       | SB-643     | SB-643      | SB-643      | SB-643      |
|--------------------------------|------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-643-1 | F-SB-643-11 | F-SB-643-13 | F-SB-643-15 |
| SAMPLE DATE                    | 10/16/2009 | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |             |             |             |
| N-NITROSODIPHENYLAMINE         |            |             |             |             |
| PENTACHLOROPHENOL              |            |             |             |             |
| PHENOL                         |            |             |             |             |
| PYRIDINE                       |            |             |             |             |
| VOLATILES (UG/KG)              |            | •           |             | •           |
| 1,1,1,2-TETRACHLOROETHANE      |            |             |             |             |
| 1,1,1-TRICHLOROETHANE          |            |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |             |             |             |
| 1,1,2-TRICHLOROETHANE          |            |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |             |             |             |
| 1,1-DICHLOROETHANE             |            |             |             |             |
| 1,1-DICHLOROETHENE             |            |             |             |             |
| 1,1-DICHLOROPROPENE            |            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |            |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |            |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |            |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |            |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |            |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |             |             |             |
| 1,2-DIBROMOETHANE              |            |             |             |             |
| 1,2-DICHLOROBENZENE            |            |             |             |             |
| 1,2-DICHLOROETHANE             |            |             |             |             |
| 1,2-DICHLOROPROPANE            |            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |            |             |             |             |
| 1,3-DICHLOROBENZENE            |            |             |             |             |
| 1,3-DICHLOROPROPANE            |            |             |             |             |
| 1,3-DICHLOROPROPENE            |            |             |             |             |
| 1,4-DICHLOROBENZENE            |            |             |             |             |
| 1,4-DIOXANE                    |            |             |             |             |
| 2,2-DICHLOROPROPANE            |            |             |             |             |
| 2-BUTANONE                     |            |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |            |             |             |             |
| 2-CHLOROTOLUENE                |            |             |             |             |
| 2-HEXANONE                     |            |             |             |             |
| 4-CHLOROTOLUENE                |            |             |             |             |
| 4-ISOPROPYLTOLUENE             |            |             |             |             |
| 4-METHYL-2-PENTANONE           |            |             |             |             |
| ACETONE                        |            |             |             |             |
| BENZENE                        |            |             |             |             |

#### SOIL

| LOCATION                  | SB-643      | SB-643      | SB-643      | SB-643      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-643-1  | F-SB-643-11 | F-SB-643-13 | F-SB-643-15 |
| SAMPLE DATE               | 10/16/2009  | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| BROMOBENZENE              | 10/10/2009  |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             | -           |             |
| CARBON TETRACHLORIDE      | <del></del> |             | -           |             |
|                           | <del></del> |             | -           |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             | <u></u>     |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       | <del></del> | <del></del> |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |
|                           | •           | 8           | -           | -           |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-643          | SB-643           | SB-643          | SB-643          |
|------------------------------------------|-----------------|------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-643-1      | F-SB-643-11      | F-SB-643-13     | F-SB-643-15     |
| SAMPLE DATE                              | 10/16/2009      | 10/16/2009       | 10/16/2009      | 10/16/2009      |
| TRICHLOROETHENE                          |                 |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                  |                 |                 |
| VINYL ACETATE                            |                 |                  |                 |                 |
| VINYL CHLORIDE                           |                 |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                  |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                  |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                  |                 |                 |
| ACENAPHTHENE                             |                 |                  |                 |                 |
| ACENAPHTHYLENE                           |                 |                  |                 |                 |
| ANTHRACENE                               |                 |                  |                 |                 |
| BAP EQUIVALENT-HALFND                    | 708.4 [MDL=1.6] | 225.34 [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 708.4 [MDL=1.6] | 225.34 [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       | <u></u>         |                  |                 | <u></u>         |
| BENZO(A)ANTHRACENE                       | 360 [MDL=1.2]   | 140 [MDL=1.1]    | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] |
| BENZO(A)PYRENE                           | 490 [MDL=1.6]   | 160 [MDL=1.5]    | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 630 [MDL=1.5]   | 180 [MDL=1.4]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE                     |                 |                  |                 |                 |
| BENZO(K)FLUORANTHENE                     | 300 [MDL=2.1]   | 110 [MDL=2]      | 2.1 U [MDL=2.1] | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                  |                 |                 |
| C1-FLUORENES                             |                 |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                  |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                 |                 |
| C2-FLUORENES                             |                 |                  |                 |                 |
| C2-NAPHTHALENES                          |                 |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                 |                 |
| C3-FLUORENES                             |                 |                  |                 |                 |
| C3-NAPHTHALENES                          |                 |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                  |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                  |                 |                 |
| C4-NAPHTHALENES                          |                 |                  |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                  |                 |                 |
| CHRYSENE                                 | 400 [MDL=1.1]   | 140 [MDL=1.1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 87 [MDL=1.6]    | 23 [MDL=1.5]     | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                 |                  |                 |                 |
| FLUORENE                                 |                 |                  |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 290 [MDL=1.9]   | 91 [MDL=1.8]     | 1.9 U [MDL=1.9] | 1.8 U [MDL=1.8] |
|                                          |                 |                  |                 | 1               |

#### SOIL

| LOCATION                       | SB-643         | SB-643        | SB-643        | SB-643        |
|--------------------------------|----------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-643-1     | F-SB-643-11   | F-SB-643-13   | F-SB-643-15   |
| SAMPLE DATE                    | 10/16/2009     | 10/16/2009    | 10/16/2009    | 10/16/2009    |
| PHENANTHRENE                   |                |               |               |               |
| PYRENE                         |                |               |               | <del></del>   |
| TOTAL PAHS                     | 2557 [MDL=1.6] | 844 [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        | •              |               |               | •             |
| 4,4'-DDD                       |                |               |               |               |
| 4,4'-DDE                       |                |               |               |               |
| 4,4'-DDT                       |                |               |               |               |
| ALDRIN                         |                |               |               |               |
| ALPHA-BHC                      |                |               |               |               |
| ALPHA-CHLORDANE                |                |               |               |               |
| AROCLOR-1016                   |                |               |               |               |
| AROCLOR-1221                   |                |               |               |               |
| AROCLOR-1232                   |                |               |               |               |
| AROCLOR-1242                   |                |               |               |               |
| AROCLOR-1248                   |                |               |               |               |
| AROCLOR-1254                   |                |               |               |               |
| AROCLOR-1260                   |                |               |               |               |
| BETA-BHC                       |                |               |               |               |
| DELTA-BHC                      |                |               |               |               |
| DIELDRIN                       |                |               |               |               |
| ENDOSULFAN I                   |                |               |               |               |
| ENDOSULFAN II                  |                |               |               |               |
| ENDOSULFAN SULFATE             |                |               |               |               |
| ENDRIN                         |                |               |               |               |
| ENDRIN ALDEHYDE                |                |               |               |               |
| ENDRIN KETONE                  |                |               |               |               |
| GAMMA-BHC (LINDANE)            |                |               |               |               |
| GAMMA-CHLORDANE                |                |               |               |               |
| HEPTACHLOR                     |                |               |               |               |
| HEPTACHLOR EPOXIDE             |                |               |               |               |
| METHOXYCHLOR                   |                |               |               |               |
| TOTAL AROCLOR                  |                |               |               |               |
| TOTAL DDT POS                  |                |               |               |               |
| TOXAPHENE                      |                |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |               |               |               |
| DIESEL RANGE ORGANICS          |                |               |               |               |
| GASOLINE RANGE ORGANICS        |                |               |               |               |
| TPH (C09-C36)                  |                |               |               |               |
|                                | -              |               |               |               |

#### SOIL

| 50IL                         |            |            |            | 1          |
|------------------------------|------------|------------|------------|------------|
| LOCATION                     | SB-643     | SB-643     | SB-643     | SB-643     |
| SAMPLE ID                    | F-SB-643-3 | F-SB-643-5 | F-SB-643-7 | F-SB-643-9 |
| SAMPLE DATE                  | 10/16/2009 | 10/16/2009 | 10/16/2009 | 10/16/2009 |
| METALS (MG/KG)               |            |            | _          | _          |
| ANTIMONY                     |            |            |            |            |
| ARSENIC                      |            |            |            |            |
| BARIUM                       |            |            |            |            |
| BERYLLIUM                    |            |            |            |            |
| CADMIUM                      |            |            |            |            |
| CHROMIUM                     |            |            |            |            |
| COBALT                       |            |            |            |            |
| COPPER                       |            |            |            |            |
| LEAD                         |            |            |            |            |
| MERCURY                      |            |            |            |            |
| MOLYBDENUM                   |            |            |            |            |
| NICKEL                       |            |            |            |            |
| SELENIUM                     |            |            |            |            |
| SILVER                       |            |            |            |            |
| THALLIUM                     |            |            |            |            |
| VANADIUM                     |            |            |            |            |
| ZINC                         |            |            |            |            |
| MISCELLANEOUS PARAMETERS     |            |            |            |            |
| PERCENT SOLIDS (%)           |            |            |            |            |
| TOTAL SOLIDS (%)             |            |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |            |
| PH (S.U.)                    |            |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |            |
| SEMIVOLATILES (UG/KG)        |            |            |            |            |
| 1,1-BIPHENYL                 |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DIOXANE                  |            |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |            |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |            |            |            |            |
| 2,4-DICHLOROPHENOL           |            |            |            |            |
| 2,4-DIMETHYLPHENOL           |            |            |            |            |
| 2,4-DINITROPHENOL            |            |            |            |            |
| 2,4-DINITROTOLUENE           |            |            |            |            |
| 2,6-DINITROTOLUENE           |            |            |            |            |

#### SOIL

| LOCATION                    | SB-643     | SB-643     | SB-643     | SB-643     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-643-3 | F-SB-643-5 | F-SB-643-7 | F-SB-643-9 |
| SAMPLE DATE                 | 10/16/2009 | 10/16/2009 | 10/16/2009 | 10/16/2009 |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| SOIL                           | 00.040     | 00.040     | 00.040     | 00.040     |
|--------------------------------|------------|------------|------------|------------|
| LOCATION                       | SB-643     | SB-643     | SB-643     | SB-643     |
| SAMPLE ID                      | F-SB-643-3 | F-SB-643-5 | F-SB-643-7 | F-SB-643-9 |
| SAMPLE DATE                    | 10/16/2009 | 10/16/2009 | 10/16/2009 | 10/16/2009 |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              |            |            | 1          | _          |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |
| · ·—-· <b>·</b> =              |            |            |            |            |

#### SOIL

| LOCATION                  | SB-643     | SB-643     | SB-643     | SB-643     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-643-3 | F-SB-643-5 | F-SB-643-7 | F-SB-643-9 |
| SAMPLE DATE               | 10/16/2009 | 10/16/2009 | 10/16/2009 | 10/16/2009 |
| BROMOBENZENE              |            |            |            |            |
| BROMOCHLOROMETHANE        |            |            |            |            |
| BROMODICHLOROMETHANE      |            |            |            |            |
| BROMOFORM                 |            |            |            |            |
| BROMOMETHANE              |            |            |            |            |
| CARBON DISULFIDE          |            |            |            |            |
| CARBON TETRACHLORIDE      |            |            |            |            |
| CHLOROBENZENE             |            |            |            |            |
| CHLORODIBROMOMETHANE      |            |            |            |            |
| CHLOROETHANE              |            |            |            |            |
| CHLOROFORM                |            |            |            |            |
| CHLOROMETHANE             |            |            |            |            |
| CIS-1,2-DICHLOROETHENE    |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |            |
| DIBROMOMETHANE            |            |            |            |            |
| DICHLORODIFLUOROMETHANE   |            |            |            |            |
| DIISOPROPYL ETHER         |            |            |            |            |
| ETHYL TERT-BUTYL ETHER    |            |            |            |            |
| ETHYLBENZENE              |            |            |            |            |
| FLUORODICHLOROMETHANE     |            |            |            |            |
| HEXACHLOROBUTADIENE       |            |            |            |            |
| ISOPROPYLBENZENE          |            |            |            |            |
| M+P-XYLENES               |            |            |            |            |
| METHYL TERT-BUTYL ETHER   |            |            |            |            |
| METHYLENE CHLORIDE        |            |            |            |            |
| NAPHTHALENE               |            |            |            |            |
| N-BUTYLBENZENE            |            |            |            |            |
| N-PROPYLBENZENE           |            |            |            |            |
| O-XYLENE                  |            |            |            |            |
| SEC-BUTYLBENZENE          |            |            |            |            |
| STYRENE                   |            |            |            |            |
| TERT-AMYL METHYL ETHER    |            |            |            |            |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-643          | SB-643          | SB-643          | SB-643          |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-643-3      | F-SB-643-5      | F-SB-643-7      | F-SB-643-9      |
| SAMPLE DATE                              | 10/16/2009      | 10/16/2009      | 10/16/2009      | 10/16/2009      |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 | •               |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 1.9 U [MDL=1.9] | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                 |                 |                 |
| FLUORENE                                 |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] |

#### SOIL

| LOCATION                       | SB-643        | SB-643        | SB-643        | SB-643        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-643-3    | F-SB-643-5    | F-SB-643-7    | F-SB-643-9    |
| SAMPLE DATE                    | 10/16/2009    | 10/16/2009    | 10/16/2009    | 10/16/2009    |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        | •             |               |               |               |
| 4,4'-DDD                       |               |               |               |               |
| 1,4'-DDE                       |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| TOXAPHENE                      |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

| SUIL                         |             | T            |              |              |
|------------------------------|-------------|--------------|--------------|--------------|
| LOCATION                     | SB-643B     | SB-643B      | SB-643B      | SB-643B      |
| SAMPLE ID                    | F-SB-643B-1 | F-SB-643B-11 | F-SB-643B-13 | F-SB-643B-15 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009    | 11/5/2009    | 11/5/2009    |
| METALS (MG/KG)               | _           |              |              | 1            |
| ANTIMONY                     |             |              |              |              |
| ARSENIC                      |             |              |              |              |
| BARIUM                       |             |              |              |              |
| BERYLLIUM                    |             |              |              |              |
| CADMIUM                      |             |              |              |              |
| CHROMIUM                     |             |              |              |              |
| COBALT                       |             |              |              |              |
| COPPER                       |             |              |              |              |
| LEAD                         |             |              |              |              |
| MERCURY                      |             |              |              |              |
| MOLYBDENUM                   |             |              |              |              |
| NICKEL                       |             |              |              |              |
| SELENIUM                     |             |              |              |              |
| SILVER                       |             |              |              |              |
| THALLIUM                     |             |              |              |              |
| VANADIUM                     |             |              |              |              |
| ZINC                         |             |              |              |              |
| MISCELLANEOUS PARAMETERS     |             |              | -            | -            |
| PERCENT SOLIDS (%)           |             |              |              |              |
| TOTAL SOLIDS (%)             |             |              |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |             |              |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |             |              |              |              |
| PH (S.U.)                    |             |              |              |              |
| MERCURY (METHYL) (UG/KG)     |             |              |              |              |
| SEMIVOLATILES (UG/KG)        |             | •            |              | •            |
| 1,1-BIPHENYL                 |             |              |              |              |
| 1,2,4-TRICHLOROBENZENE       |             |              |              |              |
| 1,2-DICHLOROBENZENE          |             |              |              |              |
| 1,3-DICHLOROBENZENE          |             |              |              |              |
| 1,4-DICHLOROBENZENE          |             |              |              |              |
| 1,4-DIOXANE                  |             |              |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |              |              |              |
| 2,4,5-TRICHLOROPHENOL        |             |              |              |              |
| 2,4,6-TRICHLOROPHENOL        |             |              |              |              |
| 2,4-DICHLOROPHENOL           |             |              |              |              |
| 2,4-DIMETHYLPHENOL           |             |              |              |              |
| 2,4-DINITROPHENOL            |             |              |              |              |
| 2,4-DINITROTOLUENE           |             |              |              |              |
| 2,6-DINITROTOLUENE           |             |              |              |              |

| SOIL                        |             | T            |              | T            |
|-----------------------------|-------------|--------------|--------------|--------------|
| LOCATION                    | SB-643B     | SB-643B      | SB-643B      | SB-643B      |
| SAMPLE ID                   | F-SB-643B-1 | F-SB-643B-11 | F-SB-643B-13 | F-SB-643B-15 |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009    | 11/5/2009    | 11/5/2009    |
| 2-CHLORONAPHTHALENE         |             |              |              |              |
| 2-CHLOROPHENOL              |             |              |              |              |
| 2-METHYLPHENOL              |             |              |              |              |
| 2-NITROANILINE              |             |              |              |              |
| 2-NITROPHENOL               |             |              |              |              |
| 3&4-METHYLPHENOL            |             |              |              |              |
| 3,3'-DICHLOROBENZIDINE      |             |              |              |              |
| 3-NITROANILINE              |             |              |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |              |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |              |              |              |
| 4-CHLORO-3-METHYLPHENOL     |             |              |              |              |
| 4-CHLOROANILINE             |             |              |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |              |              |              |
| 4-NITROANILINE              |             |              |              |              |
| 4-NITROPHENOL               |             |              |              |              |
| ACETOPHENONE                |             |              |              |              |
| ANILINE                     |             |              |              |              |
| ATRAZINE                    |             |              |              |              |
| AZOBENZENE                  |             |              |              |              |
| BENZIDINE                   |             |              |              |              |
| BENZOIC ACID                |             |              |              |              |
| BENZYL ALCOHOL              |             |              |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |              |              |              |
| BIS(2-CHLOROETHYL)ETHER     |             |              |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |              |              |              |
| BUTYL BENZYL PHTHALATE      |             |              |              |              |
| CAPROLACTAM                 |             |              |              |              |
| CARBAZOLE                   |             |              |              |              |
| DIBENZOFURAN                |             |              |              |              |
| DIETHYL PHTHALATE           |             |              |              |              |
| DIMETHYL PHTHALATE          |             |              |              |              |
| DI-N-BUTYL PHTHALATE        |             |              |              |              |
| DI-N-OCTYL PHTHALATE        |             |              |              |              |
| HEXACHLOROBENZENE           |             |              |              |              |
| HEXACHLOROBUTADIENE         |             |              |              |              |
| HEXACHLOROCYCLOPENTADIENE   |             |              |              |              |
| HEXACHLOROETHANE            |             |              |              |              |
| ISOPHORONE                  |             |              |              |              |
| NITROBENZENE                |             |              |              |              |
| N-NITROSODIMETHYLAMINE      |             |              |              |              |

#### SOIL

| LOCATION                      | SB-643B     | SB-643B      | SB-643B      | SB-643B      |
|-------------------------------|-------------|--------------|--------------|--------------|
| SAMPLE ID                     | F-SB-643B-1 | F-SB-643B-11 | F-SB-643B-13 | F-SB-643B-15 |
| SAMPLE DATE                   | 11/5/2009   | 11/5/2009    | 11/5/2009    | 11/5/2009    |
| N-NITROSO-DI-N-PROPYLAMINE    |             |              |              |              |
| N-NITROSODIPHENYLAMINE        |             |              |              |              |
| PENTACHLOROPHENOL             |             |              |              |              |
| PHENOL                        |             |              |              |              |
| PYRIDINE                      |             |              |              |              |
| OLATILES (UG/KG)              |             |              |              |              |
| ,1,1,2-TETRACHLOROETHANE      |             |              |              |              |
| ,1,1-TRICHLOROETHANE          |             |              |              |              |
| ,1,2,2-TETRACHLOROETHANE      |             |              |              |              |
| ,1,2-TRICHLOROETHANE          |             |              |              |              |
| ,1,2-TRICHLOROTRIFLUOROETHANE |             |              |              |              |
| ,1-DICHLOROETHANE             |             |              |              |              |
| ,1-DICHLOROETHENE             |             |              |              |              |
| ,1-DICHLOROPROPENE            |             |              |              |              |
| ,2,3-TRICHLOROBENZENE         |             |              |              |              |
| ,2,3-TRICHLOROPROPANE         |             |              |              |              |
| ,2,3-TRIMETHYLBENZENE         |             |              |              |              |
| ,2,4-TRICHLOROBENZENE         |             |              |              |              |
| ,2,4-TRIMETHYLBENZENE         |             |              |              |              |
| ,2-DIBROMO-3-CHLOROPROPANE    |             |              |              |              |
| ,2-DIBROMOETHANE              |             |              |              |              |
| ,2-DICHLOROBENZENE            |             |              |              |              |
| ,2-DICHLOROETHANE             |             |              |              |              |
| ,2-DICHLOROPROPANE            |             |              |              |              |
| ,3,5-TRIMETHYLBENZENE         |             |              |              |              |
| ,3-DICHLOROBENZENE            |             |              |              |              |
| ,3-DICHLOROPROPANE            |             |              |              |              |
| ,3-DICHLOROPROPENE            |             |              |              |              |
| ,4-DICHLOROBENZENE            |             |              |              |              |
| ,4-DIOXANE                    |             |              |              |              |
| ,2-DICHLOROPROPANE            |             |              |              |              |
| -BUTANONE                     |             |              |              |              |
| -CHLOROETHYL VINYL ETHER      |             |              |              |              |
| -CHLOROTOLUENE                |             |              |              |              |
| -HEXANONE                     |             |              |              |              |
| -CHLOROTOLUENE                |             |              |              |              |
| -ISOPROPYLTOLUENE             |             |              |              |              |
| -METHYL-2-PENTANONE           |             |              |              |              |
| CETONE                        |             |              |              |              |
| BENZENE                       |             |              |              |              |

| SOIL                      |             |              |              | 1            |
|---------------------------|-------------|--------------|--------------|--------------|
| LOCATION                  | SB-643B     | SB-643B      | SB-643B      | SB-643B      |
| SAMPLE ID                 | F-SB-643B-1 | F-SB-643B-11 | F-SB-643B-13 | F-SB-643B-15 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009    | 11/5/2009    | 11/5/2009    |
| BROMOBENZENE              |             |              |              |              |
| BROMOCHLOROMETHANE        |             |              |              |              |
| BROMODICHLOROMETHANE      |             |              |              |              |
| BROMOFORM                 |             |              |              |              |
| BROMOMETHANE              |             |              |              |              |
| CARBON DISULFIDE          |             |              |              |              |
| CARBON TETRACHLORIDE      |             |              |              |              |
| CHLOROBENZENE             |             |              |              |              |
| CHLORODIBROMOMETHANE      |             |              |              |              |
| CHLOROETHANE              |             |              |              |              |
| CHLOROFORM                |             |              |              |              |
| CHLOROMETHANE             |             |              |              |              |
| CIS-1,2-DICHLOROETHENE    |             |              |              |              |
| CIS-1,3-DICHLOROPROPENE   |             |              |              |              |
| DIBROMOMETHANE            |             |              |              |              |
| DICHLORODIFLUOROMETHANE   |             |              |              |              |
| DIISOPROPYL ETHER         |             |              |              |              |
| ETHYL TERT-BUTYL ETHER    |             |              |              |              |
| ETHYLBENZENE              |             |              |              |              |
| FLUORODICHLOROMETHANE     |             |              |              |              |
| HEXACHLOROBUTADIENE       |             |              |              |              |
| ISOPROPYLBENZENE          |             |              |              |              |
| M+P-XYLENES               |             |              |              |              |
| METHYL TERT-BUTYL ETHER   |             |              |              |              |
| METHYLENE CHLORIDE        |             |              |              |              |
| NAPHTHALENE               |             |              |              |              |
| N-BUTYLBENZENE            |             |              |              |              |
| N-PROPYLBENZENE           |             |              |              |              |
| O-XYLENE                  |             |              |              |              |
| SEC-BUTYLBENZENE          |             |              |              |              |
| STYRENE                   |             |              |              |              |
| TERT-AMYL METHYL ETHER    |             |              |              |              |
| TERT-BUTYLBENZENE         |             |              |              |              |
| TERTIARY-BUTYL ALCOHOL    |             |              |              |              |
| TETRACHLOROETHENE         |             |              |              |              |
| TOLUENE                   |             |              |              |              |
| TOTAL 1,2-DICHLOROETHENE  |             |              |              |              |
| TOTAL XYLENES             |             |              |              |              |
| TRANS-1,2-DICHLOROETHENE  |             |              |              |              |
| TRANS-1,3-DICHLOROPROPENE |             |              |              |              |

## SOIL

| LOCATION                                 | SB-643B           | SB-643B         | SB-643B          | SB-643B         |
|------------------------------------------|-------------------|-----------------|------------------|-----------------|
| SAMPLE ID                                | F-SB-643B-1       | F-SB-643B-11    | F-SB-643B-13     | F-SB-643B-15    |
| SAMPLE DATE                              | 11/5/2009         | 11/5/2009       | 11/5/2009        | 11/5/2009       |
| TRICHLOROETHENE                          |                   |                 |                  |                 |
| TRICHLOROFLUOROMETHANE                   |                   |                 |                  |                 |
| VINYL ACETATE                            |                   |                 |                  |                 |
| VINYL CHLORIDE                           |                   |                 |                  |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | <u> </u>          |                 |                  |                 |
| 1-METHYLNAPHTHALENE                      |                   |                 |                  |                 |
| 2-METHYLNAPHTHALENE                      |                   |                 |                  |                 |
| ACENAPHTHENE                             |                   |                 |                  |                 |
| ACENAPHTHYLENE                           |                   |                 |                  |                 |
| ANTHRACENE                               |                   |                 |                  |                 |
| BAP EQUIVALENT-HALFND                    | 118.119 [MDL=1.5] | 1.5 U [MDL=1.5] | 25.329 [MDL=1.7] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 118.119 [MDL=1.5] | 1.5 U [MDL=1.5] | 24.479 [MDL=1.7] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                   |                 |                  |                 |
| BENZO(A)ANTHRACENE                       | 77 [MDL=1.1]      | 1.1 U [MDL=1.1] | 18 [MDL=1.3]     | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 70 [MDL=1.5]      | 1.5 U [MDL=1.5] | 18 [MDL=1.7]     | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 110 [MDL=1.4]     | 1.4 U [MDL=1.4] | 36 [MDL=1.6]     | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                   |                 |                  |                 |
| BENZO(K)FLUORANTHENE                     | 32 [MDL=2]        | 2.0 U [MDL=2]   | 12 [MDL=2.2]     | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |                 |
| C1-FLUORANTHENES/PYRENES                 |                   |                 |                  |                 |
| C1-FLUORENES                             |                   |                 |                  |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |                 |
| C2-FLUORENES                             |                   |                 |                  |                 |
| C2-NAPHTHALENES                          |                   |                 |                  |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |                 |
| C3-FLUORENES                             |                   |                 |                  |                 |
| C3-NAPHTHALENES                          |                   |                 |                  |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                 |                  |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                  |                 |
| C4-NAPHTHALENES                          |                   |                 |                  |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                 |                  | ŧ.              |
| CHRYSENE                                 | 99 [MDL=1.1]      | 1.1 U [MDL=1.1] | 19 [MDL=1.2]     | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 25 [MDL=1.5]      | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7]  | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                   |                 |                  | 1               |
| FLUORENE                                 |                   |                 |                  |                 |
| INDENO(1,2,3-CD)PYRENE                   | 40 [MDL=1.8]      | 1.8 U [MDL=1.8] | 9.4 [MDL=2]      | 1.8 U [MDL=1.8] |
| NAPHTHALENE                              |                   |                 |                  |                 |

#### SOIL

| LOCATION                       | SB-643B       | SB-643B       | SB-643B         | SB-643B       |
|--------------------------------|---------------|---------------|-----------------|---------------|
| SAMPLE ID                      | F-SB-643B-1   | F-SB-643B-11  | F-SB-643B-13    | F-SB-643B-15  |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009       | 11/5/2009     |
| PHENANTHRENE                   |               |               |                 |               |
| PYRENE                         |               |               |                 |               |
| TOTAL PAHS                     | 453 [MDL=1.5] | 0 U [MDL=1.5] | 112.4 [MDL=1.7] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |               |               |                 |               |
| 1,4'-DDD                       |               |               |                 |               |
| 1,4'-DDE                       |               |               |                 |               |
| 1,4'-DDT                       |               |               |                 |               |
| ALDRIN                         |               |               |                 |               |
| ALPHA-BHC                      |               |               |                 |               |
| ALPHA-CHLORDANE                |               |               |                 |               |
| AROCLOR-1016                   |               |               |                 | -             |
| AROCLOR-1221                   |               |               |                 | -             |
| AROCLOR-1232                   |               |               |                 | -             |
| AROCLOR-1242                   |               |               |                 |               |
| AROCLOR-1248                   |               |               |                 |               |
| AROCLOR-1254                   |               |               |                 |               |
| AROCLOR-1260                   |               |               |                 |               |
| BETA-BHC                       |               |               |                 |               |
| DELTA-BHC                      |               |               |                 |               |
| DIELDRIN                       |               |               |                 |               |
| NDOSULFAN I                    |               |               |                 |               |
| ENDOSULFAN II                  |               |               |                 | 1             |
| ENDOSULFAN SULFATE             |               |               |                 | -1            |
| ENDRIN                         |               |               |                 |               |
| ENDRIN ALDEHYDE                |               |               |                 | 1             |
| ENDRIN KETONE                  |               |               |                 | 1             |
| GAMMA-BHC (LINDANE)            |               |               |                 | 1             |
| SAMMA-CHLORDANE                |               |               |                 | 1             |
| HEPTACHLOR                     |               |               |                 | -             |
| HEPTACHLOR EPOXIDE             |               |               |                 | -             |
| METHOXYCHLOR                   |               |               |                 | 1             |
| OTAL AROCLOR                   |               |               |                 |               |
| OTAL DDT POS                   |               |               |                 |               |
| OXAPHENE                       |               |               |                 |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |                 |               |
| DIESEL RANGE ORGANICS          |               |               |                 | 1             |
| SASOLINE RANGE ORGANICS        |               |               |                 |               |
| ГРН (C09-C36)                  |               |               |                 |               |

#### SOIL

| LOCATION                     | CD C42D     | CD C42D     | CD C42D     | CD C42D       |
|------------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                    | SB-643B     | SB-643B     | SB-643B     | SB-643B       |
|                              | F-SB-643B-3 | F-SB-643B-5 | F-SB-643B-7 | F-SB-643B-7-D |
| SAMPLE DATE METALS (MG/KG)   | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009     |
| ANTIMONY                     |             | 1           |             |               |
| ARSENIC                      |             |             |             |               |
| BARIUM                       |             |             |             |               |
|                              |             |             |             |               |
| BERYLLIUM                    |             |             |             |               |
| CADMIUM                      |             | -           |             |               |
| CHROMIUM                     |             |             |             |               |
| COBALT                       |             |             |             |               |
| COPPER                       |             |             |             |               |
| LEAD                         |             |             |             |               |
| MERCURY                      |             |             |             |               |
| MOLYBDENUM                   |             |             |             |               |
| NICKEL                       |             |             |             |               |
| SELENIUM                     |             |             |             |               |
| SILVER                       |             |             |             |               |
| THALLIUM                     |             |             |             |               |
| VANADIUM                     |             |             |             |               |
| ZINC                         |             |             |             |               |
| MISCELLANEOUS PARAMETERS     |             |             |             |               |
| PERCENT SOLIDS (%)           |             |             |             |               |
| TOTAL SOLIDS (%)             |             |             |             |               |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |               |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |               |
| PH (S.U.)                    |             |             |             |               |
| MERCURY (METHYL) (UG/KG)     |             |             |             |               |
| SEMIVOLATILES (UG/KG)        | •           |             |             |               |
| 1,1-BIPHENYL                 |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |               |
| 1,2-DICHLOROBENZENE          |             |             |             |               |
| 1,3-DICHLOROBENZENE          |             |             |             |               |
| 1,4-DICHLOROBENZENE          |             |             |             |               |
| 1,4-DIOXANE                  |             |             |             |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |               |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |               |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |               |
| 2,4-DICHLOROPHENOL           |             |             |             |               |
| 2,4-DIMETHYLPHENOL           |             |             |             |               |
| 2,4-DINITROPHENOL            |             |             |             |               |
| 2,4-DINITROTOLUENE           |             |             |             | <del></del>   |
| 2,6-DINITROTOLUENE           |             |             |             |               |
| 2,0-DINITROTOLUEINE          | ==          |             |             | =             |

| SOIL                        |             |             |             |               |
|-----------------------------|-------------|-------------|-------------|---------------|
| LOCATION                    | SB-643B     | SB-643B     | SB-643B     | SB-643B       |
| SAMPLE ID                   | F-SB-643B-3 | F-SB-643B-5 | F-SB-643B-7 | F-SB-643B-7-D |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009     |
| 2-CHLORONAPHTHALENE         |             |             |             |               |
| 2-CHLOROPHENOL              |             |             |             |               |
| 2-METHYLPHENOL              |             |             |             |               |
| 2-NITROANILINE              |             |             |             |               |
| 2-NITROPHENOL               |             |             |             |               |
| 3&4-METHYLPHENOL            |             |             |             |               |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |               |
| 3-NITROANILINE              |             |             |             |               |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |               |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |               |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |               |
| 4-CHLOROANILINE             |             |             |             |               |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |               |
| 4-NITROANILINE              |             |             |             |               |
| 4-NITROPHENOL               |             |             |             |               |
| ACETOPHENONE                |             |             |             |               |
| ANILINE                     |             |             |             |               |
| ATRAZINE                    |             |             |             |               |
| AZOBENZENE                  |             |             |             |               |
| BENZIDINE                   |             |             |             |               |
| BENZOIC ACID                |             |             |             |               |
| BENZYL ALCOHOL              |             |             |             |               |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |               |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |               |
| BUTYL BENZYL PHTHALATE      |             |             |             |               |
| CAPROLACTAM                 |             |             |             |               |
| CARBAZOLE                   |             |             |             |               |
| DIBENZOFURAN                |             |             |             |               |
| DIETHYL PHTHALATE           |             |             |             |               |
| DIMETHYL PHTHALATE          |             |             |             |               |
| DI-N-BUTYL PHTHALATE        |             |             |             |               |
| DI-N-OCTYL PHTHALATE        |             |             |             |               |
| HEXACHLOROBENZENE           |             |             |             |               |
| HEXACHLOROBUTADIENE         |             |             |             |               |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |               |
| HEXACHLOROETHANE            |             |             |             |               |
| ISOPHORONE                  |             |             |             |               |
| NITROBENZENE                |             |             |             |               |
| N-NITROSODIMETHYLAMINE      |             |             |             |               |

#### SOIL

| LOCATION                       | SB-643B     | SB-643B     | SB-643B     | SB-643B       |
|--------------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                      | F-SB-643B-3 | F-SB-643B-5 | F-SB-643B-7 | F-SB-643B-7-D |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009     |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |               |
| N-NITROSODIPHENYLAMINE         |             |             |             |               |
| PENTACHLOROPHENOL              |             |             |             |               |
| PHENOL                         |             |             |             |               |
| PYRIDINE                       |             |             |             |               |
| VOLATILES (UG/KG)              |             |             |             |               |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,1-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,2-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |               |
| 1,1-DICHLOROETHANE             |             |             |             |               |
| 1,1-DICHLOROETHENE             |             |             |             |               |
| 1,1-DICHLOROPROPENE            |             |             |             |               |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |               |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |               |
| 1,2-DIBROMOETHANE              |             |             |             |               |
| 1,2-DICHLOROBENZENE            |             |             |             |               |
| 1,2-DICHLOROETHANE             |             |             |             |               |
| 1,2-DICHLOROPROPANE            |             |             |             |               |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |               |
| 1,3-DICHLOROBENZENE            |             |             |             |               |
| 1,3-DICHLOROPROPANE            |             |             |             |               |
| 1,3-DICHLOROPROPENE            |             |             |             |               |
| 1,4-DICHLOROBENZENE            |             |             |             |               |
| 1,4-DIOXANE                    |             |             |             |               |
| 2,2-DICHLOROPROPANE            |             |             |             |               |
| 2-BUTANONE                     |             |             |             |               |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |               |
| 2-CHLOROTOLUENE                |             |             |             |               |
| 2-HEXANONE                     |             |             |             |               |
| 4-CHLOROTOLUENE                |             |             |             |               |
| 4-ISOPROPYLTOLUENE             |             |             |             |               |
| 4-METHYL-2-PENTANONE           |             |             |             |               |
| ACETONE                        |             |             |             |               |
| BENZENE                        |             |             |             |               |

| SOIL<br>LOCATION          | SB-643B     | SB-643B     | SB-643B     | SB-643B       |
|---------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                 |             | F-SB-643B-5 | F-SB-643B-7 |               |
|                           | F-SB-643B-3 |             |             | F-SB-643B-7-D |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009     |
| BROMOBENZENE              |             |             |             |               |
| BROMOCHLOROMETHANE        |             |             |             |               |
| BROMODICHLOROMETHANE      | -           |             |             |               |
| BROMOFORM                 |             |             |             |               |
| BROMOMETHANE              |             |             |             |               |
| CARBON DISULFIDE          |             |             |             |               |
| CARBON TETRACHLORIDE      |             |             |             |               |
| CHLOROBENZENE             |             |             |             |               |
| CHLORODIBROMOMETHANE      |             |             |             |               |
| CHLOROETHANE              |             |             |             |               |
| CHLOROFORM                |             |             |             |               |
| CHLOROMETHANE             |             |             |             |               |
| CIS-1,2-DICHLOROETHENE    |             |             |             |               |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |               |
| DIBROMOMETHANE            |             |             |             |               |
| DICHLORODIFLUOROMETHANE   |             |             |             |               |
| DIISOPROPYL ETHER         |             |             |             |               |
| ETHYL TERT-BUTYL ETHER    |             |             |             |               |
| ETHYLBENZENE              |             |             |             |               |
| FLUORODICHLOROMETHANE     |             |             |             |               |
| HEXACHLOROBUTADIENE       |             |             |             |               |
| SOPROPYLBENZENE           |             |             |             |               |
| M+P-XYLENES               |             |             |             |               |
| METHYL TERT-BUTYL ETHER   |             |             |             |               |
| METHYLENE CHLORIDE        |             |             |             |               |
| NAPHTHALENE               |             |             |             |               |
| N-BUTYLBENZENE            |             |             |             |               |
| N-PROPYLBENZENE           |             |             |             |               |
| O-XYLENE                  |             |             |             |               |
| SEC-BUTYLBENZENE          |             |             |             |               |
| STYRENE                   |             |             |             |               |
| TERT-AMYL METHYL ETHER    |             |             |             |               |
| TERT-BUTYLBENZENE         |             |             |             |               |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |               |
| TETRACHLOROETHENE         |             |             |             |               |
| TOLUENE                   |             |             |             |               |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |               |
| TOTAL XYLENES             |             |             |             |               |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |               |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |               |

### SOIL

| LOCATION                                 | SB-643B         | SB-643B         | SB-643B         | SB-643B         |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-643B-3     | F-SB-643B-5     | F-SB-643B-7     | F-SB-643B-7-D   |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009       | 11/5/2009       | 11/5/2009       |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          | -               |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                 |                 |                 |                 |
| FLUORENE                                 |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 1.8 U [MDL=1.8] |
| NAPHTHALENE                              |                 |                 |                 |                 |

#### SOIL

| LOCATION                       | SB-643B       | SB-643B       | SB-643B       | SB-643B       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-643B-3   | F-SB-643B-5   | F-SB-643B-7   | F-SB-643B-7-D |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 11/5/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | -             |
| 4,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               |               |
| 4,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| TOXAPHENE                      |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

| SUIL                         |             |             | T            | T            |
|------------------------------|-------------|-------------|--------------|--------------|
| LOCATION                     | SB-643B     | SB-643C     | SB-643C      | SB-643C      |
| SAMPLE ID                    | F-SB-643B-9 | F-SB-643C-1 | F-SB-643C-11 | F-SB-643C-13 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009    | 11/5/2009    |
| METALS (MG/KG)               |             |             |              | 1            |
| ANTIMONY                     |             |             |              |              |
| ARSENIC                      |             |             |              |              |
| BARIUM                       |             |             |              |              |
| BERYLLIUM                    |             |             |              |              |
| CADMIUM                      |             |             |              |              |
| CHROMIUM                     |             |             |              |              |
| COBALT                       |             |             |              |              |
| COPPER                       |             |             |              |              |
| LEAD                         |             |             |              |              |
| MERCURY                      |             |             |              |              |
| MOLYBDENUM                   |             |             |              |              |
| NICKEL                       |             |             |              |              |
| SELENIUM                     |             |             |              |              |
| SILVER                       |             |             |              |              |
| THALLIUM                     |             |             |              |              |
| VANADIUM                     |             |             |              |              |
| ZINC                         |             |             |              |              |
| MISCELLANEOUS PARAMETERS     |             |             |              |              |
| PERCENT SOLIDS (%)           |             |             |              |              |
| TOTAL SOLIDS (%)             |             |             |              |              |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |              |              |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |              |              |
| PH (S.U.)                    |             |             |              |              |
| MERCURY (METHYL) (UG/KG)     |             |             |              |              |
| SEMIVOLATILES (UG/KG)        | •           |             |              |              |
| 1,1-BIPHENYL                 |             |             |              |              |
| 1,2,4-TRICHLOROBENZENE       |             |             |              |              |
| 1,2-DICHLOROBENZENE          |             |             |              |              |
| 1,3-DICHLOROBENZENE          |             |             |              |              |
| 1,4-DICHLOROBENZENE          |             |             |              |              |
| 1,4-DIOXANE                  |             |             |              |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |              |              |
| 2,4,5-TRICHLOROPHENOL        |             |             |              |              |
| 2,4,6-TRICHLOROPHENOL        |             |             |              |              |
| 2,4-DICHLOROPHENOL           |             |             |              |              |
| 2,4-DIMETHYLPHENOL           |             |             |              |              |
| 2,4-DINITROPHENOL            |             |             |              |              |
| 2,4-DINITROTOLUENE           |             |             |              |              |
| 2,6-DINITROTOLUENE           |             |             |              |              |

| SOIL<br>LOCATION            | SB-643B      | SB-643C     | SB-643C      | SB-643C      |
|-----------------------------|--------------|-------------|--------------|--------------|
|                             |              |             |              |              |
| SAMPLE ID                   | F-SB-643B-9  | F-SB-643C-1 | F-SB-643C-11 | F-SB-643C-13 |
| SAMPLE DATE                 | 11/5/2009    | 11/5/2009   | 11/5/2009    | 11/5/2009    |
| 2-CHLORONAPHTHALENE         |              |             |              |              |
| 2-CHLOROPHENOL              |              |             |              |              |
| 2-METHYLPHENOL              |              |             |              |              |
| 2-NITROANILINE              |              |             |              |              |
| 2-NITROPHENOL               |              |             |              |              |
| 3&4-METHYLPHENOL            |              |             |              |              |
| 3,3'-DICHLOROBENZIDINE      |              |             |              |              |
| 3-NITROANILINE              |              |             |              |              |
| 4,6-DINITRO-2-METHYLPHENOL  |              |             |              |              |
| 4-BROMOPHENYL PHENYL ETHER  |              |             |              |              |
| 4-CHLORO-3-METHYLPHENOL     |              |             |              |              |
| 4-CHLOROANILINE             |              |             |              |              |
| 4-CHLOROPHENYL PHENYL ETHER |              |             |              |              |
| 4-NITROANILINE              |              |             |              |              |
| 4-NITROPHENOL               |              |             |              |              |
| ACETOPHENONE                |              |             |              |              |
| ANILINE                     |              |             |              |              |
| ATRAZINE                    |              |             |              |              |
| AZOBENZENE                  |              |             |              |              |
| BENZIDINE                   |              |             |              |              |
| BENZOIC ACID                |              |             |              |              |
| BENZYL ALCOHOL              |              |             |              |              |
| BIS(2-CHLOROETHOXY)METHANE  |              |             |              |              |
| BIS(2-CHLOROETHYL)ETHER     |              |             |              |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |             |              |              |
| BUTYL BENZYL PHTHALATE      |              |             |              |              |
| CAPROLACTAM                 |              |             |              |              |
| CARBAZOLE                   |              |             |              |              |
| DIBENZOFURAN                |              |             |              |              |
| DIETHYL PHTHALATE           |              |             |              |              |
| DIMETHYL PHTHALATE          |              |             |              |              |
| DI-N-BUTYL PHTHALATE        |              |             |              |              |
| DI-N-OCTYL PHTHALATE        | <del>-</del> |             |              | <del></del>  |
|                             |              |             |              |              |
| HEXACHLOROBENZENE           |              |             |              |              |
| HEXACHLOROBUTADIENE         | <del>-</del> |             |              |              |
| HEXACHLOROCYCLOPENTADIENE   |              |             |              |              |
| HEXACHLOROETHANE            |              |             |              |              |
| ISOPHORONE                  |              |             |              |              |
| NITROBENZENE                |              |             |              |              |
| N-NITROSODIMETHYLAMINE      |              |             |              |              |

#### SOIL

| LOCATION                       | SB-643B     | SB-643C     | SB-643C      | SB-643C      |
|--------------------------------|-------------|-------------|--------------|--------------|
| SAMPLE ID                      | F-SB-643B-9 | F-SB-643C-1 | F-SB-643C-11 | F-SB-643C-13 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009    | 11/5/2009    |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |              |              |
| N-NITROSODIPHENYLAMINE         |             |             |              |              |
| PENTACHLOROPHENOL              |             |             |              |              |
| PHENOL                         |             |             |              |              |
| PYRIDINE                       |             |             |              |              |
| VOLATILES (UG/KG)              | •           |             | •            |              |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |              |              |
| 1,1,1-TRICHLOROETHANE          |             |             |              |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |              |              |
| 1,1,2-TRICHLOROETHANE          |             |             |              |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |              |              |
| 1,1-DICHLOROETHANE             |             |             |              |              |
| 1,1-DICHLOROETHENE             |             |             |              |              |
| 1,1-DICHLOROPROPENE            |             |             |              |              |
| 1,2,3-TRICHLOROBENZENE         |             |             |              |              |
| 1,2,3-TRICHLOROPROPANE         |             |             |              |              |
| 1,2,3-TRIMETHYLBENZENE         |             |             |              |              |
| 1,2,4-TRICHLOROBENZENE         |             |             |              |              |
| 1,2,4-TRIMETHYLBENZENE         |             |             |              |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |              |              |
| 1,2-DIBROMOETHANE              |             |             |              |              |
| 1,2-DICHLOROBENZENE            |             |             |              |              |
| 1,2-DICHLOROETHANE             |             |             |              |              |
| 1,2-DICHLOROPROPANE            |             |             |              |              |
| 1,3,5-TRIMETHYLBENZENE         |             |             |              |              |
| 1,3-DICHLOROBENZENE            |             |             |              |              |
| 1,3-DICHLOROPROPANE            |             |             |              |              |
| 1,3-DICHLOROPROPENE            |             |             |              |              |
| 1,4-DICHLOROBENZENE            |             |             |              |              |
| 1,4-DIOXANE                    |             |             |              |              |
| 2,2-DICHLOROPROPANE            |             |             |              |              |
| 2-BUTANONE                     |             |             |              |              |
| 2-CHLOROETHYL VINYL ETHER      |             |             |              |              |
| 2-CHLOROTOLUENE                |             |             |              |              |
| 2-HEXANONE                     |             |             |              |              |
| 4-CHLOROTOLUENE                |             |             |              |              |
| 4-ISOPROPYLTOLUENE             |             |             |              |              |
| 4-METHYL-2-PENTANONE           |             |             |              |              |
| ACETONE                        |             |             |              |              |
| BENZENE                        |             |             |              |              |

| SOIL                      |             |             |              |              |  |  |
|---------------------------|-------------|-------------|--------------|--------------|--|--|
| LOCATION                  | SB-643B     | SB-643C     | SB-643C      | SB-643C      |  |  |
| SAMPLE ID                 | F-SB-643B-9 | F-SB-643C-1 | F-SB-643C-11 | F-SB-643C-13 |  |  |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009    | 11/5/2009    |  |  |
| BROMOBENZENE              |             |             |              |              |  |  |
| BROMOCHLOROMETHANE        |             |             |              |              |  |  |
| BROMODICHLOROMETHANE      |             |             |              |              |  |  |
| BROMOFORM                 |             |             |              |              |  |  |
| BROMOMETHANE              |             |             |              |              |  |  |
| CARBON DISULFIDE          |             |             |              |              |  |  |
| CARBON TETRACHLORIDE      |             |             |              |              |  |  |
| CHLOROBENZENE             |             |             |              |              |  |  |
| CHLORODIBROMOMETHANE      |             |             |              |              |  |  |
| CHLOROETHANE              |             |             |              |              |  |  |
| CHLOROFORM                |             |             |              |              |  |  |
| CHLOROMETHANE             |             |             |              |              |  |  |
| CIS-1,2-DICHLOROETHENE    |             |             |              |              |  |  |
| CIS-1,3-DICHLOROPROPENE   |             |             |              |              |  |  |
| DIBROMOMETHANE            |             |             |              |              |  |  |
| DICHLORODIFLUOROMETHANE   |             |             |              |              |  |  |
| DIISOPROPYL ETHER         |             |             |              |              |  |  |
| ETHYL TERT-BUTYL ETHER    |             |             |              |              |  |  |
| ETHYLBENZENE              |             |             |              |              |  |  |
| FLUORODICHLOROMETHANE     |             |             |              |              |  |  |
| HEXACHLOROBUTADIENE       |             |             |              |              |  |  |
| ISOPROPYLBENZENE          |             |             |              |              |  |  |
| M+P-XYLENES               |             |             |              |              |  |  |
| METHYL TERT-BUTYL ETHER   |             |             |              |              |  |  |
| METHYLENE CHLORIDE        |             |             |              |              |  |  |
| NAPHTHALENE               |             |             |              |              |  |  |
| N-BUTYLBENZENE            |             |             |              |              |  |  |
| N-PROPYLBENZENE           |             |             |              |              |  |  |
| O-XYLENE                  |             |             |              |              |  |  |
| SEC-BUTYLBENZENE          |             |             |              |              |  |  |
| STYRENE                   |             |             |              |              |  |  |
| TERT-AMYL METHYL ETHER    |             |             |              |              |  |  |
| TERT-BUTYLBENZENE         |             |             |              |              |  |  |
| TERTIARY-BUTYL ALCOHOL    |             |             |              |              |  |  |
| TETRACHLOROETHENE         |             |             |              |              |  |  |
| TOLUENE                   |             |             |              |              |  |  |
| TOTAL 1,2-DICHLOROETHENE  |             |             |              |              |  |  |
| TOTAL XYLENES             |             |             |              |              |  |  |
| TRANS-1,2-DICHLOROETHENE  |             |             |              |              |  |  |
| TRANS-1,3-DICHLOROPROPENE |             |             |              |              |  |  |
| •                         | <u> </u>    | I .         | f.           |              |  |  |

### SOIL

| LOCATION                                 | SB-643B         | SB-643C           | SB-643C         | SB-643C          |
|------------------------------------------|-----------------|-------------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-643B-9     | F-SB-643C-1       | F-SB-643C-11    | F-SB-643C-13     |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009         | 11/5/2009       | 11/5/2009        |
| TRICHLOROETHENE                          |                 |                   |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                 |                  |
| VINYL ACETATE                            |                 |                   |                 |                  |
| VINYL CHLORIDE                           |                 |                   |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                 |                  |
| 1-METHYLNAPHTHALENE                      |                 |                   |                 |                  |
| 2-METHYLNAPHTHALENE                      |                 |                   |                 |                  |
| ACENAPHTHENE                             |                 |                   |                 |                  |
| ACENAPHTHYLENE                           |                 |                   |                 |                  |
| ANTHRACENE                               |                 |                   |                 |                  |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   | 1.6 U [MDL=1.6] | 269.13 [MDL=1.7] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   | 1.6 U [MDL=1.6] | 269.13 [MDL=1.7] |
| BAP EQUIVALENT-UCL                       |                 |                   |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]     | 1.1 U [MDL=1.1] | 180 [MDL=1.3]    |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   | 1.6 U [MDL=1.6] | 170 [MDL=1.7]    |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.3 U [MDL=1.3]   | 1.4 U [MDL=1.4] | 230 [MDL=1.6]    |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 1.9 U [MDL=1.9]   | 2.0 U [MDL=2]   | 97 [MDL=2.3]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                   |                 |                  |
| C1-FLUORENES                             |                 |                   |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                  |
| C2-FLUORENES                             |                 |                   |                 |                  |
| C2-NAPHTHALENES                          |                 |                   |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                  |
| C3-FLUORENES                             |                 |                   |                 |                  |
| C3-NAPHTHALENES                          |                 |                   | <del></del>     |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   | <del></del>     |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   | <del></del>     |                  |
| C4-NAPHTHALENES                          |                 |                   |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                  |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 0.99 U [MDL=0.99] | 1.1 U [MDL=1.1] | 160 [MDL=1.2]    |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4]   | 1.6 U [MDL=1.6] | 47 [MDL=1.7]     |
| FLUORANTHENE                             |                 |                   |                 |                  |
| FLUORENE                                 |                 |                   | <del></del>     |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7]   | 1.8 U [MDL=1.8] | 100 [MDL=2]      |
| NAPHTHALENE                              |                 |                   |                 |                  |

#### SOIL

| LOCATION                       | SB-643B       | SB-643C       | SB-643C       | SB-643C       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-643B-9   | F-SB-643C-1   | F-SB-643C-11  | F-SB-643C-13  |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 11/5/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.4] | 0 U [MDL=1.6] | 984 [MDL=1.7] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               |               |
| 4,4'-DDD                       |               |               |               |               |
| 1,4'-DDE                       |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               | ŀ             |
| BETA-BHC                       |               |               |               | ŀ             |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               | ŀ             |
| ENDOSULFAN I                   |               |               |               | 1             |
| ENDOSULFAN II                  |               |               |               | 1             |
| ENDOSULFAN SULFATE             |               |               |               | ŀ             |
| ENDRIN                         |               |               |               | ŀ             |
| ENDRIN ALDEHYDE                |               |               |               | ŀ             |
| ENDRIN KETONE                  |               |               |               | 1             |
| GAMMA-BHC (LINDANE)            |               |               |               | 1             |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               | 1             |
| METHOXYCHLOR                   |               |               |               | -             |
| OTAL AROCLOR                   |               |               |               |               |
| OTAL DDT POS                   |               |               |               | -             |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               | 1             |
| ГРН (C09-C36)                  |               |               |               |               |

#### SOIL

| SUL                          |              | T           | Т           | T           |
|------------------------------|--------------|-------------|-------------|-------------|
| LOCATION                     | SB-643C      | SB-643C     | SB-643C     | SB-643C     |
| SAMPLE ID                    | F-SB-643C-15 | F-SB-643C-3 | F-SB-643C-5 | F-SB-643C-7 |
| SAMPLE DATE                  | 11/5/2009    | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |              |             |             |             |
| ANTIMONY                     |              |             |             |             |
| ARSENIC                      |              |             |             |             |
| BARIUM                       |              |             |             |             |
| BERYLLIUM                    |              |             |             |             |
| CADMIUM                      |              |             |             |             |
| CHROMIUM                     |              |             |             |             |
| COBALT                       |              |             |             |             |
| COPPER                       |              |             |             |             |
| LEAD                         |              |             |             |             |
| MERCURY                      |              |             |             |             |
| MOLYBDENUM                   |              |             |             |             |
| NICKEL                       |              |             |             |             |
| SELENIUM                     |              |             |             |             |
| SILVER                       |              |             |             |             |
| THALLIUM                     |              |             |             |             |
| VANADIUM                     |              |             |             |             |
| ZINC                         |              |             |             |             |
| MISCELLANEOUS PARAMETERS     | •            |             | -           | -           |
| PERCENT SOLIDS (%)           |              |             |             |             |
| TOTAL SOLIDS (%)             |              |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |              |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |              |             |             |             |
| PH (S.U.)                    |              |             |             |             |
| MERCURY (METHYL) (UG/KG)     |              |             |             |             |
| SEMIVOLATILES (UG/KG)        | •            |             |             |             |
| 1,1-BIPHENYL                 |              |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |              |             |             |             |
| 1,2-DICHLOROBENZENE          |              |             |             |             |
| 1,3-DICHLOROBENZENE          |              |             |             |             |
| 1,4-DICHLOROBENZENE          |              |             |             |             |
| 1,4-DIOXANE                  |              |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |              |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |              |             |             |             |
| 2,4-DICHLOROPHENOL           |              |             |             |             |
| 2,4-DIMETHYLPHENOL           |              |             |             |             |
| 2,4-DINITROPHENOL            |              |             |             |             |
| 2,4-DINITROTOLUENE           |              |             |             |             |
| 2,6-DINITROTOLUENE           |              |             |             |             |

| SOIL                        |              | T           |             |             |
|-----------------------------|--------------|-------------|-------------|-------------|
| LOCATION                    | SB-643C      | SB-643C     | SB-643C     | SB-643C     |
| SAMPLE ID                   | F-SB-643C-15 | F-SB-643C-3 | F-SB-643C-5 | F-SB-643C-7 |
| SAMPLE DATE                 | 11/5/2009    | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |              |             |             |             |
| 2-CHLOROPHENOL              |              |             |             |             |
| 2-METHYLPHENOL              |              |             |             |             |
| 2-NITROANILINE              |              |             |             |             |
| 2-NITROPHENOL               |              |             |             |             |
| 3&4-METHYLPHENOL            |              |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |              |             |             |             |
| 3-NITROANILINE              |              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |              |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |              |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |              |             |             |             |
| 4-CHLOROANILINE             |              |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |              |             |             |             |
| 4-NITROANILINE              |              |             |             |             |
| 4-NITROPHENOL               |              |             |             |             |
| ACETOPHENONE                |              |             |             |             |
| ANILINE                     |              |             |             |             |
| ATRAZINE                    |              |             |             |             |
| AZOBENZENE                  |              |             |             |             |
| BENZIDINE                   |              |             |             |             |
| BENZOIC ACID                |              |             |             |             |
| BENZYL ALCOHOL              |              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |              |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |              |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |              |             |             |             |
| BUTYL BENZYL PHTHALATE      |              |             |             |             |
| CAPROLACTAM                 |              |             |             |             |
| CARBAZOLE                   |              |             |             |             |
| DIBENZOFURAN                |              |             |             |             |
| DIETHYL PHTHALATE           |              |             |             |             |
| DIMETHYL PHTHALATE          |              |             |             |             |
| DI-N-BUTYL PHTHALATE        |              |             |             |             |
| DI-N-OCTYL PHTHALATE        |              |             |             |             |
| HEXACHLOROBENZENE           |              |             |             |             |
| HEXACHLOROBUTADIENE         |              |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |              |             |             |             |
| HEXACHLOROETHANE            |              |             |             |             |
| ISOPHORONE                  |              |             |             |             |
| NITROBENZENE                |              |             |             |             |
| N-NITROSODIMETHYLAMINE      |              |             |             |             |

#### SOIL

| LOCATION                       | SB-643C      | SB-643C     | SB-643C     | SB-643C     |
|--------------------------------|--------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-643C-15 | F-SB-643C-3 | F-SB-643C-5 | F-SB-643C-7 |
| SAMPLE DATE                    | 11/5/2009    | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |              |             |             |             |
| N-NITROSODIPHENYLAMINE         |              |             |             |             |
| PENTACHLOROPHENOL              |              |             |             |             |
| PHENOL                         |              |             |             |             |
| PYRIDINE                       |              |             |             |             |
| VOLATILES (UG/KG)              |              | •           | •           | •           |
| 1,1,1,2-TETRACHLOROETHANE      |              |             |             |             |
| 1,1,1-TRICHLOROETHANE          |              |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |             |             |             |
| 1,1,2-TRICHLOROETHANE          |              |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |             |             |             |
| 1,1-DICHLOROETHANE             |              |             |             |             |
| 1,1-DICHLOROETHENE             |              |             |             |             |
| 1,1-DICHLOROPROPENE            |              |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |              |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |              |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |              |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |              |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |              |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |             |             |             |
| 1,2-DIBROMOETHANE              |              |             |             |             |
| 1,2-DICHLOROBENZENE            |              |             |             |             |
| 1,2-DICHLOROETHANE             |              |             |             |             |
| 1,2-DICHLOROPROPANE            |              |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |              |             |             |             |
| 1,3-DICHLOROBENZENE            |              |             |             |             |
| 1,3-DICHLOROPROPANE            |              |             |             |             |
| 1,3-DICHLOROPROPENE            |              |             |             |             |
| 1,4-DICHLOROBENZENE            |              |             |             |             |
| 1,4-DIOXANE                    |              |             |             |             |
| 2,2-DICHLOROPROPANE            |              |             |             |             |
| 2-BUTANONE                     |              |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |              |             |             |             |
| 2-CHLOROTOLUENE                |              |             |             |             |
| 2-HEXANONE                     |              |             |             |             |
| 4-CHLOROTOLUENE                |              |             |             |             |
| 4-ISOPROPYLTOLUENE             |              |             |             |             |
| 4-METHYL-2-PENTANONE           |              |             |             |             |
| ACETONE                        |              |             |             |             |
| BENZENE                        | <del></del>  |             |             |             |

| OIL                       |              |             |             |             |  |  |  |
|---------------------------|--------------|-------------|-------------|-------------|--|--|--|
| LOCATION                  | SB-643C      | SB-643C     | SB-643C     | SB-643C     |  |  |  |
| SAMPLE ID                 | F-SB-643C-15 | F-SB-643C-3 | F-SB-643C-5 | F-SB-643C-7 |  |  |  |
| SAMPLE DATE               | 11/5/2009    | 11/5/2009   | 11/5/2009   | 11/5/2009   |  |  |  |
| BROMOBENZENE              |              |             |             |             |  |  |  |
| BROMOCHLOROMETHANE        |              |             |             |             |  |  |  |
| BROMODICHLOROMETHANE      |              |             |             |             |  |  |  |
| BROMOFORM                 |              |             |             |             |  |  |  |
| BROMOMETHANE              |              |             |             |             |  |  |  |
| CARBON DISULFIDE          |              |             |             |             |  |  |  |
| CARBON TETRACHLORIDE      |              |             |             |             |  |  |  |
| CHLOROBENZENE             |              |             |             |             |  |  |  |
| CHLORODIBROMOMETHANE      |              |             |             |             |  |  |  |
| CHLOROETHANE              |              |             |             |             |  |  |  |
| CHLOROFORM                |              |             |             |             |  |  |  |
| CHLOROMETHANE             |              |             |             |             |  |  |  |
| CIS-1,2-DICHLOROETHENE    |              |             |             |             |  |  |  |
| CIS-1,3-DICHLOROPROPENE   |              |             |             |             |  |  |  |
| DIBROMOMETHANE            |              |             |             |             |  |  |  |
| DICHLORODIFLUOROMETHANE   |              |             |             |             |  |  |  |
| DIISOPROPYL ETHER         |              |             |             |             |  |  |  |
| ETHYL TERT-BUTYL ETHER    |              |             |             |             |  |  |  |
| ETHYLBENZENE              |              |             |             |             |  |  |  |
| FLUORODICHLOROMETHANE     |              |             |             |             |  |  |  |
| HEXACHLOROBUTADIENE       |              |             |             |             |  |  |  |
| ISOPROPYLBENZENE          |              |             |             |             |  |  |  |
| M+P-XYLENES               |              |             |             |             |  |  |  |
| METHYL TERT-BUTYL ETHER   |              |             |             |             |  |  |  |
| METHYLENE CHLORIDE        |              |             |             |             |  |  |  |
| NAPHTHALENE               |              |             |             |             |  |  |  |
| N-BUTYLBENZENE            |              |             |             |             |  |  |  |
| N-PROPYLBENZENE           |              |             |             |             |  |  |  |
| O-XYLENE                  |              |             |             |             |  |  |  |
| SEC-BUTYLBENZENE          |              |             |             |             |  |  |  |
| STYRENE                   |              |             |             |             |  |  |  |
| TERT-AMYL METHYL ETHER    |              |             |             |             |  |  |  |
| TERT-BUTYLBENZENE         |              |             |             |             |  |  |  |
| TERTIARY-BUTYL ALCOHOL    |              |             |             |             |  |  |  |
| TETRACHLOROETHENE         |              |             |             |             |  |  |  |
| TOLUENE                   |              |             |             |             |  |  |  |
| TOTAL 1,2-DICHLOROETHENE  |              |             |             |             |  |  |  |
| TOTAL XYLENES             |              |             |             |             |  |  |  |
| TRANS-1,2-DICHLOROETHENE  |              |             |             |             |  |  |  |
| TRANS-1,3-DICHLOROPROPENE |              |             |             |             |  |  |  |
| •                         |              | 1           |             | 1           |  |  |  |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-643C           | SB-643C         | SB-643C         | SB-643C         |
|------------------------------------------|-------------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-643C-15      | F-SB-643C-3     | F-SB-643C-5     | F-SB-643C-7     |
| SAMPLE DATE                              | 11/5/2009         | 11/5/2009       | 11/5/2009       | 11/5/2009       |
| TRICHLOROETHENE                          |                   |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                   |                 |                 |                 |
| VINYL ACETATE                            |                   |                 |                 |                 |
| VINYL CHLORIDE                           |                   |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   | •               | •               |                 |
| 1-METHYLNAPHTHALENE                      |                   |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                   |                 |                 |                 |
| ACENAPHTHENE                             |                   |                 |                 |                 |
| ACENAPHTHYLENE                           |                   |                 |                 |                 |
| ANTHRACENE                               |                   |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 4.06605 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 2.3 [MDL=1.6]     | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                   |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2]   | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 23 [MDL=1.5]      | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                   |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1]   | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                   |                 |                 |                 |
| C1-FLUORENES                             |                   |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                 |                 |
| C2-FLUORENES                             |                   |                 |                 |                 |
| C2-NAPHTHALENES                          |                   |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                 |                 |
| C3-FLUORENES                             |                   |                 |                 |                 |
| C3-NAPHTHALENES                          |                   |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                 |                 |
| C4-NAPHTHALENES                          |                   |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1]   | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                   |                 |                 |                 |
| FLUORENE                                 |                   |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.9 U [MDL=1.9]   | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
|                                          |                   | 1               |                 |                 |

#### SOIL

| LOCATION                       | SB-643C      | SB-643C       | SB-643C       | SB-643C       |
|--------------------------------|--------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-643C-15 | F-SB-643C-3   | F-SB-643C-5   | F-SB-643C-7   |
| SAMPLE DATE                    | 11/5/2009    | 11/5/2009     | 11/5/2009     | 11/5/2009     |
| PHENANTHRENE                   |              |               |               |               |
| PYRENE                         |              |               |               |               |
| TOTAL PAHS                     | 23 [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |              | -             |               | -             |
| 4,4'-DDD                       |              |               |               |               |
| 4,4'-DDE                       |              |               |               |               |
| 4,4'-DDT                       |              |               |               |               |
| ALDRIN                         |              |               |               |               |
| ALPHA-BHC                      |              |               |               |               |
| ALPHA-CHLORDANE                |              |               |               |               |
| AROCLOR-1016                   |              |               |               |               |
| AROCLOR-1221                   |              |               |               |               |
| AROCLOR-1232                   |              |               |               |               |
| AROCLOR-1242                   |              |               |               |               |
| AROCLOR-1248                   |              |               |               |               |
| AROCLOR-1254                   |              |               |               |               |
| AROCLOR-1260                   |              |               |               |               |
| BETA-BHC                       |              |               |               |               |
| DELTA-BHC                      |              |               |               |               |
| DIELDRIN                       |              |               |               |               |
| ENDOSULFAN I                   |              |               |               |               |
| ENDOSULFAN II                  |              |               |               |               |
| ENDOSULFAN SULFATE             |              |               |               |               |
| ENDRIN                         |              |               |               |               |
| ENDRIN ALDEHYDE                |              |               |               |               |
| ENDRIN KETONE                  |              |               |               |               |
| GAMMA-BHC (LINDANE)            |              |               |               | <del></del>   |
| GAMMA-CHLORDANE                |              |               |               |               |
| HEPTACHLOR                     |              |               |               |               |
| HEPTACHLOR EPOXIDE             |              |               |               |               |
| METHOXYCHLOR                   |              |               |               |               |
| TOTAL AROCLOR                  |              |               |               |               |
| TOTAL DDT POS                  |              |               |               |               |
| TOXAPHENE                      |              |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |              |               |               |               |
| DIESEL RANGE ORGANICS          |              |               |               |               |
| GASOLINE RANGE ORGANICS        |              |               |               |               |
| TPH (C09-C36)                  |              |               |               |               |
|                                |              |               |               |               |

#### SOIL

| SUIL                         | OD 2422     | OD 244      | 00.044      | 65.44       |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-643C     | SB-644      | SB-644      | SB-644      |
| SAMPLE ID                    | F-SB-643C-9 | F-SB-644-1  | F-SB-644-11 | F-SB-644-13 |
| SAMPLE DATE                  | 11/5/2009   | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| METALS (MG/KG)               | <u> </u>    |             | T           | T           |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| /ANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| FOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| I,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             | <del></del> |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |

| SOIL                        | 00.0400     | 00.044      | 00.44       |             |
|-----------------------------|-------------|-------------|-------------|-------------|
| LOCATION                    | SB-643C     | SB-644      | SB-644      | SB-644      |
| SAMPLE ID                   | F-SB-643C-9 | F-SB-644-1  | F-SB-644-11 | F-SB-644-13 |
| SAMPLE DATE                 | 11/5/2009   | 10/16/2009  | 10/16/2009  | 10/16/2009  |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             | -           |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             | -           |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             | <del></del> |             |             |
| ISOPHORONE                  |             | <del></del> |             |             |
| NITROBENZENE                |             | <del></del> |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |

#### SOIL

| LOCATION                       | SB-643C     | SB-644     | SB-644      | SB-644      |
|--------------------------------|-------------|------------|-------------|-------------|
| SAMPLE ID                      | F-SB-643C-9 | F-SB-644-1 | F-SB-644-11 | F-SB-644-13 |
| SAMPLE DATE                    | 11/5/2009   | 10/16/2009 | 10/16/2009  | 10/16/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |             |            |             |             |
| N-NITROSODIPHENYLAMINE         |             |            |             |             |
| PENTACHLOROPHENOL              |             |            |             |             |
| PHENOL                         |             |            |             |             |
| PYRIDINE                       |             |            |             |             |
| VOLATILES (UG/KG)              | •           |            | •           |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |            |             |             |
| 1,1,1-TRICHLOROETHANE          |             |            |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |            |             |             |
| 1,1,2-TRICHLOROETHANE          |             |            |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |            |             |             |
| 1,1-DICHLOROETHANE             |             |            |             |             |
| 1,1-DICHLOROETHENE             |             |            |             |             |
| 1,1-DICHLOROPROPENE            |             |            |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |            |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |            |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |            |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |            |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |            |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |            |             |             |
| 1,2-DIBROMOETHANE              |             |            |             |             |
| 1,2-DICHLOROBENZENE            |             |            |             |             |
| 1,2-DICHLOROETHANE             |             |            |             |             |
| 1,2-DICHLOROPROPANE            |             |            |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |            |             |             |
| 1,3-DICHLOROBENZENE            |             |            |             |             |
| 1,3-DICHLOROPROPANE            |             |            |             |             |
| 1,3-DICHLOROPROPENE            |             |            |             |             |
| 1,4-DICHLOROBENZENE            |             |            |             |             |
| 1,4-DIOXANE                    |             |            |             |             |
| 2,2-DICHLOROPROPANE            |             |            |             |             |
| 2-BUTANONE                     |             |            |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |            |             |             |
| 2-CHLOROTOLUENE                |             |            |             |             |
| 2-HEXANONE                     |             |            |             |             |
| 4-CHLOROTOLUENE                |             |            |             |             |
| 4-ISOPROPYLTOLUENE             |             |            |             |             |
| 4-METHYL-2-PENTANONE           |             |            |             |             |
| ACETONE                        |             |            |             |             |
| BENZENE                        |             |            |             |             |

| SOIL                      |             | T          | 1           |             |
|---------------------------|-------------|------------|-------------|-------------|
| LOCATION                  | SB-643C     | SB-644     | SB-644      | SB-644      |
| SAMPLE ID                 | F-SB-643C-9 | F-SB-644-1 | F-SB-644-11 | F-SB-644-13 |
| SAMPLE DATE               | 11/5/2009   | 10/16/2009 | 10/16/2009  | 10/16/2009  |
| BROMOBENZENE              |             |            |             |             |
| BROMOCHLOROMETHANE        |             |            |             |             |
| BROMODICHLOROMETHANE      |             |            |             |             |
| BROMOFORM                 |             |            |             |             |
| BROMOMETHANE              |             |            |             |             |
| CARBON DISULFIDE          |             |            |             |             |
| CARBON TETRACHLORIDE      |             |            |             |             |
| CHLOROBENZENE             |             |            |             |             |
| CHLORODIBROMOMETHANE      |             |            |             |             |
| CHLOROETHANE              |             |            |             |             |
| CHLOROFORM                |             |            |             |             |
| CHLOROMETHANE             |             |            |             |             |
| CIS-1,2-DICHLOROETHENE    |             |            |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |            |             |             |
| DIBROMOMETHANE            |             |            |             |             |
| DICHLORODIFLUOROMETHANE   |             |            |             |             |
| DIISOPROPYL ETHER         |             |            |             |             |
| ETHYL TERT-BUTYL ETHER    |             |            |             |             |
| ETHYLBENZENE              |             |            |             |             |
| FLUORODICHLOROMETHANE     |             |            |             |             |
| HEXACHLOROBUTADIENE       |             |            |             |             |
| ISOPROPYLBENZENE          |             |            |             |             |
| M+P-XYLENES               |             |            |             |             |
| METHYL TERT-BUTYL ETHER   |             |            |             |             |
| METHYLENE CHLORIDE        |             |            |             |             |
| NAPHTHALENE               |             |            |             |             |
| N-BUTYLBENZENE            |             |            |             |             |
| N-PROPYLBENZENE           |             |            |             |             |
| O-XYLENE                  |             |            |             |             |
| SEC-BUTYLBENZENE          |             |            |             |             |
| STYRENE                   |             |            |             |             |
| TERT-AMYL METHYL ETHER    |             |            |             |             |
| TERT-BUTYLBENZENE         |             |            |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |            |             |             |
| TETRACHLOROETHENE         |             |            |             |             |
| TOLUENE                   |             |            |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |            |             |             |
| TOTAL XYLENES             |             |            |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |            |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |            |             |             |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-643C          | SB-644           | SB-644          | SB-644           |
|------------------------------------------|------------------|------------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-643C-9      | F-SB-644-1       | F-SB-644-11     | F-SB-644-13      |
| SAMPLE DATE                              | 11/5/2009        | 10/16/2009       | 10/16/2009      | 10/16/2009       |
| TRICHLOROETHENE                          |                  |                  |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                  |                  |                 |                  |
| VINYL ACETATE                            |                  |                  |                 |                  |
| VINYL CHLORIDE                           |                  |                  |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                  |                 |                  |
| 1-METHYLNAPHTHALENE                      |                  |                  |                 |                  |
| 2-METHYLNAPHTHALENE                      |                  |                  | <del></del>     |                  |
| ACENAPHTHENE                             |                  |                  |                 |                  |
| ACENAPHTHYLENE                           |                  |                  |                 |                  |
| ANTHRACENE                               |                  |                  |                 |                  |
| BAP EQUIVALENT-HALFND                    | 89.406 [MDL=1.5] | 69.594 [MDL=1.6] | 1.5 U [MDL=1.5] | 16.963 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 89.406 [MDL=1.5] | 69.594 [MDL=1.6] | 1.5 U [MDL=1.5] | 16.113 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                  |                  |                 |                  |
| BENZO(A)ANTHRACENE                       | 48 [MDL=1.1]     | 39 [MDL=1.1]     | 1.1 U [MDL=1.1] | 14 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 51 [MDL=1.5]     | 47 [MDL=1.6]     | 1.5 U [MDL=1.5] | 13 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 75 [MDL=1.4]     | 58 [MDL=1.4]     | 1.4 U [MDL=1.4] | 17 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     |                  |                  |                 |                  |
| BENZO(K)FLUORANTHENE                     | 26 [MDL=2]       | 25 [MDL=2]       | 2.0 U [MDL=2]   | 2.0 U [MDL=2]    |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                  |                  |                 |                  |
| C1-FLUORENES                             |                  |                  |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                  |
| C2-FLUORENES                             |                  |                  |                 |                  |
| C2-NAPHTHALENES                          |                  |                  |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                  |
| C3-FLUORENES                             |                  |                  |                 |                  |
| C3-NAPHTHALENES                          |                  |                  |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                  |
| C4-NAPHTHALENES                          |                  |                  |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                  |
| CHRYSENE                                 | 46 [MDL=1.1]     | 44 [MDL=1.1]     | 1.0 U [MDL=1]   | 13 [MDL=1.1]     |
| DIBENZO(A,H)ANTHRACENE                   | 23 [MDL=1.5]     | 9.4 [MDL=1.6]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5]  |
| FLUORANTHENE                             |                  |                  |                 |                  |
| FLUORENE                                 |                  |                  |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 28 [MDL=1.8]     | 32 [MDL=1.8]     | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8]  |
|                                          |                  |                  |                 |                  |

#### SOIL

| LOCATION                       | SB-643C       | SB-644          | SB-644        | SB-644                                |
|--------------------------------|---------------|-----------------|---------------|---------------------------------------|
| SAMPLE ID                      | F-SB-643C-9   | F-SB-644-1      | F-SB-644-11   | F-SB-644-13                           |
| SAMPLE DATE                    | 11/5/2009     | 10/16/2009      | 10/16/2009    | 10/16/2009                            |
| PHENANTHRENE                   |               |                 |               |                                       |
| PYRENE                         |               |                 |               | ==                                    |
| TOTAL PAHS                     | 297 [MDL=1.5] | 254.4 [MDL=1.6] | 0 U [MDL=1.5] | 57 [MDL=1.5]                          |
| PESTICIDES/PCBS (UG/KG)        |               | -               |               | · · · · · · · · · · · · · · · · · · · |
| 4,4'-DDD                       |               |                 |               |                                       |
| 4,4'-DDE                       |               |                 |               |                                       |
| 4,4'-DDT                       |               |                 |               |                                       |
| ALDRIN                         |               |                 |               |                                       |
| ALPHA-BHC                      |               |                 |               |                                       |
| ALPHA-CHLORDANE                |               |                 |               |                                       |
| AROCLOR-1016                   |               |                 |               |                                       |
| AROCLOR-1221                   |               |                 |               |                                       |
| AROCLOR-1232                   |               |                 |               |                                       |
| AROCLOR-1242                   |               |                 |               |                                       |
| AROCLOR-1248                   |               |                 |               |                                       |
| AROCLOR-1254                   |               |                 |               |                                       |
| AROCLOR-1260                   |               |                 |               |                                       |
| BETA-BHC                       |               |                 |               |                                       |
| DELTA-BHC                      |               |                 |               |                                       |
| DIELDRIN                       |               |                 |               |                                       |
| ENDOSULFAN I                   |               |                 |               |                                       |
| ENDOSULFAN II                  |               |                 |               |                                       |
| ENDOSULFAN SULFATE             |               |                 |               |                                       |
| ENDRIN                         |               |                 |               |                                       |
| ENDRIN ALDEHYDE                |               |                 |               |                                       |
| ENDRIN KETONE                  |               |                 |               |                                       |
| GAMMA-BHC (LINDANE)            |               |                 |               |                                       |
| GAMMA-CHLORDANE                |               |                 |               |                                       |
| HEPTACHLOR                     |               |                 |               |                                       |
| HEPTACHLOR EPOXIDE             |               |                 |               |                                       |
| METHOXYCHLOR                   |               |                 |               |                                       |
| TOTAL AROCLOR                  |               |                 |               |                                       |
| TOTAL DDT POS                  |               |                 |               |                                       |
| TOXAPHENE                      |               |                 |               |                                       |
| PETROLEUM HYDROCARBONS (UG/KG) |               |                 |               |                                       |
| DIESEL RANGE ORGANICS          |               |                 |               |                                       |
| GASOLINE RANGE ORGANICS        |               |                 |               |                                       |
| TPH (C09-C36)                  |               |                 |               |                                       |
|                                |               |                 |               |                                       |

#### SOIL

| -644<br>644-15<br>6/2009 | SB-644<br>F-SB-644-3<br>10/16/2009 | SB-644<br>F-SB-644-3-D<br>10/16/2009 | SB-644<br>F-SB-644-5<br>10/16/2009 |
|--------------------------|------------------------------------|--------------------------------------|------------------------------------|
| 6/2009                   |                                    |                                      |                                    |
|                          | 10/16/2009                         | 10/16/2009                           | 10/16/2009                         |
|                          |                                    |                                      | 10/10/2003                         |
|                          |                                    | T                                    | T                                  |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
| -                        |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          | <del></del>                        |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
| _                        |                                    | •                                    |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
| •                        |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          | <del></del>                        |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          | <del></del>                        |                                      |                                    |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |
| +                        |                                    |                                      |                                    |
|                          |                                    |                                      | <del></del>                        |
|                          |                                    |                                      |                                    |
|                          |                                    |                                      |                                    |

| LOCATION                    | SB-644      | SB-644     | SB-644       | SB-644     |
|-----------------------------|-------------|------------|--------------|------------|
| SAMPLE ID                   | F-SB-644-15 | F-SB-644-3 | F-SB-644-3-D | F-SB-644-5 |
| SAMPLE DATE                 | 10/16/2009  | 10/16/2009 | 10/16/2009   | 10/16/2009 |
| 2-CHLORONAPHTHALENE         |             |            |              |            |
| 2-CHLOROPHENOL              |             |            |              |            |
| 2-METHYLPHENOL              |             |            |              |            |
| 2-NITROANILINE              |             |            |              |            |
| 2-NITROPHENOL               |             |            |              |            |
| 3&4-METHYLPHENOL            |             |            |              |            |
| 3,3'-DICHLOROBENZIDINE      |             |            |              |            |
| 3-NITROANILINE              |             |            |              |            |
| 4,6-DINITRO-2-METHYLPHENOL  |             |            |              |            |
| 4-BROMOPHENYL PHENYL ETHER  |             |            |              |            |
| 4-CHLORO-3-METHYLPHENOL     |             |            |              |            |
| 4-CHLOROANILINE             |             |            |              |            |
| 4-CHLOROPHENYL PHENYL ETHER |             |            |              |            |
| 4-NITROANILINE              |             |            |              |            |
| 4-NITROPHENOL               |             |            |              |            |
| ACETOPHENONE                |             |            |              |            |
| ANILINE                     |             |            |              |            |
| ATRAZINE                    |             |            |              |            |
| AZOBENZENE                  |             |            |              |            |
| BENZIDINE                   |             |            |              |            |
| BENZOIC ACID                |             |            |              |            |
| BENZYL ALCOHOL              |             |            |              |            |
| BIS(2-CHLOROETHOXY)METHANE  |             |            |              |            |
| BIS(2-CHLOROETHYL)ETHER     |             |            |              |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |            |              |            |
| BUTYL BENZYL PHTHALATE      |             |            |              |            |
| CAPROLACTAM                 |             |            |              |            |
| CARBAZOLE                   |             |            |              |            |
| DIBENZOFURAN                |             |            |              |            |
| DIETHYL PHTHALATE           |             |            |              |            |
| DIMETHYL PHTHALATE          |             |            |              |            |
| DI-N-BUTYL PHTHALATE        |             |            |              |            |
| DI-N-OCTYL PHTHALATE        |             |            |              |            |
| HEXACHLOROBENZENE           |             |            |              |            |
| HEXACHLOROBUTADIENE         |             |            |              |            |
| HEXACHLOROCYCLOPENTADIENE   |             |            |              |            |
| HEXACHLOROETHANE            |             |            |              |            |
| ISOPHORONE                  |             |            |              |            |
| NITROBENZENE                |             |            |              |            |
| N-NITROSODIMETHYLAMINE      |             |            |              |            |

#### SOIL

| SOIL                           |             |            |              |            |
|--------------------------------|-------------|------------|--------------|------------|
| LOCATION                       | SB-644      | SB-644     | SB-644       | SB-644     |
| SAMPLE ID                      | F-SB-644-15 | F-SB-644-3 | F-SB-644-3-D | F-SB-644-5 |
| SAMPLE DATE                    | 10/16/2009  | 10/16/2009 | 10/16/2009   | 10/16/2009 |
| N-NITROSO-DI-N-PROPYLAMINE     |             |            |              |            |
| N-NITROSODIPHENYLAMINE         |             |            |              |            |
| PENTACHLOROPHENOL              |             |            |              |            |
| PHENOL                         |             |            |              |            |
| PYRIDINE                       |             |            |              |            |
| VOLATILES (UG/KG)              |             |            |              |            |
| 1,1,1,2-TETRACHLOROETHANE      |             |            |              |            |
| 1,1,1-TRICHLOROETHANE          |             |            |              |            |
| 1,1,2,2-TETRACHLOROETHANE      |             |            |              |            |
| 1,1,2-TRICHLOROETHANE          |             |            |              |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |            |              |            |
| 1,1-DICHLOROETHANE             |             |            |              |            |
| 1,1-DICHLOROETHENE             |             |            |              |            |
| 1,1-DICHLOROPROPENE            |             |            |              |            |
| 1,2,3-TRICHLOROBENZENE         |             |            |              |            |
| 1,2,3-TRICHLOROPROPANE         |             |            |              |            |
| 1,2,3-TRIMETHYLBENZENE         |             |            |              |            |
| 1,2,4-TRICHLOROBENZENE         |             |            |              |            |
| 1,2,4-TRIMETHYLBENZENE         |             |            |              |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |            |              |            |
| 1,2-DIBROMOETHANE              |             |            |              |            |
| 1,2-DICHLOROBENZENE            |             |            |              |            |
| 1,2-DICHLOROETHANE             |             |            |              |            |
| 1,2-DICHLOROPROPANE            |             |            |              |            |
| 1,3,5-TRIMETHYLBENZENE         |             |            |              |            |
| 1,3-DICHLOROBENZENE            |             |            |              |            |
| 1,3-DICHLOROPROPANE            |             |            |              |            |
| 1,3-DICHLOROPROPENE            |             |            |              |            |
| 1,4-DICHLOROBENZENE            |             |            |              |            |
| 1,4-DIOXANE                    |             |            |              |            |
| 2,2-DICHLOROPROPANE            |             |            |              |            |
| 2-BUTANONE                     |             |            |              |            |
| 2-CHLOROETHYL VINYL ETHER      |             |            |              |            |
| 2-CHLOROTOLUENE                |             |            |              |            |
| 2-HEXANONE                     |             |            |              |            |
| 4-CHLOROTOLUENE                |             |            |              |            |
| 4-ISOPROPYLTOLUENE             |             |            |              |            |
| 4-METHYL-2-PENTANONE           |             |            |              |            |
| ACETONE                        |             |            |              |            |
| BENZENE                        |             |            |              |            |

#### SOIL

| LOCATION                  | SB-644      | SB-644     | SB-644       | SB-644     |
|---------------------------|-------------|------------|--------------|------------|
| SAMPLE ID                 | F-SB-644-15 | F-SB-644-3 | F-SB-644-3-D | F-SB-644-5 |
| SAMPLE DATE               | 10/16/2009  | 10/16/2009 | 10/16/2009   | 10/16/2009 |
| BROMOBENZENE              |             |            |              |            |
| BROMOCHLOROMETHANE        |             |            |              |            |
| BROMODICHLOROMETHANE      |             |            |              |            |
| BROMOFORM                 |             |            |              |            |
| BROMOMETHANE              |             |            |              |            |
| CARBON DISULFIDE          |             |            |              |            |
| CARBON TETRACHLORIDE      |             |            |              |            |
| CHLOROBENZENE             |             |            |              |            |
| CHLORODIBROMOMETHANE      |             |            |              |            |
| CHLOROETHANE              |             |            |              |            |
| CHLOROFORM                |             |            |              |            |
| CHLOROMETHANE             |             |            |              |            |
| CIS-1,2-DICHLOROETHENE    |             |            |              |            |
| CIS-1,3-DICHLOROPROPENE   |             |            |              |            |
| DIBROMOMETHANE            |             |            |              |            |
| DICHLORODIFLUOROMETHANE   |             |            |              |            |
| DIISOPROPYL ETHER         |             |            |              |            |
| ETHYL TERT-BUTYL ETHER    |             |            |              |            |
| ETHYLBENZENE              |             |            |              |            |
| FLUORODICHLOROMETHANE     |             |            |              |            |
| HEXACHLOROBUTADIENE       |             |            |              |            |
| ISOPROPYLBENZENE          |             |            |              |            |
| M+P-XYLENES               |             |            |              |            |
| METHYL TERT-BUTYL ETHER   |             |            |              |            |
| METHYLENE CHLORIDE        |             |            |              |            |
| NAPHTHALENE               |             |            |              |            |
| N-BUTYLBENZENE            |             |            |              |            |
| N-PROPYLBENZENE           |             |            |              |            |
| O-XYLENE                  |             |            |              |            |
| SEC-BUTYLBENZENE          |             |            |              |            |
| STYRENE                   |             |            |              |            |
| TERT-AMYL METHYL ETHER    |             |            |              |            |
| TERT-BUTYLBENZENE         |             |            |              |            |
| TERTIARY-BUTYL ALCOHOL    |             |            |              |            |
| TETRACHLOROETHENE         |             |            |              |            |
| TOLUENE                   |             |            |              |            |
| TOTAL 1,2-DICHLOROETHENE  |             |            |              |            |
| TOTAL XYLENES             |             |            |              |            |
| TRANS-1,2-DICHLOROETHENE  |             |            |              |            |
| TRANS-1,3-DICHLOROPROPENE |             |            |              |            |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-644          | SB-644          | SB-644          | SB-644          |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-644-15     | F-SB-644-3      | F-SB-644-3-D    | F-SB-644-5      |
| SAMPLE DATE                              | 10/16/2009      | 10/16/2009      | 10/16/2009      | 10/16/2009      |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                 |
| ACENAPHTHENE                             |                 |                 |                 |                 |
| ACENAPHTHYLENE                           |                 |                 |                 |                 |
| ANTHRACENE                               |                 |                 |                 |                 |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                 |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                 |                 |                 |                 |
| FLUORENE                                 |                 |                 |                 |                 |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] |
|                                          | -               |                 | •               |                 |

#### SOIL

| LOCATION                       | SB-644        | SB-644        | SB-644        | SB-644        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-644-15   | F-SB-644-3    | F-SB-644-3-D  | F-SB-644-5    |
| SAMPLE DATE                    | 10/16/2009    | 10/16/2009    | 10/16/2009    | 10/16/2009    |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | •             |
| 4,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               |               |
| 4,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| TOXAPHENE                      |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |

#### SOIL

|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SB-645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F-SB-645-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10/16/2009  | 10/16/2009 | 10/6/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/6/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •           | •          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            | F-SB-644-7 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 10/16/2009 | F-SB-644-7 10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2009  10/16/2 |

#### SOIL

| LOCATION                    | SB-644     | SB-644     | SB-645     | SB-645     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-644-7 | F-SB-644-9 | F-SB-645-1 | F-SB-645-3 |
| SAMPLE DATE                 | 10/16/2009 | 10/16/2009 | 10/6/2009  | 10/6/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| LOCATION                       | SB-644     | SB-644     | SB-645     | SB-645     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-644-7 | F-SB-644-9 | F-SB-645-1 | F-SB-645-3 |
| SAMPLE DATE                    | 10/16/2009 | 10/16/2009 | 10/6/2009  | 10/6/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              |            |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1.2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |

#### SOIL

| LOCATION                  | SB-644     | SB-644     | SB-645     | SB-645     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-644-7 | F-SB-644-9 | F-SB-645-1 | F-SB-645-3 |
| SAMPLE DATE               | 10/16/2009 | 10/16/2009 | 10/6/2009  | 10/6/2009  |
| BROMOBENZENE              |            |            |            |            |
| BROMOCHLOROMETHANE        |            |            |            |            |
| BROMODICHLOROMETHANE      |            |            |            |            |
| BROMOFORM                 |            |            |            |            |
| BROMOMETHANE              |            |            |            |            |
| CARBON DISULFIDE          |            |            |            |            |
| CARBON TETRACHLORIDE      |            |            |            |            |
| CHLOROBENZENE             |            |            |            |            |
| CHLORODIBROMOMETHANE      |            |            |            |            |
| CHLOROETHANE              |            |            |            |            |
| CHLOROFORM                |            |            |            |            |
| CHLOROMETHANE             |            |            |            |            |
| CIS-1,2-DICHLOROETHENE    |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |            |
| DIBROMOMETHANE            |            |            |            |            |
| DICHLORODIFLUOROMETHANE   |            |            |            |            |
| DIISOPROPYL ETHER         |            |            |            |            |
| ETHYL TERT-BUTYL ETHER    |            |            |            |            |
| ETHYLBENZENE              |            |            |            |            |
| FLUORODICHLOROMETHANE     |            |            |            |            |
| HEXACHLOROBUTADIENE       |            |            |            |            |
| ISOPROPYLBENZENE          |            |            |            |            |
| M+P-XYLENES               |            |            |            |            |
| METHYL TERT-BUTYL ETHER   |            |            |            |            |
| METHYLENE CHLORIDE        |            |            |            |            |
| NAPHTHALENE               |            |            |            |            |
| N-BUTYLBENZENE            |            |            |            |            |
| N-PROPYLBENZENE           |            |            |            |            |
| O-XYLENE                  |            |            |            |            |
| SEC-BUTYLBENZENE          |            |            |            |            |
| STYRENE                   |            |            |            |            |
| TERT-AMYL METHYL ETHER    |            |            |            |            |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |

### SOIL

| LOCATION                                 | SB-644          | SB-644          | SB-645              | SB-645           |
|------------------------------------------|-----------------|-----------------|---------------------|------------------|
| SAMPLE ID                                | F-SB-644-7      | F-SB-644-9      | F-SB-645-1          | F-SB-645-3       |
| SAMPLE DATE                              | 10/16/2009      | 10/16/2009      | 10/6/2009           | 10/6/2009        |
| TRICHLOROETHENE                          |                 |                 |                     |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                     |                  |
| VINYL ACETATE                            |                 |                 |                     |                  |
| VINYL CHLORIDE                           |                 |                 |                     |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                     |                  |
| 1-METHYLNAPHTHALENE                      |                 |                 |                     |                  |
| 2-METHYLNAPHTHALENE                      |                 |                 |                     |                  |
| ACENAPHTHENE                             |                 |                 |                     |                  |
| ACENAPHTHYLENE                           |                 |                 |                     |                  |
| ANTHRACENE                               |                 |                 |                     |                  |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] | 26715.0465 [MDL=50] | 6.9628 [MDL=2.3] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] | 26715 [MDL=50]      | 6.0543 [MDL=2.3] |
| BAP EQUIVALENT-UCL                       |                 |                 |                     |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 18000 [MDL=29]      | 4.9 J [MDL=1.3]  |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] | 17000 [MDL=50]      | 4.4 J [MDL=2.3]  |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.6 U [MDL=1.6] | 28000 [MDL=36]      | 8.7 [MDL=1.6]    |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                     |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.2 U [MDL=2.2] | 9.3 U [MDL=9.3]     | 1.7 U [MDL=1.7]  |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                     |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                     |                  |
| C1-FLUORENES                             |                 |                 |                     |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                     |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                     |                  |
| C2-FLUORENES                             |                 |                 |                     |                  |
| C2-NAPHTHALENES                          |                 |                 |                     |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                     |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                     |                  |
| C3-FLUORENES                             |                 |                 |                     |                  |
| C3-NAPHTHALENES                          |                 |                 |                     |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                     |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                     |                  |
| C4-NAPHTHALENES                          |                 |                 |                     |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                     |                  |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 15000 [MDL=31]      | 4.3 J [MDL=1.4]  |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.7 U [MDL=1.7] | 4000 [MDL=9.9]      | 1.8 U [MDL=1.8]  |
| FLUORANTHENE                             | <del></del>     |                 |                     |                  |
| FLUORENE                                 |                 |                 |                     |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 11000 [MDL=9.9]     | 2.9 J [MDL=0.44] |
| NAPHTHALENE                              |                 |                 |                     |                  |

#### SOIL

| LOCATION                       | SB-644        | SB-644        | SB-645         | SB-645         |
|--------------------------------|---------------|---------------|----------------|----------------|
| SAMPLE ID                      | F-SB-644-7    | F-SB-644-9    | F-SB-645-1     | F-SB-645-3     |
| SAMPLE DATE                    | 10/16/2009    | 10/16/2009    | 10/6/2009      | 10/6/2009      |
| PHENANTHRENE                   |               |               |                |                |
| PYRENE                         |               |               |                |                |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.7] | 93000 [MDL=50] | 25.2 [MDL=2.3] |
| PESTICIDES/PCBS (UG/KG)        |               |               |                | <u> </u>       |
| 4,4'-DDD                       |               |               |                |                |
| 4,4'-DDE                       |               |               |                |                |
| 4,4'-DDT                       |               |               |                |                |
| ALDRIN                         |               |               |                |                |
| ALPHA-BHC                      |               |               |                |                |
| ALPHA-CHLORDANE                |               |               |                |                |
| AROCLOR-1016                   |               |               |                |                |
| AROCLOR-1221                   |               |               |                |                |
| AROCLOR-1232                   |               |               |                |                |
| AROCLOR-1242                   |               |               |                |                |
| AROCLOR-1248                   |               |               |                |                |
| AROCLOR-1254                   |               |               |                |                |
| AROCLOR-1260                   |               |               |                |                |
| BETA-BHC                       |               |               |                |                |
| DELTA-BHC                      |               |               |                |                |
| DIELDRIN                       |               |               |                |                |
| ENDOSULFAN I                   |               |               |                |                |
| ENDOSULFAN II                  |               |               |                |                |
| ENDOSULFAN SULFATE             |               |               |                |                |
| ENDRIN                         |               |               |                |                |
| ENDRIN ALDEHYDE                |               |               |                |                |
| ENDRIN KETONE                  |               |               |                |                |
| GAMMA-BHC (LINDANE)            |               |               |                |                |
| GAMMA-CHLORDANE                |               |               |                |                |
| HEPTACHLOR                     |               |               |                |                |
| HEPTACHLOR EPOXIDE             |               |               |                |                |
| METHOXYCHLOR                   |               |               |                |                |
| TOTAL AROCLOR                  |               |               |                |                |
| TOTAL DDT POS                  |               |               |                |                |
| TOXAPHENE                      |               |               |                |                |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |                |                |
| DIESEL RANGE ORGANICS          |               |               |                |                |
| GASOLINE RANGE ORGANICS        |               |               |                |                |
| TPH (C09-C36)                  |               |               |                |                |

#### SOIL

| SOIL                         |            |            | _           |             |
|------------------------------|------------|------------|-------------|-------------|
| LOCATION                     | SB-645     | SB-645     | SB-645A     | SB-645A     |
| SAMPLE ID                    | F-SB-645-5 | F-SB-645-7 | F-SB-645A-1 | F-SB-645A-3 |
| SAMPLE DATE                  | 10/6/2009  | 10/6/2009  | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |            |            |             |             |
| ANTIMONY                     |            |            |             |             |
| ARSENIC                      |            |            |             |             |
| BARIUM                       |            |            |             |             |
| BERYLLIUM                    |            |            |             |             |
| CADMIUM                      |            |            |             |             |
| CHROMIUM                     |            |            |             |             |
| COBALT                       |            |            |             |             |
| COPPER                       |            |            |             |             |
| LEAD                         |            |            |             |             |
| MERCURY                      |            |            |             |             |
| MOLYBDENUM                   |            |            |             |             |
| NICKEL                       |            |            |             |             |
| SELENIUM                     |            |            |             |             |
| SILVER                       |            |            |             |             |
| THALLIUM                     |            |            |             |             |
| VANADIUM                     |            |            |             |             |
| ZINC                         |            |            |             |             |
| MISCELLANEOUS PARAMETERS     | •          | •          |             |             |
| PERCENT SOLIDS (%)           |            |            |             |             |
| TOTAL SOLIDS (%)             |            |            |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |             |             |
| PH (S.U.)                    |            |            |             |             |
| MERCURY (METHYL) (UG/KG)     |            |            |             |             |
| SEMIVOLATILES (UG/KG)        | •          | •          |             |             |
| 1,1-BIPHENYL                 |            |            |             |             |
| 1,2,4-TRICHLOROBENZENE       |            |            |             |             |
| 1,2-DICHLOROBENZENE          |            |            |             |             |
| 1,3-DICHLOROBENZENE          |            |            |             |             |
| 1,4-DICHLOROBENZENE          |            |            |             |             |
| 1,4-DIOXANE                  |            |            |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |             |             |
| 2,4,5-TRICHLOROPHENOL        |            |            |             |             |
| 2,4,6-TRICHLOROPHENOL        |            |            |             |             |
| 2,4-DICHLOROPHENOL           |            |            |             |             |
| 2,4-DIMETHYLPHENOL           |            |            |             |             |
| 2,4-DINITROPHENOL            |            |            |             |             |
| 2,4-DINITROTOLUENE           |            |            |             |             |
| 2,6-DINITROTOLUENE           |            |            |             |             |
| •                            | •          | •          | •           | •           |

| SOIL                        |            |            |             |             |
|-----------------------------|------------|------------|-------------|-------------|
| LOCATION                    | SB-645     | SB-645     | SB-645A     | SB-645A     |
| SAMPLE ID                   | F-SB-645-5 | F-SB-645-7 | F-SB-645A-1 | F-SB-645A-3 |
| SAMPLE DATE                 | 10/6/2009  | 10/6/2009  | 11/5/2009   | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |            |            |             |             |
| 2-CHLOROPHENOL              |            |            |             |             |
| 2-METHYLPHENOL              |            |            |             |             |
| 2-NITROANILINE              |            |            |             |             |
| 2-NITROPHENOL               |            |            |             |             |
| 3&4-METHYLPHENOL            |            |            |             |             |
| 3,3'-DICHLOROBENZIDINE      |            |            |             |             |
| 3-NITROANILINE              |            |            |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |             |             |
| 4-CHLORO-3-METHYLPHENOL     |            |            |             |             |
| 4-CHLOROANILINE             |            |            |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |             |             |
| 4-NITROANILINE              |            |            |             |             |
| 4-NITROPHENOL               |            |            |             |             |
| ACETOPHENONE                |            |            |             |             |
| ANILINE                     |            |            |             |             |
| ATRAZINE                    |            |            |             |             |
| AZOBENZENE                  |            |            |             |             |
| BENZIDINE                   |            |            |             |             |
| BENZOIC ACID                |            |            |             |             |
| BENZYL ALCOHOL              |            |            |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |             |             |
| BIS(2-CHLOROETHYL)ETHER     |            |            |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |             |             |
| BUTYL BENZYL PHTHALATE      |            |            |             |             |
| CAPROLACTAM                 |            |            |             |             |
| CARBAZOLE                   |            |            |             |             |
| DIBENZOFURAN                |            |            |             |             |
| DIETHYL PHTHALATE           |            |            |             |             |
| DIMETHYL PHTHALATE          |            |            |             |             |
| DI-N-BUTYL PHTHALATE        |            |            |             |             |
| DI-N-OCTYL PHTHALATE        |            |            |             |             |
| HEXACHLOROBENZENE           |            |            |             |             |
| HEXACHLOROBUTADIENE         |            |            |             |             |
| HEXACHLOROCYCLOPENTADIENE   |            |            |             |             |
| HEXACHLOROETHANE            |            |            |             |             |
| ISOPHORONE                  |            |            |             |             |
| NITROBENZENE                |            |            |             |             |
| N-NITROSODIMETHYLAMINE      |            |            |             |             |

#### SOIL

| LOCATION                       | SB-645     | SB-645     | SB-645A     | SB-645A     |
|--------------------------------|------------|------------|-------------|-------------|
| SAMPLE ID                      | F-SB-645-5 | F-SB-645-7 | F-SB-645A-1 | F-SB-645A-3 |
| SAMPLE DATE                    | 10/6/2009  | 10/6/2009  | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |             |             |
| N-NITROSODIPHENYLAMINE         |            |            |             |             |
| PENTACHLOROPHENOL              |            |            |             |             |
| PHENOL                         |            |            |             |             |
| PYRIDINE                       |            |            |             |             |
| VOLATILES (UG/KG)              | •          |            | •           |             |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |             |             |
| 1,1,1-TRICHLOROETHANE          |            |            |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |             |             |
| 1,1,2-TRICHLOROETHANE          |            |            |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |             |             |
| 1,1-DICHLOROETHANE             |            |            |             |             |
| 1,1-DICHLOROETHENE             |            |            |             |             |
| 1,1-DICHLOROPROPENE            |            |            |             |             |
| 1,2,3-TRICHLOROBENZENE         |            |            |             |             |
| 1,2,3-TRICHLOROPROPANE         |            |            |             |             |
| 1,2,3-TRIMETHYLBENZENE         |            |            |             |             |
| 1,2,4-TRICHLOROBENZENE         |            |            |             |             |
| 1,2,4-TRIMETHYLBENZENE         |            |            |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |             |             |
| 1,2-DIBROMOETHANE              |            |            |             |             |
| 1,2-DICHLOROBENZENE            |            |            |             |             |
| 1,2-DICHLOROETHANE             |            |            |             |             |
| 1,2-DICHLOROPROPANE            |            |            |             |             |
| 1,3,5-TRIMETHYLBENZENE         |            |            |             |             |
| 1,3-DICHLOROBENZENE            |            |            |             |             |
| 1,3-DICHLOROPROPANE            |            |            |             |             |
| 1,3-DICHLOROPROPENE            |            |            |             |             |
| 1,4-DICHLOROBENZENE            |            |            |             |             |
| 1,4-DIOXANE                    |            |            |             |             |
| 2,2-DICHLOROPROPANE            |            |            |             |             |
| 2-BUTANONE                     |            |            |             |             |
| 2-CHLOROETHYL VINYL ETHER      |            |            |             |             |
| 2-CHLOROTOLUENE                |            |            |             |             |
| 2-HEXANONE                     |            |            |             |             |
| 4-CHLOROTOLUENE                |            |            |             |             |
| 4-ISOPROPYLTOLUENE             |            |            |             |             |
| 4-METHYL-2-PENTANONE           |            |            |             |             |
| ACETONE                        |            |            |             |             |
| BENZENE                        |            |            |             |             |

| SB-645A F-SB-645A-3 11/5/2009 |
|-------------------------------|
| <br><br><br><br><br>          |
| <br><br><br>                  |
| <br><br><br>                  |
| <br><br>                      |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-645            | SB-645            | SB-645A           | SB-645A         |
|------------------------------------------|-------------------|-------------------|-------------------|-----------------|
| SAMPLE ID                                | F-SB-645-5        | F-SB-645-7        | F-SB-645A-1       | F-SB-645A-3     |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 11/5/2009         | 11/5/2009       |
| TRICHLOROETHENE                          |                   |                   |                   |                 |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                   |                 |
| VINYL ACETATE                            |                   |                   |                   |                 |
| VINYL CHLORIDE                           |                   |                   |                   |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   | •                 |                   |                 |
| 1-METHYLNAPHTHALENE                      |                   |                   |                   |                 |
| 2-METHYLNAPHTHALENE                      |                   |                   |                   |                 |
| ACENAPHTHENE                             |                   |                   |                   |                 |
| ACENAPHTHYLENE                           |                   |                   |                   |                 |
| ANTHRACENE                               |                   |                   |                   |                 |
| BAP EQUIVALENT-HALFND                    | 2.2847 [MDL=2.2]  | 2.2862 [MDL=2.2]  | 110.918 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 0.266 [MDL=2.2]   | 0.19 [MDL=2.2]    | 110.918 [MDL=1.5] | 1.5 U [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                   |                   |                   |                 |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2]   | 1.3 U [MDL=1.3]   | 68 [MDL=1.1]      | 1.1 U [MDL=1.1] |
| BENZO(A)PYRENE                           | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 66 [MDL=1.5]      | 1.5 U [MDL=1.5] |
| BENZO(B)FLUORANTHENE                     | 1.7 J [MDL=1.6]   | 1.9 J [MDL=1.6]   | 96 [MDL=1.4]      | 1.4 U [MDL=1.4] |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                   |                 |
| BENZO(K)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.7 U [MDL=1.7]   | 45 [MDL=2]        | 2.0 U [MDL=2]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                 |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                   |                 |
| C1-FLUORENES                             |                   |                   |                   |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                 |
| C2-FLUORENES                             |                   |                   |                   |                 |
| C2-NAPHTHALENES                          | <del></del>       |                   |                   |                 |
| C2-PHENANTHRENES/ANTHRACENES             | <del></del>       |                   |                   |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                 |
| C3-FLUORENES                             | <del></del>       |                   |                   |                 |
| C3-NAPHTHALENES                          | <del></del>       |                   |                   |                 |
| C3-PHENANTHRENES/ANTHRACENES             | <del></del>       |                   |                   |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                 |
| C4-NAPHTHALENES                          |                   |                   |                   |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                 |
| CHRYSENE                                 | 1.4 U [MDL=1.4]   | 1.4 U [MDL=1.4]   | 68 [MDL=1.1]      | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.7 U [MDL=1.7]   | 1.8 U [MDL=1.8]   | 24 [MDL=1.5]      | 1.5 U [MDL=1.5] |
| FLUORANTHENE                             |                   |                   |                   |                 |
| FLUORENE                                 |                   |                   |                   |                 |
| INDENO(1,2,3-CD)PYRENE                   | 0.96 J [MDL=0.43] | 0.44 U [MDL=0.44] | 40 [MDL=1.8]      | 1.8 U [MDL=1.8] |

#### SOIL

| LOCATION                       | SB-645         | SB-645        | SB-645A       | SB-645A       |
|--------------------------------|----------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-645-5     | F-SB-645-7    | F-SB-645A-1   | F-SB-645A-3   |
| SAMPLE DATE                    | 10/6/2009      | 10/6/2009     | 11/5/2009     | 11/5/2009     |
| PHENANTHRENE                   |                |               |               |               |
| PYRENE                         |                |               |               |               |
| TOTAL PAHS                     | 2.66 [MDL=2.2] | 1.9 [MDL=2.2] | 407 [MDL=1.5] | 0 U [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |                | -             |               |               |
| 4,4'-DDD                       |                |               |               |               |
| 4,4'-DDE                       |                |               |               |               |
| 4,4'-DDT                       |                |               |               |               |
| ALDRIN                         |                |               |               |               |
| ALPHA-BHC                      |                |               |               |               |
| ALPHA-CHLORDANE                |                |               |               |               |
| AROCLOR-1016                   |                |               |               |               |
| AROCLOR-1221                   |                |               |               |               |
| AROCLOR-1232                   |                |               |               |               |
| AROCLOR-1242                   |                |               |               |               |
| AROCLOR-1248                   |                |               |               |               |
| AROCLOR-1254                   |                |               |               |               |
| AROCLOR-1260                   |                |               |               |               |
| BETA-BHC                       |                |               |               |               |
| DELTA-BHC                      |                |               |               |               |
| DIELDRIN                       |                |               |               |               |
| ENDOSULFAN I                   |                |               |               |               |
| ENDOSULFAN II                  |                |               |               |               |
| ENDOSULFAN SULFATE             |                |               |               |               |
| ENDRIN                         |                |               |               |               |
| ENDRIN ALDEHYDE                |                |               |               |               |
| ENDRIN KETONE                  |                |               |               |               |
| GAMMA-BHC (LINDANE)            |                |               |               | ==            |
| GAMMA-CHLORDANE                |                |               |               |               |
| HEPTACHLOR                     |                |               |               |               |
| HEPTACHLOR EPOXIDE             |                |               |               |               |
| METHOXYCHLOR                   |                |               |               |               |
| TOTAL AROCLOR                  |                |               |               |               |
| TOTAL DDT POS                  |                |               |               |               |
| TOXAPHENE                      |                |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |               |               |               |
| DIESEL RANGE ORGANICS          |                |               |               |               |
| GASOLINE RANGE ORGANICS        |                | <del></del>   |               |               |
| TPH (C09-C36)                  |                |               |               | <del></del>   |

#### SOIL

| IDCATION   S8-6458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SUIL                         |             |             |               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|-------------|---------------|-------------|
| SAMPLE DATE   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/2009   1/5/20   | LOCATION                     | SB-645B     | SB-645B     | SB-645B       | SB-645C     |
| METALS (MG/KC)           ARTIMONY         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE ID                    | F-SB-645B-1 | F-SB-645B-3 | F-SB-645B-3-D | F-SB-645C-1 |
| ANTIMONY ARSENIC BARILUM BERYLLUM BERYL | SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009     | 11/5/2009   |
| ASSINC  BARIUM  BERYLLUM  BARIUM  BERYLLUM  BE | METALS (MG/KG)               |             |             |               |             |
| BARILIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANTIMONY                     |             |             |               |             |
| BERYLLUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARSENIC                      |             |             |               |             |
| CADMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BARIUM                       |             |             |               |             |
| CHROMIUM COBALT COBALT COBPER COPPER  | BERYLLIUM                    |             |             |               |             |
| COBALT COPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CADMIUM                      |             |             |               |             |
| COPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHROMIUM                     |             |             |               |             |
| MERCURY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COBALT                       |             |             |               |             |
| MERCURY  MOLYBDRIUM  MOLYBDRIUM  MOLYBL  MOLYBDRIUM  MOLYBL  M | COPPER                       |             |             |               |             |
| MOLYBDENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEAD                         |             |             |               |             |
| NCKEL  SELENIUM  SILYER  THALLIUM  NANADIUM  NESCELLANEOUS PARAMETERS  PERCENT SOLIDS (%)  TOTAL SOLIDS (%)  TOTAL SOLIDS (%)  TOTAL SOLIDS (%)  TOTAL ORGANIC CARBON (MG/KG)  PH (S.U)  MERCURY (METHYL) (UG/KG)  SEMIVOLATILES (UG/KG)  1.2. AFTRICHLOROBENZENE  1.2. AFTRICHLOROBENZENE  1.3. DICHLOROBENZENE  1.4. DICHLOROBENZENE  1.4. DICHLOROBENZENE  1.4. DICHLOROPENONL  2.4. STRICHLOROPHENOL  2.4. STRICHLOROPHENOL  2.4. STRICHLOROPHENOL  2.4. STRICHLOROPHENOL  2.4. STRICHLOROPHENOL  2.4. DICHLOROPHENOL  2.4. D | MERCURY                      |             |             |               |             |
| SELENIUM         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MOLYBDENUM                   |             |             |               |             |
| SILVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NICKEL                       |             |             |               |             |
| THALLIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SELENIUM                     |             |             |               |             |
| VANADIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SILVER                       |             |             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THALLIUM                     |             |             |               |             |
| MISCELLANEOUS PARAMETERS           PERCENT SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VANADIUM                     |             |             |               |             |
| PERCENT SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZINC                         |             |             |               |             |
| TOTAL SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MISCELLANEOUS PARAMETERS     |             |             |               |             |
| HEXAVALENT CHROMIUM (MG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PERCENT SOLIDS (%)           |             |             |               |             |
| TOTAL ORGANIC CARBON (MG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL SOLIDS (%)             |             |             |               |             |
| PH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEXAVALENT CHROMIUM (MG/KG)  |             |             |               |             |
| MERCURY (METHYL) (UG/KG)                                                                                                            -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL ORGANIC CARBON (MG/KG) |             |             |               |             |
| SEMIVOLATILES (UG/KG)         1,1-BIPHENYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PH (S.U.)                    |             |             |               |             |
| 1,1-BIPHENYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MERCURY (METHYL) (UG/KG)     |             |             |               |             |
| 1,2,4-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SEMIVOLATILES (UG/KG)        |             |             |               |             |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-BIPHENYL                 |             |             |               |             |
| 1,3-DICHLOROBENZENE             1,4-DICHLOROBENZENE             1,4-DIOXANE              2,2'-OXYBIS(1-CHLOROPROPANE)              2,4,5-TRICHLOROPHENOL               2,4,6-TRICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,4-TRICHLOROBENZENE       |             |             |               |             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-DICHLOROBENZENE          |             |             |               |             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-DICHLOROBENZENE          |             |             |               |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4-DICHLOROBENZENE          |             |             |               |             |
| 2,4,5-TRICHLOROPHENOL             2,4,6-TRICHLOROPHENOL              2,4-DICHLOROPHENOL                2,4-DIMETHYLPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,4-DIOXANE                  |             |             |               |             |
| 2,4,6-TRICHLOROPHENOL             2,4-DICHLOROPHENOL              2,4-DIMETHYLPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |               |             |
| 2,4-DICHLOROPHENOL                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4,5-TRICHLOROPHENOL        |             |             |               |             |
| 2,4-DIMETHYLPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |             |             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-DICHLOROPHENOL           |             |             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4-DIMETHYLPHENOL           |             |             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |             |               |             |
| 2,4-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |             |             |               |             |
| 2,6-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,6-DINITROTOLUENE           |             |             |               |             |

| LOCATION                    |             |             |               |             |
|-----------------------------|-------------|-------------|---------------|-------------|
| LOCATION                    | SB-645B     | SB-645B     | SB-645B       | SB-645C     |
| SAMPLE ID                   | F-SB-645B-1 | F-SB-645B-3 | F-SB-645B-3-D | F-SB-645C-1 |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009     | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |             |             |               |             |
| 2-CHLOROPHENOL              |             |             |               |             |
| 2-METHYLPHENOL              |             |             |               |             |
| 2-NITROANILINE              |             |             |               |             |
| 2-NITROPHENOL               |             |             |               |             |
| 3&4-METHYLPHENOL            |             |             |               |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |               |             |
| 3-NITROANILINE              |             |             |               |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |               |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |               |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |               |             |
| 4-CHLOROANILINE             |             |             |               |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |               |             |
| 4-NITROANILINE              |             |             |               |             |
| 4-NITROPHENOL               |             |             |               |             |
| ACETOPHENONE                |             |             |               |             |
| ANILINE                     |             |             |               |             |
| ATRAZINE                    |             |             |               |             |
| AZOBENZENE                  |             |             |               |             |
| BENZIDINE                   |             |             |               |             |
| BENZOIC ACID                |             |             |               |             |
| BENZYL ALCOHOL              |             |             |               |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |               |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |               |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |               |             |
| BUTYL BENZYL PHTHALATE      |             |             |               |             |
| CAPROLACTAM                 |             |             |               |             |
| CARBAZOLE                   |             |             |               |             |
| DIBENZOFURAN                |             |             |               |             |
| DIETHYL PHTHALATE           |             |             |               |             |
| DIMETHYL PHTHALATE          |             |             |               |             |
| DI-N-BUTYL PHTHALATE        |             |             |               |             |
| DI-N-OCTYL PHTHALATE        |             |             |               |             |
| HEXACHLOROBENZENE           |             |             |               |             |
| HEXACHLOROBUTADIENE         |             |             |               |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |               |             |
| HEXACHLOROETHANE            |             |             |               |             |
| ISOPHORONE                  |             |             |               |             |
| NITROBENZENE                |             |             |               |             |
| N-NITROSODIMETHYLAMINE      |             |             |               |             |

#### SOIL

| LOCATION                       | SB-645B     | SB-645B     | SB-645B       | SB-645C     |
|--------------------------------|-------------|-------------|---------------|-------------|
| SAMPLE ID                      | F-SB-645B-1 | F-SB-645B-3 | F-SB-645B-3-D | F-SB-645C-1 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009     | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |               |             |
| N-NITROSODIPHENYLAMINE         |             |             |               |             |
| PENTACHLOROPHENOL              |             |             |               |             |
| PHENOL                         |             |             |               |             |
| PYRIDINE                       |             |             |               |             |
| VOLATILES (UG/KG)              | •           |             | -             | -           |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |               |             |
| 1,1,1-TRICHLOROETHANE          |             |             |               |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |               |             |
| 1,1,2-TRICHLOROETHANE          |             |             |               |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |               |             |
| 1,1-DICHLOROETHANE             |             |             |               |             |
| 1,1-DICHLOROETHENE             |             |             |               |             |
| 1,1-DICHLOROPROPENE            |             |             |               |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |               |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |               |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |               |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |               |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |               |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |               |             |
| 1,2-DIBROMOETHANE              |             |             |               |             |
| 1,2-DICHLOROBENZENE            |             |             |               |             |
| 1,2-DICHLOROETHANE             |             |             |               |             |
| 1,2-DICHLOROPROPANE            |             |             |               |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |               |             |
| 1,3-DICHLOROBENZENE            |             |             |               |             |
| 1,3-DICHLOROPROPANE            |             |             |               |             |
| 1,3-DICHLOROPROPENE            |             |             |               |             |
| 1,4-DICHLOROBENZENE            |             |             |               |             |
| 1,4-DIOXANE                    |             |             |               |             |
| 2,2-DICHLOROPROPANE            |             |             |               |             |
| 2-BUTANONE                     |             |             |               |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |               |             |
| 2-CHLOROTOLUENE                |             |             |               |             |
| 2-HEXANONE                     |             |             |               |             |
| 4-CHLOROTOLUENE                |             |             |               |             |
| 4-ISOPROPYLTOLUENE             |             |             |               |             |
| 4-METHYL-2-PENTANONE           |             |             |               |             |
| ACETONE                        |             |             |               |             |
| BENZENE                        |             | <u></u>     |               |             |

| SOIL                      |             | _           |               |             |
|---------------------------|-------------|-------------|---------------|-------------|
| LOCATION                  | SB-645B     | SB-645B     | SB-645B       | SB-645C     |
| SAMPLE ID                 | F-SB-645B-1 | F-SB-645B-3 | F-SB-645B-3-D | F-SB-645C-1 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009     | 11/5/2009   |
| BROMOBENZENE              |             |             |               |             |
| BROMOCHLOROMETHANE        |             |             |               |             |
| BROMODICHLOROMETHANE      |             |             |               |             |
| BROMOFORM                 |             |             |               |             |
| BROMOMETHANE              |             |             |               |             |
| CARBON DISULFIDE          |             |             |               |             |
| CARBON TETRACHLORIDE      |             |             |               |             |
| CHLOROBENZENE             |             |             |               |             |
| CHLORODIBROMOMETHANE      |             |             |               |             |
| CHLOROETHANE              |             |             |               |             |
| CHLOROFORM                |             |             |               |             |
| CHLOROMETHANE             |             |             |               |             |
| CIS-1,2-DICHLOROETHENE    |             |             |               |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |               |             |
| DIBROMOMETHANE            |             |             |               |             |
| DICHLORODIFLUOROMETHANE   |             |             |               |             |
| DIISOPROPYL ETHER         |             |             |               |             |
| ETHYL TERT-BUTYL ETHER    |             |             |               |             |
| ETHYLBENZENE              |             |             |               |             |
| FLUORODICHLOROMETHANE     |             |             |               |             |
| HEXACHLOROBUTADIENE       |             |             |               |             |
| ISOPROPYLBENZENE          |             |             |               |             |
| M+P-XYLENES               |             |             |               |             |
| METHYL TERT-BUTYL ETHER   |             |             |               |             |
| METHYLENE CHLORIDE        |             |             |               |             |
| NAPHTHALENE               |             |             |               |             |
| N-BUTYLBENZENE            |             |             |               |             |
| N-PROPYLBENZENE           |             |             |               |             |
| O-XYLENE                  |             |             |               |             |
| SEC-BUTYLBENZENE          |             |             |               |             |
| STYRENE                   |             |             |               |             |
| TERT-AMYL METHYL ETHER    |             |             |               |             |
| TERT-BUTYLBENZENE         |             |             |               |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |               |             |
| TETRACHLOROETHENE         |             |             |               |             |
| TOLUENE                   |             |             |               |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |               |             |
| TOTAL XYLENES             |             |             |               |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |               |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |               |             |
| •                         | 1           | _l          | 1             |             |

### SOIL

| LOCATION                                 | SB-645B           | SB-645B         | SB-645B         | SB-645C          |
|------------------------------------------|-------------------|-----------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-645B-1       | F-SB-645B-3     | F-SB-645B-3-D   | F-SB-645C-1      |
| SAMPLE DATE                              | 11/5/2009         | 11/5/2009       | 11/5/2009       | 11/5/2009        |
| TRICHLOROETHENE                          |                   |                 |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                   |                 |                 |                  |
| VINYL ACETATE                            |                   |                 |                 |                  |
| VINYL CHLORIDE                           |                   |                 |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                 |                 |                  |
| 1-METHYLNAPHTHALENE                      |                   |                 |                 |                  |
| 2-METHYLNAPHTHALENE                      |                   |                 |                 |                  |
| ACENAPHTHENE                             |                   |                 |                 |                  |
| ACENAPHTHYLENE                           |                   |                 |                 |                  |
| ANTHRACENE                               |                   |                 |                 |                  |
| BAP EQUIVALENT-HALFND                    | 112.462 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 369.44 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 112.462 [MDL=1.6] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 369.44 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                   |                 |                 |                  |
| BENZO(A)ANTHRACENE                       | 79 [MDL=1.1]      | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] | 260 [MDL=1.1]    |
| BENZO(A)PYRENE                           | 78 [MDL=1.6]      | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 240 [MDL=1.5]    |
| BENZO(B)FLUORANTHENE                     | 110 [MDL=1.4]     | 1.4 U [MDL=1.4] | 1.5 U [MDL=1.5] | 330 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE                     |                   | 1               |                 |                  |
| BENZO(K)FLUORANTHENE                     | 47 [MDL=2]        | 2.0 U [MDL=2]   | 2.1 U [MDL=2.1] | 120 [MDL=2]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         | <del></del>       |                 |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                   |                 |                 |                  |
| C1-FLUORENES                             | <del></del>       |                 |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         | <del></del>       |                 |                 |                  |
| C2-FLUORENES                             |                   | 1               |                 |                  |
| C2-NAPHTHALENES                          |                   | -               |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                   | -               |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   | -               |                 |                  |
| C3-FLUORENES                             |                   | -               |                 |                  |
| C3-NAPHTHALENES                          |                   | -               |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                 |                 |                  |
| C4-NAPHTHALENES                          |                   |                 |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                 |                 |                  |
| CHRYSENE                                 | 92 [MDL=1.1]      | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 240 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE                   | 11 [MDL=1.6]      | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 55 [MDL=1.5]     |
| FLUORANTHENE                             |                   |                 |                 |                  |
| FLUORENE                                 | <del>-</del>      |                 |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 40 [MDL=1.8]      | 1.8 U [MDL=1.8] | 1.9 U [MDL=1.9] | 140 [MDL=1.8]    |
| NAPHTHALENE                              |                   |                 |                 |                  |

#### SOIL

| LOCATION                       | SB-645B       | SB-645B       | SB-645B       | SB-645C        |
|--------------------------------|---------------|---------------|---------------|----------------|
| SAMPLE ID                      | F-SB-645B-1   | F-SB-645B-3   | F-SB-645B-3-D | F-SB-645C-1    |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 11/5/2009      |
| PHENANTHRENE                   |               |               |               |                |
| PYRENE                         |               |               |               |                |
| TOTAL PAHS                     | 457 [MDL=1.6] | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 1385 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | -              |
| 1,4'-DDD                       |               |               |               |                |
| 4,4'-DDE                       |               |               |               |                |
| 1,4'-DDT                       |               |               |               |                |
| ALDRIN                         |               |               |               |                |
| ALPHA-BHC                      |               |               |               |                |
| ALPHA-CHLORDANE                |               |               |               |                |
| AROCLOR-1016                   |               |               |               |                |
| AROCLOR-1221                   |               |               |               |                |
| AROCLOR-1232                   |               |               |               |                |
| AROCLOR-1242                   |               |               |               |                |
| AROCLOR-1248                   |               |               |               |                |
| ROCLOR-1254                    |               |               |               |                |
| AROCLOR-1260                   |               |               |               |                |
| BETA-BHC                       |               |               |               |                |
| DELTA-BHC                      |               |               |               |                |
| DIELDRIN                       |               |               |               |                |
| ENDOSULFAN I                   |               |               |               |                |
| ENDOSULFAN II                  |               |               |               |                |
| ENDOSULFAN SULFATE             |               |               |               |                |
| ENDRIN                         |               |               |               |                |
| ENDRIN ALDEHYDE                |               |               |               |                |
| ENDRIN KETONE                  |               |               |               |                |
| GAMMA-BHC (LINDANE)            |               |               |               |                |
| GAMMA-CHLORDANE                |               |               |               | 1              |
| HEPTACHLOR                     |               |               |               | 1              |
| HEPTACHLOR EPOXIDE             |               |               |               |                |
| METHOXYCHLOR                   |               |               |               |                |
| OTAL AROCLOR                   |               |               |               |                |
| OTAL DDT POS                   |               |               |               |                |
| OXAPHENE                       |               |               |               |                |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |                |
| DIESEL RANGE ORGANICS          |               |               |               |                |
| GASOLINE RANGE ORGANICS        |               |               |               |                |
| TPH (C09-C36)                  |               |               |               |                |

#### SOIL

| LOCATION                     | CD C450     | CD 040      | CD 040     | CD 040       |
|------------------------------|-------------|-------------|------------|--------------|
| LOCATION                     | SB-645C     | SB-646      | SB-646     | SB-646       |
| SAMPLE ID                    | F-SB-645C-3 | F-SB-646-1  | F-SB-646-3 | F-SB-646-3-D |
| SAMPLE DATE                  | 11/5/2009   | 10/6/2009   | 10/6/2009  | 10/6/2009    |
| METALS (MG/KG)               |             |             | <u> </u>   | 1            |
| ANTIMONY                     |             |             |            |              |
| ARSENIC                      |             |             |            |              |
| BARIUM                       |             |             |            |              |
| BERYLLIUM                    |             |             |            |              |
| CADMIUM                      |             |             |            |              |
| CHROMIUM                     |             |             |            |              |
| COBALT                       |             |             |            |              |
| COPPER                       |             |             |            |              |
| LEAD                         |             |             |            |              |
| MERCURY                      |             |             |            |              |
| MOLYBDENUM                   |             |             |            |              |
| NICKEL                       |             | <del></del> |            |              |
| SELENIUM                     |             |             |            |              |
| SILVER                       |             |             |            |              |
| THALLIUM                     |             |             |            |              |
| VANADIUM                     |             |             |            |              |
| ZINC                         |             |             |            |              |
| MISCELLANEOUS PARAMETERS     |             |             |            |              |
| PERCENT SOLIDS (%)           |             |             |            |              |
| TOTAL SOLIDS (%)             |             |             |            |              |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |            |              |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |            |              |
| PH (S.U.)                    |             |             |            |              |
| MERCURY (METHYL) (UG/KG)     |             |             |            |              |
| SEMIVOLATILES (UG/KG)        |             |             |            |              |
| 1,1-BIPHENYL                 |             |             |            |              |
| 1,2,4-TRICHLOROBENZENE       |             |             |            |              |
| 1,2-DICHLOROBENZENE          |             |             |            |              |
| 1,3-DICHLOROBENZENE          |             |             |            |              |
| 1,4-DICHLOROBENZENE          |             |             |            |              |
| 1,4-DIOXANE                  |             |             |            |              |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |            |              |
| 2,4,5-TRICHLOROPHENOL        |             |             |            |              |
| 2,4,6-TRICHLOROPHENOL        |             | <del></del> |            |              |
| 2,4-DICHLOROPHENOL           |             | <del></del> |            |              |
| 2,4-DIMETHYLPHENOL           |             | <del></del> |            |              |
| 2,4-DINITROPHENOL            |             |             |            |              |
| 2,4-DINITROTOLUENE           |             |             |            |              |
| 2,6-DINITROTOLUENE           |             |             |            |              |

| SOIL                        |             |            |            |              |
|-----------------------------|-------------|------------|------------|--------------|
| LOCATION                    | SB-645C     | SB-646     | SB-646     | SB-646       |
| SAMPLE ID                   | F-SB-645C-3 | F-SB-646-1 | F-SB-646-3 | F-SB-646-3-D |
| SAMPLE DATE                 | 11/5/2009   | 10/6/2009  | 10/6/2009  | 10/6/2009    |
| 2-CHLORONAPHTHALENE         |             |            |            |              |
| 2-CHLOROPHENOL              |             |            |            |              |
| 2-METHYLPHENOL              |             |            |            |              |
| 2-NITROANILINE              |             |            |            |              |
| 2-NITROPHENOL               |             |            |            |              |
| 3&4-METHYLPHENOL            |             |            |            |              |
| 3,3'-DICHLOROBENZIDINE      |             |            |            |              |
| 3-NITROANILINE              |             |            |            |              |
| 4,6-DINITRO-2-METHYLPHENOL  |             |            |            |              |
| 4-BROMOPHENYL PHENYL ETHER  |             |            |            |              |
| 4-CHLORO-3-METHYLPHENOL     |             |            |            |              |
| 4-CHLOROANILINE             |             |            |            |              |
| 4-CHLOROPHENYL PHENYL ETHER |             |            |            |              |
| 4-NITROANILINE              |             |            |            |              |
| 4-NITROPHENOL               |             |            |            |              |
| ACETOPHENONE                |             |            |            |              |
| ANILINE                     |             |            |            |              |
| ATRAZINE                    |             |            |            |              |
| AZOBENZENE                  |             |            |            |              |
| BENZIDINE                   |             |            |            |              |
| BENZOIC ACID                |             |            |            |              |
| BENZYL ALCOHOL              |             |            |            |              |
| BIS(2-CHLOROETHOXY)METHANE  |             |            |            |              |
| BIS(2-CHLOROETHYL)ETHER     |             |            |            |              |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |            |            |              |
| BUTYL BENZYL PHTHALATE      |             |            |            |              |
| CAPROLACTAM                 |             |            |            |              |
| CARBAZOLE                   |             |            |            |              |
| DIBENZOFURAN                |             |            |            |              |
| DIETHYL PHTHALATE           |             |            |            |              |
| DIMETHYL PHTHALATE          |             |            |            |              |
| DI-N-BUTYL PHTHALATE        |             |            |            |              |
| DI-N-OCTYL PHTHALATE        |             |            |            |              |
| HEXACHLOROBENZENE           |             |            |            |              |
| HEXACHLOROBUTADIENE         |             |            |            |              |
| HEXACHLOROCYCLOPENTADIENE   |             |            |            |              |
| HEXACHLOROETHANE            |             |            |            |              |
| ISOPHORONE                  |             |            |            |              |
| NITROBENZENE                |             |            |            |              |
| N-NITROSODIMETHYLAMINE      |             |            |            |              |
|                             | •           | •          | •          |              |

#### SOIL

| LOCATION                       | SB-645C     | SB-646     | SB-646     | SB-646       |
|--------------------------------|-------------|------------|------------|--------------|
| SAMPLE ID                      | F-SB-645C-3 | F-SB-646-1 | F-SB-646-3 | F-SB-646-3-D |
| SAMPLE DATE                    | 11/5/2009   | 10/6/2009  | 10/6/2009  | 10/6/2009    |
| N-NITROSO-DI-N-PROPYLAMINE     |             |            |            |              |
| N-NITROSODIPHENYLAMINE         |             |            |            |              |
| PENTACHLOROPHENOL              |             |            |            |              |
| PHENOL                         |             |            |            |              |
| PYRIDINE                       |             |            |            |              |
| VOLATILES (UG/KG)              |             | 1          |            |              |
| 1,1,1,2-TETRACHLOROETHANE      |             |            |            |              |
| 1,1,1-TRICHLOROETHANE          |             |            |            |              |
| 1,1,2,2-TETRACHLOROETHANE      |             |            |            |              |
| 1,1,2-TRICHLOROETHANE          |             |            |            |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |            |            |              |
| 1,1-DICHLOROETHANE             |             |            |            |              |
| 1,1-DICHLOROETHENE             |             |            |            |              |
| 1,1-DICHLOROPROPENE            |             |            |            |              |
| 1,2,3-TRICHLOROBENZENE         |             |            |            |              |
| 1,2,3-TRICHLOROPROPANE         |             |            |            |              |
| 1,2,3-TRIMETHYLBENZENE         |             |            |            |              |
| 1,2,4-TRICHLOROBENZENE         |             |            |            |              |
| 1,2,4-TRIMETHYLBENZENE         |             |            |            |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |            |            |              |
| 1,2-DIBROMOETHANE              |             |            |            |              |
| 1,2-DICHLOROBENZENE            |             |            |            |              |
| 1,2-DICHLOROETHANE             |             |            |            |              |
| 1,2-DICHLOROPROPANE            |             |            |            |              |
| 1,3,5-TRIMETHYLBENZENE         |             |            |            |              |
| 1,3-DICHLOROBENZENE            |             |            |            |              |
| 1,3-DICHLOROPROPANE            |             |            |            |              |
| 1,3-DICHLOROPROPENE            |             |            |            |              |
| 1,4-DICHLOROBENZENE            |             |            |            |              |
| 1,4-DIOXANE                    |             |            |            |              |
| 2,2-DICHLOROPROPANE            |             |            |            |              |
| 2-BUTANONE                     |             |            |            |              |
| 2-CHLOROETHYL VINYL ETHER      |             |            |            |              |
| 2-CHLOROTOLUENE                |             |            |            |              |
| 2-HEXANONE                     |             |            |            |              |
| 4-CHLOROTOLUENE                |             |            |            |              |
| 4-ISOPROPYLTOLUENE             |             |            |            |              |
| 4-METHYL-2-PENTANONE           |             |            |            |              |
| ACETONE                        |             |            |            |              |
| BENZENE                        |             |            |            |              |

| SOIL<br>LOCATION          | SB-645C     | SB-646      | SB-646     | SB-646       |
|---------------------------|-------------|-------------|------------|--------------|
| SAMPLE ID                 | F-SB-645C-3 | F-SB-646-1  |            |              |
|                           |             |             | F-SB-646-3 | F-SB-646-3-D |
| SAMPLE DATE BROMOBENZENE  | 11/5/2009   | 10/6/2009   | 10/6/2009  | 10/6/2009    |
| BROMOCHLOROMETHANE        |             |             |            |              |
|                           |             |             |            |              |
| BROMODICHLOROMETHANE      |             |             |            |              |
| BROMOFORM                 |             |             |            |              |
| BROMOMETHANE              |             |             |            |              |
| CARBON DISULFIDE          |             |             |            |              |
| CARBON TETRACHLORIDE      |             |             |            |              |
| CHLOROBENZENE             |             |             |            |              |
| CHLORODIBROMOMETHANE      |             |             |            |              |
| CHLOROETHANE              |             |             |            |              |
| CHLOROFORM                |             |             |            |              |
| CHLOROMETHANE             |             |             |            |              |
| CIS-1,2-DICHLOROETHENE    |             |             |            |              |
| CIS-1,3-DICHLOROPROPENE   |             |             |            |              |
| DIBROMOMETHANE            |             |             |            |              |
| DICHLORODIFLUOROMETHANE   |             | <del></del> |            |              |
| DIISOPROPYL ETHER         |             |             |            |              |
| ETHYL TERT-BUTYL ETHER    |             |             |            |              |
| ETHYLBENZENE              |             |             |            |              |
| FLUORODICHLOROMETHANE     |             |             |            |              |
| HEXACHLOROBUTADIENE       |             |             |            |              |
| ISOPROPYLBENZENE          |             |             |            |              |
| M+P-XYLENES               |             |             |            |              |
| METHYL TERT-BUTYL ETHER   |             |             |            |              |
| METHYLENE CHLORIDE        |             |             |            |              |
| NAPHTHALENE               |             |             |            |              |
| N-BUTYLBENZENE            |             |             |            |              |
| N-PROPYLBENZENE           |             |             |            |              |
| O-XYLENE                  |             |             |            |              |
| SEC-BUTYLBENZENE          |             |             |            |              |
| STYRENE                   |             |             |            |              |
| TERT-AMYL METHYL ETHER    |             |             |            |              |
| TERT-BUTYLBENZENE         |             |             |            |              |
| TERTIARY-BUTYL ALCOHOL    |             |             |            |              |
| TETRACHLOROETHENE         |             |             |            |              |
| TOLUENE                   |             |             |            |              |
| TOTAL 1,2-DICHLOROETHENE  |             |             |            |              |
| TOTAL XYLENES             |             |             |            |              |
| TRANS-1,2-DICHLOROETHENE  |             |             |            |              |
| TRANS-1,3-DICHLOROPROPENE |             |             |            |              |

#### SOIL

NAPHTHALENE

| F-SB-646-3   F-S |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| INYL ACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)  -METHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMET                                                                                                                                                                                                                                                                                                           |
| -METHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHYLNAPHTHALENEMETHY                                                                                                                                                                                                                                                                                                                 |
| P-METHYLNAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ACENAPHTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ACENAPHTHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ANTHRACENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3AP EQUIVALENT-HALFND 1.7 U [MDL=1.7] 22.721 [MDL=2.1] 2.4 U [MDL=2.4] 2.2 U [MDL=2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AD FOLIVALENT DOS 1.7 H [MDL = 1.7] 22.742 [MDL = 2.4] 2.4 H [MDL = 2.4] 2.2 H [MDL = 2.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BAP EQUIVALENT-POS 1.7 U [MDL=1.7] 22.713 [MDL=2.1] 2.4 U [MDL=2.4] 2.2 U [MDL=2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BAP EQUIVALENT-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BENZO(A)ANTHRACENE 1.2 U [MDL=1.2] 13 [MDL=1.2] 1.4 U [MDL=1.4] 1.2 U [MDL=1.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BENZO(A)PYRENE 1.7 U [MDL=1.7] 15 [MDL=2.1] 2.4 U [MDL=2.4] 2.2 U [MDL=2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BENZO(B)FLUORANTHENE 1.5 U [MDL=1.5] 24 [MDL=1.5] 1.8 U [MDL=1.8] 1.6 U [MDL=1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BENZO(G,H,I)PERYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BENZO(K)FLUORANTHENE 2.2 U [MDL=2.2] 1.6 U [MDL=1.6] 1.8 U [MDL=1.8] 1.6 U [MDL=1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C1-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1-FLUORANTHENES/PYRENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C1-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C1-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C2-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C2-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C2-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C3-FLUORENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C3-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C3-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C4-NAPHTHALENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C4-PHENANTHRENES/ANTHRACENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CHRYSENE 1.2 U [MDL=1.2] 13 [MDL=1.3] 1.5 U [MDL=1.5] 1.4 U [MDL=1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIBENZO(A,H)ANTHRACENE 1.7 U [MDL=1.7] 2.8 J [MDL=1.7] 1.9 U [MDL=1.9] 1.7 U [MDL=1.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ELUORANTHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FLUORENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NDENO(1,2,3-CD)PYRENE 1.9 U [MDL=1.9] 12 [MDL=0.42] 0.48 U [MDL=0.48] 0.43 U [MDL=0.43]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### SOIL

| LOCATION                       | SB-645C       | SB-646         | SB-646        | SB-646        |
|--------------------------------|---------------|----------------|---------------|---------------|
| SAMPLE ID                      | F-SB-645C-3   | F-SB-646-1     | F-SB-646-3    | F-SB-646-3-D  |
| SAMPLE DATE                    | 11/5/2009     | 10/6/2009      | 10/6/2009     | 10/6/2009     |
| PHENANTHRENE                   |               |                |               |               |
| PYRENE                         |               |                |               |               |
| TOTAL PAHS                     | 0 U [MDL=1.7] | 79.8 [MDL=2.1] | 0 U [MDL=2.4] | 0 U [MDL=2.2] |
| PESTICIDES/PCBS (UG/KG)        |               |                |               | •             |
| 1,4'-DDD                       |               |                |               |               |
| I,4'-DDE                       |               |                |               |               |
| I,4'-DDT                       |               |                |               |               |
| ALDRIN                         |               |                |               |               |
| ALPHA-BHC                      |               |                |               |               |
| ALPHA-CHLORDANE                |               |                |               |               |
| AROCLOR-1016                   |               |                |               |               |
| AROCLOR-1221                   |               |                |               |               |
| AROCLOR-1232                   |               |                |               |               |
| AROCLOR-1242                   |               |                |               |               |
| AROCLOR-1248                   |               |                |               |               |
| AROCLOR-1254                   |               |                |               |               |
| AROCLOR-1260                   |               |                |               |               |
| BETA-BHC                       |               |                |               |               |
| DELTA-BHC                      |               |                |               |               |
| DIELDRIN                       |               |                |               |               |
| ENDOSULFAN I                   |               |                |               |               |
| ENDOSULFAN II                  |               |                |               |               |
| ENDOSULFAN SULFATE             |               |                |               |               |
| ENDRIN                         |               |                |               |               |
| ENDRIN ALDEHYDE                |               |                |               |               |
| ENDRIN KETONE                  |               |                |               |               |
| GAMMA-BHC (LINDANE)            |               |                |               |               |
| GAMMA-CHLORDANE                |               |                |               |               |
| HEPTACHLOR                     |               |                |               |               |
| HEPTACHLOR EPOXIDE             |               |                |               |               |
| METHOXYCHLOR                   |               |                |               |               |
| TOTAL AROCLOR                  |               |                |               |               |
| OTAL DDT POS                   |               |                |               |               |
| OXAPHENE                       |               |                |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |                |               |               |
| DIESEL RANGE ORGANICS          |               |                |               |               |
| GASOLINE RANGE ORGANICS        |               |                |               |               |
| TPH (C09-C36)                  |               |                |               |               |

#### SOIL

| SOIL                         |            | T          |            |            |
|------------------------------|------------|------------|------------|------------|
| LOCATION                     | SB-646     | SB-646     | SB-647     | SB-647     |
| SAMPLE ID                    | F-SB-646-5 | F-SB-646-7 | F-SB-647-1 | F-SB-647-3 |
| SAMPLE DATE                  | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| METALS (MG/KG)               |            | _          |            |            |
| ANTIMONY                     |            |            |            |            |
| ARSENIC                      |            |            |            |            |
| BARIUM                       |            |            |            |            |
| BERYLLIUM                    |            |            |            |            |
| CADMIUM                      |            |            |            |            |
| CHROMIUM                     |            |            |            |            |
| COBALT                       |            |            |            |            |
| COPPER                       |            |            |            |            |
| LEAD                         |            |            |            |            |
| MERCURY                      |            |            |            |            |
| MOLYBDENUM                   |            |            |            |            |
| NICKEL                       |            |            |            |            |
| SELENIUM                     |            |            |            |            |
| SILVER                       |            |            |            |            |
| THALLIUM                     |            |            |            |            |
| VANADIUM                     |            |            |            |            |
| ZINC                         |            |            |            |            |
| MISCELLANEOUS PARAMETERS     |            |            |            | •          |
| PERCENT SOLIDS (%)           |            |            |            |            |
| TOTAL SOLIDS (%)             |            |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |            |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |            |
| PH (S.U.)                    |            |            |            |            |
| MERCURY (METHYL) (UG/KG)     |            |            |            |            |
| SEMIVOLATILES (UG/KG)        | •          |            |            | •          |
| 1,1-BIPHENYL                 |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |            |
| 1,2-DICHLOROBENZENE          |            |            |            |            |
| 1,3-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DICHLOROBENZENE          |            |            |            |            |
| 1,4-DIOXANE                  |            |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |            |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |            |            |            |            |
| 2,4-DICHLOROPHENOL           |            |            |            |            |
| 2,4-DIMETHYLPHENOL           |            |            |            |            |
| 2,4-DINITROPHENOL            |            |            |            |            |
| 2,4-DINITROTOLUENE           |            |            |            |            |
| 2,6-DINITROTOLUENE           |            |            |            |            |
| _,-,                         |            |            | 1          | I .        |

| SOIL                        |            | T          | T          |            |
|-----------------------------|------------|------------|------------|------------|
| LOCATION                    | SB-646     | SB-646     | SB-647     | SB-647     |
| SAMPLE ID                   | F-SB-646-5 | F-SB-646-7 | F-SB-647-1 | F-SB-647-3 |
| SAMPLE DATE                 | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| LOCATION   SB-646   SB-647   F-SB-6467   F-SB-647   F-SB-64 | SB-647 F-SB-647-3 10/6/2009 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| SAMPLE DATE   10/6/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br><br><br><br>            |
| N-NITROSO-DI-N-PROPYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br><br><br>                |
| N-NITROSODIPHENYLAMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br><br>                    |
| PENTACHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br><br>                    |
| PHENOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| PYRIDINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| VOLATILES (UG/KG)   1,1,1,2*TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 1,1,1,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 1,1,1-TRICHLOROETHANE <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                           |
| 1,1,2-TRICHLOROETHANE <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 1,1-DICHLOROETHANE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 1,1-DICHLOROETHENE                                                                                                                     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 1,1-DICHLOROPROPENE            1,2,3-TRICHLOROBENZENE            1,2,3-TRICHLOROPROPANE            1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 1,2,3-TRICHLOROBENZENE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| 1,2,3-TRICHLOROPROPANE                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| 1,2,3-TRIMETHYLBENZENE            1,2,4-TRICHLOROBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| 1,2,4-TRICHLOROBENZENE            1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 1,2,4-TRIMETHYLBENZENE            1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 1,2-DIBROMO-3-CHLOROPROPANE            1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 1,2-DIBROMOETHANE            1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                           |
| 1,2-DICHLOROBENZENE            1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 1,2-DICHLOROETHANE            1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 1,2-DICHLOROPROPANE            1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 1,3,5-TRIMETHYLBENZENE            1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 1,3-DICHLOROBENZENE            1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 1,3-DICHLOROPROPANE            1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| 2,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 2-BUTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 2-CHLOROETHYL VINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 2-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 2-HEXANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| 4-CHLOROTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 4-ISOPROPYLTOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 4-METHYL-2-PENTANONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
| ACETONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                           |

#### SOIL

| LOCATION                  | SB-646     | SB-646     | SB-647     | SB-647     |
|---------------------------|------------|------------|------------|------------|
| SAMPLE ID                 | F-SB-646-5 | F-SB-646-7 | F-SB-647-1 | F-SB-647-3 |
| SAMPLE DATE               | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| BROMOBENZENE              |            |            |            |            |
| BROMOCHLOROMETHANE        |            |            |            |            |
| BROMODICHLOROMETHANE      |            |            |            |            |
| BROMOFORM                 |            |            |            |            |
| BROMOMETHANE              |            |            |            |            |
| CARBON DISULFIDE          |            |            |            |            |
| CARBON TETRACHLORIDE      |            |            |            |            |
| CHLOROBENZENE             |            |            |            |            |
| CHLORODIBROMOMETHANE      |            |            |            |            |
| CHLOROETHANE              |            |            |            |            |
| CHLOROFORM                |            |            |            |            |
| CHLOROMETHANE             |            |            |            |            |
| CIS-1,2-DICHLOROETHENE    |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |            |
| DIBROMOMETHANE            |            |            |            |            |
| DICHLORODIFLUOROMETHANE   |            |            |            |            |
| DIISOPROPYL ETHER         |            |            |            |            |
| ETHYL TERT-BUTYL ETHER    |            |            |            |            |
| ETHYLBENZENE              |            |            |            |            |
| FLUORODICHLOROMETHANE     |            |            |            |            |
| HEXACHLOROBUTADIENE       |            |            |            |            |
| ISOPROPYLBENZENE          |            |            |            |            |
| M+P-XYLENES               |            |            |            |            |
| METHYL TERT-BUTYL ETHER   |            |            |            |            |
| METHYLENE CHLORIDE        |            |            |            |            |
| NAPHTHALENE               |            |            |            |            |
| N-BUTYLBENZENE            |            |            |            |            |
| N-PROPYLBENZENE           |            |            |            |            |
| O-XYLENE                  |            |            |            |            |
| SEC-BUTYLBENZENE          |            |            |            |            |
| STYRENE                   |            |            |            |            |
| TERT-AMYL METHYL ETHER    |            |            |            |            |
| TERT-BUTYLBENZENE         |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |            |
| TETRACHLOROETHENE         |            |            |            |            |
| TOLUENE                   |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |
| TOTAL XYLENES             |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |            |

#### SOIL

| LOCATION                                 | SB-646            | SB-646            | SB-647            | SB-647            |
|------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                                | F-SB-646-5        | F-SB-646-7        | F-SB-647-1        | F-SB-647-3        |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 10/6/2009         | 10/6/2009         |
| TRICHLOROETHENE                          |                   |                   |                   |                   |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                   |                   |
| VINYL ACETATE                            |                   |                   |                   |                   |
| VINYL CHLORIDE                           |                   |                   |                   |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                   |                   |                   |
| 1-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| 2-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| ACENAPHTHENE                             |                   |                   |                   |                   |
| ACENAPHTHYLENE                           |                   |                   |                   |                   |
| ANTHRACENE                               |                   |                   |                   |                   |
| BAP EQUIVALENT-HALFND                    | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 284.2195 [MDL=11] | 2.3 U [MDL=2.3]   |
| BAP EQUIVALENT-POS                       | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 284.18 [MDL=11]   | 2.3 U [MDL=2.3]   |
| BAP EQUIVALENT-UCL                       |                   |                   |                   |                   |
| BENZO(A)ANTHRACENE                       | 1.3 U [MDL=1.3]   | 1.2 U [MDL=1.2]   | 160 [MDL=6.1]     | 1.3 U [MDL=1.3]   |
| BENZO(A)PYRENE                           | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 180 [MDL=11]      | 2.3 U [MDL=2.3]   |
| BENZO(B)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 300 [MDL=7.7]     | 1.7 U [MDL=1.7]   |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                   |                   |
| BENZO(K)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 7.9 U [MDL=7.9]   | 1.7 U [MDL=1.7]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                   |                   |
| C1-FLUORENES                             |                   |                   |                   |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C2-FLUORENES                             |                   |                   |                   |                   |
| C2-NAPHTHALENES                          |                   |                   |                   |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C3-FLUORENES                             |                   |                   |                   |                   |
| C3-NAPHTHALENES                          |                   |                   |                   |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C4-NAPHTHALENES                          |                   |                   |                   |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| CHRYSENE                                 | 1.4 U [MDL=1.4]   | 1.4 U [MDL=1.4]   | 180 [MDL=6.7]     | 1.4 U [MDL=1.4]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   | 44 [MDL=8.4]      | 1.8 U [MDL=1.8]   |
| FLUORANTHENE                             |                   |                   |                   |                   |
| FLUORENE                                 |                   |                   |                   |                   |
| INDENO(1,2,3-CD)PYRENE                   | 0.43 U [MDL=0.43] | 0.43 U [MDL=0.43] | 140 [MDL=2.1]     | 0.45 U [MDL=0.45] |
| NAPHTHALENE                              |                   |                   |                   |                   |

#### SOIL

| LOCATION                       | SB-646        | SB-646        | SB-647        | SB-647        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-646-5    | F-SB-646-7    | F-SB-647-1    | F-SB-647-3    |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009     | 10/6/2009     | 10/6/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| FOTAL PAHS                     | 0 U [MDL=2.2] | 0 U [MDL=2.2] | 1004 [MDL=11] | 0 U [MDL=2.3] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               |               |
| 1,4'-DDD                       |               |               |               |               |
| ,4'-DDE                        |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| ROCLOR-1254                    |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| NDOSULFAN I                    |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   |               |               |               |               |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| SASOLINE RANGE ORGANICS        |               |               |               |               |
| ГРН (C09-C36)                  |               |               |               |               |

#### SOIL

| SOIL                         |            | _          | _           |             |
|------------------------------|------------|------------|-------------|-------------|
| LOCATION                     | SB-647     | SB-647     | SB-647A     | SB-647A     |
| SAMPLE ID                    | F-SB-647-5 | F-SB-647-7 | F-SB-647A-1 | F-SB-647A-3 |
| SAMPLE DATE                  | 10/6/2009  | 10/6/2009  | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |            |            |             |             |
| ANTIMONY                     |            |            |             |             |
| ARSENIC                      |            |            |             |             |
| BARIUM                       |            |            |             |             |
| BERYLLIUM                    |            |            |             |             |
| CADMIUM                      |            |            |             |             |
| CHROMIUM                     |            |            |             |             |
| COBALT                       |            |            |             |             |
| COPPER                       |            |            |             |             |
| LEAD                         |            |            |             |             |
| MERCURY                      |            |            |             |             |
| MOLYBDENUM                   |            |            |             |             |
| NICKEL                       |            |            |             |             |
| SELENIUM                     |            |            |             |             |
| SILVER                       |            |            |             |             |
| THALLIUM                     |            |            |             |             |
| VANADIUM                     |            |            |             |             |
| ZINC                         |            |            |             |             |
| MISCELLANEOUS PARAMETERS     |            |            |             | •           |
| PERCENT SOLIDS (%)           |            |            |             |             |
| TOTAL SOLIDS (%)             |            |            |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |             |             |
| PH (S.U.)                    |            |            |             |             |
| MERCURY (METHYL) (UG/KG)     |            |            |             |             |
| SEMIVOLATILES (UG/KG)        |            |            |             | •           |
| 1,1-BIPHENYL                 |            |            |             |             |
| 1,2,4-TRICHLOROBENZENE       |            |            |             |             |
| 1,2-DICHLOROBENZENE          |            |            |             |             |
| 1,3-DICHLOROBENZENE          |            |            |             |             |
| 1,4-DICHLOROBENZENE          |            |            |             |             |
| 1,4-DIOXANE                  |            |            |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |             |             |
| 2,4,5-TRICHLOROPHENOL        |            |            |             |             |
| 2,4,6-TRICHLOROPHENOL        |            |            |             |             |
| 2,4-DICHLOROPHENOL           |            |            |             |             |
| 2,4-DIMETHYLPHENOL           |            |            |             |             |
| 2,4-DINITROPHENOL            |            |            |             |             |
| 2,4-DINITROTOLUENE           |            |            |             |             |
| 2,6-DINITROTOLUENE           |            |            |             |             |
|                              |            |            |             |             |

#### SOIL

| LOCATION                    | SB-647     | SB-647     | SB-647A     | SB-647A     |
|-----------------------------|------------|------------|-------------|-------------|
| SAMPLE ID                   | F-SB-647-5 | F-SB-647-7 | F-SB-647A-1 | F-SB-647A-3 |
| SAMPLE DATE                 | 10/6/2009  | 10/6/2009  | 11/5/2009   | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |            |            |             |             |
| 2-CHLOROPHENOL              |            |            |             |             |
| 2-METHYLPHENOL              |            |            |             |             |
| 2-NITROANILINE              |            |            |             |             |
| 2-NITROPHENOL               |            |            |             |             |
| 3&4-METHYLPHENOL            |            |            |             |             |
| 3,3'-DICHLOROBENZIDINE      |            |            |             |             |
| 3-NITROANILINE              |            |            |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |             |             |
| 4-CHLORO-3-METHYLPHENOL     |            |            |             |             |
| 4-CHLOROANILINE             |            |            |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |             |             |
| 4-NITROANILINE              |            |            |             |             |
| 4-NITROPHENOL               |            |            |             |             |
| ACETOPHENONE                |            |            |             |             |
| ANILINE                     |            |            |             |             |
| ATRAZINE                    |            |            |             |             |
| AZOBENZENE                  |            |            |             |             |
| BENZIDINE                   |            |            |             |             |
| BENZOIC ACID                |            |            |             |             |
| BENZYL ALCOHOL              |            |            |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |             |             |
| BIS(2-CHLOROETHYL)ETHER     |            |            |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |             |             |
| BUTYL BENZYL PHTHALATE      |            |            |             |             |
| CAPROLACTAM                 |            |            |             |             |
| CARBAZOLE                   |            |            |             |             |
| DIBENZOFURAN                |            |            |             |             |
| DIETHYL PHTHALATE           |            |            |             |             |
| DIMETHYL PHTHALATE          |            |            |             |             |
| DI-N-BUTYL PHTHALATE        |            |            |             |             |
| DI-N-OCTYL PHTHALATE        |            |            |             |             |
| HEXACHLOROBENZENE           |            |            |             |             |
| HEXACHLOROBUTADIENE         |            |            |             |             |
| HEXACHLOROCYCLOPENTADIENE   |            |            |             |             |
| HEXACHLOROETHANE            |            |            |             |             |
| ISOPHORONE                  |            |            |             |             |
| NITROBENZENE                |            |            |             |             |
| N-NITROSODIMETHYLAMINE      |            |            |             |             |

#### SOIL

| LOCATION                       | SB-647       | SB-647      | SB-647A      | SB-647A     |
|--------------------------------|--------------|-------------|--------------|-------------|
| SAMPLE ID                      | F-SB-647-5   | F-SB-647-7  | F-SB-647A-1  | F-SB-647A-3 |
| SAMPLE DATE                    | 10/6/2009    | 10/6/2009   | 11/5/2009    | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |              |             |              |             |
| N-NITROSODIPHENYLAMINE         |              |             |              |             |
| PENTACHLOROPHENOL              |              |             |              |             |
| PHENOL                         |              |             |              |             |
| PYRIDINE                       |              |             |              |             |
| VOLATILES (UG/KG)              |              |             |              |             |
| 1,1,1,2-TETRACHLOROETHANE      |              |             |              |             |
| 1,1,1-TRICHLOROETHANE          |              |             |              |             |
| 1,1,2,2-TETRACHLOROETHANE      |              |             |              |             |
| 1,1,2-TRICHLOROETHANE          |              |             |              |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |              |             |              |             |
| 1,1-DICHLOROETHANE             | <del></del>  |             | <del>-</del> |             |
| 1,1-DICHLOROETHANE             | <del>-</del> |             | <del>-</del> |             |
| ·                              | <del></del>  | <del></del> |              |             |
| 1,1-DICHLOROPROPENE            |              | <del></del> | <del>-</del> |             |
| 1,2,3-TRICHLOROBENZENE         |              |             |              |             |
| 1,2,3-TRICHLOROPROPANE         |              |             |              |             |
| 1,2,3-TRIMETHYLBENZENE         |              |             |              |             |
| 1,2,4-TRICHLOROBENZENE         |              |             |              |             |
| 1,2,4-TRIMETHYLBENZENE         |              |             |              |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |              |             |              |             |
| 1,2-DIBROMOETHANE              |              |             |              |             |
| 1,2-DICHLOROBENZENE            |              |             |              |             |
| 1,2-DICHLOROETHANE             |              |             |              |             |
| 1,2-DICHLOROPROPANE            |              |             |              |             |
| 1,3,5-TRIMETHYLBENZENE         |              |             |              |             |
| 1,3-DICHLOROBENZENE            |              |             |              |             |
| 1,3-DICHLOROPROPANE            |              |             |              |             |
| 1,3-DICHLOROPROPENE            |              |             |              |             |
| 1,4-DICHLOROBENZENE            |              |             |              |             |
| 1,4-DIOXANE                    |              |             |              |             |
| 2,2-DICHLOROPROPANE            |              |             |              |             |
| 2-BUTANONE                     |              |             |              |             |
| 2-CHLOROETHYL VINYL ETHER      |              |             |              |             |
| 2-CHLOROTOLUENE                |              |             |              |             |
| 2-HEXANONE                     |              |             |              |             |
| 4-CHLOROTOLUENE                |              |             |              |             |
| 4-ISOPROPYLTOLUENE             |              |             |              |             |
| 4-METHYL-2-PENTANONE           |              |             |              |             |
| ACETONE                        |              |             |              |             |
| BENZENE                        |              |             |              |             |

#### SOIL

| LOCATION                            | SB-647       | SB-647     | SB-647A      | SB-647A     |
|-------------------------------------|--------------|------------|--------------|-------------|
| SAMPLE ID                           | F-SB-647-5   | F-SB-647-7 | F-SB-647A-1  | F-SB-647A-3 |
| SAMPLE DATE                         | 10/6/2009    | 10/6/2009  | 11/5/2009    | 11/5/2009   |
| BROMOBENZENE                        |              |            |              |             |
| BROMOCHLOROMETHANE                  |              |            |              |             |
| BROMODICHLOROMETHANE                |              |            |              |             |
| BROMOFORM                           |              |            |              |             |
| BROMOMETHANE                        |              |            |              |             |
| CARBON DISULFIDE                    |              |            |              |             |
| CARBON TETRACHLORIDE                |              |            |              |             |
| CHLOROBENZENE                       |              |            |              |             |
| CHLORODIBROMOMETHANE                |              |            |              |             |
| CHLOROETHANE                        |              |            |              |             |
| CHLOROFORM                          |              |            |              |             |
| CHLOROMETHANE                       |              |            |              |             |
| CIS-1,2-DICHLOROETHENE              |              |            |              |             |
| CIS-1,3-DICHLOROPROPENE             |              |            |              |             |
| DIBROMOMETHANE                      |              |            |              |             |
| DICHLORODIFLUOROMETHANE             |              |            |              |             |
| DIISOPROPYL ETHER                   | -            |            | <del>-</del> |             |
| ETHYL TERT-BUTYL ETHER              | <del>-</del> |            | <del>-</del> |             |
| ETHYL TERT-BOTTL ETHER ETHYLBENZENE |              |            |              |             |
|                                     | <del>-</del> |            | <del>-</del> |             |
| FLUORODICHLOROMETHANE               | <del>-</del> |            | <del>-</del> |             |
| HEXACHLOROBUTADIENE                 |              |            |              |             |
| ISOPROPYLBENZENE                    |              |            |              |             |
| M+P-XYLENES                         |              |            |              |             |
| METHYL TERT-BUTYL ETHER             |              |            |              |             |
| METHYLENE CHLORIDE                  |              |            |              |             |
| NAPHTHALENE                         |              |            |              |             |
| N-BUTYLBENZENE                      |              |            |              |             |
| N-PROPYLBENZENE                     | -            |            | -            |             |
| O-XYLENE                            |              |            |              |             |
| SEC-BUTYLBENZENE                    |              |            |              |             |
| STYRENE                             |              |            |              |             |
| TERT-AMYL METHYL ETHER              |              |            |              |             |
| TERT-BUTYLBENZENE                   |              |            |              |             |
| TERTIARY-BUTYL ALCOHOL              |              |            |              |             |
| TETRACHLOROETHENE                   |              |            |              |             |
| TOLUENE                             |              |            |              |             |
| TOTAL 1,2-DICHLOROETHENE            |              |            |              |             |
| TOTAL XYLENES                       |              |            |              |             |
| TRANS-1,2-DICHLOROETHENE            |              |            |              |             |
| TRANS-1,3-DICHLOROPROPENE           |              |            |              |             |

#### SOIL

NAPHTHALENE

| 00.2                                     |                   |                   |                |                 |
|------------------------------------------|-------------------|-------------------|----------------|-----------------|
| LOCATION                                 | SB-647            | SB-647            | SB-647A        | SB-647A         |
| SAMPLE ID                                | F-SB-647-5        | F-SB-647-7        | F-SB-647A-1    | F-SB-647A-3     |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 11/5/2009      | 11/5/2009       |
| TRICHLOROETHENE                          |                   |                   |                |                 |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                |                 |
| VINYL ACETATE                            |                   |                   |                |                 |
| VINYL CHLORIDE                           |                   |                   |                |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                   |                | •               |
| 1-METHYLNAPHTHALENE                      |                   |                   |                |                 |
| 2-METHYLNAPHTHALENE                      |                   |                   |                |                 |
| ACENAPHTHENE                             |                   |                   |                |                 |
| ACENAPHTHYLENE                           |                   |                   |                |                 |
| ANTHRACENE                               |                   |                   |                |                 |
| BAP EQUIVALENT-HALFND                    | 2.4 U [MDL=2.4]   | 2.1 U [MDL=2.1]   | 3838.4 [MDL=4] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 2.4 U [MDL=2.4]   | 2.1 U [MDL=2.1]   | 3838.4 [MDL=4] | 1.6 U [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                   |                   |                |                 |
| BENZO(A)ANTHRACENE                       | 1.3 U [MDL=1.3]   | 1.2 U [MDL=1.2]   | 2500 [MDL=2.9] | 1.2 U [MDL=1.2] |
| BENZO(A)PYRENE                           | 2.4 U [MDL=2.4]   | 2.1 U [MDL=2.1]   | 2600 [MDL=4]   | 1.6 U [MDL=1.6] |
| BENZO(B)FLUORANTHENE                     | 1.7 U [MDL=1.7]   | 1.5 U [MDL=1.5]   | 3100 [MDL=3.7] | 1.5 U [MDL=1.5] |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                |                 |
| BENZO(K)FLUORANTHENE                     | 1.8 U [MDL=1.8]   | 1.6 U [MDL=1.6]   | 1600 [MDL=5.2] | 2.1 U [MDL=2.1] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                |                 |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                |                 |
| C1-FLUORENES                             |                   |                   |                |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                |                 |
| C2-FLUORENES                             |                   |                   |                |                 |
| C2-NAPHTHALENES                          |                   |                   |                |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                |                 |
| C3-FLUORENES                             |                   |                   |                |                 |
| C3-NAPHTHALENES                          |                   |                   |                |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                |                 |
| C4-NAPHTHALENES                          |                   |                   |                |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                |                 |
| CHRYSENE                                 | 1.5 U [MDL=1.5]   | 1.3 U [MDL=1.3]   | 2400 [MDL=2.8] | 1.1 U [MDL=1.1] |
| DIBENZO(A,H)ANTHRACENE                   | 1.9 U [MDL=1.9]   | 1.7 U [MDL=1.7]   | 500 [MDL=4]    | 1.6 U [MDL=1.6] |
| FLUORANTHENE                             |                   |                   |                |                 |
| FLUORENE                                 |                   |                   |                |                 |
| INDENO(1,2,3-CD)PYRENE                   | 0.46 U [MDL=0.46] | 0.42 U [MDL=0.42] | 1600 [MDL=4.6] | 1.9 U [MDL=1.9] |
|                                          | <del></del>       | <del></del>       | <del></del>    | <del></del>     |

#### SOIL

| LOCATION                       | SB-647        | SB-647        | SB-647A       | SB-647A       |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-647-5    | F-SB-647-7    | F-SB-647A-1   | F-SB-647A-3   |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009     | 11/5/2009     | 11/5/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               | <del></del>   |
| TOTAL PAHS                     | 0 U [MDL=2.4] | 0 U [MDL=2.1] | 14300 [MDL=4] | 0 U [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | • •           |
| 4,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               |               |
| 4,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| TOXAPHENE                      |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  | <del></del>   |               |               |               |

#### SOIL

| SOIL                         |             |             |             |             |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-647B     | SB-647B     | SB-647C     | SB-647C     |
| SAMPLE ID                    | F-SB-647B-1 | F-SB-647B-3 | F-SB-647C-1 | F-SB-647C-3 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |             |             |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           | •           |             |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |
|                              |             |             | <b>3</b>    |             |

| SOIL<br>LOCATION            | SB-647B     | SB-647B     | SB-647C     | SB-647C     |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-647B-1 | F-SB-647B-3 | F-SB-647C-1 | F-SB-647C-3 |
|                             |             |             |             |             |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             |             |             |             |
| ISOPHORONE                  |             |             |             |             |
| NITROBENZENE                |             |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |

#### SOIL

| LOCATION                       | SB-647B     | SB-647B     | SB-647C     | SB-647C     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-647B-1 | F-SB-647B-3 | F-SB-647C-1 | F-SB-647C-3 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| SOIL                     |             |             |             |             |  |  |
|--------------------------|-------------|-------------|-------------|-------------|--|--|
| LOCATION                 | SB-647B     | SB-647B     | SB-647C     | SB-647C     |  |  |
| SAMPLE ID                | F-SB-647B-1 | F-SB-647B-3 | F-SB-647C-1 | F-SB-647C-3 |  |  |
| SAMPLE DATE              | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |  |  |
| BROMOBENZENE             |             |             |             |             |  |  |
| BROMOCHLOROMETHANE       |             |             |             |             |  |  |
| BROMODICHLOROMETHANE     |             |             |             |             |  |  |
| BROMOFORM                |             |             |             |             |  |  |
| BROMOMETHANE             |             |             |             |             |  |  |
| CARBON DISULFIDE         |             |             |             |             |  |  |
| CARBON TETRACHLORIDE     |             |             |             |             |  |  |
| CHLOROBENZENE            |             |             |             |             |  |  |
| CHLORODIBROMOMETHANE     |             |             |             |             |  |  |
| CHLOROETHANE             |             |             |             |             |  |  |
| CHLOROFORM               |             |             |             |             |  |  |
| CHLOROMETHANE            |             |             |             |             |  |  |
| CIS-1,2-DICHLOROETHENE   |             |             |             |             |  |  |
| CIS-1,3-DICHLOROPROPENE  |             |             |             |             |  |  |
| DIBROMOMETHANE           |             |             |             |             |  |  |
| DICHLORODIFLUOROMETHANE  |             |             |             |             |  |  |
| DIISOPROPYL ETHER        |             |             |             |             |  |  |
| ETHYL TERT-BUTYL ETHER   |             |             |             |             |  |  |
| ETHYLBENZENE             |             |             |             |             |  |  |
| FLUORODICHLOROMETHANE    |             |             |             |             |  |  |
| HEXACHLOROBUTADIENE      |             |             |             |             |  |  |
| ISOPROPYLBENZENE         |             |             |             |             |  |  |
| M+P-XYLENES              |             |             |             |             |  |  |
| METHYL TERT-BUTYL ETHER  |             |             |             |             |  |  |
| METHYLENE CHLORIDE       |             |             |             |             |  |  |
| NAPHTHALENE              |             |             |             |             |  |  |
| N-BUTYLBENZENE           |             |             |             |             |  |  |
| N-PROPYLBENZENE          |             |             |             |             |  |  |
| O-XYLENE                 |             |             |             |             |  |  |
| SEC-BUTYLBENZENE         |             |             |             |             |  |  |
| STYRENE                  |             |             |             |             |  |  |
| TERT-AMYL METHYL ETHER   |             |             |             |             |  |  |
| TERT-BUTYLBENZENE        |             |             |             |             |  |  |
| TERTIARY-BUTYL ALCOHOL   |             |             |             |             |  |  |
| TETRACHLOROETHENE        |             |             |             |             |  |  |
| TOLUENE                  |             |             |             |             |  |  |
| TOTAL 1,2-DICHLOROETHENE |             |             |             |             |  |  |
| TOTAL XYLENES            |             |             |             |             |  |  |
| TRANS-1,2-DICHLOROETHENE |             |             |             |             |  |  |
|                          |             |             |             |             |  |  |

### SOIL

NAPHTHALENE

| LOCATION                                 | SB-647B          | SB-647B         | SB-647C          | SB-647C          |
|------------------------------------------|------------------|-----------------|------------------|------------------|
| SAMPLE ID                                | F-SB-647B-1      | F-SB-647B-3     | F-SB-647C-1      | F-SB-647C-3      |
| SAMPLE DATE                              | 11/5/2009        | 11/5/2009       | 11/5/2009        | 11/5/2009        |
| TRICHLOROETHENE                          |                  |                 |                  |                  |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                  |                  |
| VINYL ACETATE                            |                  |                 |                  |                  |
| VINYL CHLORIDE                           |                  |                 |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                 |                  |                  |
| 1-METHYLNAPHTHALENE                      |                  |                 |                  |                  |
| 2-METHYLNAPHTHALENE                      |                  |                 |                  |                  |
| ACENAPHTHENE                             |                  |                 |                  |                  |
| ACENAPHTHYLENE                           |                  |                 |                  |                  |
| ANTHRACENE                               |                  |                 |                  |                  |
| BAP EQUIVALENT-HALFND                    | 283.14 [MDL=1.6] | 1.6 U [MDL=1.6] | 5140.3 [MDL=8.1] | 58.981 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 283.14 [MDL=1.6] | 1.6 U [MDL=1.6] | 5140.3 [MDL=8.1] | 58.981 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                  |                 |                  |                  |
| BENZO(A)ANTHRACENE                       | 170 [MDL=1.1]    | 1.2 U [MDL=1.2] | 3400 [MDL=5.9]   | 26 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 180 [MDL=1.6]    | 1.6 U [MDL=1.6] | 3500 [MDL=8.1]   | 30 [MDL=1.6]     |
| BENZO(B)FLUORANTHENE                     | 240 [MDL=1.4]    | 1.5 U [MDL=1.5] | 4500 [MDL=7.5]   | 54 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                  |                  |
| BENZO(K)FLUORANTHENE                     | 97 [MDL=2]       | 2.1 U [MDL=2.1] | 1700 [MDL=11]    | 15 [MDL=2]       |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                  |                  |
| C1-FLUORENES                             |                  |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |                  |
| C2-FLUORENES                             |                  |                 |                  |                  |
| C2-NAPHTHALENES                          |                  |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |                  |
| C3-FLUORENES                             |                  |                 |                  |                  |
| C3-NAPHTHALENES                          |                  |                 |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                  |                  |
| C4-NAPHTHALENES                          |                  |                 |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                 |                  |                  |
| CHRYSENE                                 | 170 [MDL=1.1]    | 1.1 U [MDL=1.1] | 3300 [MDL=5.6]   | 31 [MDL=1.1]     |
| DIBENZO(A,H)ANTHRACENE                   | 49 [MDL=1.6]     | 1.6 U [MDL=1.6] | 620 [MDL=8.1]    | 19 [MDL=1.6]     |
| FLUORANTHENE                             |                  |                 |                  |                  |
| FLUORENE                                 |                  |                 |                  |                  |
| INDENO(1,2,3-CD)PYRENE                   | 120 [MDL=1.8]    | 1.8 U [MDL=1.8] | 2100 [MDL=9.4]   | 18 [MDL=1.8]     |
| •                                        | ·                | •               |                  | -                |

#### SOIL

| LOCATION                       | SB-647B        | SB-647B       | SB-647C         | SB-647C       |
|--------------------------------|----------------|---------------|-----------------|---------------|
| SAMPLE ID                      | F-SB-647B-1    | F-SB-647B-3   | F-SB-647C-1     | F-SB-647C-3   |
| SAMPLE DATE                    | 11/5/2009      | 11/5/2009     | 11/5/2009       | 11/5/2009     |
| PHENANTHRENE                   |                |               |                 |               |
| PYRENE                         |                |               |                 |               |
| TOTAL PAHS                     | 1026 [MDL=1.6] | 0 U [MDL=1.6] | 19120 [MDL=8.1] | 193 [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        |                |               |                 |               |
| 4,4'-DDD                       |                |               |                 |               |
| 4,4'-DDE                       |                |               |                 |               |
| 4,4'-DDT                       |                |               |                 |               |
| ALDRIN                         |                |               |                 |               |
| ALPHA-BHC                      |                |               |                 |               |
| ALPHA-CHLORDANE                |                |               |                 |               |
| AROCLOR-1016                   |                |               |                 |               |
| AROCLOR-1221                   |                |               |                 |               |
| AROCLOR-1232                   |                |               |                 |               |
| AROCLOR-1242                   |                |               |                 |               |
| AROCLOR-1248                   |                |               |                 |               |
| AROCLOR-1254                   |                |               |                 |               |
| AROCLOR-1260                   |                |               |                 |               |
| BETA-BHC                       |                |               |                 |               |
| DELTA-BHC                      |                |               |                 |               |
| DIELDRIN                       |                |               |                 |               |
| ENDOSULFAN I                   |                |               |                 |               |
| ENDOSULFAN II                  |                |               |                 |               |
| ENDOSULFAN SULFATE             |                |               |                 |               |
| ENDRIN                         |                |               |                 |               |
| ENDRIN ALDEHYDE                |                |               |                 |               |
| ENDRIN KETONE                  |                |               |                 |               |
| GAMMA-BHC (LINDANE)            |                |               |                 |               |
| GAMMA-CHLORDANE                |                |               |                 |               |
| HEPTACHLOR                     |                |               |                 |               |
| HEPTACHLOR EPOXIDE             |                |               |                 |               |
| METHOXYCHLOR                   |                |               |                 |               |
| TOTAL AROCLOR                  |                |               |                 |               |
| TOTAL DDT POS                  |                |               |                 |               |
| TOXAPHENE                      |                |               |                 |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |               |                 |               |
| DIESEL RANGE ORGANICS          |                |               |                 |               |
| GASOLINE RANGE ORGANICS        |                |               |                 |               |
| TPH (C09-C36)                  |                |               |                 |               |

#### SOIL

| SOIL                         |            | _          |            |             |
|------------------------------|------------|------------|------------|-------------|
| LOCATION                     | SB-648     | SB-648     | SB-648     | SB-648      |
| SAMPLE ID                    | F-SB-648-1 | F-SB-648-3 | F-SB-648-5 | F-SB-648-7  |
| SAMPLE DATE                  | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009   |
| METALS (MG/KG)               |            |            |            |             |
| ANTIMONY                     |            |            |            |             |
| ARSENIC                      |            |            |            |             |
| BARIUM                       |            |            |            |             |
| BERYLLIUM                    |            |            |            |             |
| CADMIUM                      |            |            |            |             |
| CHROMIUM                     |            |            |            |             |
| COBALT                       |            |            |            |             |
| COPPER                       |            |            |            |             |
| LEAD                         |            |            |            |             |
| MERCURY                      |            |            |            |             |
| MOLYBDENUM                   |            |            |            |             |
| NICKEL                       |            |            |            |             |
| SELENIUM                     |            |            |            |             |
| SILVER                       |            |            |            |             |
| THALLIUM                     |            |            |            |             |
| VANADIUM                     |            |            |            |             |
| ZINC                         |            |            |            |             |
| MISCELLANEOUS PARAMETERS     | •          | •          |            |             |
| PERCENT SOLIDS (%)           |            |            |            |             |
| TOTAL SOLIDS (%)             |            |            |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |             |
| PH (S.U.)                    |            |            |            |             |
| MERCURY (METHYL) (UG/KG)     |            |            |            |             |
| SEMIVOLATILES (UG/KG)        | •          | •          |            |             |
| 1,1-BIPHENYL                 |            |            |            |             |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |             |
| 1,2-DICHLOROBENZENE          |            |            |            |             |
| 1,3-DICHLOROBENZENE          |            |            |            |             |
| 1,4-DICHLOROBENZENE          |            |            |            |             |
| 1,4-DIOXANE                  |            |            |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |             |
| 2,4,5-TRICHLOROPHENOL        |            |            |            | <del></del> |
| 2,4,6-TRICHLOROPHENOL        |            |            |            | <del></del> |
| 2,4-DICHLOROPHENOL           |            |            |            |             |
| 2,4-DIMETHYLPHENOL           |            |            |            |             |
| 2,4-DINITROPHENOL            |            |            |            |             |
| 2,4-DINITROTOLUENE           |            |            |            |             |
| 2,6-DINITROTOLUENE           |            |            |            |             |
| -,                           | i i        |            | 1          | 1           |

HEXACHLOROBENZENE

HEXACHLOROETHANE

HEXACHLOROBUTADIENE

HEXACHLOROCYCLOPENTADIENE

| LOCATION                    | SB-648     | SB-648     | SB-648     | SB-648     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-648-1 | F-SB-648-3 | F-SB-648-5 | F-SB-648-7 |
| SAMPLE DATE                 | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
|                             |            |            |            |            |

--

--

--

--

--

--

ISOPHORONE NITROBENZENE ------N-NITROSODIMETHYLAMINE --------February 2013 Page C-194

--

--

--

--

--

#### SOIL

| LOCATION                       | SB-648     | SB-648     | SB-648     | SB-648     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-648-1 | F-SB-648-3 | F-SB-648-5 | F-SB-648-7 |
| SAMPLE DATE                    | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              | •          |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |

| SOIL                      |            | SOIL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
|---------------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| LOCATION                  | SB-648     | SB-648     | SB-648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB-648     |  |  |  |  |
| SAMPLE ID                 | F-SB-648-1 | F-SB-648-3 | F-SB-648-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F-SB-648-7 |  |  |  |  |
| SAMPLE DATE               | 10/6/2009  | 10/6/2009  | 10/6/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/6/2009  |  |  |  |  |
| BROMOBENZENE              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| BROMOCHLOROMETHANE        |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| BROMODICHLOROMETHANE      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| BROMOFORM                 |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| BROMOMETHANE              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CARBON DISULFIDE          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CARBON TETRACHLORIDE      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CHLOROBENZENE             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CHLORODIBROMOMETHANE      |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CHLOROETHANE              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CHLOROFORM                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CHLOROMETHANE             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CIS-1,2-DICHLOROETHENE    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| CIS-1,3-DICHLOROPROPENE   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| DIBROMOMETHANE            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| DICHLORODIFLUOROMETHANE   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| DIISOPROPYL ETHER         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| ETHYL TERT-BUTYL ETHER    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| ETHYLBENZENE              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| FLUORODICHLOROMETHANE     |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| HEXACHLOROBUTADIENE       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| ISOPROPYLBENZENE          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| M+P-XYLENES               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| METHYL TERT-BUTYL ETHER   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| METHYLENE CHLORIDE        |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| NAPHTHALENE               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| N-BUTYLBENZENE            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| N-PROPYLBENZENE           |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| O-XYLENE                  |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| SEC-BUTYLBENZENE          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| STYRENE                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TERT-AMYL METHYL ETHER    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TERT-BUTYLBENZENE         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TERTIARY-BUTYL ALCOHOL    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TETRACHLOROETHENE         |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TOLUENE                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TOTAL 1,2-DICHLOROETHENE  |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TOTAL XYLENES             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TRANS-1,2-DICHLOROETHENE  |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| TRANS-1,3-DICHLOROPROPENE |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |
| ,                         |            | 1          | t and the second | <u> </u>   |  |  |  |  |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-648            | SB-648            | SB-648            | SB-648            |
|------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                                | F-SB-648-1        | F-SB-648-3        | F-SB-648-5        | F-SB-648-7        |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 10/6/2009         | 10/6/2009         |
| TRICHLOROETHENE                          |                   |                   |                   |                   |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                   |                   |
| VINYL ACETATE                            |                   |                   |                   |                   |
| VINYL CHLORIDE                           |                   |                   |                   |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                   | •                 |                   |
| 1-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| 2-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| ACENAPHTHENE                             |                   |                   |                   |                   |
| ACENAPHTHYLENE                           |                   |                   |                   |                   |
| ANTHRACENE                               |                   |                   |                   |                   |
| BAP EQUIVALENT-HALFND                    | 2.2 U [MDL=2.2]   | 2.1 U [MDL=2.1]   | 2.2 U [MDL=2.2]   | 2.3 U [MDL=2.3]   |
| BAP EQUIVALENT-POS                       | 2.2 U [MDL=2.2]   | 2.1 U [MDL=2.1]   | 2.2 U [MDL=2.2]   | 2.3 U [MDL=2.3]   |
| BAP EQUIVALENT-UCL                       |                   |                   |                   |                   |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   | 1.3 U [MDL=1.3]   |
| BENZO(A)PYRENE                           | 2.2 U [MDL=2.2]   | 2.1 U [MDL=2.1]   | 2.2 U [MDL=2.2]   | 2.3 U [MDL=2.3]   |
| BENZO(B)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.5 U [MDL=1.5]   | 1.6 U [MDL=1.6]   | 1.7 U [MDL=1.7]   |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                   |                   |
| BENZO(K)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.7 U [MDL=1.7]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                   |                   |
| C1-FLUORENES                             |                   |                   |                   |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C2-FLUORENES                             |                   |                   |                   |                   |
| C2-NAPHTHALENES                          |                   |                   |                   |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C3-FLUORENES                             |                   |                   |                   |                   |
| C3-NAPHTHALENES                          |                   |                   |                   |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C4-NAPHTHALENES                          |                   |                   |                   |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| CHRYSENE                                 | 1.4 U [MDL=1.4]   | 1.3 U [MDL=1.3]   | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   | 1.8 U [MDL=1.8]   |
| FLUORANTHENE                             |                   |                   |                   |                   |
| FLUORENE                                 |                   |                   |                   |                   |
| INDENO(1,2,3-CD)PYRENE                   | 0.43 U [MDL=0.43] | 0.41 U [MDL=0.41] | 0.43 U [MDL=0.43] | 0.46 U [MDL=0.46] |

#### SOIL

| LOCATION                       | SB-648        | SB-648        | SB-648        | SB-648        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-648-1    | F-SB-648-3    | F-SB-648-5    | F-SB-648-7    |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009     | 10/6/2009     | 10/6/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=2.2] | 0 U [MDL=2.1] | 0 U [MDL=2.2] | 0 U [MDL=2.3] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | -             |
| 1,4'-DDD                       |               |               |               |               |
| 1,4'-DDE                       |               |               |               |               |
| 1,4'-DDT                       |               |               |               |               |
| ALDRIN                         |               |               |               |               |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| ROCLOR-1254                    |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| NDOSULFAN I                    |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| OTAL AROCLOR                   |               |               |               |               |
| OTAL DDT POS                   |               |               |               |               |
| OXAPHENE                       |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |
| \/                             |               | 1             |               |               |

#### SOIL

| SUIL                         | I            | 1          | Т          | T          |
|------------------------------|--------------|------------|------------|------------|
| LOCATION                     | SB-649       | SB-649     | SB-649     | SB-650     |
| SAMPLE ID                    | F-SB-649-1   | F-SB-649-3 | F-SB-649-5 | F-SB-650-1 |
| SAMPLE DATE                  | 10/6/2009    | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| METALS (MG/KG)               | <del>_</del> |            |            |            |
| ANTIMONY                     |              |            |            |            |
| ARSENIC                      |              |            |            |            |
| BARIUM                       |              |            |            |            |
| BERYLLIUM                    |              |            |            |            |
| CADMIUM                      |              |            |            |            |
| CHROMIUM                     |              |            |            |            |
| COBALT                       |              |            |            |            |
| COPPER                       |              |            |            |            |
| LEAD                         |              |            |            |            |
| MERCURY                      |              |            |            |            |
| MOLYBDENUM                   |              |            |            |            |
| NICKEL                       |              |            |            |            |
| SELENIUM                     |              |            |            |            |
| SILVER                       |              |            |            |            |
| THALLIUM                     |              |            |            |            |
| /ANADIUM                     |              |            |            |            |
| ZINC                         |              |            |            |            |
| MISCELLANEOUS PARAMETERS     | •            |            | -          | -          |
| PERCENT SOLIDS (%)           |              |            |            |            |
| FOTAL SOLIDS (%)             |              |            |            |            |
| HEXAVALENT CHROMIUM (MG/KG)  |              |            |            |            |
| FOTAL ORGANIC CARBON (MG/KG) |              |            |            |            |
| PH (S.U.)                    |              |            |            |            |
| MERCURY (METHYL) (UG/KG)     |              |            |            |            |
| SEMIVOLATILES (UG/KG)        | •            |            |            |            |
| I,1-BIPHENYL                 |              |            |            |            |
| ,2,4-TRICHLOROBENZENE        |              |            |            |            |
| I,2-DICHLOROBENZENE          |              |            |            |            |
| I,3-DICHLOROBENZENE          |              |            |            |            |
| I,4-DICHLOROBENZENE          |              |            |            |            |
| ,4-DIOXANE                   |              |            |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |              |            |            |            |
| 2,4,5-TRICHLOROPHENOL        |              |            |            |            |
| 2,4,6-TRICHLOROPHENOL        |              |            |            |            |
| 2,4-DICHLOROPHENOL           |              |            |            |            |
| 2,4-DIMETHYLPHENOL           |              |            |            |            |
| 2,4-DINITROPHENOL            |              |            |            |            |
| 2,4-DINITROTOLUENE           |              |            |            |            |
| 2,6-DINITROTOLUENE           |              |            |            |            |

|          | SB-650<br>F-SB-650-1<br>10/6/2009<br><br><br><br><br> |
|----------|-------------------------------------------------------|
| 5/2009   | 10/6/2009                                             |
|          | <br><br><br><br>                                      |
|          | <br><br><br>                                          |
|          | <br><br><br>                                          |
|          | <br><br>                                              |
|          | <br><br>                                              |
|          |                                                       |
| <br><br> |                                                       |
| <br>     |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |
|          |                                                       |

#### SOIL

| LOCATION                       | SB-649     | SB-649     | SB-649     | SB-650     |
|--------------------------------|------------|------------|------------|------------|
| SAMPLE ID                      | F-SB-649-1 | F-SB-649-3 | F-SB-649-5 | F-SB-650-1 |
| SAMPLE DATE                    | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              | •          |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |

#### SOIL

| LOCATION                                           | SB-649     | SB-649     | SB-649     | SB-650     |
|----------------------------------------------------|------------|------------|------------|------------|
| SAMPLE ID                                          | F-SB-649-1 | F-SB-649-3 | F-SB-649-5 | F-SB-650-1 |
| SAMPLE DATE                                        | 10/6/2009  | 10/6/2009  | 10/6/2009  | 10/6/2009  |
| BROMOBENZENE                                       |            |            |            |            |
| BROMOCHLOROMETHANE                                 |            |            |            |            |
| BROMODICHLOROMETHANE                               |            |            |            |            |
| BROMOFORM                                          |            |            |            |            |
| BROMOMETHANE                                       |            |            |            |            |
| CARBON DISULFIDE                                   |            |            |            |            |
| CARBON TETRACHLORIDE                               |            |            |            |            |
| CHLOROBENZENE                                      |            |            |            |            |
| CHLORODIBROMOMETHANE                               |            |            |            |            |
| CHLOROETHANE                                       |            |            |            |            |
| CHLOROFORM                                         |            |            |            |            |
| CHLOROMETHANE                                      |            |            |            |            |
| CIS-1,2-DICHLOROETHENE                             |            |            |            |            |
| CIS-1,3-DICHLOROPROPENE                            |            |            |            |            |
| DIBROMOMETHANE                                     |            |            |            |            |
| DICHLORODIFLUOROMETHANE                            |            |            |            |            |
| DIISOPROPYL ETHER                                  |            |            |            |            |
| ETHYL TERT-BUTYL ETHER                             |            |            |            |            |
| ETHYLBENZENE                                       |            |            |            |            |
| FLUORODICHLOROMETHANE                              |            |            |            |            |
| HEXACHLOROBUTADIENE                                |            |            |            |            |
| ISOPROPYLBENZENE                                   |            |            |            |            |
| M+P-XYLENES                                        |            |            |            |            |
| METHYL TERT-BUTYL ETHER                            |            |            |            |            |
| METHYLENE CHLORIDE                                 |            |            |            |            |
| NAPHTHALENE                                        |            |            |            |            |
| N-BUTYLBENZENE                                     |            |            |            |            |
| N-PROPYLBENZENE                                    |            |            |            |            |
| O-XYLENE                                           |            |            |            |            |
| SEC-BUTYLBENZENE                                   |            |            |            |            |
| STYRENE                                            |            |            |            |            |
| TERT-AMYL METHYL ETHER                             |            |            |            |            |
| TERT-BUTYLBENZENE                                  |            |            |            |            |
| TERTIARY-BUTYL ALCOHOL                             |            |            |            |            |
| TETRACHLOROETHENE                                  |            |            |            |            |
| TOLUENE                                            |            |            |            |            |
| TOTAL 1,2-DICHLOROETHENE                           |            |            |            |            |
| TOTAL XYLENES                                      |            |            |            |            |
|                                                    |            |            |            |            |
|                                                    |            |            |            |            |
| TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE |            |            | <br>       | <br>       |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-649            | SB-649            | SB-649            | SB-650            |
|------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| SAMPLE ID                                | F-SB-649-1        | F-SB-649-3        | F-SB-649-5        | F-SB-650-1        |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 10/6/2009         | 10/6/2009         |
| TRICHLOROETHENE                          |                   |                   |                   |                   |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                   |                   |
| VINYL ACETATE                            |                   |                   |                   |                   |
| VINYL CHLORIDE                           |                   |                   |                   |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                   | •                 |                   |
| 1-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| 2-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| ACENAPHTHENE                             |                   |                   |                   |                   |
| ACENAPHTHYLENE                           |                   |                   |                   |                   |
| ANTHRACENE                               |                   |                   |                   |                   |
| BAP EQUIVALENT-HALFND                    | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 4.1202 [MDL=2.2]  |
| BAP EQUIVALENT-POS                       | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 3.1 [MDL=2.2]     |
| BAP EQUIVALENT-UCL                       |                   |                   |                   |                   |
| BENZO(A)ANTHRACENE                       | 1.3 U [MDL=1.3]   | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   |
| BENZO(A)PYRENE                           | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 2.2 U [MDL=2.2]   | 3.1 J [MDL=2.2]   |
| BENZO(B)FLUORANTHENE                     | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                   |                   |
| BENZO(K)FLUORANTHENE                     | 1.7 U [MDL=1.7]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                   |                   |
| C1-FLUORENES                             |                   |                   |                   |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C2-FLUORENES                             |                   |                   |                   |                   |
| C2-NAPHTHALENES                          |                   |                   |                   |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C3-FLUORENES                             |                   |                   |                   |                   |
| C3-NAPHTHALENES                          |                   |                   |                   |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C4-NAPHTHALENES                          |                   |                   |                   |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| CHRYSENE                                 | 1.4 U [MDL=1.4]   | 1.3 U [MDL=1.3]   | 1.4 U [MDL=1.4]   | 1.4 U [MDL=1.4]   |
| DIBENZO(A,H)ANTHRACENE                   | 1.8 U [MDL=1.8]   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   |
| FLUORANTHENE                             |                   |                   |                   |                   |
| FLUORENE                                 |                   |                   |                   |                   |
| INDENO(1,2,3-CD)PYRENE                   | 0.44 U [MDL=0.44] | 0.42 U [MDL=0.42] | 0.43 U [MDL=0.43] | 0.43 U [MDL=0.43] |

#### SOIL

| LOCATION                       | SB-649        | SB-649        | SB-649        | SB-650        |
|--------------------------------|---------------|---------------|---------------|---------------|
| SAMPLE ID                      | F-SB-649-1    | F-SB-649-3    | F-SB-649-5    | F-SB-650-1    |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009     | 10/6/2009     | 10/6/2009     |
| PHENANTHRENE                   |               |               |               |               |
| PYRENE                         |               |               |               |               |
| TOTAL PAHS                     | 0 U [MDL=2.2] | 0 U [MDL=2.2] | 0 U [MDL=2.2] | 3.1 [MDL=2.2] |
| PESTICIDES/PCBS (UG/KG)        | 0 0 (         | 0 0 [51 1.1]  | 0 0 [2]       | o [s. z.:.]   |
| 4,4'-DDD                       |               |               |               |               |
| 4,4'-DDE                       |               |               |               | <del></del>   |
| 4,4'-DDT                       |               |               |               | <del></del>   |
| ALDRIN                         |               |               |               | <del></del>   |
| ALPHA-BHC                      |               |               |               |               |
| ALPHA-CHLORDANE                |               |               |               |               |
| AROCLOR-1016                   |               |               |               |               |
| AROCLOR-1221                   |               |               |               |               |
| AROCLOR-1232                   |               |               |               |               |
| AROCLOR-1242                   |               |               |               |               |
| AROCLOR-1248                   |               |               |               |               |
| AROCLOR-1254                   |               |               |               |               |
| AROCLOR-1260                   |               |               |               |               |
| BETA-BHC                       |               |               |               |               |
| DELTA-BHC                      |               |               |               |               |
| DIELDRIN                       |               |               |               |               |
| ENDOSULFAN I                   |               |               |               |               |
| ENDOSULFAN II                  |               |               |               |               |
| ENDOSULFAN SULFATE             |               |               |               |               |
| ENDRIN                         |               |               |               |               |
| ENDRIN ALDEHYDE                |               |               |               |               |
| ENDRIN KETONE                  |               |               |               |               |
| GAMMA-BHC (LINDANE)            |               |               |               |               |
| GAMMA-CHLORDANE                |               |               |               |               |
| HEPTACHLOR                     |               |               |               |               |
| HEPTACHLOR EPOXIDE             |               |               |               |               |
| METHOXYCHLOR                   |               |               |               |               |
| TOTAL AROCLOR                  |               |               |               |               |
| TOTAL DDT POS                  |               |               |               |               |
| TOXAPHENE                      |               |               |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |               |
| DIESEL RANGE ORGANICS          |               |               |               |               |
| GASOLINE RANGE ORGANICS        |               |               |               |               |
| TPH (C09-C36)                  |               |               |               |               |
|                                |               |               |               | -             |

#### SOIL

| SOIL                                          |            |              |            |            |
|-----------------------------------------------|------------|--------------|------------|------------|
| LOCATION                                      | SB-650     | SB-650       | SB-650     | SB-651     |
| SAMPLE ID                                     | F-SB-650-3 | F-SB-650-3-D | F-SB-650-5 | F-SB-651-1 |
| SAMPLE DATE                                   | 10/6/2009  | 10/6/2009    | 10/6/2009  | 10/7/2009  |
| METALS (MG/KG)                                |            |              |            |            |
| ANTIMONY                                      |            |              |            |            |
| ARSENIC                                       |            |              |            |            |
| BARIUM                                        |            |              |            |            |
| BERYLLIUM                                     |            |              |            |            |
| CADMIUM                                       |            |              |            |            |
| CHROMIUM                                      |            |              |            |            |
| COBALT                                        |            |              |            |            |
| COPPER                                        |            |              |            |            |
| LEAD                                          |            |              |            |            |
| MERCURY                                       |            |              |            |            |
| MOLYBDENUM                                    |            |              |            |            |
| NICKEL                                        |            |              |            |            |
| SELENIUM                                      |            |              |            |            |
| SILVER                                        |            |              |            |            |
| THALLIUM                                      |            |              |            |            |
| VANADIUM                                      |            |              |            |            |
| ZINC                                          |            |              |            |            |
| MISCELLANEOUS PARAMETERS                      | •          | •            |            | •          |
| PERCENT SOLIDS (%)                            |            |              |            |            |
| TOTAL SOLIDS (%)                              |            |              |            |            |
| HEXAVALENT CHROMIUM (MG/KG)                   |            |              |            |            |
| TOTAL ORGANIC CARBON (MG/KG)                  |            |              |            |            |
| PH (S.U.)                                     |            |              |            |            |
| MERCURY (METHYL) (UG/KG)                      |            |              |            |            |
| SEMIVOLATILES (UG/KG)                         |            |              |            |            |
| 1,1-BIPHENYL                                  |            |              |            |            |
| 1,2,4-TRICHLOROBENZENE                        |            |              |            |            |
| 1,2-DICHLOROBENZENE                           |            |              |            |            |
| 1,3-DICHLOROBENZENE                           |            |              |            |            |
| 1,4-DICHLOROBENZENE                           |            |              |            |            |
| 1,4-DIOXANE                                   |            |              |            |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                  |            |              |            |            |
| 2,4,5-TRICHLOROPHENOL                         |            |              |            |            |
| 2,4,6-TRICHLOROPHENOL                         |            |              |            |            |
| 2,4-DICHLOROPHENOL                            |            |              |            |            |
| 2,4-DIMETHYLPHENOL                            |            |              |            |            |
| 2,4-DINITROPHENOL                             |            |              |            |            |
| 2,4-DINITROTOLUENE                            |            |              |            |            |
| 2,6-DINITROTOLUENE                            |            |              |            |            |
| <u>, ,-                                  </u> |            | L            |            | 1          |

| 05.050 | T 05.050 | T 05.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.054     |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SB-651     |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F-SB-651-1 |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/7/2009  |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|        |          | F-SB-650-3 10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009  10/6/2009 | F-SB-650-3 |

#### SOIL

| LOCATION                       | SB-650     | SB-650       | SB-650     | SB-651      |
|--------------------------------|------------|--------------|------------|-------------|
| SAMPLE ID                      | F-SB-650-3 | F-SB-650-3-D | F-SB-650-5 | F-SB-651-1  |
| SAMPLE DATE                    | 10/6/2009  | 10/6/2009    | 10/6/2009  | 10/7/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |            | 10/0/2009    |            |             |
| N-NITROSODIPHENYLAMINE         |            |              |            |             |
| PENTACHLOROPHENOL              |            |              |            |             |
| PHENOL                         |            | <br>         |            |             |
| PYRIDINE                       |            |              |            |             |
| VOLATILES (UG/KG)              |            | <u></u>      |            | <del></del> |
| 1,1,1,2-TETRACHLOROETHANE      |            |              |            |             |
| 1,1,1-TRICHLOROETHANE          |            |              |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |              |            |             |
|                                |            |              |            |             |
| 1,1,2-TRICHLOROETHANE          |            |              |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |              |            |             |
| 1,1-DICHLOROETHANE             |            |              |            |             |
| 1,1-DICHLOROETHENE             |            |              |            |             |
| 1,1-DICHLOROPROPENE            |            |              | -          |             |
| 1,2,3-TRICHLOROBENZENE         |            |              |            |             |
| 1,2,3-TRICHLOROPROPANE         |            | <del></del>  |            |             |
| 1,2,3-TRIMETHYLBENZENE         |            |              |            |             |
| 1,2,4-TRICHLOROBENZENE         |            |              |            |             |
| 1,2,4-TRIMETHYLBENZENE         |            |              |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |              |            |             |
| 1,2-DIBROMOETHANE              |            |              |            |             |
| 1,2-DICHLOROBENZENE            |            | <del></del>  |            |             |
| 1,2-DICHLOROETHANE             |            | <del></del>  |            |             |
| 1,2-DICHLOROPROPANE            |            |              |            |             |
| 1,3,5-TRIMETHYLBENZENE         |            |              |            |             |
| 1,3-DICHLOROBENZENE            |            |              |            |             |
| 1,3-DICHLOROPROPANE            |            |              |            |             |
| 1,3-DICHLOROPROPENE            |            |              |            |             |
| 1,4-DICHLOROBENZENE            |            | <del></del>  |            |             |
| 1,4-DIOXANE                    |            |              |            |             |
| 2,2-DICHLOROPROPANE            |            |              |            |             |
| 2-BUTANONE                     |            |              |            |             |
| 2-CHLOROETHYL VINYL ETHER      |            |              |            |             |
| 2-CHLOROTOLUENE                |            |              |            |             |
| 2-HEXANONE                     |            |              |            |             |
| 4-CHLOROTOLUENE                |            |              |            |             |
| 4-ISOPROPYLTOLUENE             |            |              |            |             |
| 4-METHYL-2-PENTANONE           |            |              |            |             |
| ACETONE                        |            |              |            |             |
| BENZENE                        |            |              |            |             |

| SOIL                      |            |              |            |            |
|---------------------------|------------|--------------|------------|------------|
| LOCATION                  | SB-650     | SB-650       | SB-650     | SB-651     |
| SAMPLE ID                 | F-SB-650-3 | F-SB-650-3-D | F-SB-650-5 | F-SB-651-1 |
| SAMPLE DATE               | 10/6/2009  | 10/6/2009    | 10/6/2009  | 10/7/2009  |
| BROMOBENZENE              |            |              |            |            |
| BROMOCHLOROMETHANE        |            |              |            |            |
| BROMODICHLOROMETHANE      |            |              |            |            |
| BROMOFORM                 |            |              |            |            |
| BROMOMETHANE              |            |              |            |            |
| CARBON DISULFIDE          |            |              |            |            |
| CARBON TETRACHLORIDE      |            |              |            |            |
| CHLOROBENZENE             |            |              |            |            |
| CHLORODIBROMOMETHANE      |            |              |            |            |
| CHLOROETHANE              |            |              |            |            |
| CHLOROFORM                |            |              |            |            |
| CHLOROMETHANE             |            |              |            |            |
| CIS-1,2-DICHLOROETHENE    |            |              |            |            |
| CIS-1,3-DICHLOROPROPENE   |            |              |            |            |
| DIBROMOMETHANE            |            |              |            |            |
| DICHLORODIFLUOROMETHANE   |            |              |            |            |
| DIISOPROPYL ETHER         |            |              |            |            |
| ETHYL TERT-BUTYL ETHER    |            |              |            |            |
| ETHYLBENZENE              |            |              |            |            |
| FLUORODICHLOROMETHANE     |            |              |            |            |
| HEXACHLOROBUTADIENE       |            |              |            |            |
| ISOPROPYLBENZENE          |            |              |            |            |
| M+P-XYLENES               |            |              |            |            |
| METHYL TERT-BUTYL ETHER   |            |              |            |            |
| METHYLENE CHLORIDE        |            |              |            |            |
| NAPHTHALENE               |            |              |            |            |
| N-BUTYLBENZENE            |            |              |            |            |
| N-PROPYLBENZENE           |            |              |            |            |
| O-XYLENE                  |            |              |            |            |
| SEC-BUTYLBENZENE          |            |              |            |            |
| STYRENE                   |            |              |            |            |
| TERT-AMYL METHYL ETHER    |            |              |            |            |
| TERT-BUTYLBENZENE         |            |              |            |            |
| TERTIARY-BUTYL ALCOHOL    |            |              |            |            |
| TETRACHLOROETHENE         |            |              |            |            |
| TOLUENE                   |            |              |            |            |
| TOTAL 1,2-DICHLOROETHENE  |            |              |            |            |
| TOTAL XYLENES             |            |              |            |            |
| TRANS-1,2-DICHLOROETHENE  |            |              |            |            |
| TRANS-1,3-DICHLOROPROPENE |            |              |            |            |
| -                         |            | •            | •          | •          |

#### SOIL

NAPHTHALENE

| 00.2                                     |                   |                   |                   |                   |
|------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| LOCATION                                 | SB-650            | SB-650            | SB-650            | SB-651            |
| SAMPLE ID                                | F-SB-650-3        | F-SB-650-3-D      | F-SB-650-5        | F-SB-651-1        |
| SAMPLE DATE                              | 10/6/2009         | 10/6/2009         | 10/6/2009         | 10/7/2009         |
| TRICHLOROETHENE                          |                   |                   |                   |                   |
| TRICHLOROFLUOROMETHANE                   |                   |                   |                   |                   |
| VINYL ACETATE                            |                   |                   |                   |                   |
| VINYL CHLORIDE                           |                   |                   |                   |                   |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |                   |                   |                   |
| 1-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| 2-METHYLNAPHTHALENE                      |                   |                   |                   |                   |
| ACENAPHTHENE                             |                   |                   |                   |                   |
| ACENAPHTHYLENE                           |                   |                   |                   |                   |
| ANTHRACENE                               |                   |                   |                   |                   |
| BAP EQUIVALENT-HALFND                    | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 13.7284 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 12.9689 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                   |                   |                   |                   |
| BENZO(A)ANTHRACENE                       | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   | 1.2 U [MDL=1.2]   | 8.8 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 2.1 U [MDL=2.1]   | 9.9 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]   | 1.5 U [MDL=1.5]   | 13 [MDL=1.4]      |
| BENZO(G,H,I)PERYLENE                     |                   |                   |                   |                   |
| BENZO(K)FLUORANTHENE                     | 1.5 U [MDL=1.5]   | 1.6 U [MDL=1.6]   | 1.6 U [MDL=1.6]   | 1.9 U [MDL=1.9]   |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C1-FLUORANTHENES/PYRENES                 |                   |                   |                   |                   |
| C1-FLUORENES                             |                   |                   |                   |                   |
| C1-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C2-FLUORENES                             |                   |                   |                   |                   |
| C2-NAPHTHALENES                          |                   |                   |                   |                   |
| C2-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C3-FLUORENES                             |                   |                   |                   |                   |
| C3-NAPHTHALENES                          |                   |                   |                   |                   |
| C3-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |                   |                   |                   |
| C4-NAPHTHALENES                          |                   |                   |                   |                   |
| C4-PHENANTHRENES/ANTHRACENES             |                   |                   |                   |                   |
| CHRYSENE                                 | 1.3 U [MDL=1.3]   | 1.3 U [MDL=1.3]   | 1.3 U [MDL=1.3]   | 8.9 [MDL=1]       |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6]   | 1.7 U [MDL=1.7]   | 1.7 U [MDL=1.7]   | 1.5 U [MDL=1.5]   |
| FLUORANTHENE                             |                   |                   |                   |                   |
| FLUORENE                                 |                   |                   |                   |                   |
| INDENO(1,2,3-CD)PYRENE                   | 0.41 U [MDL=0.41] | 0.41 U [MDL=0.41] | 0.42 U [MDL=0.42] | 8.8 [MDL=1.7]     |
|                                          |                   | · ·               |                   |                   |

#### SOIL

| LOCATION                       | SB-650        | SB-650        | SB-650        | SB-651         |
|--------------------------------|---------------|---------------|---------------|----------------|
| SAMPLE ID                      | F-SB-650-3    | F-SB-650-3-D  | F-SB-650-5    | F-SB-651-1     |
| SAMPLE DATE                    | 10/6/2009     | 10/6/2009     | 10/6/2009     | 10/7/2009      |
| PHENANTHRENE                   |               |               |               |                |
| PYRENE                         |               |               |               |                |
| TOTAL PAHS                     | 0 U [MDL=2.1] | 0 U [MDL=2.1] | 0 U [MDL=2.1] | 49.4 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               | •             |               |                |
| 4,4'-DDD                       |               |               |               |                |
| 4,4'-DDE                       |               |               |               |                |
| 4,4'-DDT                       |               |               |               |                |
| ALDRIN                         |               |               |               |                |
| ALPHA-BHC                      |               |               |               |                |
| ALPHA-CHLORDANE                |               |               |               |                |
| AROCLOR-1016                   |               |               |               | 24 U [MDL=24]  |
| AROCLOR-1221                   |               |               |               | 18 U [MDL=18]  |
| AROCLOR-1232                   |               |               |               | 16 U [MDL=16]  |
| AROCLOR-1242                   |               |               |               | 15 U [MDL=15]  |
| AROCLOR-1248                   |               |               |               | 19 U [MDL=19]  |
| AROCLOR-1254                   |               |               |               | 19 U [MDL=19]  |
| AROCLOR-1260                   |               |               |               | 19 U [MDL=19]  |
| BETA-BHC                       |               |               |               |                |
| DELTA-BHC                      |               |               |               |                |
| DIELDRIN                       |               |               |               |                |
| ENDOSULFAN I                   |               |               |               |                |
| ENDOSULFAN II                  |               |               |               |                |
| ENDOSULFAN SULFATE             |               |               |               |                |
| ENDRIN                         |               |               |               |                |
| ENDRIN ALDEHYDE                |               |               |               |                |
| ENDRIN KETONE                  |               |               |               |                |
| GAMMA-BHC (LINDANE)            |               |               |               |                |
| GAMMA-CHLORDANE                |               |               |               |                |
| HEPTACHLOR                     |               |               |               |                |
| HEPTACHLOR EPOXIDE             |               |               |               |                |
| METHOXYCHLOR                   |               |               |               |                |
| TOTAL AROCLOR                  |               |               |               | 0 U [MDL=24]   |
| FOTAL DDT POS                  |               |               |               |                |
| TOXAPHENE                      |               |               |               |                |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               | -             | •              |
| DIESEL RANGE ORGANICS          |               |               |               |                |
| GASOLINE RANGE ORGANICS        |               |               |               |                |
| TPH (C09-C36)                  |               |               |               |                |

#### SOIL

| Ī         | 1         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SB-652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F-SB-652-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10/7/2009 | 10/7/2009 | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |           | F-SB-651-3 10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009  10/7/2009 | F-SB-651-3 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/ |

#### SOIL

| LOCATION                    | SB-651     | SB-651     | SB-652     | SB-652     |
|-----------------------------|------------|------------|------------|------------|
| SAMPLE ID                   | F-SB-651-3 | F-SB-651-5 | F-SB-652-1 | F-SB-652-3 |
| SAMPLE DATE                 | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| 2-CHLORONAPHTHALENE         |            |            |            |            |
| 2-CHLOROPHENOL              |            |            |            |            |
| 2-METHYLPHENOL              |            |            |            |            |
| 2-NITROANILINE              |            |            |            |            |
| 2-NITROPHENOL               |            |            |            |            |
| 3&4-METHYLPHENOL            |            |            |            |            |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |            |
| 3-NITROANILINE              |            |            |            |            |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |            |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |            |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |            |
| 4-CHLOROANILINE             |            |            |            |            |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |            |
| 4-NITROANILINE              |            |            |            |            |
| 4-NITROPHENOL               |            |            |            |            |
| ACETOPHENONE                |            |            |            |            |
| ANILINE                     |            |            |            |            |
| ATRAZINE                    |            |            |            |            |
| AZOBENZENE                  |            |            |            |            |
| BENZIDINE                   |            |            |            |            |
| BENZOIC ACID                |            |            |            |            |
| BENZYL ALCOHOL              |            |            |            |            |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |            |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |            |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |            |
| BUTYL BENZYL PHTHALATE      |            |            |            |            |
| CAPROLACTAM                 |            |            |            |            |
| CARBAZOLE                   |            |            |            |            |
| DIBENZOFURAN                |            |            |            |            |
| DIETHYL PHTHALATE           |            |            |            |            |
| DIMETHYL PHTHALATE          |            |            |            |            |
| DI-N-BUTYL PHTHALATE        |            |            |            |            |
| DI-N-OCTYL PHTHALATE        |            |            |            |            |
| HEXACHLOROBENZENE           |            |            |            |            |
| HEXACHLOROBUTADIENE         |            |            |            |            |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |            |
| HEXACHLOROETHANE            |            |            |            |            |
| ISOPHORONE                  |            |            |            |            |
| NITROBENZENE                |            |            |            |            |
| N-NITROSODIMETHYLAMINE      |            |            |            |            |

#### SOIL

| SOIL                           | 00.054     |            | 00.050     | 00.050     |
|--------------------------------|------------|------------|------------|------------|
| LOCATION                       | SB-651     | SB-651     | SB-652     | SB-652     |
| SAMPLE ID                      | F-SB-651-3 | F-SB-651-5 | F-SB-652-1 | F-SB-652-3 |
| SAMPLE DATE                    | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |            |
| N-NITROSODIPHENYLAMINE         |            |            |            |            |
| PENTACHLOROPHENOL              |            |            |            |            |
| PHENOL                         |            |            |            |            |
| PYRIDINE                       |            |            |            |            |
| VOLATILES (UG/KG)              |            |            |            |            |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,1-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |            |
| 1,1,2-TRICHLOROETHANE          |            |            |            |            |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |            |
| 1,1-DICHLOROETHANE             |            |            |            |            |
| 1,1-DICHLOROETHENE             |            |            |            |            |
| 1,1-DICHLOROPROPENE            |            |            |            |            |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |            |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |            |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |            |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |            |
| 1,2-DIBROMOETHANE              |            |            |            |            |
| 1,2-DICHLOROBENZENE            |            |            |            |            |
| 1,2-DICHLOROETHANE             |            |            |            |            |
| 1,2-DICHLOROPROPANE            |            |            |            |            |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |            |
| 1,3-DICHLOROBENZENE            |            |            |            |            |
| 1,3-DICHLOROPROPANE            |            |            |            |            |
| 1,3-DICHLOROPROPENE            |            |            |            |            |
| 1,4-DICHLOROBENZENE            |            |            |            |            |
| 1,4-DIOXANE                    |            |            |            |            |
| 2,2-DICHLOROPROPANE            |            |            |            |            |
| 2-BUTANONE                     |            |            |            |            |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |            |
| 2-CHLOROTOLUENE                |            |            |            |            |
| 2-HEXANONE                     |            |            |            |            |
| 4-CHLOROTOLUENE                |            |            |            |            |
| 4-ISOPROPYLTOLUENE             |            |            |            |            |
| 4-METHYL-2-PENTANONE           |            |            |            |            |
| ACETONE                        |            |            |            |            |
| BENZENE                        |            |            |            |            |
|                                |            |            |            |            |

| LOCATION   SB-651   SB-652   SB-652   SB-652   SAMPLE ID   F-SB-651-3   F-SB-651-3   F-SB-652-3   SAMPLE ID   F-SB-651-3   F-SB-652-3   SAMPLE ID   F-SB-651-3   F-SB-652-3   SAMPLE ID   F-SB-652 | SOIL                      |            |            |            |            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|------------|------------|------------|--|--|
| SAMPLE DATE   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   1077/2009   10 | LOCATION                  | SB-651     | SB-651     | SB-652     | SB-652     |  |  |
| BROMOBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE ID                 | F-SB-651-3 | F-SB-651-5 | F-SB-652-1 | F-SB-652-3 |  |  |
| BROMOCHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMPLE DATE               | 10/7/2009  | 10/7/2009  | 10/7/2009  | 10/7/2009  |  |  |
| BROMODICHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BROMOBENZENE              |            |            |            |            |  |  |
| BROMOFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BROMOCHLOROMETHANE        |            |            |            |            |  |  |
| BROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BROMODICHLOROMETHANE      |            |            |            |            |  |  |
| CARBON DISULFIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BROMOFORM                 |            |            |            |            |  |  |
| CARBON TETRACHLORIDE <td>BROMOMETHANE</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BROMOMETHANE              |            |            |            |            |  |  |
| CHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CARBON DISULFIDE          |            |            |            |            |  |  |
| CHLORODIBROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CARBON TETRACHLORIDE      |            |            |            |            |  |  |
| CHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHLOROBENZENE             |            |            |            |            |  |  |
| CHLOROFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHLORODIBROMOMETHANE      |            |            |            |            |  |  |
| CHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHLOROETHANE              |            |            |            |            |  |  |
| CIS-1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHLOROFORM                |            |            |            |            |  |  |
| CIS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHLOROMETHANE             |            |            |            |            |  |  |
| DIBROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIS-1,2-DICHLOROETHENE    |            |            |            |            |  |  |
| DICHLORODIFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIS-1,3-DICHLOROPROPENE   |            |            |            |            |  |  |
| DIISOPROPYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIBROMOMETHANE            |            |            |            |            |  |  |
| ETHYL TERT-BUTYL ETHER                                                                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DICHLORODIFLUOROMETHANE   |            |            |            |            |  |  |
| ETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIISOPROPYL ETHER         |            |            |            |            |  |  |
| FLUORODICHLOROMETHANE               HEXACHLOROBUTADIENE               ISOPROPYLBENZENE               M+P-XYLENES               METHYL TERT-BUTYL ETHER               METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETHYL TERT-BUTYL ETHER    |            |            |            |            |  |  |
| HEXACHLOROBUTADIENE               ISOPROPYLBENZENE               M+P-XYLENES               METHYL TERT-BUTYL ETHER               METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ETHYLBENZENE              |            |            |            |            |  |  |
| ISOPROPYLBENZENE               M+P-XYLENES               METHYL TERT-BUTYL ETHER                METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FLUORODICHLOROMETHANE     |            |            |            |            |  |  |
| M+P-XYLENES                METHYL TERT-BUTYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEXACHLOROBUTADIENE       |            |            |            |            |  |  |
| METHYL TERT-BUTYL ETHER                METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISOPROPYLBENZENE          |            |            |            |            |  |  |
| METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M+P-XYLENES               |            |            |            |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | METHYL TERT-BUTYL ETHER   |            |            |            |            |  |  |
| NAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | METHYLENE CHLORIDE        |            |            |            |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NAPHTHALENE               |            |            |            |            |  |  |
| N-BUTYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-BUTYLBENZENE            |            |            |            |            |  |  |
| N-PROPYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-PROPYLBENZENE           |            |            |            |            |  |  |
| O-XYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O-XYLENE                  |            |            |            |            |  |  |
| SEC-BUTYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SEC-BUTYLBENZENE          |            |            |            |            |  |  |
| STYRENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STYRENE                   |            |            |            |            |  |  |
| TERT-AMYL METHYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERT-AMYL METHYL ETHER    |            |            |            |            |  |  |
| TERT-BUTYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TERT-BUTYLBENZENE         |            |            |            |            |  |  |
| TERTIARY-BUTYL ALCOHOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERTIARY-BUTYL ALCOHOL    |            |            |            |            |  |  |
| TETRACHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TETRACHLOROETHENE         |            |            |            |            |  |  |
| TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOLUENE                   |            |            |            |            |  |  |
| TOTAL 1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL 1,2-DICHLOROETHENE  |            |            |            |            |  |  |
| TOTAL XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL XYLENES             |            |            |            |            |  |  |
| TRANS-1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRANS-1,2-DICHLOROETHENE  |            |            |            |            |  |  |
| TRANS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRANS-1,3-DICHLOROPROPENE |            |            |            |            |  |  |

#### SOIL

| LOCATION                                 | SB-651          | SB-651          | SB-652           | SB-652           |
|------------------------------------------|-----------------|-----------------|------------------|------------------|
| SAMPLE ID                                | F-SB-651-3      | F-SB-651-5      | F-SB-652-1       | F-SB-652-3       |
| SAMPLE DATE                              | 10/7/2009       | 10/7/2009       | 10/7/2009        | 10/7/2009        |
| TRICHLOROETHENE                          |                 |                 |                  |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                  |                  |
| VINYL ACETATE                            |                 |                 |                  |                  |
| VINYL CHLORIDE                           |                 |                 |                  |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                  |                  |
| 1-METHYLNAPHTHALENE                      |                 |                 |                  |                  |
| 2-METHYLNAPHTHALENE                      |                 |                 |                  |                  |
| ACENAPHTHENE                             |                 |                 |                  |                  |
| ACENAPHTHYLENE                           |                 |                 |                  |                  |
| ANTHRACENE                               |                 |                 |                  |                  |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 342.45 [MDL=1.5] | 33.415 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 342.45 [MDL=1.5] | 32.615 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                 |                 |                  |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 260 [MDL=1.1]    | 23 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 230 [MDL=1.5]    | 25 [MDL=1.6]     |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 330 [MDL=1.4]    | 35 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                  |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 120 [MDL=2]      | 9.0 [MDL=2]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                  |                  |
| C1-FLUORENES                             |                 |                 |                  |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                  |
| C2-FLUORENES                             |                 |                 |                  |                  |
| C2-NAPHTHALENES                          |                 |                 |                  |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                  |
| C3-FLUORENES                             |                 |                 |                  |                  |
| C3-NAPHTHALENES                          |                 |                 |                  |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                  |                  |
| C4-NAPHTHALENES                          |                 |                 |                  |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                  |                  |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]   | 250 [MDL=1]      | 25 [MDL=1.1]     |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 38 [MDL=1.5]     | 1.6 U [MDL=1.6]  |
| FLUORANTHENE                             |                 |                 |                  |                  |
| FLUORENE                                 |                 |                 |                  |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7] | 140 [MDL=1.7]    | 17 [MDL=1.8]     |
| NAPHTHALENE                              |                 |                 |                  |                  |

#### SOIL

| SB-651        | SB-651        | SB-652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB-652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-SB-652-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 U [MDL=1.5] |               | 1368 [MDL=1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 134 [MDL=1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0 0 [2]       | 0 0 [2]       | 1000 [225]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.1 [220]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | T             | T !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 U [MDL=25] | 24 U [MDL=24] | 24 U [MDL=24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 U [MDL=25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 U [MDL=19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16 U [MDL=16] | 16 U [MDL=16] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 U [MDL=17]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 U [MDL=16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 U [MDL=20] | 20 U [MDL=20] | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 U [MDL=20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 U [MDL=25]  | 0 U [MDL=24]  | 0 U [MDL=24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 U [MDL=25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 0 U [MDL=1.5] | F-SB-651-3 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/ | F-SB-651-3 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/2009 1077/ |

#### SOIL

| SUIL                         |            | 1          |            | 1           |
|------------------------------|------------|------------|------------|-------------|
| LOCATION                     | SB-652     | SB-652     | SB-652     | SB-652A     |
| SAMPLE ID                    | F-SB-652-5 | F-SB-652-7 | F-SB-652-9 | F-SB-652A-1 |
| SAMPLE DATE                  | 10/7/2009  | 10/19/2009 | 10/19/2009 | 11/5/2009   |
| METALS (MG/KG)               |            |            |            |             |
| ANTIMONY                     |            |            |            |             |
| ARSENIC                      |            |            |            |             |
| BARIUM                       |            |            |            |             |
| BERYLLIUM                    |            |            |            |             |
| CADMIUM                      |            |            |            |             |
| CHROMIUM                     |            |            |            |             |
| COBALT                       |            |            |            |             |
| COPPER                       |            |            |            |             |
| LEAD                         |            |            |            |             |
| MERCURY                      |            |            |            |             |
| MOLYBDENUM                   |            |            |            |             |
| NICKEL                       |            |            |            |             |
| SELENIUM                     |            |            |            |             |
| SILVER                       |            |            |            |             |
| THALLIUM                     |            |            |            |             |
| VANADIUM                     |            |            |            |             |
| ZINC                         |            |            |            |             |
| MISCELLANEOUS PARAMETERS     | •          |            |            |             |
| PERCENT SOLIDS (%)           |            |            |            |             |
| TOTAL SOLIDS (%)             |            |            |            |             |
| HEXAVALENT CHROMIUM (MG/KG)  |            |            |            |             |
| TOTAL ORGANIC CARBON (MG/KG) |            |            |            |             |
| PH (S.U.)                    |            |            |            |             |
| MERCURY (METHYL) (UG/KG)     |            |            |            |             |
| SEMIVOLATILES (UG/KG)        |            |            | •          |             |
| 1,1-BIPHENYL                 |            |            |            |             |
| 1,2,4-TRICHLOROBENZENE       |            |            |            |             |
| I,2-DICHLOROBENZENE          |            |            |            |             |
| 1,3-DICHLOROBENZENE          |            |            |            |             |
| I,4-DICHLOROBENZENE          |            |            |            |             |
| ,4-DIOXANE                   |            |            |            |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |            |            |            |             |
| 2,4,5-TRICHLOROPHENOL        |            |            |            |             |
| 2,4,6-TRICHLOROPHENOL        |            |            |            |             |
| 2,4-DICHLOROPHENOL           |            |            |            |             |
| 2,4-DIMETHYLPHENOL           |            |            |            |             |
| 2,4-DINITROPHENOL            |            |            |            |             |
| 2,4-DINITROTOLUENE           |            |            |            |             |
| 2,6-DINITROTOLUENE           |            |            |            |             |
| 2,0-DINITROTOLUEINE          |            |            |            |             |

| SOIL                        |            | T          |            | T           |
|-----------------------------|------------|------------|------------|-------------|
| LOCATION                    | SB-652     | SB-652     | SB-652     | SB-652A     |
| SAMPLE ID                   | F-SB-652-5 | F-SB-652-7 | F-SB-652-9 | F-SB-652A-1 |
| SAMPLE DATE                 | 10/7/2009  | 10/19/2009 | 10/19/2009 | 11/5/2009   |
| 2-CHLORONAPHTHALENE         |            |            |            |             |
| 2-CHLOROPHENOL              |            |            |            |             |
| 2-METHYLPHENOL              |            |            |            |             |
| 2-NITROANILINE              |            |            |            |             |
| 2-NITROPHENOL               |            |            |            |             |
| 3&4-METHYLPHENOL            |            |            |            |             |
| 3,3'-DICHLOROBENZIDINE      |            |            |            |             |
| 3-NITROANILINE              |            |            |            |             |
| 4,6-DINITRO-2-METHYLPHENOL  |            |            |            |             |
| 4-BROMOPHENYL PHENYL ETHER  |            |            |            |             |
| 4-CHLORO-3-METHYLPHENOL     |            |            |            |             |
| 4-CHLOROANILINE             |            |            |            |             |
| 4-CHLOROPHENYL PHENYL ETHER |            |            |            |             |
| 4-NITROANILINE              |            |            |            |             |
| 4-NITROPHENOL               |            |            |            |             |
| ACETOPHENONE                |            |            |            |             |
| ANILINE                     |            |            |            |             |
| ATRAZINE                    |            |            |            |             |
| AZOBENZENE                  |            |            |            |             |
| BENZIDINE                   |            |            |            |             |
| BENZOIC ACID                |            |            |            |             |
| BENZYL ALCOHOL              |            |            |            |             |
| BIS(2-CHLOROETHOXY)METHANE  |            |            |            |             |
| BIS(2-CHLOROETHYL)ETHER     |            |            |            |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |            |            |            |             |
| BUTYL BENZYL PHTHALATE      |            |            |            |             |
| CAPROLACTAM                 |            |            |            |             |
| CARBAZOLE                   |            |            |            |             |
| DIBENZOFURAN                |            |            |            |             |
| DIETHYL PHTHALATE           |            |            |            |             |
| DIMETHYL PHTHALATE          |            |            |            |             |
| DI-N-BUTYL PHTHALATE        |            |            |            |             |
| DI-N-OCTYL PHTHALATE        |            |            |            |             |
| HEXACHLOROBENZENE           |            |            |            |             |
| HEXACHLOROBUTADIENE         |            |            |            |             |
| HEXACHLOROCYCLOPENTADIENE   |            |            |            |             |
| HEXACHLOROETHANE            |            |            |            |             |
| ISOPHORONE                  |            |            |            |             |
| NITROBENZENE                |            |            |            |             |
| N-NITROSODIMETHYLAMINE      |            |            |            |             |

#### SOIL

| LOCATION                       | SB-652     | SB-652     | SB-652     | SB-652A     |
|--------------------------------|------------|------------|------------|-------------|
| SAMPLE ID                      | F-SB-652-5 | F-SB-652-7 | F-SB-652-9 | F-SB-652A-1 |
| SAMPLE DATE                    | 10/7/2009  | 10/19/2009 | 10/19/2009 | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |            |            |            |             |
| N-NITROSODIPHENYLAMINE         |            |            |            |             |
| PENTACHLOROPHENOL              |            |            |            |             |
| PHENOL                         |            |            |            |             |
| PYRIDINE                       |            |            |            |             |
| VOLATILES (UG/KG)              |            |            |            |             |
| 1,1,1,2-TETRACHLOROETHANE      |            |            |            |             |
| 1,1,1-TRICHLOROETHANE          |            |            |            |             |
| 1,1,2,2-TETRACHLOROETHANE      |            |            |            |             |
| 1,1,2-TRICHLOROETHANE          |            |            |            |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |            |            |            |             |
| 1,1-DICHLOROETHANE             |            |            |            |             |
| 1,1-DICHLOROETHENE             |            |            |            |             |
| 1,1-DICHLOROPROPENE            |            |            |            |             |
| 1,2,3-TRICHLOROBENZENE         |            |            |            |             |
| 1,2,3-TRICHLOROPROPANE         |            |            |            |             |
| 1,2,3-TRIMETHYLBENZENE         |            |            |            |             |
| 1,2,4-TRICHLOROBENZENE         |            |            |            |             |
| 1,2,4-TRIMETHYLBENZENE         |            |            |            |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |            |            |            |             |
| 1,2-DIBROMOETHANE              |            |            |            |             |
| 1,2-DICHLOROBENZENE            |            |            |            |             |
| 1,2-DICHLOROETHANE             |            |            |            |             |
| 1,2-DICHLOROPROPANE            |            |            |            |             |
| 1,3,5-TRIMETHYLBENZENE         |            |            |            |             |
| 1,3-DICHLOROBENZENE            |            |            |            |             |
| 1,3-DICHLOROPROPANE            |            |            |            |             |
| 1,3-DICHLOROPROPENE            |            |            |            |             |
| 1,4-DICHLOROBENZENE            |            |            |            |             |
| 1,4-DIOXANE                    |            |            |            |             |
| 2,2-DICHLOROPROPANE            |            |            |            |             |
| 2-BUTANONE                     |            |            |            |             |
| 2-CHLOROETHYL VINYL ETHER      |            |            |            |             |
| 2-CHLOROTOLUENE                |            |            |            |             |
| 2-HEXANONE                     |            |            |            |             |
| 4-CHLOROTOLUENE                |            |            |            |             |
| 4-ISOPROPYLTOLUENE             |            |            |            |             |
| 4-METHYL-2-PENTANONE           |            |            |            |             |
| ACETONE                        |            |            |            |             |
| BENZENE                        |            |            |            |             |

| SOIL                      |            |            |            |             |
|---------------------------|------------|------------|------------|-------------|
| LOCATION                  | SB-652     | SB-652     | SB-652     | SB-652A     |
| SAMPLE ID                 | F-SB-652-5 | F-SB-652-7 | F-SB-652-9 | F-SB-652A-1 |
| SAMPLE DATE               | 10/7/2009  | 10/19/2009 | 10/19/2009 | 11/5/2009   |
| BROMOBENZENE              |            |            |            |             |
| BROMOCHLOROMETHANE        |            |            |            |             |
| BROMODICHLOROMETHANE      |            |            |            |             |
| BROMOFORM                 |            |            |            |             |
| BROMOMETHANE              |            |            |            |             |
| CARBON DISULFIDE          |            |            |            |             |
| CARBON TETRACHLORIDE      |            |            |            |             |
| CHLOROBENZENE             |            |            |            |             |
| CHLORODIBROMOMETHANE      |            |            |            |             |
| CHLOROETHANE              |            |            |            |             |
| CHLOROFORM                |            |            |            |             |
| CHLOROMETHANE             |            |            |            |             |
| CIS-1,2-DICHLOROETHENE    |            |            |            |             |
| CIS-1,3-DICHLOROPROPENE   |            |            |            |             |
| DIBROMOMETHANE            |            |            |            |             |
| DICHLORODIFLUOROMETHANE   |            |            |            |             |
| DIISOPROPYL ETHER         |            |            |            |             |
| ETHYL TERT-BUTYL ETHER    |            |            |            |             |
| ETHYLBENZENE              |            |            |            |             |
| FLUORODICHLOROMETHANE     |            |            |            |             |
| HEXACHLOROBUTADIENE       |            |            |            |             |
| ISOPROPYLBENZENE          |            |            |            |             |
| M+P-XYLENES               |            |            |            |             |
| METHYL TERT-BUTYL ETHER   |            |            |            |             |
| METHYLENE CHLORIDE        |            |            |            |             |
| NAPHTHALENE               |            |            |            |             |
| N-BUTYLBENZENE            |            |            |            |             |
| N-PROPYLBENZENE           |            |            |            |             |
| O-XYLENE                  |            |            |            |             |
| SEC-BUTYLBENZENE          |            |            |            |             |
| STYRENE                   |            |            |            |             |
| TERT-AMYL METHYL ETHER    |            |            |            |             |
| TERT-BUTYLBENZENE         |            |            |            |             |
| TERTIARY-BUTYL ALCOHOL    |            |            |            |             |
| TETRACHLOROETHENE         |            |            |            |             |
| TOLUENE                   |            |            |            |             |
| TOTAL 1,2-DICHLOROETHENE  |            |            |            |             |
| TOTAL XYLENES             |            |            |            |             |
| TRANS-1,2-DICHLOROETHENE  |            |            |            |             |
| TRANS-1,3-DICHLOROPROPENE |            |            |            |             |
| 1                         | •          | •          | •          | •           |

#### SOIL

| LOCATION                                 | SB-652           | SB-652          | SB-652          | SB-652A          |
|------------------------------------------|------------------|-----------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-652-5       | F-SB-652-7      | F-SB-652-9      | F-SB-652A-1      |
| SAMPLE DATE                              | 10/7/2009        | 10/19/2009      | 10/19/2009      | 11/5/2009        |
| TRICHLOROETHENE                          |                  |                 |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                  |                 |                 |                  |
| VINYL ACETATE                            |                  |                 |                 |                  |
| VINYL CHLORIDE                           |                  |                 |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                |                 |                 | •                |
| 1-METHYLNAPHTHALENE                      |                  |                 |                 |                  |
| 2-METHYLNAPHTHALENE                      |                  |                 |                 |                  |
| ACENAPHTHENE                             |                  |                 |                 |                  |
| ACENAPHTHYLENE                           |                  |                 |                 |                  |
| ANTHRACENE                               |                  |                 |                 |                  |
| BAP EQUIVALENT-HALFND                    | 390.77 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 228.02 [MDL=1.6] |
| BAP EQUIVALENT-POS                       | 390.77 [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 228.02 [MDL=1.6] |
| BAP EQUIVALENT-UCL                       |                  |                 |                 |                  |
| BENZO(A)ANTHRACENE                       | 300 [MDL=1.1]    | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 150 [MDL=1.2]    |
| BENZO(A)PYRENE                           | 260 [MDL=1.5]    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 150 [MDL=1.6]    |
| BENZO(B)FLUORANTHENE                     | 330 [MDL=1.4]    | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 200 [MDL=1.5]    |
| BENZO(G,H,I)PERYLENE                     |                  |                 |                 |                  |
| BENZO(K)FLUORANTHENE                     | 150 [MDL=2]      | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 96 [MDL=2.1]     |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                  |                 |                 |                  |
| C1-FLUORENES                             |                  |                 |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                  |
| C2-FLUORENES                             |                  |                 |                 |                  |
| C2-NAPHTHALENES                          |                  |                 |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                  |
| C3-FLUORENES                             |                  |                 |                 |                  |
| C3-NAPHTHALENES                          |                  |                 |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                 |                 |                  |
| C4-NAPHTHALENES                          |                  |                 |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                  |                 |                 |                  |
| CHRYSENE                                 | 270 [MDL=1.1]    | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 160 [MDL=1.1]    |
| DIBENZO(A,H)ANTHRACENE                   | 51 [MDL=1.5]     | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 33 [MDL=1.6]     |
| FLUORANTHENE                             |                  |                 |                 |                  |
| FLUORENE                                 |                  |                 |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 150 [MDL=1.8]    | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 89 [MDL=1.8]     |
| NAPHTHALENE                              |                  |                 |                 |                  |

#### SOIL

| LOCATION                       | SB-652         | SB-652         | SB-652        | SB-652A       |
|--------------------------------|----------------|----------------|---------------|---------------|
| SAMPLE ID                      | F-SB-652-5     | F-SB-652-7     | F-SB-652-9    | F-SB-652A-1   |
| SAMPLE DATE                    | 10/7/2009      | 10/19/2009     | 10/19/2009    | 11/5/2009     |
| PHENANTHRENE                   |                |                |               |               |
| PYRENE                         |                |                |               |               |
| TOTAL PAHS                     | 1511 [MDL=1.5] | 0 U [MDL=1.5]  | 0 U [MDL=1.5] | 878 [MDL=1.6] |
| PESTICIDES/PCBS (UG/KG)        | 1011 [MDL=1.0] | 0 0 [WIDE=1.0] | 0 0 [MBL=1.5] | 070 [MDL=1.0] |
| 4,4'-DDD                       |                |                |               |               |
| 4,4'-DDE                       |                |                |               |               |
| 4,4'-DDT                       |                |                |               |               |
| ALDRIN                         |                |                |               |               |
| ALPHA-BHC                      |                |                |               |               |
| ALPHA-CHLORDANE                |                |                |               |               |
| AROCLOR-1016                   | 25 U [MDL=25]  |                |               | <del></del>   |
| AROCLOR-1221                   | 19 U [MDL=19]  |                |               |               |
| AROCLOR-1232                   | 17 U [MDL=17]  |                |               | <del></del>   |
| AROCLOR-1242                   | 15 U [MDL=15]  |                |               |               |
| AROCLOR-1248                   | 20 U [MDL=20]  |                |               |               |
| AROCLOR-1254                   | 20 U [MDL=20]  |                |               |               |
| AROCLOR-1260                   | 20 U [MDL=20]  |                |               |               |
| BETA-BHC                       |                |                |               |               |
| DELTA-BHC                      |                |                |               |               |
| DIELDRIN                       |                |                |               |               |
| ENDOSULFAN I                   |                |                |               |               |
| ENDOSULFAN II                  |                |                |               |               |
| ENDOSULFAN SULFATE             |                |                |               |               |
| ENDRIN                         |                |                |               |               |
| ENDRIN ALDEHYDE                |                |                |               |               |
| ENDRIN KETONE                  |                |                |               |               |
| GAMMA-BHC (LINDANE)            |                |                |               |               |
| GAMMA-CHLORDANE                |                |                |               | <del></del>   |
| HEPTACHLOR                     |                |                |               |               |
| HEPTACHLOR EPOXIDE             |                |                |               |               |
| METHOXYCHLOR                   |                |                |               |               |
| TOTAL AROCLOR                  | 0 U [MDL=25]   |                |               |               |
| TOTAL DDT POS                  |                |                |               |               |
| TOXAPHENE                      |                |                |               |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |                |               |               |
| DIESEL RANGE ORGANICS          |                |                |               |               |
| GASOLINE RANGE ORGANICS        |                |                |               |               |
| TPH (C09-C36)                  |                |                |               |               |
|                                |                |                |               |               |

#### SOIL

| LOCATION   SB-652A   SB-652A   SB-652A   SB-652A   SB-652A   SAMPLE ID   F-SB-652A-3   F-SB-652A-5   F-SB-652A-7   SAMPLE DATE   11/5/2009   11/5/2009   11/5/2009   11/5/2009                                                                                                                                                                                              | SB-652B<br>F-SB-652B-1<br>11/5/2009 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| SAMPLE DATE         11/5/2009         11/5/2009           METALS (MG/KG)           ANTIMONY              ARSENIC              BARIUM              BERYLLIUM              CADMIUM              CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER |                                     |
| METALS (MG/KG)           ANTIMONY                                                                                                                                                                                                                                                                                                                                           | 11/5/2009                           |
| ANTIMONY              ARSENIC              BARIUM              BERYLLIUM              CADMIUM              CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                    |                                     |
| ARSENIC              BARIUM              BERYLLIUM              CADMIUM              CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                          |                                     |
| BARIUM              BERYLLIUM              CADMIUM              CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                               |                                     |
| BERYLLIUM                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| CADMIUM              CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                          |                                     |
| CHROMIUM              COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                               |                                     |
| COBALT              COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                     |                                     |
| COPPER              LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                                         |                                     |
| LEAD              MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                                                             |                                     |
| MERCURY              MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                                                                               |                                     |
| MOLYBDENUM              NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                                                                                                    |                                     |
| NICKEL              SELENIUM              SILVER                                                                                                                                                                                                                                                                                                                            |                                     |
| SELENIUM              SILVER                                                                                                                                                                                                                                                                                                                                                |                                     |
| SILVER                                                                                                                                                                                                                                                                                                                                                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| THALLIUM                                                                                                                                                                                                                                                                                                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| VANADIUM                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| ZINC                                                                                                                                                                                                                                                                                                                                                                        |                                     |
| MISCELLANEOUS PARAMETERS                                                                                                                                                                                                                                                                                                                                                    |                                     |
| PERCENT SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                          |                                     |
| TOTAL SOLIDS (%)                                                                                                                                                                                                                                                                                                                                                            |                                     |
| HEXAVALENT CHROMIUM (MG/KG)                                                                                                                                                                                                                                                                                                                                                 |                                     |
| TOTAL ORGANIC CARBON (MG/KG)                                                                                                                                                                                                                                                                                                                                                |                                     |
| PH (S.U.)                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| MERCURY (METHYL) (UG/KG)                                                                                                                                                                                                                                                                                                                                                    |                                     |
| SEMIVOLATILES (UG/KG)                                                                                                                                                                                                                                                                                                                                                       |                                     |
| 1,1-BIPHENYL                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 1,2,4-TRICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                      |                                     |
| 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                         |                                     |
| 1,3-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                         |                                     |
| 1,4-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                         |                                     |
| 1,4-DIOXANE                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                                                                                                                                                                                                                                                                                                                                                |                                     |
| 2,4,5-TRICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                       |                                     |
| 2,4,6-TRICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                       |                                     |
| 2,4-DICHLOROPHENOL                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 2,4-DIMETHYLPHENOL                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 2,4-DINITROPHENOL                                                                                                                                                                                                                                                                                                                                                           |                                     |
| 2,4-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 2,6-DINITROTOLUENE                                                                                                                                                                                                                                                                                                                                                          |                                     |

| SAMPLE ID                                                                                                                                                                                   |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| SAMPLE DATE                                                                                                                                                                                 | 552B   |
| 2.CHLORONAPHTHALENE                                                                                                                                                                         | 652B-1 |
| 2-CHLOROPHENOL                                                                                                                                                                              | 2009   |
| 2-METHYLPHENOL                                                                                                                                                                              | -      |
| 2-NITROPHENOL                                                                                                                                                                               | -      |
| 2-NITROPHENOL                                                                                                                                                                               | -      |
| 38-4METHYLPHENOL                                                                                                                                                                            | -      |
| 3.9-IDICHLOROBENZIDINE                                                                                                                                                                      | -      |
| 3-NITROANILINE                                                                                                                                                                              | -      |
| 4.6-DINITRO-2-METHYLPHENOL                                                                                                                                                                  | -      |
| 4-BROMOPHENYL PHENYL ETHER                                                                                                                                                                  | -      |
| 4-CHLORO-3-METHYLPHENOL                                                                                                                                                                     | -      |
| 4-CHLOROANILINE                                                                                                                                                                             | -      |
| 4-CHLOROPHENYL PHENYL ETHER                                                                                                                                                                 | -      |
| 4-NITROANILINE                                                                                                                                                                              | -      |
| 4-NITROPHENOL                                                                                                                                                                               | -      |
| ACETOPHENONE                                                                                                                                                                                | -      |
| ANILINE                                                                                                                                                                                     | -      |
| ATRAZINE                                                                                                                                                                                    | -      |
| AZOBENZENE                                                                                                                                                                                  | -      |
| BENZIDINE                                                                                                                                                                                   | -      |
| BENZOIC ACID              BENZYL ALCOHOL                                                                                                      -                                             | -      |
| BENZYL ALCOHOL              BIS(2-CHLOROETHOXY)METHANE                                                                                                                                      | -      |
| BIS(2-CHLOROETHOXY)METHANE              BIS(2-CHLOROETHYL)ETHER              BIS(2-ETHYLHEXYL)PHTHALATE              BUTYL BENZYL PHTHALATE              CAPROLACTAM              CARBAZOLE | -      |
| BIS(2-CHLOROETHYL)ETHER                                                                                                                                                                     | -      |
| BIS(2-ETHYLHEXYL)PHTHALATE              BUTYL BENZYL PHTHALATE              CAPROLACTAM              CARBAZOLE                                                                              | -      |
| BUTYL BENZYL PHTHALATE                                                                                                           <                                                          | -      |
| CAPROLACTAM                                                                                                                                                                                 | -      |
| CARBAZOLE                                                                                                                                                                                   | -      |
|                                                                                                                                                                                             | -      |
|                                                                                                                                                                                             | -      |
| DIBENZOFURAN                                                                                                                                                                                | -      |
| DIETHYL PHTHALATE                                                                                                                                                                           | -      |
| DIMETHYL PHTHALATE                                                                                                                                                                          | -      |
| DI-N-BUTYL PHTHALATE                                                                                                                                                                        | -      |
| DI-N-OCTYL PHTHALATE                                                                                                                                                                        | -      |
|                                                                                                                                                                                             |        |
| HEXACHLOROBUTADIENE                                                                                                                                                                         |        |
| HEXACHLOROCYCLOPENTADIENE                                                                                                                                                                   | -      |
|                                                                                                                                                                                             | -      |
| ISOPHORONE                                                                                                                                                                                  | -      |
|                                                                                                                                                                                             | -      |
|                                                                                                                                                                                             | -      |

#### SOIL

| LOCATION                       | SB-652A     | SB-652A     | SB-652A     | SB-652B     |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-652A-3 | F-SB-652A-5 | F-SB-652A-7 | F-SB-652B-1 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| LOCATION                  | SB-652A     | SB-652A     | SB-652A     | SB-652B     |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-652A-3 | F-SB-652A-5 | F-SB-652A-7 | F-SB-652B-1 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

#### SOIL

| LOCATION                                 | SB-652A         | SB-652A         | SB-652A         | SB-652B          |
|------------------------------------------|-----------------|-----------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-652A-3     | F-SB-652A-5     | F-SB-652A-7     | F-SB-652B-1      |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009       | 11/5/2009       | 11/5/2009        |
| TRICHLOROETHENE                          |                 |                 |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                  |
| VINYL ACETATE                            |                 |                 |                 |                  |
| VINYL CHLORIDE                           |                 |                 |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                  |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 |                  |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 |                  |
| ACENAPHTHENE                             |                 |                 |                 |                  |
| ACENAPHTHYLENE                           |                 |                 |                 |                  |
| ANTHRACENE                               |                 |                 |                 |                  |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 505.25 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 505.25 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 350 [MDL=1.1]    |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 340 [MDL=1.5]    |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 430 [MDL=1.4]    |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 190 [MDL=2]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                  |
| C1-FLUORENES                             |                 |                 |                 |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                  |
| C2-FLUORENES                             |                 |                 |                 |                  |
| C2-NAPHTHALENES                          |                 |                 |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                  |
| C3-FLUORENES                             |                 |                 |                 |                  |
| C3-NAPHTHALENES                          |                 |                 |                 |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                  |
| C4-NAPHTHALENES                          |                 |                 |                 |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                  |
| CHRYSENE                                 | 1.0 U [MDL=1]   | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 350 [MDL=1]      |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.6 U [MDL=1.6] | 65 [MDL=1.5]     |
| FLUORANTHENE                             |                 |                 |                 |                  |
| FLUORENE                                 |                 |                 |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.7 U [MDL=1.7] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 200 [MDL=1.7]    |
| NAPHTHALENE                              |                 |                 |                 |                  |

#### SOIL

| LOCATION                       | SB-652A       | SB-652A       | SB-652A       | SB-652B                               |
|--------------------------------|---------------|---------------|---------------|---------------------------------------|
| SAMPLE ID                      | F-SB-652A-3   | F-SB-652A-5   | F-SB-652A-7   | F-SB-652B-1                           |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 11/5/2009                             |
| PHENANTHRENE                   |               |               |               |                                       |
| PYRENE                         |               |               |               |                                       |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.6] | 1925 [MDL=1.5]                        |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | · · · · · · · · · · · · · · · · · · · |
| 4,4'-DDD                       |               |               |               |                                       |
| 4,4'-DDE                       |               |               |               |                                       |
| 4,4'-DDT                       |               |               |               |                                       |
| ALDRIN                         |               |               |               |                                       |
| ALPHA-BHC                      |               |               |               |                                       |
| ALPHA-CHLORDANE                |               |               |               |                                       |
| AROCLOR-1016                   |               |               |               |                                       |
| AROCLOR-1221                   |               |               |               |                                       |
| AROCLOR-1232                   |               |               |               |                                       |
| AROCLOR-1242                   |               |               |               |                                       |
| AROCLOR-1248                   |               |               |               |                                       |
| AROCLOR-1254                   |               |               |               |                                       |
| AROCLOR-1260                   |               |               |               |                                       |
| BETA-BHC                       |               |               |               |                                       |
| DELTA-BHC                      |               |               |               |                                       |
| DIELDRIN                       |               |               |               |                                       |
| ENDOSULFAN I                   |               |               |               |                                       |
| ENDOSULFAN II                  |               |               |               |                                       |
| ENDOSULFAN SULFATE             |               |               |               |                                       |
| ENDRIN                         |               |               |               |                                       |
| ENDRIN ALDEHYDE                |               |               |               |                                       |
| ENDRIN KETONE                  |               |               |               |                                       |
| GAMMA-BHC (LINDANE)            |               |               |               |                                       |
| GAMMA-CHLORDANE                |               |               |               |                                       |
| HEPTACHLOR                     |               |               |               |                                       |
| HEPTACHLOR EPOXIDE             |               |               |               |                                       |
| METHOXYCHLOR                   |               |               |               |                                       |
| TOTAL AROCLOR                  |               |               |               |                                       |
| TOTAL DDT POS                  |               |               |               |                                       |
| TOXAPHENE                      |               |               |               |                                       |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |                                       |
| DIESEL RANGE ORGANICS          |               |               |               |                                       |
| GASOLINE RANGE ORGANICS        |               |               |               |                                       |
| TPH (C09-C36)                  |               |               |               |                                       |

#### SOIL

| SUIL                         |             |             | 1           | T           |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-652B     | SB-652B     | SB-652B     | SB-652C     |
| SAMPLE ID                    | F-SB-652B-3 | F-SB-652B-5 | F-SB-652B-7 | F-SB-652C-1 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| METALS (MG/KG)               |             | 1           |             | 1           |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| /ANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     | •           | •           |             |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             |             | •           |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| I,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |

| LOCATION SAMPLE ID SAMPLE DATE | SB-652B<br>F-SB-652B-3 | SB-652B     | SB-652B     | SB-652C     |
|--------------------------------|------------------------|-------------|-------------|-------------|
|                                | F-SB-652B-3            |             |             |             |
| SAMPLE DATE                    |                        | F-SB-652B-5 | F-SB-652B-7 | F-SB-652C-1 |
|                                | 11/5/2009              | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| 2-CHLORONAPHTHALENE            |                        |             |             |             |
| 2-CHLOROPHENOL                 |                        |             |             |             |
| 2-METHYLPHENOL                 |                        |             |             |             |
| 2-NITROANILINE                 |                        |             |             |             |
| 2-NITROPHENOL                  |                        |             |             |             |
| 3&4-METHYLPHENOL               |                        |             |             |             |
| 3,3'-DICHLOROBENZIDINE         |                        |             |             |             |
| 3-NITROANILINE                 |                        |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL     |                        |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER     |                        |             |             |             |
| 4-CHLORO-3-METHYLPHENOL        |                        |             |             |             |
| 4-CHLOROANILINE                |                        |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER    |                        |             |             |             |
| 4-NITROANILINE                 |                        |             |             |             |
| 4-NITROPHENOL                  |                        |             |             |             |
| ACETOPHENONE                   |                        |             |             |             |
| ANILINE                        |                        |             |             |             |
| ATRAZINE                       |                        |             |             |             |
| AZOBENZENE                     |                        |             |             |             |
| BENZIDINE                      |                        |             |             |             |
| BENZOIC ACID                   |                        |             |             |             |
| BENZYL ALCOHOL                 |                        |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE     |                        |             |             |             |
| BIS(2-CHLOROETHYL)ETHER        |                        |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE     |                        |             |             |             |
| BUTYL BENZYL PHTHALATE         |                        |             |             |             |
| CAPROLACTAM                    |                        |             |             |             |
| CARBAZOLE                      |                        |             |             |             |
| DIBENZOFURAN                   |                        |             |             |             |
| DIETHYL PHTHALATE              |                        |             |             |             |
| DIMETHYL PHTHALATE             |                        |             |             |             |
| DI-N-BUTYL PHTHALATE           |                        |             |             |             |
| DI-N-OCTYL PHTHALATE           |                        |             |             |             |
| HEXACHLOROBENZENE              |                        |             |             |             |
| HEXACHLOROBUTADIENE            |                        |             |             |             |
| HEXACHLOROCYCLOPENTADIENE      |                        |             |             |             |
| HEXACHLOROETHANE               |                        |             |             |             |
| ISOPHORONE                     |                        |             |             |             |
| NITROBENZENE                   |                        |             |             |             |
| N-NITROSODIMETHYLAMINE         |                        |             |             |             |

#### SOIL

| SOIL                                    | 1           |             |             | 1           |
|-----------------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                                | SB-652B     | SB-652B     | SB-652B     | SB-652C     |
| SAMPLE ID                               | F-SB-652B-3 | F-SB-652B-5 | F-SB-652B-7 | F-SB-652C-1 |
| SAMPLE DATE                             | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| N-NITROSO-DI-N-PROPYLAMINE              |             |             |             |             |
| N-NITROSODIPHENYLAMINE                  |             |             |             |             |
| PENTACHLOROPHENOL                       |             |             |             |             |
| PHENOL                                  |             |             |             |             |
| PYRIDINE                                |             |             |             |             |
| VOLATILES (UG/KG)                       |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE               | <del></del> |             |             |             |
| 1,1,1-TRICHLOROETHANE                   |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE               |             |             |             |             |
| 1,1,2-TRICHLOROETHANE                   |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE          |             |             |             |             |
| 1,1-DICHLOROETHANE                      |             |             |             |             |
| 1,1-DICHLOROETHENE                      |             |             |             |             |
| 1,1-DICHLOROPROPENE                     |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE                  |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE                  |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE                  |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE                  |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE                  |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE             |             |             |             |             |
| 1,2-DIBROMOETHANE                       |             |             |             |             |
| 1,2-DICHLOROBENZENE                     |             |             |             |             |
| 1,2-DICHLOROETHANE                      |             |             |             |             |
| 1,2-DICHLOROPROPANE                     |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE                  |             |             |             |             |
| 1,3-DICHLOROBENZENE                     |             |             |             |             |
| 1,3-DICHLOROPROPANE                     |             |             |             |             |
| 1,3-DICHLOROPROPENE                     |             |             |             |             |
| 1,4-DICHLOROBENZENE                     |             |             |             |             |
| 1,4-DIOXANE                             |             |             |             |             |
| 2,2-DICHLOROPROPANE                     |             |             |             |             |
| 2-BUTANONE                              |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER               |             |             |             |             |
| 2-CHLOROTOLUENE                         |             |             |             |             |
| 2-HEXANONE                              |             |             |             |             |
| 4-CHLOROTOLUENE                         |             |             |             |             |
| 4-ISOPROPYLTOLUENE                      |             |             |             |             |
| 4-METHYL-2-PENTANONE                    |             |             |             |             |
| ACETONE                                 |             |             |             |             |
| BENZENE                                 |             |             |             |             |
| i e e e e e e e e e e e e e e e e e e e | •           |             | 1           |             |

#### SOIL

| LOCATION                  | SB-652B     | SB-652B     | SB-652B     | SB-652C     |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-652B-3 | F-SB-652B-5 | F-SB-652B-7 | F-SB-652C-1 |
| SAMPLE DATE               | 11/5/2009   | 11/5/2009   | 11/5/2009   | 11/5/2009   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

## SOIL

| LOCATION                                 | SB-652B         | SB-652B           | SB-652B         | SB-652C          |
|------------------------------------------|-----------------|-------------------|-----------------|------------------|
| SAMPLE ID                                | F-SB-652B-3     | F-SB-652B-5       | F-SB-652B-7     | F-SB-652C-1      |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009         | 11/5/2009       | 11/5/2009        |
| TRICHLOROETHENE                          |                 |                   |                 |                  |
| TRICHLOROFLUOROMETHANE                   |                 |                   |                 |                  |
| VINYL ACETATE                            |                 |                   |                 |                  |
| VINYL CHLORIDE                           |                 |                   |                 |                  |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                   |                 |                  |
| 1-METHYLNAPHTHALENE                      |                 |                   |                 |                  |
| 2-METHYLNAPHTHALENE                      |                 |                   |                 |                  |
| ACENAPHTHENE                             |                 |                   |                 |                  |
| ACENAPHTHYLENE                           |                 |                   |                 |                  |
| ANTHRACENE                               |                 |                   |                 |                  |
| BAP EQUIVALENT-HALFND                    | 1.6 U [MDL=1.6] | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5] | 18.534 [MDL=1.5] |
| BAP EQUIVALENT-POS                       | 1.6 U [MDL=1.6] | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5] | 17.699 [MDL=1.5] |
| BAP EQUIVALENT-UCL                       |                 |                   |                 |                  |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.0 U [MDL=1]     | 1.1 U [MDL=1.1] | 16 [MDL=1.1]     |
| BENZO(A)PYRENE                           | 1.6 U [MDL=1.6] | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5] | 13 [MDL=1.5]     |
| BENZO(B)FLUORANTHENE                     | 1.5 U [MDL=1.5] | 1.3 U [MDL=1.3]   | 1.4 U [MDL=1.4] | 30 [MDL=1.4]     |
| BENZO(G,H,I)PERYLENE                     |                 |                   |                 |                  |
| BENZO(K)FLUORANTHENE                     | 2.1 U [MDL=2.1] | 1.9 U [MDL=1.9]   | 2.0 U [MDL=2]   | 8.4 [MDL=2]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                  |
| C1-FLUORANTHENES/PYRENES                 |                 |                   |                 |                  |
| C1-FLUORENES                             |                 |                   | -1              |                  |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                  |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   | -1              |                  |
| C2-FLUORENES                             |                 |                   |                 |                  |
| C2-NAPHTHALENES                          |                 |                   |                 |                  |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                   |                 |                  |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   |                 |                  |
| C3-FLUORENES                             |                 |                   | 1               |                  |
| C3-NAPHTHALENES                          |                 |                   | 1               |                  |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                   | 1               |                  |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                   | 1               |                  |
| C4-NAPHTHALENES                          |                 |                   | 1               |                  |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                   | 1               |                  |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 0.98 U [MDL=0.98] | 1.1 U [MDL=1.1] | 15 [MDL=1]       |
| DIBENZO(A,H)ANTHRACENE                   | 1.6 U [MDL=1.6] | 1.4 U [MDL=1.4]   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5]  |
| FLUORANTHENE                             |                 |                   | -               |                  |
| FLUORENE                                 |                 |                   |                 |                  |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.6 U [MDL=1.6]   | 1.8 U [MDL=1.8] | 1.7 U [MDL=1.7]  |
| NAPHTHALENE                              |                 |                   |                 |                  |

#### SOIL

| LOCATION                       | SB-652B       | SB-652B       | SB-652B       | SB-652C        |
|--------------------------------|---------------|---------------|---------------|----------------|
| SAMPLE ID                      | F-SB-652B-3   | F-SB-652B-5   | F-SB-652B-7   | F-SB-652C-1    |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 11/5/2009      |
| PHENANTHRENE                   |               |               |               |                |
| PYRENE                         |               |               |               |                |
| TOTAL PAHS                     | 0 U [MDL=1.6] | 0 U [MDL=1.4] | 0 U [MDL=1.5] | 82.4 [MDL=1.5] |
| PESTICIDES/PCBS (UG/KG)        |               |               |               | • •            |
| 4,4'-DDD                       |               |               |               |                |
| 4,4'-DDE                       |               |               |               |                |
| 1,4'-DDT                       |               |               |               |                |
| ALDRIN                         |               |               |               |                |
| ALPHA-BHC                      |               |               |               |                |
| ALPHA-CHLORDANE                |               |               |               |                |
| AROCLOR-1016                   |               |               |               |                |
| AROCLOR-1221                   |               |               |               |                |
| AROCLOR-1232                   |               |               |               |                |
| AROCLOR-1242                   |               |               |               |                |
| AROCLOR-1248                   |               |               |               |                |
| AROCLOR-1254                   |               |               |               |                |
| AROCLOR-1260                   |               |               |               |                |
| BETA-BHC                       |               |               |               |                |
| DELTA-BHC                      |               |               |               |                |
| DIELDRIN                       |               |               |               |                |
| ENDOSULFAN I                   |               |               |               |                |
| ENDOSULFAN II                  |               |               |               |                |
| ENDOSULFAN SULFATE             |               |               |               |                |
| ENDRIN                         |               |               |               |                |
| ENDRIN ALDEHYDE                |               |               |               |                |
| ENDRIN KETONE                  |               |               |               |                |
| GAMMA-BHC (LINDANE)            |               |               |               |                |
| GAMMA-CHLORDANE                |               |               |               |                |
| HEPTACHLOR                     |               |               |               |                |
| HEPTACHLOR EPOXIDE             |               |               |               |                |
| METHOXYCHLOR                   |               |               |               |                |
| TOTAL AROCLOR                  |               |               |               |                |
| TOTAL DDT POS                  |               |               |               |                |
| OXAPHENE                       |               |               |               |                |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |                |
| DIESEL RANGE ORGANICS          |               |               |               |                |
| GASOLINE RANGE ORGANICS        |               |               |               |                |
| TPH (C09-C36)                  |               |               |               |                |

#### SOIL

| SUIL                         |             | 1           | 1           | 1           |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-652C     | SB-652C     | SB-652C     | SB-797      |
| SAMPLE ID                    | F-SB-652C-3 | F-SB-652C-5 | F-SB-652C-7 | F-SB-797-03 |
| SAMPLE DATE                  | 11/5/2009   | 11/5/2009   | 11/5/2009   | 8/20/2010   |
| METALS (MG/KG)               |             |             |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| EAD                          |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| /ANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             | •           |             | •           |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        | •           |             |             |             |
| ,1-BIPHENYL                  |             |             |             |             |
| ,2,4-TRICHLOROBENZENE        |             |             |             |             |
| ,2-DICHLOROBENZENE           |             |             |             |             |
| ,3-DICHLOROBENZENE           |             |             |             |             |
| ,4-DICHLOROBENZENE           |             |             |             |             |
| ,4-DIOXANE                   |             |             |             |             |
| ,2'-OXYBIS(1-CHLOROPROPANE)  |             |             |             |             |
| ,4,5-TRICHLOROPHENOL         |             |             |             |             |
| ,4,6-TRICHLOROPHENOL         |             |             |             |             |
| ,4-DICHLOROPHENOL            |             |             |             |             |
| ,4-DIMETHYLPHENOL            |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |

| SOIL                        |             | _           | 1           |             |
|-----------------------------|-------------|-------------|-------------|-------------|
| LOCATION                    | SB-652C     | SB-652C     | SB-652C     | SB-797      |
| SAMPLE ID                   | F-SB-652C-3 | F-SB-652C-5 | F-SB-652C-7 | F-SB-797-03 |
| SAMPLE DATE                 | 11/5/2009   | 11/5/2009   | 11/5/2009   | 8/20/2010   |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             | <del></del> |             |
| 3,3'-DICHLOROBENZIDINE      |             |             | <del></del> |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             |             |             |             |
| ISOPHORONE                  |             |             |             |             |
| NITROBENZENE                |             |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |
|                             |             | •           | •           | •           |

#### SOIL

| LOCATION                       | SB-652C     | SB-652C     | SB-652C     | SB-797      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-652C-3 | F-SB-652C-5 | F-SB-652C-7 | F-SB-797-03 |
| SAMPLE DATE                    | 11/5/2009   | 11/5/2009   | 11/5/2009   | 8/20/2010   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

| LOCATION SAMPLE ID SAMPLE DATE BROMOBENZENE | SB-652C<br>F-SB-652C-3 | SB-652C<br>F-SB-652C-5 | SB-652C     | SB-797      |
|---------------------------------------------|------------------------|------------------------|-------------|-------------|
| SAMPLE DATE                                 |                        | F-SB-652C-5            | E CD 0500 7 |             |
|                                             | 44/5/0000              |                        | F-SB-652C-7 | F-SB-797-03 |
| BROMOBENZENE                                | 11/5/2009              | 11/5/2009              | 11/5/2009   | 8/20/2010   |
| BITOMOBETIE                                 |                        |                        |             |             |
| BROMOCHLOROMETHANE                          |                        |                        |             |             |
| BROMODICHLOROMETHANE                        |                        |                        |             |             |
| BROMOFORM                                   |                        |                        |             |             |
| BROMOMETHANE                                |                        |                        |             |             |
| CARBON DISULFIDE                            |                        |                        |             |             |
| CARBON TETRACHLORIDE                        |                        |                        |             |             |
| CHLOROBENZENE                               |                        |                        |             |             |
| CHLORODIBROMOMETHANE                        |                        |                        |             |             |
| CHLOROETHANE                                |                        |                        |             |             |
| CHLOROFORM                                  |                        |                        |             |             |
| CHLOROMETHANE                               |                        |                        |             |             |
| CIS-1,2-DICHLOROETHENE                      |                        |                        |             |             |
| CIS-1,3-DICHLOROPROPENE                     |                        |                        |             |             |
| DIBROMOMETHANE                              |                        |                        |             |             |
| DICHLORODIFLUOROMETHANE                     |                        |                        |             |             |
| DIISOPROPYL ETHER                           |                        |                        |             |             |
| ETHYL TERT-BUTYL ETHER                      |                        |                        |             |             |
| ETHYLBENZENE                                |                        |                        |             |             |
| FLUORODICHLOROMETHANE                       |                        |                        |             |             |
| HEXACHLOROBUTADIENE                         |                        |                        |             |             |
| ISOPROPYLBENZENE                            |                        |                        |             |             |
| M+P-XYLENES                                 |                        |                        |             |             |
| METHYL TERT-BUTYL ETHER                     |                        |                        |             |             |
| METHYLENE CHLORIDE                          |                        |                        |             |             |
| NAPHTHALENE                                 |                        |                        |             |             |
| N-BUTYLBENZENE                              |                        |                        |             |             |
| N-PROPYLBENZENE                             |                        |                        |             |             |
| O-XYLENE                                    |                        |                        |             |             |
| SEC-BUTYLBENZENE                            |                        |                        |             |             |
| STYRENE                                     |                        |                        |             |             |
| TERT-AMYL METHYL ETHER                      |                        |                        |             |             |
| TERT-BUTYLBENZENE                           |                        |                        |             |             |
| TERTIARY-BUTYL ALCOHOL                      |                        |                        |             |             |
| TETRACHLOROETHENE                           |                        |                        |             |             |
| TOLUENE                                     |                        |                        |             |             |
| TOTAL 1,2-DICHLOROETHENE                    |                        |                        |             |             |
| TOTAL XYLENES                               |                        |                        |             |             |
| TRANS-1,2-DICHLOROETHENE                    |                        |                        |             |             |
| TRANS-1,3-DICHLOROPROPENE                   |                        |                        |             |             |

## SOIL

NAPHTHALENE

| LOCATION                                 | SB-652C         | SB-652C         | SB-652C         | SB-797          |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-652C-3     | F-SB-652C-5     | F-SB-652C-7     | F-SB-797-03     |
| SAMPLE DATE                              | 11/5/2009       | 11/5/2009       | 11/5/2009       | 8/20/2010       |
| TRICHLOROETHENE                          |                 |                 |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                 |                 |                 |                 |
| VINYL ACETATE                            |                 |                 |                 |                 |
| VINYL CHLORIDE                           |                 |                 |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| 1-METHYLNAPHTHALENE                      |                 |                 |                 | 3.7 U [MDL=3.7] |
| 2-METHYLNAPHTHALENE                      |                 |                 |                 | 3.7 U [MDL=3.7] |
| ACENAPHTHENE                             |                 |                 |                 | 3.7 U [MDL=3.7] |
| ACENAPHTHYLENE                           |                 |                 |                 | 3.7 U [MDL=3.7] |
| ANTHRACENE                               |                 |                 |                 | 3.7 U [MDL=3.7] |
| BAP EQUIVALENT-HALFND                    | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 3.7 U [MDL=NaN] |
| BAP EQUIVALENT-POS                       | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 3.7 U [MDL=NaN] |
| BAP EQUIVALENT-UCL                       |                 |                 |                 |                 |
| BENZO(A)ANTHRACENE                       | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 3.7 U [MDL=3.7] |
| BENZO(A)PYRENE                           | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 3.7 U [MDL=3.7] |
| BENZO(B)FLUORANTHENE                     | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 1.4 U [MDL=1.4] | 3.7 U [MDL=3.7] |
| BENZO(G,H,I)PERYLENE                     |                 |                 |                 | 3.7 U [MDL=3.7] |
| BENZO(K)FLUORANTHENE                     | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 2.0 U [MDL=2]   | 3.7 U [MDL=3.7] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                 |                 |                 |                 |
| C1-FLUORENES                             |                 |                 |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C2-FLUORENES                             |                 |                 |                 |                 |
| C2-NAPHTHALENES                          |                 |                 |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C3-FLUORENES                             |                 |                 |                 |                 |
| C3-NAPHTHALENES                          |                 |                 |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                 |                 |                 |                 |
| C4-NAPHTHALENES                          |                 |                 |                 |                 |
| C4-PHENANTHRENES/ANTHRACENES             |                 |                 |                 |                 |
| CHRYSENE                                 | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.1 U [MDL=1.1] | 1.2 U [MDL=1.2] |
| DIBENZO(A,H)ANTHRACENE                   | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 1.5 U [MDL=1.5] | 3.7 U [MDL=3.7] |
| FLUORANTHENE                             |                 |                 |                 | 11 [MDL=3.7]    |
| FLUORENE                                 |                 |                 |                 | 3.7 U [MDL=3.7] |
| INDENO(1,2,3-CD)PYRENE                   | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 1.8 U [MDL=1.8] | 3.7 U [MDL=3.7] |
| 1                                        |                 |                 |                 |                 |

February 2013 Page C-239

3.7 U [MDL=3.7]

#### SOIL

| LOCATION                       | SB-652C       | SB-652C       | SB-652C       | SB-797          |
|--------------------------------|---------------|---------------|---------------|-----------------|
| SAMPLE ID                      | F-SB-652C-3   | F-SB-652C-5   | F-SB-652C-7   | F-SB-797-03     |
| SAMPLE DATE                    | 11/5/2009     | 11/5/2009     | 11/5/2009     | 8/20/2010       |
| PHENANTHRENE                   |               |               |               | 3.7 U [MDL=3.7] |
| PYRENE                         |               |               |               | 9.1 [MDL=3.7]   |
| TOTAL PAHS                     | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 0 U [MDL=1.5] | 20.1 [MDL=NaN]  |
| PESTICIDES/PCBS (UG/KG)        | •             |               |               |                 |
| 4,4'-DDD                       |               |               |               |                 |
| 1,4'-DDE                       |               |               |               |                 |
| 4,4'-DDT                       |               |               |               |                 |
| ALDRIN                         |               |               |               |                 |
| ALPHA-BHC                      |               |               |               |                 |
| ALPHA-CHLORDANE                |               |               |               |                 |
| AROCLOR-1016                   |               |               |               |                 |
| AROCLOR-1221                   |               |               |               |                 |
| AROCLOR-1232                   |               |               |               |                 |
| AROCLOR-1242                   |               |               |               |                 |
| AROCLOR-1248                   |               |               |               |                 |
| AROCLOR-1254                   |               |               |               |                 |
| AROCLOR-1260                   |               |               |               |                 |
| BETA-BHC                       |               |               |               |                 |
| DELTA-BHC                      |               |               |               |                 |
| DIELDRIN                       |               |               |               |                 |
| ENDOSULFAN I                   |               |               |               |                 |
| ENDOSULFAN II                  |               |               |               |                 |
| ENDOSULFAN SULFATE             |               |               |               |                 |
| ENDRIN                         |               |               |               |                 |
| ENDRIN ALDEHYDE                |               |               |               |                 |
| ENDRIN KETONE                  |               |               |               |                 |
| GAMMA-BHC (LINDANE)            |               |               |               |                 |
| GAMMA-CHLORDANE                |               |               |               |                 |
| HEPTACHLOR                     |               |               |               |                 |
| HEPTACHLOR EPOXIDE             |               |               |               |                 |
| METHOXYCHLOR                   |               |               |               |                 |
| TOTAL AROCLOR                  |               |               |               |                 |
| TOTAL DDT POS                  |               |               |               |                 |
| OXAPHENE                       |               |               |               |                 |
| PETROLEUM HYDROCARBONS (UG/KG) |               |               |               |                 |
| DIESEL RANGE ORGANICS          |               |               |               |                 |
| GASOLINE RANGE ORGANICS        |               |               |               |                 |
| TPH (C09-C36)                  |               |               |               |                 |

## SOIL

| SUIL                         |             |             |             |               |
|------------------------------|-------------|-------------|-------------|---------------|
| LOCATION                     | SB-797      | SB-797      | SB-798      | SB-798        |
| SAMPLE ID                    | F-SB-797-05 | F-SB-797-SS | F-SB-798-03 | F-SB-798-03-D |
| SAMPLE DATE                  | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010     |
| METALS (MG/KG)               |             |             |             |               |
| ANTIMONY                     |             |             |             |               |
| ARSENIC                      |             |             |             |               |
| BARIUM                       |             |             |             |               |
| BERYLLIUM                    |             |             |             |               |
| CADMIUM                      |             |             |             |               |
| CHROMIUM                     |             |             |             |               |
| COBALT                       |             |             |             |               |
| COPPER                       |             |             |             |               |
| LEAD                         |             |             |             |               |
| MERCURY                      |             |             |             |               |
| MOLYBDENUM                   |             |             |             |               |
| NICKEL                       |             |             |             |               |
| SELENIUM                     |             |             |             |               |
| SILVER                       |             |             |             |               |
| THALLIUM                     |             |             |             |               |
| VANADIUM                     |             |             |             |               |
| ZINC                         |             |             |             |               |
| MISCELLANEOUS PARAMETERS     | •           | •           | -           | •             |
| PERCENT SOLIDS (%)           |             |             |             |               |
| TOTAL SOLIDS (%)             |             |             |             |               |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |               |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |               |
| PH (S.U.)                    |             |             |             |               |
| MERCURY (METHYL) (UG/KG)     |             |             |             |               |
| SEMIVOLATILES (UG/KG)        | •           |             |             |               |
| 1,1-BIPHENYL                 |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |               |
| 1,2-DICHLOROBENZENE          |             |             |             |               |
| 1,3-DICHLOROBENZENE          |             |             |             |               |
| 1,4-DICHLOROBENZENE          |             |             |             |               |
| 1,4-DIOXANE                  |             |             |             |               |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |               |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |               |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |               |
| 2,4-DICHLOROPHENOL           |             |             |             |               |
| 2,4-DIMETHYLPHENOL           |             |             |             |               |
| 2,4-DINITROPHENOL            |             |             |             |               |
| 2,4-DINITROTOLUENE           |             |             |             |               |
| 2,6-DINITROTOLUENE           |             |             |             |               |

#### SOIL

| LOCATION                    | SB-797      | SB-797      | SB-798      | SB-798        |
|-----------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                   | F-SB-797-05 | F-SB-797-SS | F-SB-798-03 | F-SB-798-03-D |
| SAMPLE DATE                 | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010     |
| 2-CHLORONAPHTHALENE         |             |             |             |               |
| 2-CHLOROPHENOL              |             |             |             |               |
| 2-METHYLPHENOL              |             |             |             |               |
| 2-NITROANILINE              |             |             |             |               |
| 2-NITROPHENOL               |             |             |             |               |
| 3&4-METHYLPHENOL            |             |             |             |               |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |               |
| 3-NITROANILINE              |             |             |             |               |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |               |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |               |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |               |
| 4-CHLOROANILINE             |             |             |             |               |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |               |
| 4-NITROANILINE              |             |             |             |               |
| 4-NITROPHENOL               |             |             |             |               |
| ACETOPHENONE                |             |             |             |               |
| ANILINE                     |             |             |             |               |
| ATRAZINE                    |             |             |             |               |
| AZOBENZENE                  |             |             |             |               |
| BENZIDINE                   |             |             |             |               |
| BENZOIC ACID                |             |             |             |               |
| BENZYL ALCOHOL              |             |             |             |               |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |               |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |               |
| BUTYL BENZYL PHTHALATE      |             |             |             |               |
| CAPROLACTAM                 |             |             |             |               |
| CARBAZOLE                   |             |             |             |               |
| DIBENZOFURAN                |             |             |             |               |
| DIETHYL PHTHALATE           |             |             |             |               |
| DIMETHYL PHTHALATE          |             |             |             |               |
| DI-N-BUTYL PHTHALATE        |             |             |             |               |
| DI-N-OCTYL PHTHALATE        |             |             |             |               |
| HEXACHLOROBENZENE           |             |             |             |               |
| HEXACHLOROBUTADIENE         |             |             |             |               |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |               |
| HEXACHLOROETHANE            |             |             |             |               |
| ISOPHORONE                  |             |             |             |               |
| NITROBENZENE                |             |             |             |               |
| N-NITROSODIMETHYLAMINE      |             |             |             |               |

#### SOIL

| SOIL                           | T           |             |             |               |
|--------------------------------|-------------|-------------|-------------|---------------|
| LOCATION                       | SB-797      | SB-797      | SB-798      | SB-798        |
| SAMPLE ID                      | F-SB-797-05 | F-SB-797-SS | F-SB-798-03 | F-SB-798-03-D |
| SAMPLE DATE                    | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010     |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |               |
| N-NITROSODIPHENYLAMINE         |             |             |             |               |
| PENTACHLOROPHENOL              |             |             |             |               |
| PHENOL                         |             |             |             |               |
| PYRIDINE                       |             |             |             |               |
| VOLATILES (UG/KG)              |             |             |             |               |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,1-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,2-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |               |
| 1,1-DICHLOROETHANE             |             |             |             |               |
| 1,1-DICHLOROETHENE             |             |             |             |               |
| 1,1-DICHLOROPROPENE            |             |             |             |               |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |               |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |               |
| 1,2-DIBROMOETHANE              |             |             |             |               |
| 1,2-DICHLOROBENZENE            |             |             |             |               |
| 1,2-DICHLOROETHANE             |             |             |             |               |
| 1,2-DICHLOROPROPANE            |             |             |             |               |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |               |
| 1,3-DICHLOROBENZENE            |             |             |             |               |
| 1,3-DICHLOROPROPANE            |             |             |             |               |
| 1,3-DICHLOROPROPENE            |             |             |             |               |
| 1,4-DICHLOROBENZENE            |             |             |             |               |
| 1,4-DIOXANE                    |             |             |             |               |
| 2,2-DICHLOROPROPANE            |             |             |             |               |
| 2-BUTANONE                     |             |             |             |               |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |               |
| 2-CHLOROTOLUENE                |             |             |             |               |
| 2-HEXANONE                     |             |             |             |               |
| 4-CHLOROTOLUENE                |             |             |             |               |
| 4-ISOPROPYLTOLUENE             |             |             |             |               |
| 4-METHYL-2-PENTANONE           |             |             |             |               |
| ACETONE                        |             |             |             |               |
| BENZENE                        |             |             |             |               |

#### SOIL

| LOCATION                  | SB-797      | SB-797      | SB-798      | SB-798        |
|---------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                 | F-SB-797-05 | F-SB-797-SS | F-SB-798-03 | F-SB-798-03-D |
| SAMPLE DATE               | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010     |
| BROMOBENZENE              | 8/20/2010   | 6/20/2010   |             |               |
| BROMOCHLOROMETHANE        |             |             |             |               |
| BROMODICHLOROMETHANE      |             |             |             |               |
| BROMOFORM                 |             |             |             |               |
| BROMOMETHANE              |             |             |             |               |
| CARBON DISULFIDE          |             |             |             |               |
| CARBON TETRACHLORIDE      |             |             |             |               |
| CHLOROBENZENE             |             |             |             |               |
| CHLORODIBROMOMETHANE      |             |             |             |               |
|                           |             |             |             |               |
| CHLOROETHANE              |             | -           |             |               |
| CHLOROFORM                | <del></del> | -           |             |               |
| CHLOROMETHANE             |             | -           |             |               |
| CIS-1,2-DICHLOROETHENE    |             |             |             |               |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |               |
| DIBROMOMETHANE            |             |             |             |               |
| DICHLORODIFLUOROMETHANE   |             |             |             |               |
| DIISOPROPYL ETHER         |             |             |             |               |
| ETHYL TERT-BUTYL ETHER    |             |             |             |               |
| ETHYLBENZENE              |             |             |             |               |
| FLUORODICHLOROMETHANE     |             |             |             |               |
| HEXACHLOROBUTADIENE       |             |             |             |               |
| ISOPROPYLBENZENE          |             |             |             |               |
| M+P-XYLENES               |             |             |             |               |
| METHYL TERT-BUTYL ETHER   |             |             |             |               |
| METHYLENE CHLORIDE        |             |             |             |               |
| NAPHTHALENE               |             |             |             |               |
| N-BUTYLBENZENE            |             |             |             |               |
| N-PROPYLBENZENE           |             |             |             |               |
| O-XYLENE                  |             |             |             |               |
| SEC-BUTYLBENZENE          |             |             |             |               |
| STYRENE                   |             |             |             |               |
| TERT-AMYL METHYL ETHER    |             |             |             |               |
| TERT-BUTYLBENZENE         |             |             |             |               |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |               |
| TETRACHLOROETHENE         |             |             |             |               |
| TOLUENE                   |             |             |             |               |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |               |
| TOTAL XYLENES             |             |             |             |               |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |               |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |               |

#### SOIL

NAPHTHALENE

| COIL                                     |                  |                  |                  |                      |
|------------------------------------------|------------------|------------------|------------------|----------------------|
| LOCATION                                 | SB-797           | SB-797           | SB-798           | SB-798               |
| SAMPLE ID                                | F-SB-797-05      | F-SB-797-SS      | F-SB-798-03      | F-SB-798-03-D        |
| SAMPLE DATE                              | 8/20/2010        | 8/20/2010        | 8/20/2010        | 8/20/2010            |
| TRICHLOROETHENE                          |                  |                  |                  |                      |
| TRICHLOROFLUOROMETHANE                   |                  |                  |                  |                      |
| VINYL ACETATE                            |                  |                  |                  |                      |
| VINYL CHLORIDE                           |                  |                  |                  |                      |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) | •                |                  |                  |                      |
| 1-METHYLNAPHTHALENE                      | 4 U [MDL=4]      | 55 [MDL=15]      | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| 2-METHYLNAPHTHALENE                      | 4 U [MDL=4]      | 46 [MDL=15]      | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| ACENAPHTHENE                             | 15 [MDL=4]       | 340 [MDL=15]     | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| ACENAPHTHYLENE                           | 4 U [MDL=4]      | 15 U [MDL=15]    | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| ANTHRACENE                               | 47 [MDL=4]       | 680 [MDL=15]     | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| BAP EQUIVALENT-HALFND                    | 258.37 [MDL=NaN] | 3496.4 [MDL=NaN] | 20.624 [MDL=NaN] | 3.5 U [MDL=NaN]      |
| BAP EQUIVALENT-POS                       | 258.37 [MDL=NaN] | 3496.4 [MDL=NaN] | 18.724 [MDL=NaN] | 3.5 U [MDL=NaN]      |
| BAP EQUIVALENT-UCL                       |                  |                  |                  |                      |
| BENZO(A)ANTHRACENE                       | 170 [MDL=4]      | 2300 [MDL=15]    | 12 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| BENZO(A)PYRENE                           | 180 [MDL=4]      | 2400 [MDL=15]    | 15 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| BENZO(B)FLUORANTHENE                     | 200 [MDL=4]      | 2800 [MDL=15]    | 16 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| BENZO(G,H,I)PERYLENE                     | 120 [MDL=4]      | 1700 [MDL=15]    | 11 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| BENZO(K)FLUORANTHENE                     | 120 [MDL=4]      | 1400 [MDL=15]    | 10 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         | 81 U [MDL=81]    | 3700 J [MDL=390] |                  |                      |
| C1-FLUORANTHENES/PYRENES                 | 81 U [MDL=81]    | 5800 J [MDL=390] |                  |                      |
| C1-FLUORENES                             | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C1-PHENANTHRENES/ANTHRACENES             | 81 U [MDL=81]    | 1600 J [MDL=390] |                  |                      |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         | 81 U [MDL=81]    | 1300 J [MDL=390] |                  |                      |
| C2-FLUORENES                             | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C2-NAPHTHALENES                          | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C2-PHENANTHRENES/ANTHRACENES             | 81 U [MDL=81]    | 950 J [MDL=390]  |                  |                      |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         | 81 U [MDL=81]    | 470 J [MDL=390]  |                  |                      |
| C3-FLUORENES                             | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C3-NAPHTHALENES                          | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C3-PHENANTHRENES/ANTHRACENES             | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C4-NAPHTHALENES                          | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| C4-PHENANTHRENES/ANTHRACENES             | 81 U [MDL=81]    | 390 U [MDL=390]  |                  |                      |
| CHRYSENE                                 | 170 [MDL=1.3]    | 2400 [MDL=5.1]   | 14 [MDL=1.3]     | 1.2 U [MDL=1.2]      |
| DIBENZO(A,H)ANTHRACENE                   | 30 [MDL=4]       | 430 [MDL=15]     | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| FLUORANTHENE                             | 400 [MDL=4]      | 4900 [MDL=15]    | 19 [MDL=3.8]     | 3.5 U [MDL=3.5]      |
| FLUORENE                                 | 26 [MDL=4]       | 370 [MDL=15]     | 3.8 U [MDL=3.8]  | 3.5 U [MDL=3.5]      |
| INDENO(1,2,3-CD)PYRENE                   | 100 [MDL=4]      | 1400 [MDL=15]    | 8.1 [MDL=3.8]    | 3.5 U [MDL=3.5]      |
| NIA DUTILIAL ENE                         | 4 11 13 450 43   |                  | 0.0 1171701 0.01 | 0 - 11 11 15 1 0 - 1 |

February 2013 Page C-245

140 [MDL=15]

3.8 U [MDL=3.8]

3.5 U [MDL=3.5]

4 U [MDL=4]

#### SOIL

| LOCATION                       | SB-797         | SB-797          | SB-798          | SB-798          |
|--------------------------------|----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                      | F-SB-797-05    | F-SB-797-SS     | F-SB-798-03     | F-SB-798-03-D   |
| SAMPLE DATE                    | 8/20/2010      | 8/20/2010       | 8/20/2010       | 8/20/2010       |
| PHENANTHRENE                   | 210 [MDL=4]    | 2600 [MDL=15]   | 9.4 [MDL=3.8]   | 3.5 U [MDL=3.5] |
| PYRENE                         | 310 [MDL=4]    | 4200 [MDL=15]   | 19 [MDL=3.8]    | 3.5 U [MDL=3.5] |
| TOTAL PAHS                     | 2098 [MDL=NaN] | 28106 [MDL=NaN] | 133.5 [MDL=NaN] | 0 U [MDL=NaN]   |
| PESTICIDES/PCBS (UG/KG)        | •              |                 | •               |                 |
| 4,4'-DDD                       |                |                 |                 |                 |
| 1,4'-DDE                       |                |                 |                 |                 |
| 1,4'-DDT                       |                |                 |                 |                 |
| ALDRIN                         |                |                 |                 |                 |
| ALPHA-BHC                      |                |                 |                 |                 |
| ALPHA-CHLORDANE                |                |                 |                 |                 |
| AROCLOR-1016                   |                |                 |                 |                 |
| AROCLOR-1221                   |                |                 |                 |                 |
| AROCLOR-1232                   |                |                 |                 |                 |
| AROCLOR-1242                   |                |                 |                 |                 |
| AROCLOR-1248                   |                |                 |                 |                 |
| AROCLOR-1254                   |                |                 |                 |                 |
| AROCLOR-1260                   |                |                 |                 |                 |
| BETA-BHC                       |                |                 |                 |                 |
| DELTA-BHC                      |                |                 |                 |                 |
| DIELDRIN                       |                |                 |                 |                 |
| ENDOSULFAN I                   |                |                 |                 |                 |
| ENDOSULFAN II                  |                |                 |                 |                 |
| ENDOSULFAN SULFATE             |                |                 |                 |                 |
| ENDRIN                         |                |                 |                 |                 |
| ENDRIN ALDEHYDE                |                |                 |                 |                 |
| ENDRIN KETONE                  |                |                 |                 |                 |
| GAMMA-BHC (LINDANE)            |                |                 |                 |                 |
| GAMMA-CHLORDANE                |                |                 |                 |                 |
| HEPTACHLOR                     |                |                 |                 |                 |
| HEPTACHLOR EPOXIDE             |                |                 |                 |                 |
| METHOXYCHLOR                   |                |                 |                 |                 |
| TOTAL AROCLOR                  |                |                 |                 |                 |
| TOTAL DDT POS                  |                |                 |                 |                 |
| TOXAPHENE                      |                |                 |                 |                 |
| PETROLEUM HYDROCARBONS (UG/KG) |                |                 |                 |                 |
| DIESEL RANGE ORGANICS          |                |                 |                 |                 |
| GASOLINE RANGE ORGANICS        |                |                 |                 |                 |
| ГРН (C09-C36)                  |                |                 |                 |                 |

#### SOIL

| SOIL                         | 22 722      |             | 00.700      | T 05 =22    |
|------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                     | SB-798      | SB-798      | SB-799      | SB-799      |
| SAMPLE ID                    | F-SB-798-05 | F-SB-798-SS | F-SB-799-03 | F-SB-799-05 |
| SAMPLE DATE                  | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010   |
| METALS (MG/KG)               |             |             |             |             |
| ANTIMONY                     |             |             |             |             |
| ARSENIC                      |             |             |             |             |
| BARIUM                       |             |             |             |             |
| BERYLLIUM                    |             |             |             |             |
| CADMIUM                      |             |             |             |             |
| CHROMIUM                     |             |             |             |             |
| COBALT                       |             |             |             |             |
| COPPER                       |             |             |             |             |
| LEAD                         |             |             |             |             |
| MERCURY                      |             |             |             |             |
| MOLYBDENUM                   |             |             |             |             |
| NICKEL                       |             |             |             |             |
| SELENIUM                     |             |             |             |             |
| SILVER                       |             |             |             |             |
| THALLIUM                     |             |             |             |             |
| VANADIUM                     |             |             |             |             |
| ZINC                         |             |             |             |             |
| MISCELLANEOUS PARAMETERS     |             |             |             |             |
| PERCENT SOLIDS (%)           |             |             |             |             |
| TOTAL SOLIDS (%)             |             |             |             |             |
| HEXAVALENT CHROMIUM (MG/KG)  |             |             |             |             |
| TOTAL ORGANIC CARBON (MG/KG) |             |             |             |             |
| PH (S.U.)                    |             |             |             |             |
| MERCURY (METHYL) (UG/KG)     |             |             |             |             |
| SEMIVOLATILES (UG/KG)        |             |             | -           |             |
| 1,1-BIPHENYL                 |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE       |             |             |             |             |
| 1,2-DICHLOROBENZENE          |             |             |             |             |
| 1,3-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DICHLOROBENZENE          |             |             |             |             |
| 1,4-DIOXANE                  |             |             |             |             |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |             |             |             |
| 2,4,5-TRICHLOROPHENOL        |             |             |             |             |
| 2,4,6-TRICHLOROPHENOL        |             |             |             |             |
| 2,4-DICHLOROPHENOL           |             |             |             |             |
| 2,4-DIMETHYLPHENOL           |             |             |             |             |
| 2,4-DINITROPHENOL            |             |             |             |             |
| 2,4-DINITROTOLUENE           |             |             |             |             |
| 2,6-DINITROTOLUENE           |             |             |             |             |
| ,                            | l           | I           | 1           | 1           |

#### SOIL

| LOCATION                    | SB-798      | SB-798      | SB-799      | SB-799      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-798-05 | F-SB-798-SS | F-SB-799-03 | F-SB-799-05 |
| SAMPLE DATE                 | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010   |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             |             |             |             |
| ISOPHORONE                  |             |             |             |             |
| NITROBENZENE                |             |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |

#### SOIL

| LOCATION                       | SB-798      | SB-798      | SB-799      | SB-799      |
|--------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-798-05 | F-SB-798-SS | F-SB-799-03 | F-SB-799-05 |
| SAMPLE DATE                    | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |

#### SOIL

| LOCATION                  | SB-798      | SB-798      | SB-799      | SB-799      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-798-05 | F-SB-798-SS | F-SB-799-03 | F-SB-799-05 |
| SAMPLE DATE               | 8/20/2010   | 8/20/2010   | 8/20/2010   | 8/20/2010   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

#### SOIL

NAPHTHALENE

| LOCATION                                 | SB-798           | SB-798           | SB-799          | SB-799          |
|------------------------------------------|------------------|------------------|-----------------|-----------------|
| SAMPLE ID                                | F-SB-798-05      | F-SB-798-SS      | F-SB-799-03     | F-SB-799-05     |
| SAMPLE DATE                              | 8/20/2010        | 8/20/2010        | 8/20/2010       | 8/20/2010       |
| TRICHLOROETHENE                          |                  |                  |                 |                 |
| TRICHLOROFLUOROMETHANE                   |                  |                  |                 |                 |
| VINYL ACETATE                            |                  |                  |                 |                 |
| VINYL CHLORIDE                           |                  |                  |                 |                 |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                  |                  |                 |                 |
| I-METHYLNAPHTHALENE                      | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| -METHYLNAPHTHALENE                       | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| ACENAPHTHENE                             | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| CENAPHTHYLENE                            | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| NTHRACENE                                | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| BAP EQUIVALENT-HALFND                    | 3.6 U [MDL=NaN]  | 3.7 U [MDL=NaN]  | 3.6 U [MDL=NaN] | 3.7 U [MDL=NaN] |
| BAP EQUIVALENT-POS                       | 3.6 U [MDL=NaN]  | 3.7 U [MDL=NaN]  | 3.6 U [MDL=NaN] | 3.7 U [MDL=NaN] |
| BAP EQUIVALENT-UCL                       |                  |                  |                 |                 |
| BENZO(A)ANTHRACENE                       | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| BENZO(A)PYRENE                           | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| ENZO(B)FLUORANTHENE                      | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| BENZO(G,H,I)PERYLENE                     | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| BENZO(K)FLUORANTHENE                     | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C1-FLUORANTHENES/PYRENES                 |                  |                  |                 |                 |
| :1-FLUORENES                             |                  |                  |                 |                 |
| C1-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| 22-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| 22-FLUORENES                             |                  |                  |                 |                 |
| 22-NAPHTHALENES                          |                  |                  |                 |                 |
| C2-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| C3-FLUORENES                             |                  |                  |                 |                 |
| C3-NAPHTHALENES                          |                  |                  |                 |                 |
| C3-PHENANTHRENES/ANTHRACENES             |                  |                  |                 |                 |
| 24-CHRYSENES/BENZO(A)ANTHRACENES         |                  |                  |                 |                 |
| 24-NAPHTHALENES                          |                  |                  |                 |                 |
| 4-PHENANTHRENES/ANTHRACENES              |                  |                  |                 |                 |
| CHRYSENE                                 | 1.2 U [MDL=1.2]  | 1.2 U [MDL=1.2]  | 1.2 U [MDL=1.2] | 1.2 U [MDL=1.2] |
| DIBENZO(A,H)ANTHRACENE                   | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| FLUORANTHENE                             | 3.6 U [MDL=3.6]  | 11 [MDL=3.7]     | 3.6 U [MDL=3.6] | 9.8 [MDL=3.7]   |
| FLUORENE                                 | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| NDENO(1,2,3-CD)PYRENE                    | 3.6 U [MDL=3.6]  | 3.7 U [MDL=3.7]  | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| NA DUTUM ENE                             | 0.0 1171771 0.01 | 0 = 117171 0 = 1 | 0.011.0101.001  | 0 = 11 [1 2]    |

February 2013 Page C-251

3.7 U [MDL=3.7]

3.6 U [MDL=3.6]

3.7 U [MDL=3.7]

3.6 U [MDL=3.6]

#### SOIL

| LOCATION                       | SB-798          | SB-798          | SB-799          | SB-799          |
|--------------------------------|-----------------|-----------------|-----------------|-----------------|
| SAMPLE ID                      | F-SB-798-05     | F-SB-798-SS     | F-SB-799-03     | F-SB-799-05     |
| SAMPLE DATE                    | 8/20/2010       | 8/20/2010       | 8/20/2010       | 8/20/2010       |
| PHENANTHRENE                   | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| PYRENE                         | 3.6 U [MDL=3.6] | 9.1 [MDL=3.7]   | 3.6 U [MDL=3.6] | 3.7 U [MDL=3.7] |
| TOTAL PAHS                     | 0 U [MDL=NaN]   | 20.1 [MDL=NaN]  | 0 U [MDL=NaN]   | 9.8 [MDL=NaN]   |
| PESTICIDES/PCBS (UG/KG)        |                 | -               | -               | -               |
| 4,4'-DDD                       |                 |                 |                 |                 |
| 4,4'-DDE                       |                 |                 |                 |                 |
| 1,4'-DDT                       |                 |                 |                 |                 |
| ALDRIN                         |                 |                 |                 |                 |
| ALPHA-BHC                      |                 |                 |                 |                 |
| ALPHA-CHLORDANE                |                 |                 |                 |                 |
| AROCLOR-1016                   |                 |                 |                 |                 |
| AROCLOR-1221                   |                 |                 |                 |                 |
| AROCLOR-1232                   |                 |                 |                 |                 |
| AROCLOR-1242                   |                 |                 |                 |                 |
| AROCLOR-1248                   |                 |                 |                 |                 |
| AROCLOR-1254                   |                 |                 |                 |                 |
| AROCLOR-1260                   |                 |                 |                 |                 |
| BETA-BHC                       |                 |                 |                 |                 |
| DELTA-BHC                      |                 |                 |                 |                 |
| DIELDRIN                       |                 |                 |                 |                 |
| ENDOSULFAN I                   |                 |                 |                 |                 |
| ENDOSULFAN II                  |                 |                 |                 |                 |
| ENDOSULFAN SULFATE             |                 |                 |                 |                 |
| ENDRIN                         |                 |                 |                 |                 |
| ENDRIN ALDEHYDE                |                 |                 |                 |                 |
| ENDRIN KETONE                  |                 |                 |                 |                 |
| GAMMA-BHC (LINDANE)            |                 |                 |                 |                 |
| GAMMA-CHLORDANE                |                 |                 |                 |                 |
| HEPTACHLOR                     |                 |                 |                 |                 |
| HEPTACHLOR EPOXIDE             |                 |                 |                 |                 |
| METHOXYCHLOR                   |                 |                 |                 |                 |
| TOTAL AROCLOR                  |                 |                 |                 |                 |
| OTAL DDT POS                   |                 |                 |                 |                 |
| OXAPHENE                       |                 |                 |                 |                 |
| PETROLEUM HYDROCARBONS (UG/KG) |                 |                 |                 |                 |
| DIESEL RANGE ORGANICS          |                 |                 |                 |                 |
| GASOLINE RANGE ORGANICS        |                 |                 |                 |                 |
| TPH (C09-C36)                  |                 |                 |                 |                 |

#### SOIL

| LOCATION                     | SB-799      | SB-800            | SB-800               | SB-800               |
|------------------------------|-------------|-------------------|----------------------|----------------------|
| SAMPLE ID                    | F-SB-799-SS | F-SB-800-03       | F-SB-800-05          | F-SB-800-05-D        |
| SAMPLE ID SAMPLE DATE        |             | 9/10/2010         | 9/10/2010            | 9/10/2010            |
| METALS (MG/KG)               | 8/20/2010   | 9/10/2010         | 9/10/2010            | 9/10/2010            |
| ANTIMONY                     |             |                   |                      |                      |
| ARSENIC                      |             |                   |                      |                      |
| BARIUM                       | <del></del> |                   |                      |                      |
| BERYLLIUM                    | <del></del> | <del>-</del>      |                      |                      |
|                              |             |                   |                      |                      |
| CADMIUM<br>CHROMIUM          |             |                   |                      |                      |
|                              |             |                   |                      |                      |
| COBALT                       |             |                   |                      |                      |
| COPPER                       |             |                   |                      |                      |
| LEAD                         |             |                   |                      |                      |
| MERCURY                      |             | 1.8 L [MDL=0.019] | 0.017 UR [MDL=0.017] | 0.018 UR [MDL=0.018] |
| MOLYBDENUM                   |             |                   |                      |                      |
| NICKEL                       |             |                   |                      |                      |
| SELENIUM                     |             |                   |                      |                      |
| SILVER                       |             |                   |                      |                      |
| THALLIUM                     |             |                   |                      |                      |
| VANADIUM                     |             |                   |                      |                      |
| ZINC                         |             |                   |                      |                      |
| MISCELLANEOUS PARAMETERS     |             | <b>.</b>          |                      | _                    |
| PERCENT SOLIDS (%)           |             |                   |                      |                      |
| TOTAL SOLIDS (%)             |             |                   |                      |                      |
| HEXAVALENT CHROMIUM (MG/KG)  |             |                   |                      |                      |
| TOTAL ORGANIC CARBON (MG/KG) |             |                   |                      |                      |
| PH (S.U.)                    |             |                   |                      |                      |
| MERCURY (METHYL) (UG/KG)     |             |                   |                      |                      |
| SEMIVOLATILES (UG/KG)        |             |                   |                      |                      |
| 1,1-BIPHENYL                 |             |                   |                      |                      |
| 1,2,4-TRICHLOROBENZENE       |             |                   |                      |                      |
| 1,2-DICHLOROBENZENE          |             |                   |                      |                      |
| 1,3-DICHLOROBENZENE          |             |                   |                      |                      |
| 1,4-DICHLOROBENZENE          |             |                   |                      |                      |
| ,4-DIOXANE                   | -           |                   |                      |                      |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |             |                   |                      |                      |
| 2,4,5-TRICHLOROPHENOL        |             |                   |                      |                      |
| 2,4,6-TRICHLOROPHENOL        |             |                   |                      |                      |
| 2,4-DICHLOROPHENOL           |             |                   |                      |                      |
| 2,4-DIMETHYLPHENOL           |             |                   |                      |                      |
| 2,4-DINITROPHENOL            |             |                   |                      |                      |
| 2,4-DINITROTOLUENE           |             |                   |                      |                      |
| 2,6-DINITROTOLUENE           |             |                   |                      |                      |
|                              | •           | •                 | •                    | •                    |

| SOIL                        |             |             |             |               |
|-----------------------------|-------------|-------------|-------------|---------------|
| LOCATION                    | SB-799      | SB-800      | SB-800      | SB-800        |
| SAMPLE ID                   | F-SB-799-SS | F-SB-800-03 | F-SB-800-05 | F-SB-800-05-D |
| SAMPLE DATE                 | 8/20/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010     |
| 2-CHLORONAPHTHALENE         |             |             |             |               |
| 2-CHLOROPHENOL              |             |             |             |               |
| 2-METHYLPHENOL              |             |             |             |               |
| 2-NITROANILINE              |             |             |             |               |
| 2-NITROPHENOL               |             |             |             |               |
| 3&4-METHYLPHENOL            |             |             |             |               |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |               |
| 3-NITROANILINE              |             |             |             |               |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |               |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |               |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |               |
| 4-CHLOROANILINE             |             |             |             |               |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |               |
| 4-NITROANILINE              |             |             |             |               |
| 4-NITROPHENOL               |             |             |             |               |
| ACETOPHENONE                |             |             |             |               |
| ANILINE                     |             |             |             |               |
| ATRAZINE                    |             |             |             |               |
| AZOBENZENE                  |             |             |             |               |
| BENZIDINE                   |             |             |             |               |
| BENZOIC ACID                |             |             |             |               |
| BENZYL ALCOHOL              |             |             |             |               |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |               |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |               |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |               |
| BUTYL BENZYL PHTHALATE      |             |             |             |               |
| CAPROLACTAM                 |             |             |             |               |
| CARBAZOLE                   |             |             |             |               |
| DIBENZOFURAN                |             |             |             |               |
| DIETHYL PHTHALATE           |             |             |             |               |
| DIMETHYL PHTHALATE          |             |             |             |               |
| DI-N-BUTYL PHTHALATE        |             |             |             |               |
| DI-N-OCTYL PHTHALATE        |             |             |             |               |
| HEXACHLOROBENZENE           |             |             |             |               |
| HEXACHLOROBUTADIENE         |             |             |             |               |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |               |
| HEXACHLOROETHANE            |             |             |             |               |
| ISOPHORONE                  |             |             |             |               |
| NITROBENZENE                |             |             |             |               |
| N-NITROSODIMETHYLAMINE      |             |             |             |               |

#### SOIL

| SOIL                           | SB 700      | SB 900      | CB 900      | SB 900        |
|--------------------------------|-------------|-------------|-------------|---------------|
| LOCATION                       | SB-799      | SB-800      | SB-800      | SB-800        |
| SAMPLE ID                      | F-SB-799-SS | F-SB-800-03 | F-SB-800-05 | F-SB-800-05-D |
| SAMPLE DATE                    | 8/20/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010     |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |               |
| N-NITROSODIPHENYLAMINE         |             |             |             |               |
| PENTACHLOROPHENOL              |             |             |             |               |
| PHENOL                         |             |             |             |               |
| PYRIDINE                       |             |             |             |               |
| VOLATILES (UG/KG)              |             | 1           | 1           |               |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,1-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |               |
| 1,1,2-TRICHLOROETHANE          |             |             |             |               |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |               |
| 1,1-DICHLOROETHANE             |             |             |             |               |
| 1,1-DICHLOROETHENE             |             |             |             |               |
| 1,1-DICHLOROPROPENE            |             |             |             |               |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |               |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |               |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |               |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |               |
| 1,2-DIBROMOETHANE              |             |             |             |               |
| 1,2-DICHLOROBENZENE            |             |             |             |               |
| 1,2-DICHLOROETHANE             |             |             |             |               |
| 1,2-DICHLOROPROPANE            |             |             |             |               |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |               |
| 1,3-DICHLOROBENZENE            |             |             |             |               |
| 1,3-DICHLOROPROPANE            |             |             |             |               |
| 1,3-DICHLOROPROPENE            |             |             |             |               |
| 1,4-DICHLOROBENZENE            |             |             |             |               |
| 1,4-DIOXANE                    |             |             |             |               |
| 2,2-DICHLOROPROPANE            |             |             |             |               |
| 2-BUTANONE                     |             |             |             |               |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |               |
| 2-CHLOROTOLUENE                |             |             |             |               |
| 2-HEXANONE                     |             |             |             |               |
| 4-CHLOROTOLUENE                |             |             |             |               |
| 4-ISOPROPYLTOLUENE             |             |             |             |               |
| 4-METHYL-2-PENTANONE           |             |             |             |               |
| ACETONE                        |             |             |             |               |
| BENZENE                        |             |             |             |               |
|                                |             |             | l .         |               |

#### SOIL

| LOCATION                  | SB-799      | SB-800      | SB-800      | SB-800        |
|---------------------------|-------------|-------------|-------------|---------------|
| SAMPLE ID                 | F-SB-799-SS | F-SB-800-03 | F-SB-800-05 | F-SB-800-05-D |
| SAMPLE DATE               | 8/20/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010     |
| BROMOBENZENE              |             |             |             |               |
| BROMOCHLOROMETHANE        |             |             |             |               |
| BROMODICHLOROMETHANE      |             |             |             |               |
| BROMOFORM                 |             |             |             |               |
| BROMOMETHANE              |             |             |             |               |
| CARBON DISULFIDE          |             |             |             |               |
| CARBON TETRACHLORIDE      |             |             |             |               |
| CHLOROBENZENE             |             |             |             |               |
| CHLORODIBROMOMETHANE      |             |             |             |               |
| CHLOROETHANE              |             |             |             |               |
| CHLOROFORM                |             |             |             |               |
| CHLOROMETHANE             |             |             |             |               |
| CIS-1,2-DICHLOROETHENE    |             |             |             |               |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |               |
| DIBROMOMETHANE            |             |             |             |               |
| DICHLORODIFLUOROMETHANE   |             |             |             |               |
| DIISOPROPYL ETHER         |             |             |             |               |
| ETHYL TERT-BUTYL ETHER    |             |             |             |               |
| ETHYLBENZENE              |             |             |             |               |
| FLUORODICHLOROMETHANE     |             |             |             |               |
| HEXACHLOROBUTADIENE       |             |             |             |               |
| ISOPROPYLBENZENE          |             |             |             |               |
| M+P-XYLENES               |             |             |             |               |
| METHYL TERT-BUTYL ETHER   |             |             |             |               |
| METHYLENE CHLORIDE        |             |             |             |               |
| NAPHTHALENE               |             |             |             |               |
| N-BUTYLBENZENE            |             |             |             |               |
| N-PROPYLBENZENE           |             |             |             |               |
| O-XYLENE                  |             |             |             |               |
| SEC-BUTYLBENZENE          |             |             |             |               |
| STYRENE                   |             |             |             |               |
| TERT-AMYL METHYL ETHER    |             |             |             |               |
| TERT-BUTYLBENZENE         |             |             |             |               |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |               |
| TETRACHLOROETHENE         |             |             |             |               |
| TOLUENE                   |             |             |             |               |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |               |
| TOTAL XYLENES             |             |             |             |               |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |               |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |               |

## SOIL

| LOCATION                                 | SB-799            | SB-800      | SB-800      | SB-800        |
|------------------------------------------|-------------------|-------------|-------------|---------------|
| SAMPLE ID                                | F-SB-799-SS       | F-SB-800-03 | F-SB-800-05 | F-SB-800-05-D |
| SAMPLE DATE                              | 8/20/2010         | 9/10/2010   | 9/10/2010   | 9/10/2010     |
| TRICHLOROETHENE                          |                   |             |             |               |
| TRICHLOROFLUOROMETHANE                   |                   |             |             |               |
| VINYL ACETATE                            |                   |             |             |               |
| VINYL CHLORIDE                           |                   |             |             |               |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |                   |             |             |               |
| 1-METHYLNAPHTHALENE                      | 3.9 U [MDL=3.9]   |             |             |               |
| 2-METHYLNAPHTHALENE                      | 3.9 U [MDL=3.9]   |             |             |               |
| ACENAPHTHENE                             | 3.9 U [MDL=3.9]   |             |             |               |
| ACENAPHTHYLENE                           | 3.9 U [MDL=3.9]   |             |             |               |
| ANTHRACENE                               | 3.9 U [MDL=3.9]   |             |             |               |
| BAP EQUIVALENT-HALFND                    | 13.0855 [MDL=NaN] |             |             |               |
| BAP EQUIVALENT-POS                       | 10.921 [MDL=NaN]  |             |             |               |
| BAP EQUIVALENT-UCL                       |                   |             |             |               |
| BENZO(A)ANTHRACENE                       | 8.1 [MDL=3.9]     |             |             |               |
| BENZO(A)PYRENE                           | 9 [MDL=3.9]       |             |             |               |
| BENZO(B)FLUORANTHENE                     | 11 [MDL=3.9]      |             |             |               |
| BENZO(G,H,I)PERYLENE                     | 3.9 U [MDL=3.9]   |             |             |               |
| BENZO(K)FLUORANTHENE                     | 3.9 U [MDL=3.9]   |             |             |               |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |                   |             |             |               |
| C1-FLUORANTHENES/PYRENES                 |                   |             |             |               |
| C1-FLUORENES                             |                   |             |             |               |
| C1-PHENANTHRENES/ANTHRACENES             |                   |             |             |               |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |                   |             |             |               |
| C2-FLUORENES                             |                   |             |             |               |
| C2-NAPHTHALENES                          |                   |             |             |               |
| C2-PHENANTHRENES/ANTHRACENES             |                   |             |             |               |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |                   |             |             |               |
| C3-FLUORENES                             |                   |             |             |               |
| C3-NAPHTHALENES                          |                   |             |             |               |
| C3-PHENANTHRENES/ANTHRACENES             |                   |             |             |               |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |                   |             |             |               |
| C4-NAPHTHALENES                          |                   |             |             |               |
| C4-PHENANTHRENES/ANTHRACENES             |                   |             |             |               |
| CHRYSENE                                 | 11 [MDL=1.3]      |             |             |               |
| DIBENZO(A,H)ANTHRACENE                   | 3.9 U [MDL=3.9]   |             |             |               |
| FLUORANTHENE                             | 17 [MDL=3.9]      |             |             |               |
| FLUORENE                                 | 3.9 U [MDL=3.9]   |             |             |               |
| INDENO(1,2,3-CD)PYRENE                   | 3.9 U [MDL=3.9]   |             |             |               |
| NAPHTHALENE                              | 3.9 U [MDL=3.9]   |             |             |               |

#### SOIL

| LOCATION                       | SB-799         | SB-800      | SB-800      | SB-800        |
|--------------------------------|----------------|-------------|-------------|---------------|
| SAMPLE ID                      | F-SB-799-SS    | F-SB-800-03 | F-SB-800-05 | F-SB-800-05-D |
| SAMPLE DATE                    | 8/20/2010      | 9/10/2010   | 9/10/2010   | 9/10/2010     |
| PHENANTHRENE                   | 8 [MDL=3.9]    |             |             |               |
| PYRENE                         | 17 [MDL=3.9]   |             |             |               |
| TOTAL PAHS                     | 81.1 [MDL=NaN] |             |             |               |
| PESTICIDES/PCBS (UG/KG)        |                |             |             |               |
| 4,4'-DDD                       |                |             |             |               |
| 1,4'-DDE                       |                |             |             |               |
| 4,4'-DDT                       |                |             |             |               |
| ALDRIN                         |                |             |             |               |
| ALPHA-BHC                      |                |             |             |               |
| ALPHA-CHLORDANE                |                |             |             |               |
| AROCLOR-1016                   |                |             |             |               |
| AROCLOR-1221                   |                |             |             |               |
| AROCLOR-1232                   |                |             |             |               |
| AROCLOR-1242                   |                |             |             |               |
| AROCLOR-1248                   |                |             |             |               |
| AROCLOR-1254                   |                |             |             |               |
| AROCLOR-1260                   |                |             |             |               |
| BETA-BHC                       |                |             |             |               |
| DELTA-BHC                      |                |             |             |               |
| DIELDRIN                       |                |             |             |               |
| ENDOSULFAN I                   |                |             |             |               |
| ENDOSULFAN II                  |                |             |             |               |
| ENDOSULFAN SULFATE             |                |             |             |               |
| ENDRIN                         |                |             |             |               |
| ENDRIN ALDEHYDE                |                |             |             |               |
| ENDRIN KETONE                  |                |             |             |               |
| GAMMA-BHC (LINDANE)            |                |             |             |               |
| GAMMA-CHLORDANE                |                |             |             |               |
| HEPTACHLOR                     |                |             |             |               |
| HEPTACHLOR EPOXIDE             |                |             |             |               |
| METHOXYCHLOR                   |                |             |             |               |
| TOTAL AROCLOR                  |                |             |             |               |
| TOTAL DDT POS                  |                |             |             |               |
| OXAPHENE                       |                |             |             |               |
| PETROLEUM HYDROCARBONS (UG/KG) |                |             |             |               |
| DIESEL RANGE ORGANICS          |                |             |             |               |
| GASOLINE RANGE ORGANICS        |                |             |             |               |
| TPH (C09-C36)                  |                |             |             |               |

#### SOIL

| SUIL                         |                 |                    |                      | -                  |
|------------------------------|-----------------|--------------------|----------------------|--------------------|
| LOCATION                     | SB-800          | SB-801             | SB-801               | SB-801             |
| SAMPLE ID                    | F-SB-800-SS     | F-SB-801-03        | F-SB-801-05          | F-SB-801-SS        |
| SAMPLE DATE                  | 9/10/2010       | 9/10/2010          | 9/10/2010            | 9/10/2010          |
| METALS (MG/KG)               |                 |                    |                      |                    |
| ANTIMONY                     |                 |                    |                      |                    |
| ARSENIC                      |                 |                    |                      |                    |
| BARIUM                       |                 |                    |                      |                    |
| BERYLLIUM                    |                 |                    |                      |                    |
| CADMIUM                      |                 |                    |                      |                    |
| CHROMIUM                     |                 |                    |                      |                    |
| COBALT                       |                 |                    |                      |                    |
| COPPER                       |                 |                    |                      |                    |
| LEAD                         |                 |                    |                      |                    |
| MERCURY                      | 1 L [MDL=0.018] | 0.68 L [MDL=0.018] | 0.018 UR [MDL=0.018] | 0.18 L [MDL=0.016] |
| MOLYBDENUM                   |                 |                    |                      |                    |
| NICKEL                       |                 |                    |                      |                    |
| SELENIUM                     |                 |                    |                      |                    |
| SILVER                       |                 |                    |                      |                    |
| THALLIUM                     |                 |                    |                      |                    |
| VANADIUM                     |                 |                    |                      |                    |
| ZINC                         |                 |                    |                      |                    |
| MISCELLANEOUS PARAMETERS     |                 | •                  |                      | •                  |
| PERCENT SOLIDS (%)           |                 |                    |                      |                    |
| TOTAL SOLIDS (%)             |                 |                    |                      |                    |
| HEXAVALENT CHROMIUM (MG/KG)  |                 |                    |                      |                    |
| TOTAL ORGANIC CARBON (MG/KG) |                 |                    |                      |                    |
| PH (S.U.)                    |                 |                    |                      |                    |
| MERCURY (METHYL) (UG/KG)     |                 |                    |                      |                    |
| SEMIVOLATILES (UG/KG)        |                 | •                  |                      | •                  |
| 1,1-BIPHENYL                 |                 |                    |                      |                    |
| 1,2,4-TRICHLOROBENZENE       |                 |                    |                      |                    |
| 1,2-DICHLOROBENZENE          |                 |                    |                      |                    |
| 1,3-DICHLOROBENZENE          |                 |                    |                      |                    |
| 1,4-DICHLOROBENZENE          |                 |                    |                      |                    |
| 1,4-DIOXANE                  |                 |                    |                      |                    |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                 |                    |                      |                    |
| 2,4,5-TRICHLOROPHENOL        |                 |                    |                      |                    |
| 2,4,6-TRICHLOROPHENOL        |                 |                    |                      |                    |
| 2,4-DICHLOROPHENOL           |                 |                    |                      |                    |
| 2,4-DIMETHYLPHENOL           |                 |                    |                      |                    |
| 2,4-DINITROPHENOL            |                 |                    |                      |                    |
| 2,4-DINITROTOLUENE           | <del></del>     |                    |                      |                    |
| 2,6-DINITROTOLUENE           |                 |                    |                      |                    |
| •                            | •               | 1                  | •                    |                    |

#### SOIL

| LOCATION                    | SB-800      | SB-801      | SB-801      | SB-801      |
|-----------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-800-SS | F-SB-801-03 | F-SB-801-05 | F-SB-801-SS |
| SAMPLE DATE                 | 9/10/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| 2-CHLORONAPHTHALENE         |             |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |             |
| 2-METHYLPHENOL              |             |             |             |             |
| 2-NITROANILINE              |             |             |             |             |
| 2-NITROPHENOL               |             |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |             |
| 3-NITROANILINE              |             |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |             |
| 4-CHLOROANILINE             |             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |             |
| 4-NITROANILINE              |             |             |             |             |
| 4-NITROPHENOL               |             |             |             |             |
| ACETOPHENONE                |             |             |             |             |
| ANILINE                     |             |             |             |             |
| ATRAZINE                    |             |             |             |             |
| AZOBENZENE                  |             |             |             |             |
| BENZIDINE                   |             |             |             |             |
| BENZOIC ACID                |             |             |             |             |
| BENZYL ALCOHOL              |             |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |             |
| CAPROLACTAM                 |             |             |             |             |
| CARBAZOLE                   |             |             |             |             |
| DIBENZOFURAN                |             |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |             |
| HEXACHLOROETHANE            |             |             |             |             |
| ISOPHORONE                  |             |             |             |             |
| NITROBENZENE                |             |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |             |

#### SOIL

| SOIL                           | 00.000      | 00.004      | 00.004      | OD 004      |
|--------------------------------|-------------|-------------|-------------|-------------|
| LOCATION                       | SB-800      | SB-801      | SB-801      | SB-801      |
| SAMPLE ID                      | F-SB-800-SS | F-SB-801-03 | F-SB-801-05 | F-SB-801-SS |
| SAMPLE DATE                    | 9/10/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |             |
| PHENOL                         |             |             |             |             |
| PYRIDINE                       |             |             |             |             |
| VOLATILES (UG/KG)              |             | 1           | 1           |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |             |
| 1,4-DIOXANE                    |             |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |             |
| 2-BUTANONE                     |             |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |             |
| 2-HEXANONE                     |             |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |             |
| ACETONE                        |             |             |             |             |
| BENZENE                        |             |             |             |             |
|                                |             |             | l .         |             |

#### SOIL

| LOCATION                  | SB-800      | SB-801      | SB-801      | SB-801      |
|---------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-800-SS | F-SB-801-03 | F-SB-801-05 | F-SB-801-SS |
| SAMPLE DATE               | 9/10/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| BROMOBENZENE              |             |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |             |
| BROMOFORM                 |             |             |             |             |
| BROMOMETHANE              |             |             |             |             |
| CARBON DISULFIDE          |             |             |             |             |
| CARBON TETRACHLORIDE      |             |             |             |             |
| CHLOROBENZENE             |             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             |             |             |
| CHLOROETHANE              |             |             |             |             |
| CHLOROFORM                |             |             |             |             |
| CHLOROMETHANE             |             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |             |
| DIBROMOMETHANE            |             |             |             |             |
| DICHLORODIFLUOROMETHANE   |             |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |             |
| ETHYLBENZENE              |             |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |             |
| M+P-XYLENES               |             |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |             |
| NAPHTHALENE               |             |             |             |             |
| N-BUTYLBENZENE            |             |             |             |             |
| N-PROPYLBENZENE           |             |             |             |             |
| O-XYLENE                  |             |             |             |             |
| SEC-BUTYLBENZENE          |             |             |             |             |
| STYRENE                   |             |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             |             |             |
| TERT-BUTYLBENZENE         |             |             |             |             |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |             |
| TETRACHLOROETHENE         |             |             |             |             |
| TOLUENE                   |             |             |             |             |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |             |
| TOTAL XYLENES             |             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |             |

## SOIL

NAPHTHALENE

| LOCATION                                 | SB-800      | SB-801      | SB-801      | SB-801      |
|------------------------------------------|-------------|-------------|-------------|-------------|
| SAMPLE ID                                | F-SB-800-SS | F-SB-801-03 | F-SB-801-05 | F-SB-801-SS |
| SAMPLE DATE                              | 9/10/2010   | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| TRICHLOROETHENE                          |             |             |             |             |
| TRICHLOROFLUOROMETHANE                   |             |             |             |             |
| VINYL ACETATE                            |             |             |             |             |
| VINYL CHLORIDE                           |             |             |             |             |
| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG) |             |             |             |             |
| 1-METHYLNAPHTHALENE                      |             |             |             |             |
| 2-METHYLNAPHTHALENE                      |             |             |             |             |
| ACENAPHTHENE                             |             |             |             |             |
| ACENAPHTHYLENE                           |             |             |             |             |
| ANTHRACENE                               |             |             |             |             |
| BAP EQUIVALENT-HALFND                    |             |             |             |             |
| BAP EQUIVALENT-POS                       |             |             |             |             |
| BAP EQUIVALENT-UCL                       |             |             |             |             |
| BENZO(A)ANTHRACENE                       |             |             |             |             |
| BENZO(A)PYRENE                           |             |             |             |             |
| BENZO(B)FLUORANTHENE                     |             |             |             |             |
| BENZO(G,H,I)PERYLENE                     |             |             |             |             |
| BENZO(K)FLUORANTHENE                     |             |             |             |             |
| C1-CHRYSENES/BENZO(A)ANTHRACENES         |             |             |             |             |
| C1-FLUORANTHENES/PYRENES                 |             |             |             |             |
| C1-FLUORENES                             |             |             |             |             |
| C1-PHENANTHRENES/ANTHRACENES             |             |             |             |             |
| C2-CHRYSENES/BENZO(A)ANTHRACENES         |             |             |             |             |
| C2-FLUORENES                             |             |             |             |             |
| C2-NAPHTHALENES                          |             |             |             |             |
| C2-PHENANTHRENES/ANTHRACENES             |             |             |             |             |
| C3-CHRYSENES/BENZO(A)ANTHRACENES         |             |             |             |             |
| C3-FLUORENES                             |             |             |             |             |
| C3-NAPHTHALENES                          |             |             |             |             |
| C3-PHENANTHRENES/ANTHRACENES             |             |             |             |             |
| C4-CHRYSENES/BENZO(A)ANTHRACENES         |             |             |             |             |
| C4-NAPHTHALENES                          |             |             |             |             |
| C4-PHENANTHRENES/ANTHRACENES             |             |             |             |             |
| CHRYSENE                                 |             |             |             |             |
| DIBENZO(A,H)ANTHRACENE                   |             |             |             |             |
| FLUORANTHENE                             |             |             |             |             |
| FLUORENE                                 |             |             |             |             |
| INDENO(1,2,3-CD)PYRENE                   |             |             |             |             |

#### SOIL

| LOCATION                       | CD 000                | CD 004                | CD 004                | CD 004                |
|--------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| LOCATION<br>SAMPLE ID          | SB-800<br>F-SB-800-SS | SB-801<br>F-SB-801-03 | SB-801<br>F-SB-801-05 | SB-801<br>F-SB-801-SS |
|                                |                       |                       |                       |                       |
| SAMPLE DATE                    | 9/10/2010             | 9/10/2010             | 9/10/2010             | 9/10/2010             |
| PHENANTHRENE                   |                       |                       |                       |                       |
| PYRENE                         |                       |                       |                       |                       |
| TOTAL PAHS                     |                       |                       |                       |                       |
| PESTICIDES/PCBS (UG/KG)        |                       | T                     | T                     | T                     |
| 4,4'-DDD                       |                       |                       |                       |                       |
| 4,4'-DDE                       |                       |                       |                       |                       |
| 4,4'-DDT                       |                       |                       |                       |                       |
| ALDRIN                         |                       |                       |                       |                       |
| ALPHA-BHC                      |                       |                       |                       |                       |
| ALPHA-CHLORDANE                |                       |                       |                       |                       |
| AROCLOR-1016                   |                       |                       |                       |                       |
| AROCLOR-1221                   |                       |                       |                       |                       |
| AROCLOR-1232                   | <del></del>           |                       |                       |                       |
| AROCLOR-1242                   |                       |                       |                       |                       |
| AROCLOR-1248                   |                       |                       |                       |                       |
| AROCLOR-1254                   |                       |                       |                       |                       |
| AROCLOR-1260                   |                       |                       |                       |                       |
| BETA-BHC                       |                       |                       |                       |                       |
| DELTA-BHC                      |                       |                       |                       |                       |
| DIELDRIN                       |                       |                       |                       |                       |
| ENDOSULFAN I                   |                       |                       |                       |                       |
| ENDOSULFAN II                  |                       |                       |                       |                       |
| ENDOSULFAN SULFATE             |                       |                       |                       |                       |
| ENDRIN                         |                       |                       |                       |                       |
| ENDRIN ALDEHYDE                |                       |                       |                       |                       |
| ENDRIN KETONE                  |                       |                       |                       |                       |
| GAMMA-BHC (LINDANE)            |                       |                       |                       |                       |
| GAMMA-CHLORDANE                |                       |                       |                       |                       |
| HEPTACHLOR                     |                       |                       |                       |                       |
| HEPTACHLOR EPOXIDE             |                       |                       |                       |                       |
| METHOXYCHLOR                   |                       |                       |                       |                       |
| TOTAL AROCLOR                  |                       |                       |                       |                       |
| TOTAL DDT POS                  |                       |                       |                       |                       |
| TOXAPHENE                      |                       |                       |                       |                       |
| PETROLEUM HYDROCARBONS (UG/KG) | •                     | •                     | •                     | -                     |
| DIESEL RANGE ORGANICS          |                       |                       |                       |                       |
| GASOLINE RANGE ORGANICS        |                       |                       |                       |                       |
| TPH (C09-C36)                  |                       |                       |                       |                       |
|                                |                       |                       |                       |                       |

#### SOIL

| LOCATION                     | SB-802             | SB-802               | SB-802               |
|------------------------------|--------------------|----------------------|----------------------|
| SAMPLE ID                    | F-SB-802-03        | F-SB-802-05          | F-SB-802-SS          |
| SAMPLE DATE                  | 9/10/2010          | 9/10/2010            | 9/10/2010            |
| METALS (MG/KG)               | 0.10,2010          | 3.13,25.15           | 0,10,2010            |
| ANTIMONY                     |                    |                      |                      |
| ARSENIC                      |                    |                      | <del></del>          |
| BARIUM                       |                    |                      | <del></del>          |
| BERYLLIUM                    |                    |                      |                      |
| CADMIUM                      |                    |                      |                      |
| CHROMIUM                     |                    |                      |                      |
| COBALT                       |                    |                      |                      |
| COPPER                       |                    |                      |                      |
| LEAD                         |                    |                      |                      |
| MERCURY                      | 0.89 L [MDL=0.018] | 0.022 UR [MDL=0.022] | 0.017 UR [MDL=0.017] |
| MOLYBDENUM                   |                    |                      |                      |
| NICKEL                       |                    |                      |                      |
| SELENIUM                     |                    |                      |                      |
| SILVER                       |                    |                      |                      |
| THALLIUM                     |                    |                      |                      |
| VANADIUM                     |                    |                      |                      |
| ZINC                         |                    |                      |                      |
| MISCELLANEOUS PARAMETERS     |                    | •                    |                      |
| PERCENT SOLIDS (%)           |                    |                      |                      |
| TOTAL SOLIDS (%)             |                    |                      |                      |
| HEXAVALENT CHROMIUM (MG/KG)  |                    |                      |                      |
| TOTAL ORGANIC CARBON (MG/KG) |                    |                      | -1                   |
| PH (S.U.)                    |                    |                      | -1                   |
| MERCURY (METHYL) (UG/KG)     |                    |                      |                      |
| SEMIVOLATILES (UG/KG)        |                    |                      |                      |
| 1,1-BIPHENYL                 |                    |                      |                      |
| 1,2,4-TRICHLOROBENZENE       |                    |                      | <del></del>          |
| 1,2-DICHLOROBENZENE          |                    |                      | <del></del>          |
| 1,3-DICHLOROBENZENE          |                    |                      |                      |
| 1,4-DICHLOROBENZENE          |                    |                      |                      |
| 1,4-DIOXANE                  |                    |                      |                      |
| 2,2'-OXYBIS(1-CHLOROPROPANE) |                    |                      |                      |
| 2,4,5-TRICHLOROPHENOL        |                    |                      |                      |
| 2,4,6-TRICHLOROPHENOL        |                    |                      |                      |
| 2,4-DICHLOROPHENOL           |                    |                      |                      |
| 2,4-DIMETHYLPHENOL           |                    |                      |                      |
| 2,4-DINITROPHENOL            |                    |                      |                      |
| 2,4-DINITROTOLUENE           |                    |                      |                      |
| 2,6-DINITROTOLUENE           |                    |                      |                      |

| LOCATION                    | SB-802      | SB-802      | SB-802      |
|-----------------------------|-------------|-------------|-------------|
| SAMPLE ID                   | F-SB-802-03 | F-SB-802-05 | F-SB-802-SS |
| SAMPLE DATE                 | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| 2-CHLORONAPHTHALENE         |             |             |             |
| 2-CHLOROPHENOL              |             |             |             |
| 2-METHYLPHENOL              |             |             |             |
| 2-NITROANILINE              |             |             |             |
| 2-NITROPHENOL               |             |             |             |
| 3&4-METHYLPHENOL            |             |             |             |
| 3,3'-DICHLOROBENZIDINE      |             |             |             |
| 3-NITROANILINE              |             |             |             |
| 4,6-DINITRO-2-METHYLPHENOL  |             |             |             |
| 4-BROMOPHENYL PHENYL ETHER  |             |             |             |
| 4-CHLORO-3-METHYLPHENOL     |             |             |             |
| 4-CHLOROANILINE             |             |             |             |
| 4-CHLOROPHENYL PHENYL ETHER |             |             |             |
| 4-NITROANILINE              |             |             |             |
| 4-NITROPHENOL               |             |             |             |
| ACETOPHENONE                |             |             |             |
| ANILINE                     |             |             |             |
| ATRAZINE                    |             |             |             |
| AZOBENZENE                  |             |             |             |
| BENZIDINE                   |             |             |             |
| BENZOIC ACID                |             |             |             |
| BENZYL ALCOHOL              |             |             |             |
| BIS(2-CHLOROETHOXY)METHANE  |             |             |             |
| BIS(2-CHLOROETHYL)ETHER     |             |             |             |
| BIS(2-ETHYLHEXYL)PHTHALATE  |             |             |             |
| BUTYL BENZYL PHTHALATE      |             |             |             |
| CAPROLACTAM                 |             |             |             |
| CARBAZOLE                   |             |             |             |
| DIBENZOFURAN                |             |             |             |
| DIETHYL PHTHALATE           |             |             |             |
| DIMETHYL PHTHALATE          |             |             |             |
| DI-N-BUTYL PHTHALATE        |             |             |             |
| DI-N-OCTYL PHTHALATE        |             |             |             |
| HEXACHLOROBENZENE           |             |             |             |
| HEXACHLOROBUTADIENE         |             |             |             |
| HEXACHLOROCYCLOPENTADIENE   |             |             |             |
| HEXACHLOROETHANE            |             |             |             |
| ISOPHORONE                  |             |             |             |
| NITROBENZENE                |             |             |             |
| N-NITROSODIMETHYLAMINE      |             |             |             |

#### SOIL

| LOCATION                       | SB-802      | SB-802      | SB-802      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-802-03 | F-SB-802-05 | F-SB-802-SS |
| SAMPLE DATE                    | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| N-NITROSO-DI-N-PROPYLAMINE     |             |             |             |
| N-NITROSODIPHENYLAMINE         |             |             |             |
| PENTACHLOROPHENOL              |             |             |             |
| PHENOL                         |             |             |             |
| PYRIDINE                       |             |             |             |
| VOLATILES (UG/KG)              |             |             |             |
| 1,1,1,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,1-TRICHLOROETHANE          |             |             |             |
| 1,1,2,2-TETRACHLOROETHANE      |             |             |             |
| 1,1,2-TRICHLOROETHANE          |             |             |             |
| 1,1,2-TRICHLOROTRIFLUOROETHANE |             |             |             |
| 1,1-DICHLOROETHANE             |             |             |             |
| 1,1-DICHLOROETHENE             |             |             |             |
| 1,1-DICHLOROPROPENE            |             |             |             |
| 1,2,3-TRICHLOROBENZENE         |             |             |             |
| 1,2,3-TRICHLOROPROPANE         |             |             |             |
| 1,2,3-TRIMETHYLBENZENE         |             |             |             |
| 1,2,4-TRICHLOROBENZENE         |             |             |             |
| 1,2,4-TRIMETHYLBENZENE         |             |             |             |
| 1,2-DIBROMO-3-CHLOROPROPANE    |             |             |             |
| 1,2-DIBROMOETHANE              |             |             |             |
| 1,2-DICHLOROBENZENE            |             |             |             |
| 1,2-DICHLOROETHANE             |             |             |             |
| 1,2-DICHLOROPROPANE            |             |             |             |
| 1,3,5-TRIMETHYLBENZENE         |             |             |             |
| 1,3-DICHLOROBENZENE            |             |             |             |
| 1,3-DICHLOROPROPANE            |             |             |             |
| 1,3-DICHLOROPROPENE            |             |             |             |
| 1,4-DICHLOROBENZENE            |             |             |             |
| 1,4-DIOXANE                    |             |             |             |
| 2,2-DICHLOROPROPANE            |             |             |             |
| 2-BUTANONE                     |             |             |             |
| 2-CHLOROETHYL VINYL ETHER      |             |             |             |
| 2-CHLOROTOLUENE                |             |             |             |
| 2-HEXANONE                     |             |             |             |
| 4-CHLOROTOLUENE                |             |             |             |
| 4-ISOPROPYLTOLUENE             |             |             |             |
| 4-METHYL-2-PENTANONE           |             |             |             |
| ACETONE                        |             |             |             |
| BENZENE                        |             |             |             |

| LOCATION                  | SB-802      | SB-802      | SB-802      |
|---------------------------|-------------|-------------|-------------|
| SAMPLE ID                 | F-SB-802-03 | F-SB-802-05 | F-SB-802-SS |
| SAMPLE DATE               | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| BROMOBENZENE              |             |             |             |
| BROMOCHLOROMETHANE        |             |             |             |
| BROMODICHLOROMETHANE      |             |             |             |
| BROMOFORM                 |             |             | <del></del> |
| BROMOMETHANE              |             |             | <del></del> |
| CARBON DISULFIDE          |             |             |             |
| CARBON TETRACHLORIDE      |             |             | <del></del> |
| CHLOROBENZENE             |             |             |             |
| CHLORODIBROMOMETHANE      |             |             | <del></del> |
| CHLOROETHANE              |             |             | <del></del> |
| CHLOROFORM                |             |             |             |
| CHLOROMETHANE             |             |             |             |
| CIS-1,2-DICHLOROETHENE    |             |             |             |
| CIS-1,3-DICHLOROPROPENE   |             |             |             |
| DIBROMOMETHANE            |             |             | <del></del> |
| DICHLORODIFLUOROMETHANE   |             |             |             |
| DIISOPROPYL ETHER         |             |             |             |
| ETHYL TERT-BUTYL ETHER    |             |             |             |
| ETHYLBENZENE              |             |             |             |
| FLUORODICHLOROMETHANE     |             |             |             |
| HEXACHLOROBUTADIENE       |             |             |             |
| ISOPROPYLBENZENE          |             |             |             |
| M+P-XYLENES               |             |             |             |
| METHYL TERT-BUTYL ETHER   |             |             |             |
| METHYLENE CHLORIDE        |             |             |             |
| NAPHTHALENE               |             |             |             |
| N-BUTYLBENZENE            |             |             |             |
| N-PROPYLBENZENE           |             |             |             |
| O-XYLENE                  |             |             |             |
| SEC-BUTYLBENZENE          |             |             | <del></del> |
| STYRENE                   |             |             |             |
| TERT-AMYL METHYL ETHER    |             |             | <del></del> |
| TERT-BUTYLBENZENE         |             |             | <del></del> |
| TERTIARY-BUTYL ALCOHOL    |             |             |             |
| TETRACHLOROETHENE         |             |             |             |
| TOLUENE                   |             |             | <del></del> |
| TOTAL 1,2-DICHLOROETHENE  |             |             |             |
| TOTAL XYLENES             |             |             |             |
| TRANS-1,2-DICHLOROETHENE  |             |             |             |
| TRANS-1,3-DICHLOROPROPENE |             |             |             |

#### SOIL

| SB-802      | SB-802                           | SB-802                                      |
|-------------|----------------------------------|---------------------------------------------|
| F-SB-802-03 | F-SB-802-05                      | F-SB-802-SS                                 |
| 9/10/2010   | 9/10/2010                        | 9/10/2010                                   |
|             |                                  |                                             |
|             |                                  |                                             |
|             |                                  |                                             |
|             |                                  |                                             |
|             | F-SB-802-03<br>9/10/2010<br><br> | F-SB-802-03 F-SB-802-05 9/10/2010 9/10/2010 |

#### POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG)

| POLYCYCLIC AROMATIC HYDROCARBONS (UG/KG | ) |      |
|-----------------------------------------|---|------|
| 1-METHYLNAPHTHALENE                     |   | <br> |
| 2-METHYLNAPHTHALENE                     |   | <br> |
| ACENAPHTHENE                            |   | <br> |
| ACENAPHTHYLENE                          |   | <br> |
| ANTHRACENE                              |   | <br> |
| BAP EQUIVALENT-HALFND                   |   | <br> |
| BAP EQUIVALENT-POS                      |   | <br> |
| BAP EQUIVALENT-UCL                      |   | <br> |
| BENZO(A)ANTHRACENE                      |   | <br> |
| BENZO(A)PYRENE                          |   | <br> |
| BENZO(B)FLUORANTHENE                    |   | <br> |
| BENZO(G,H,I)PERYLENE                    |   | <br> |
| BENZO(K)FLUORANTHENE                    |   | <br> |
| C1-CHRYSENES/BENZO(A)ANTHRACENES        |   | <br> |
| C1-FLUORANTHENES/PYRENES                |   | <br> |
| C1-FLUORENES                            |   | <br> |
| C1-PHENANTHRENES/ANTHRACENES            |   | <br> |
| C2-CHRYSENES/BENZO(A)ANTHRACENES        |   | <br> |
| C2-FLUORENES                            |   | <br> |
| C2-NAPHTHALENES                         |   | <br> |
| C2-PHENANTHRENES/ANTHRACENES            |   | <br> |
| C3-CHRYSENES/BENZO(A)ANTHRACENES        |   | <br> |
| C3-FLUORENES                            |   | <br> |
| C3-NAPHTHALENES                         |   | <br> |
| C3-PHENANTHRENES/ANTHRACENES            |   | <br> |
| C4-CHRYSENES/BENZO(A)ANTHRACENES        |   | <br> |
| C4-NAPHTHALENES                         |   | <br> |
| C4-PHENANTHRENES/ANTHRACENES            |   | <br> |
| CHRYSENE                                |   | <br> |
| DIBENZO(A,H)ANTHRACENE                  |   | <br> |
| FLUORANTHENE                            |   | <br> |
| FLUORENE                                |   | <br> |
| INDENO(1,2,3-CD)PYRENE                  |   | <br> |
| NAPHTHALENE                             |   | <br> |

#### SOIL

| LOCATION                       | SB-802      | SB-802      | SB-802      |
|--------------------------------|-------------|-------------|-------------|
| SAMPLE ID                      | F-SB-802-03 | F-SB-802-05 | F-SB-802-SS |
| SAMPLE DATE                    | 9/10/2010   | 9/10/2010   | 9/10/2010   |
| PHENANTHRENE                   |             |             |             |
| PYRENE                         |             |             |             |
| TOTAL PAHS                     |             |             |             |
| PESTICIDES/PCBS (UG/KG)        | •           |             |             |
| 4,4'-DDD                       |             |             |             |
| 4,4'-DDE                       |             |             |             |
| 4,4'-DDT                       |             |             |             |
| ALDRIN                         |             |             |             |
| ALPHA-BHC                      |             |             |             |
| ALPHA-CHLORDANE                |             |             |             |
| AROCLOR-1016                   |             |             |             |
| AROCLOR-1221                   |             |             |             |
| AROCLOR-1232                   |             |             |             |
| AROCLOR-1242                   |             |             |             |
| AROCLOR-1248                   |             |             |             |
| AROCLOR-1254                   |             |             |             |
| AROCLOR-1260                   |             |             |             |
| BETA-BHC                       |             |             |             |
| DELTA-BHC                      |             |             |             |
| DIELDRIN                       |             |             |             |
| ENDOSULFAN I                   |             |             |             |
| ENDOSULFAN II                  |             |             |             |
| ENDOSULFAN SULFATE             |             |             |             |
| ENDRIN                         |             |             |             |
| ENDRIN ALDEHYDE                |             |             |             |
| ENDRIN KETONE                  |             |             |             |
| GAMMA-BHC (LINDANE)            |             |             |             |
| GAMMA-CHLORDANE                |             |             |             |
| HEPTACHLOR                     |             |             |             |
| HEPTACHLOR EPOXIDE             |             |             |             |
| METHOXYCHLOR                   |             |             |             |
| TOTAL AROCLOR                  |             |             |             |
| TOTAL DDT POS                  |             |             |             |
| TOXAPHENE                      |             |             |             |
| PETROLEUM HYDROCARBONS (UG/KG) |             |             |             |
| DIESEL RANGE ORGANICS          |             |             |             |
| GASOLINE RANGE ORGANICS        |             |             |             |
| TPH (C09-C36)                  |             |             |             |

| APPENDIX D—RESIDUAL-RISK ANALYSIS |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |

# Residual Risk Analysis Conducted to Support Remedial Action Plans for Tax Block F Soils Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

| Prepared for:               |
|-----------------------------|
| Lockheed Martin Corporation |
|                             |
| Prepared by:                |
| Tetra Tech, Inc.            |
| June 15, 2013               |

Mules Mast

Michael Martin, P.G. Regional Manager

Lee an Singon

Lee Ann Sinagoga Project Manager



## **TABLE OF CONTENTS**

| <u>Section</u> | <u>Page</u>                                                          |
|----------------|----------------------------------------------------------------------|
| ACRON          | YMSiii                                                               |
| 1 IN           | ITRODUCTION1-1                                                       |
| 2 M            | ETHODOLOGY2-1                                                        |
| 3 RI           | ESULTS AND CONCLUSIONS3-1                                            |
| 4 RI           | EFERENCES4-1                                                         |
|                | List of Tables                                                       |
| <u>Table</u>   | <u>Page</u>                                                          |
| Table 2-1      | Summary of Residual Risk Analysis Results2-4                         |
|                | Attachments                                                          |
| Attachm        | nent A— Data Histograms; Remedial Goal Calculations                  |
| Attachm        | nent B—Detailed Residual Risk Analysis Tables                        |
| Attachm        | nent C—Final Cumulative Risk Estimates (Post Residual Risk Analysis) |

This page intentionally left blank.

### **ACRONYMS**

BaPEq benzo(a)pyrene equivalents

bgs below ground surface
COC Chemical(s) of concern

COPC Chemical(s) of potential concern
EPC exposure point concentration

HI hazard index

HHRA human health risk assessment

MDE Maryland Department of the Environment

μg/kg micrograms per kilogram

PAHs polycyclic aromatic hydrocarbons

PRG preliminary remedial goal RAO Remedial action objective

RAP remedial action plan
RRA residual risk analysis
RSL regional screening level
UCL upper confidence limit

USEPA United States Environmental Protection Agency

This page intentionally left blank.

# Section 1 Introduction

The Human Health Risk Assessment (HHRA) for Blocks D, E, F, G, and H Soils, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland (Tetra Tech, 2012) identified chemicals of concern (COC) in the tax block soils that require remediation if the typical industrial worker is the receptor of concern. This document was prepared to support the remedial action plans (RAP) for the Tax Block F soils, assuming current and future industrial land use. The residual risk analysis contained herein uses a risk assessment approach to select those locations that should be remediated so that risk management goals established by the Maryland Department of the Environment (MDE) are achieved:

- Maryland Department of the Environment cumulative cancer and non-cancer risk benchmarks for receptors exposed to chemicals of concern in an exposure unit (i.e., an area in which receptor activities typically occur) are 1x10<sup>-5</sup> (i.e., a one-in-one hundred thousand excess probability of developing cancer) and a hazard index (HI) of one, respectively. (Potential adverse non-carcinogenic health effects may occur if the calculated hazard index for a target organ exceeds 1.) Risk estimates greater than these benchmarks are not considered acceptable by the Maryland Department of Environment.
- "Hot spot" areas in soil will also be addressed by the remedial action plan. The Maryland Department of the Environment defines a "hot spot" as a location with a cancer risk estimate exceeding  $1x10^{-4}$  (i.e., a one-in-ten thousand probability of developing cancer) or an HI greater than 100.

Stated alternatively, this analysis will indicate locations that must be remediated to achieve risk management goals or remedial action objectives (RAOs) as they are referred to in the RAP prepared for Tax Block F, while ensuring that "representative" soil concentrations do not exceed the risk-based preliminary remedial goals (PRGs) established for Tax Block F soils. For purposes of human health risk assessment, a "representative" soil concentration (also referred to as the exposure point concentration [EPC]) is typically defined as the 95% upper confidence limit (UCL) on the arithmetic mean. A 95% UCL is defined as a value that, when repeatedly

| calculated for randomly drawn subsets of size n, equals or exceeds the true population mean 95% of the time. The 95% UCL provides a measure of uncertainty in the mean. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of the time. The 95% UCL provides a measure of uncertainty in the mean.                                                                                                 |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |

This page intentionally left blank.

Section 2
Methodology

The residual risk analysis (RRA) was conducted in the six steps described below:

**Step 1: Identification of Chemicals of Concern:** 

The HHRA results indicate that carcinogenic polycyclic aromatic hydrocarbons (PAHs), evaluated in terms of benzo(a)pyrene equivalent (BaPEq) concentrations, are the predominant Chemicals of Concern (COC) for an industrial worker hypothetically exposed to soils in Tax Block F. Risk estimates are presented in Table 4-12 of the HHRA (Tetra Tech, 2012); BaPEq were calculated per methodology presented in the HHRA.

**Step 2: Determination of Preliminary Remedial Goals** 

Risk-based preliminary remedial goals (PRGs) for the industrial worker are presented in Section 6 of the HHRA (Tetra Tech, 2012). In this residual risk analysis, the PRG selected for BaPEq for the industrial worker is 2.9 milligrams per kilogram (mg/kg), which represents the 1x10<sup>-5</sup> cancer risk level.

The risk-based remedial goal used in this RRA was verified using the USEPA regional screening level (RSL) calculator (*http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search*); the associated calculation spreadsheets are in Attachment A. Attachment A also includes histograms that display the distribution of BaPEq in Tax Blocks F soils. The histograms demonstrate that risk estimates are strongly influenced by elevated concentrations detected at relatively few sampling locations within the tax block.

**Step 3: Ranking of Locations** 

Sample locations in Tax Block F were ranked according to BaPEq concentrations (and thus also according to risk). Surface soil (i.e., soils from the ground surface to two feet in depth) locations were ranked separately from subsurface (vadose zone) soil (i.e., soil between two feet below

ground surface [bgs] and the typical depth to groundwater, 7 feet at Tax Block F). If more than one soil sample was available for the depth interval, the maximum concentration was used to rank the location. The results of the ranking for surface and subsurface soils are presented in the detailed residual risk analysis tables provided in Attachment B. Total cancer risk estimates (i.e., for all COC, not only the PAHs) are also provided, by sample location, for the hypothetical typical industrial worker and hypothetical resident.

#### **Step 4: Iteratively Remove Samples and Recalculate Exposure Point Concentration**

The information presented for Tax Block F in the Attachment B tables was reviewed to select an initial set of locations for RRA. Locations that appeared to contribute most significantly to risk estimates (using professional judgment) calculated for evaluated receptors were considered a reasonable starting point for the analysis. The selected data points (assuming removal via excavation) were replaced by an assumed contaminant concentration of 10 micrograms per kilogram ( $\mu$ g/kg), a concentration that assumes clean backfill is used, and the exposure point concentration (EPC) [equal to the 95% upper confidence limit (UCL) on the arithmetic mean] for BaPEq was recalculated using the substituted (clean fill) concentrations. This concentration (10  $\mu$ g/kg) is used as the replacement, non-detect value because the detection limits for BaPEq in samples not impacted by these chemicals tend to range between 1–20  $\mu$ g/kg. If the recalculated EPC exceeded the preliminary remedial goal for a receptor, additional locations were iteratively (one at a time) removed from the dataset and replaced with the default concentration (10  $\mu$ g/kg). The EPC was then recalculated until the resultant EPC was equal or less than the preliminary remedial goal. Table 2-1 is a summary of the results RRA for Tax Block F; detailed risk analysis tables are in Attachment B.

#### **Step 5: Address Cumulative Risk Issue**

In Tax Block F since BaPEqs were the only COC, the residual risk analysis focused on reducing the EPC for BaPEq, thus reducing risk. As a final check, risk estimates were recalculated for all chemicals of potential concern (COPCs) initially identified in the HHRA to ensure that risk management goals established for the project are achieved by the remediation of the locations targeted by the RRA (see Attachment C).

#### Step 6: Margin of Safety

Locations targeted for remediation were reviewed to determine if any adjacent locations should be targeted. As such, the RRA results reflect a margin of safety. For example, if sample location "X" was targeted for remediation and was located near sample location "Y", which was not targeted for remediation, but demonstrated an elevated COC concentration (i.e., one that exceeds the preliminary remedial goal), then sample location "Y" may have been added to the list of targeted locations. Professional judgment factors used to select additional sample locations targeted for remediation were based on several factors, including professional judgment. Primary factors considered include concentrations at non-targeted locations near (horizontally or vertically) targeted locations, and the spatial distribution of data (e.g., the sample density [or lack thereof]) in an area where exceedances of PRGs occur. Comments in Table 2-1 indicate if professional judgment was used to add locations. Table 2-1 also indicates when a location meets the MDE definition of an industrial "hot spot": a location with a cancer risk estimate exceeding  $1 \times 10^{-4}$  (i.e., a one-in-ten thousand probability of developing cancer) or an HI greater than 100. All locations meeting the MDE "hot spot" definition (see Section 1) were also targeted for remediation.

Table 2-1

#### Summary of Residual Risk Analysis Results - Tax Block F Lockheed Martin, Middle River Complex Middle River, Maryland

| Location | Industrial -<br>Recommended for<br>Removal                                                                                                                                                                                                         | Comments                                                           |  |  |  |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|          | Surface Soil (See detailed Table B-1)                                                                                                                                                                                                              |                                                                    |  |  |  |  |  |  |  |  |  |
| SB-095   | Х                                                                                                                                                                                                                                                  | Necessary to meet industrial preliminary remedial goals            |  |  |  |  |  |  |  |  |  |
| SB-268   | Х                                                                                                                                                                                                                                                  | Necessary to meet industrial preliminary remedial goals            |  |  |  |  |  |  |  |  |  |
| SB-383   | Х                                                                                                                                                                                                                                                  | Added due to proximity of SB-095, SB-268, and SB-645               |  |  |  |  |  |  |  |  |  |
| SB-645   | Х                                                                                                                                                                                                                                                  | Necessary to meet industrial preliminary remedial goals            |  |  |  |  |  |  |  |  |  |
| SB-636C  | Х                                                                                                                                                                                                                                                  | Added because surface soil impacts in an easily assessable cluster |  |  |  |  |  |  |  |  |  |
| SB-636D  | X                                                                                                                                                                                                                                                  | Added because surface soil impacts in an easily assessable cluster |  |  |  |  |  |  |  |  |  |
| SB-637B  | X                                                                                                                                                                                                                                                  | Added because surface soil impacts in an easily assessable cluster |  |  |  |  |  |  |  |  |  |
| SB-797   | X                                                                                                                                                                                                                                                  | Added to address single elevated data point                        |  |  |  |  |  |  |  |  |  |
| SB-641C  | X                                                                                                                                                                                                                                                  | Added to address single elevated data point                        |  |  |  |  |  |  |  |  |  |
| SB-647A  | X                                                                                                                                                                                                                                                  | Added due to proximity of SB-095, SB-268, and SB-645               |  |  |  |  |  |  |  |  |  |
| SB-647C  | X                                                                                                                                                                                                                                                  | Added due to proximity of SB-095, SB-268, and SB-645               |  |  |  |  |  |  |  |  |  |
| SB-647   | X                                                                                                                                                                                                                                                  | Added due to proximity of SB-095, SB-268, and SB-645               |  |  |  |  |  |  |  |  |  |
| SB-646   | X                                                                                                                                                                                                                                                  | Added due to proximity of SB-095, SB-268, and SB-645               |  |  |  |  |  |  |  |  |  |
|          | hirteen of the 115 sampling locations (11 percent) and 15 of 136 samples (11 percent) need to be removed to achieve the desired remedial goal of 2,900 ug/kg for industrial xposures to the BaPeqs. The residual site 95% UCL would be 0.38 mg/kg. |                                                                    |  |  |  |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                                                    | Subsurface Soil (See detailed Table B-2).                          |  |  |  |  |  |  |  |  |  |

No samples need to be removed to achieve remedial goals for the industrial worker.

Only sampling locations located in the vadose zone are included in this table. Depth to groundwater is 7 feet Block F.

#### **Section 3**

### **Results and Conclusions**

The results of the residual risk analysis (RRA) described in Section 2 are summarized in Table 2-1. The locations potentially targeted for remediation in Block F based on the residual risk analysis for the industrial worker (or on professional judgment considerations), are included in this table. All locations meeting the Maryland Department of the Environment (MDE) "hot spot" definition, which represents the 1x10<sup>-4</sup> cancer risk level, are identified for removal in Table 2-1.Note that Table 2-1 includes samples targeted for potential remediation by RRA and professional judgment, while the Attachment B tables include only those samples targeted by residual risk analysis. In other words, sample locations in Attachment B are a sub-set of those in Table 2-1. Similarly, the exposure point concentrations (i.e., the 95% upper confidence limits for arithmetic mean concentrations) in Table 2-1 do not match the ones in Attachment B tables because the sample lists are not exactly the same.

A summary of the information presented in the Table 2-1 and in Attachment B follows:

- As expected, the locations meeting the MDE "hot spot" definition strongly influence the 95% upper confidence limit (UCL) for chemicals of concern (COC).
- Tables B-1 and B-2 present residual risk analysis results for Tax Block F surface and subsurface soil, respectively; these results are summarized in Table 2-1. The primary risk driver for these blocks are benzo(a)pyrene equivalents. BaPEq concentrations clearly above the preliminary remedial goal were detected at a several locations and are targeted for remediation.

The conclusions presented above should be reviewed in light of the following caveats and uncertainties:

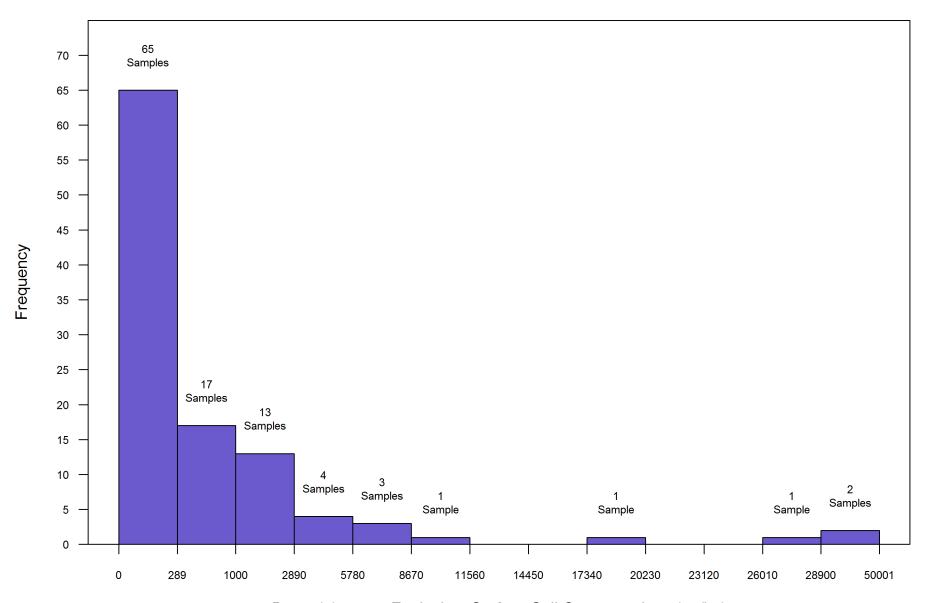
• Data for the Lockheed Martin Corporation Middle River Complex facility do not include a site-specific background dataset for soil. Risk-based preliminary remedial goals calculated for benzo(a)pyrene equivalents are within the range of anthropogenic background soil concentrations reported in literature. Because environs surrounding the site are highly developed, the risk-based preliminary remedial goal may actually

be less than anthropogenic background concentrations, and thus are considered conservative.

• The chemical profile of the fill material brought in to replace excavated soils is unknown at this time. This residual risk analysis uses a replacement concentration (10 micrograms per kilogram [μg/kg]) to calculate the exposure point concentration. However, anthropogenic background concentrations of polycyclic aromatic hydrocarbons (and thus, benzo(a)pyrene equivalents) may easily exceed this concentration. The exposure point concentration (i.e., the 95% upper confidence level on the arithmetic mean) and residual risk will need to be recalculated if fill soils contain benzo(a)pyrene equivalents at concentrations greater than 10 μg/kg.

A residual risk analysis was conducted by ranking soil samples in Tax Block G by chemicals of concern (COC) [i.e., benzo(a)pyrene] from highest to lowest concentration. Sampling locations with higher chemicals of concern concentrations were selected for remediation, and the exposure point concentration was recalculated until it was equal to or less than the remedial goal. Industrial worker preliminary remedial goals were used for Tax Block F. Soil volumes calculated using the locations selected in the residual risk analysis are lower than soil volumes calculated using a strict comparison of sample location concentrations to preliminary remedial goals, because not every sample location with benzo(a)pyrene equivalent exceeding 2.9 mg/kg (the preliminary remedial goals for the industrial scenario) needs to be remediated. The final benchmark or remedial action objective is to achieve a cumulative residual risk level of 1x10<sup>-5</sup> for industrial workers in Tax Block F. Risk estimates calculated for the construction worker receptor using residual concentrations (as determined by this residual risk analysis) do not exceed Maryland Department of the Environment risk management benchmarks for cancer (1x10<sup>-5</sup>) and non-cancer (i.e., a hazard index > 1.0) effects.

This page intentionally left blank.


# Section 4 References

- 1. Maryland Department of the Environment (MDE), 2008. *Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 2.1)*. June.
- 2. Tetra Tech, Inc. (Tetra Tech), 2012. Human Health Risk Assessment (HHRA) for Blocks D, E, F, G, and H Soils, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. September.

This page intentionally left blank.

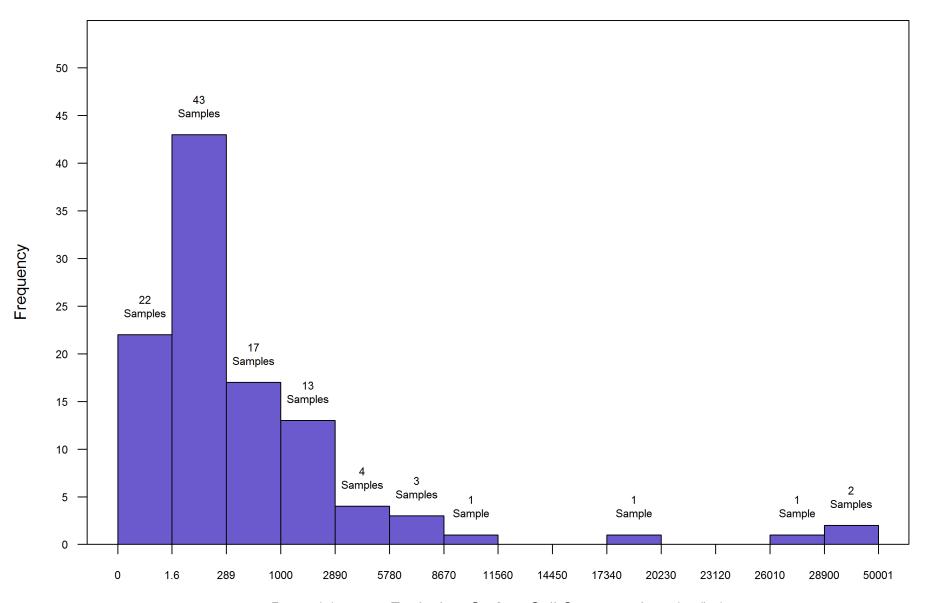

## Attachment A Data Histograms; Remedial Goal Calculations

Figure A-1
Histogram of Benzo(a)pyrene Equivalent Concentrations in Surface Soil
Block F Lockheed Martin
One-half Detection Limit = Non-detects



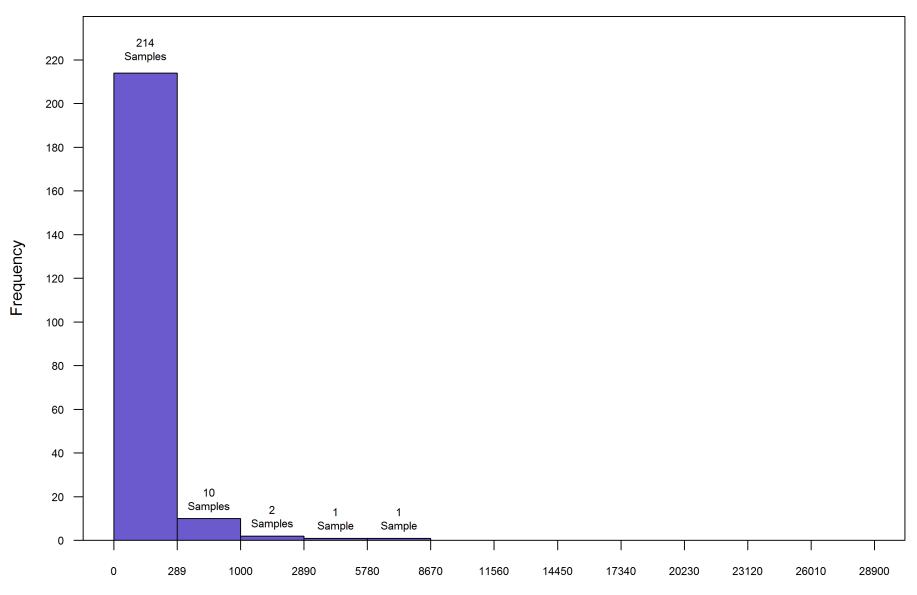

Benzo(a)pyrene Equivalent Surface Soil Concentrations (μg/kg)

Figure A-2
Histogram of Benzo(a)pyrene Equivalent Concentrations in Surface Soil
Block F Lockheed Martin
First Bin = Non-detects



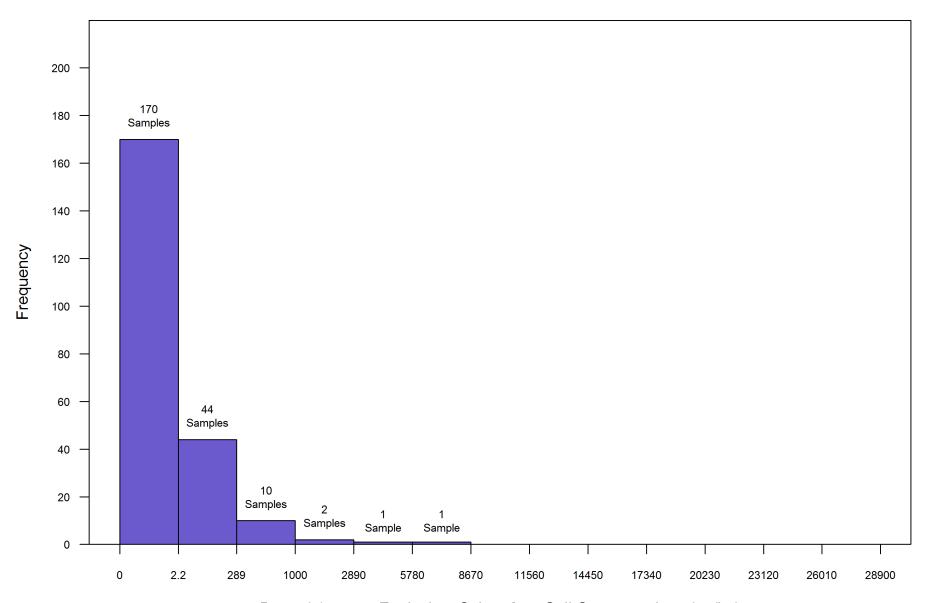

Benzo(a)pyrene Equivalent Surface Soil Concentrations (μg/kg)

Figure A-3
Histogram of Benzo(a)pyrene Equivalent Concentrations in Subsurface Soil
Block F Lockheed Martin
One-half Detection Limit = Non-detects



Benzo(a)pyrene Equivalent Subsurface Soil Concentrations (μg/kg)

Figure A-4
Histogram of Benzo(a)pyrene Equivalent Concentrations in Subsurface Soil
Block F Lockheed Martin
First Bin = Non-detects



Benzo(a)pyrene Equivalent Subsurface Soil Concentrations (μg/kg)

## Attatchment A Remedial Goal Calculations Block F Lockheed Martin

#### Site-specific

#### **Composite Worker Equation Inputs for Soil**

| Variable                                                                     | Value           |
|------------------------------------------------------------------------------|-----------------|
| TR (target cancer risk) unitless                                             | 0.00001         |
| THQ (target hazard quotient) unitless                                        | 1               |
| AT <sub>w</sub> (averaging time)                                             | 365             |
| EF <sub>w</sub> (exposure frequency) d/yr                                    | 250             |
| ED <sub>w</sub> (exposure duration) yr                                       | 25              |
| ET <sub>w</sub> (exposure time) hr                                           | 8               |
| LT (lifetime) yr                                                             | 70              |
| BW <sub>w</sub> (body weight)                                                | 70              |
| IR <sub>w</sub> (soil ingestion rate) mg/day                                 | 50              |
| SA <sub>w</sub> (surface area) cm <sup>2</sup> /day                          | 3300            |
| AF <sub>w</sub> (skin adhereence factor) mg/cm <sup>2</sup>                  | 0.2             |
| City (Climate Zone) PEF Selection                                            | Philadelphia, P |
| A <sub>s</sub> (acres) PEF Selection                                         | 0.5             |
| Q/C <sub>wp</sub> (g/m <sup>2</sup> -s per kg/m <sup>3</sup> ) PEF Selection | 87.36898        |
| V (fraction of vegetative cover) unitless                                    | 0.5             |
| U <sub>m</sub> (mean annual wind speed) m/s                                  | 4.29            |
| U <sub>t</sub> (equivalent threshold value)                                  | 11.32           |
| $F(x)$ (function dependant on $U_m/U_t$ ) unitless                           | 0.0993          |
| City (Climate Zone) VF Selection                                             | Philadelphia, P |
| A <sub>s</sub> (acres) VF Selection                                          | 0.5             |
| Q/C <sub>wp</sub> (g/m <sup>2</sup> -s per kg/m <sup>3</sup> ) VF Selection  | 87.36898        |
| foc (fraction organic carbon in soil) g/g                                    | 0.006           |
| ρ <sub>b</sub> (dry soil bulk density) g/cm <sup>3</sup>                     | 1.5             |
| ρ <sub>s</sub> (soil particle density) g/cm <sup>3</sup>                     | 2.65            |
| θ (water-filled soil porosity) Lwater/Lsoil                                  | 0.15            |
| T (exposure interval) s                                                      | 95000000        |
| Output generated 17SEP2012:07:15:21                                          |                 |

### Attachment B Detailed Residual Risk Analysis Tables

Table B-1

#### Residual Risk Analysis Results - Block F - Surface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 1 of 5

|                         |                            |                 | BaPEq                                   | Total          | ILCR <sup>(3)</sup> |                                                 |
|-------------------------|----------------------------|-----------------|-----------------------------------------|----------------|---------------------|-------------------------------------------------|
| Location <sup>(1)</sup> | Sample ID                  | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial     | Residential         | Comments                                        |
| SB-095                  | SB-95-SS                   | 0 - 1           | 2,100                                   | 9E-06          | 2E-04               |                                                 |
|                         | F-SB-95RE-1                | 1 - 1           | 50,000                                  | 2E-04          | 4E-03               | Samples needing removal to meet the             |
|                         | F-SB-95RE-2                | 2 - 2           | 2.6                                     | 9E-09          | 2E-07               | benzo(a)pyrene (BaPEq) industrial preliminary   |
| SB-268                  | SB-268-SS                  | 0 - 1           | 38,000                                  | 1E-04          | 3E-03               | remedial goal (PRG) [2,900 μg/kg or 2.9 mg/kg]. |
|                         | SB-268-02                  | 1 - 2           | 4,300                                   | 1E-05          | 3E-04               | Site 95% UCL will be 2,300 μg/kg (2.3 mg/kg).   |
| SB-645                  | F-SB-645-1                 | 1 - 1           | 27,000                                  | 9E-05          | 2E-03               |                                                 |
| SB-383                  | SB-383-0102                | 1 - 2           | 19,000                                  | 7E-05          | 1E-03               |                                                 |
| SB-641C                 | F-SB-641C-1                | 1 - 1           | 9,100                                   | 3E-05          | 7E-04               |                                                 |
| SB-636C                 | F-SB-636C-1                | 1 - 1           | 7,100                                   | 2E-05          | 5E-04               |                                                 |
| SB-637B                 | F-SB-637B-1                | 1 - 1           | 7,000                                   | 2E-05          | 5E-04               |                                                 |
| SB-636D                 | F-SB-636D-1                | 1 - 1           | 6,800                                   | 2E-05          | 5E-04               |                                                 |
| SB-647C                 | F-SB-647C-1                | 1 - 1<br>1 - 1  | 5,100                                   | 2E-05<br>1E-05 | 4E-04               |                                                 |
| SB-647A<br>SB-797       | F-SB-647A-1<br>F-SB-797-SS | 1 - 1           | 3,800<br>3,500                          | 1E-05<br>1E-05 | 3E-04<br>3E-04      |                                                 |
| SB-265                  | SB-265-SS                  | 0 - 1           | 2,500                                   | 1E-05          | 2E-04               |                                                 |
| 3D-200                  | SB-265-02                  | 1 - 2           | 600                                     | 2E-06          | 5E-05               |                                                 |
| SB-637C                 | F-SB-637C-1                | 1 - 1           | 2,100                                   | 7E-06          | 2E-04               |                                                 |
| SB-093                  | SB-93-SS                   | 0 - 1           | 1,900                                   | 1E-05          | 2E-04               |                                                 |
| 00000                   | F-SB-93RE-1                | 1 - 1           | 1,200                                   | 4E-06          | 9E-05               |                                                 |
|                         | F-SB-93RE-2                | 2 - 2           | 150                                     | 5E-07          | 1E-05               |                                                 |
| SB-269                  | SB-269-SS                  | 0 - 1           | 1,900                                   | 1E-05          | 2E-04               |                                                 |
|                         | SB-269-02                  | 1 - 2           | 82 U                                    | 1E-07          | 3E-06               |                                                 |
| SB-642                  | F-SB-642-1                 | 1 - 1           | 1,500                                   | 5E-06          | 1E-04               |                                                 |
| SB-636B                 | F-SB-636B-1                | 1 - 1           | 1,400                                   | 5E-06          | 1E-04               |                                                 |
| SB-641                  | F-SB-641-1                 | 1 - 1           | 1,400                                   | 5E-06          | 1E-04               |                                                 |
| SB-266                  | SB-266-SS                  | 0 - 1           | 1,300                                   | 7E-06          | 1E-04               |                                                 |
|                         | SB-266-02                  | 1 - 2           | 190                                     | 7E-07          | 1E-05               |                                                 |
| SB-635C                 | F-SB-635C-1                | 1 - 1           | 1,300                                   | 4E-06          | 1E-04               |                                                 |
| SB-637                  | F-SB-637-1                 | 1 - 1           | 1,200                                   | 4E-06          | 9E-05               |                                                 |
| SB-094                  | SB-94-SS                   | 0 - 1           | 1,100                                   | 7E-06          | 1E-04               |                                                 |
| SB-643                  | F-SB-643-1                 | 1 - 1           | 710                                     | 2E-06          | 5E-05               |                                                 |
| SB-096                  | F-SB-96RE-1                | 1 - 1           | 600                                     | 2E-06          | 5E-05               |                                                 |
| SB-406                  | SB-406-0102                | 1 - 2           | 510                                     | 2E-06          | 4E-05               |                                                 |
| SB-652B                 | F-SB-652B-1                | 1 - 1           | 510                                     | 2E-06          | 4E-05               |                                                 |
| SB-393                  | SB-393-0102                | 1 - 2           | 450                                     | 2E-06          | 3E-05               |                                                 |
| SB-238                  | SB-238-SS                  | 0 - 1           | 420                                     | 4E-06          | 6E-05               |                                                 |
| 05                      | SB-238-01                  | 1 - 2           | 140                                     | 2E-06          | 3E-05               |                                                 |
| SB-636A                 | F-SB-636A-1                | 1 - 1           | 410                                     | 1E-06          | 3E-05               |                                                 |
| SB-030                  | SB-30A-SS                  | 0 - 1           | 400                                     | 3E-06          | 4E-05               |                                                 |
| SB-388<br>SB-645C       | SB-388-0102<br>F-SB-645C-1 | 1 - 2<br>1 - 1  | 380<br>370                              | 1E-06<br>1E-06 | 3E-05<br>3E-05      |                                                 |
| SB-270                  | SB-270-SS                  | 0 - 1           | 370                                     | 2E-06          | 4E-05               |                                                 |
| SB-652                  | F-SB-652-1                 | 1 - 1           | 340                                     | 2E-06<br>1E-06 | 3E-05               |                                                 |
| SB-267                  | SB-267-SS                  | 0 - 1           | 310                                     | 2E-06          | 4E-05               |                                                 |
| SB-055                  | SB-55-SS                   | 0 - 1           | 310                                     | 2E-06          | 3E-05               |                                                 |
| SB-024                  | SB-24A-SS                  | 0 - 1           | 300                                     | 3E-06          | 4E-05               |                                                 |
| SB-641B                 | F-SB-641B-1                | 1 - 1           | 290                                     | 1E-06          | 2E-05               |                                                 |
| SB-647                  | F-SB-647-1                 | 1 - 1           | 280                                     | 1E-06          | 2E-05               |                                                 |
| SB-647B                 | F-SB-647B-1                | 1 - 1           | 280                                     | 1E-06          | 2E-05               |                                                 |
| SB-652A                 | F-SB-652A-1                | 1 - 1           | 230                                     | 8E-07          | 2E-05               |                                                 |
| SB-389                  | SB-389-0102                | 1 - 2           | 220                                     | 8E-07          | 2E-05               |                                                 |
| SB-094                  | F-SB-94RE-1                | 1 - 1           | 180                                     | 7E-07          | 1E-05               |                                                 |
|                         | F-SB-94RE-2                | 2 - 2           | 95                                      | 4E-07          | 7E-06               |                                                 |
| SB-636                  | F-SB-636-1                 | 1 - 1           | 160                                     | 6E-07          | 1E-05               |                                                 |
| SB-267                  | SB-267-02                  | 1 - 2           | 140                                     | 5E-07          | 1E-05               |                                                 |
| SB-394                  | SB-394-0102                | 1 - 2           | 140                                     | 5E-07          | 1E-05               |                                                 |
| SB-407                  | SB-407-0102                | 1 - 2           | 130                                     | 5E-07          | 1E-05               |                                                 |
| SB-270                  | SB-270-02                  | 1 - 2           | 120                                     | 4E-07          | 9E-06               |                                                 |
| SB-643B                 | F-SB-643B-1                | 1 - 1           | 120                                     | 4E-07          | 9E-06               |                                                 |
| SB-645B                 | F-SB-645B-1                | 1 - 1           | 110                                     | 4E-07          | 8E-06               |                                                 |
| SB-645A                 | F-SB-645A-1                | 1 - 1           | 110                                     | 4E-07          | 8E-06               |                                                 |
| SB-408                  | SB-408-0102                | 1 - 2           | 87<br>80                                | 3E-07          | 7E-06               |                                                 |
| SB-396                  | SB-396-0102                | 1 - 2           | 80                                      | 3E-07          | 6E-06               | ı                                               |

#### Table B-1

#### Residual Risk Analysis Results - Block F - Surface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 2 of 5

| ſ |                         |             | BaPEg           | Total ILCR <sup>(3)</sup>               |            |             |          |
|---|-------------------------|-------------|-----------------|-----------------------------------------|------------|-------------|----------|
|   | Location <sup>(1)</sup> | Sample ID   | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial | Residential | Comments |
| Ī | SB-397                  | SB-397-0102 | 1 - 2           | 80                                      | 3E-07      | 6E-06       |          |
|   | SB-639                  | F-SB-639-1  | 1 - 1           | 79                                      | 3E-07      | 6E-06       |          |

Table B-1

#### Residual Risk Analysis Results - Block F - Surface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 3 of 5

|                         |                            |                 | BaPEq                                   | Total I        | LCR <sup>(3)</sup> |          |
|-------------------------|----------------------------|-----------------|-----------------------------------------|----------------|--------------------|----------|
| Location <sup>(1)</sup> | Sample ID                  | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial     | Residential        | Comments |
| SB-640                  | F-SB-640-1                 | 1 - 1           | 74                                      | 3E-07          | 6E-06              |          |
| SB-644                  | F-SB-644-1                 | 1 - 1           | 70                                      | 2E-07          | 5E-06              |          |
| SB-642B                 | F-SB-642B-1                | 1 - 1           | 57                                      | 2E-07          | 4E-06              |          |
| SB-641A                 | F-SB-641A-1                | 1 - 1           | 41                                      | 1E-07          | 3E-06              |          |
| SB-409                  | SB-409-0102                | 1 - 2           | 39                                      | 2E-07          | 3E-06              |          |
| SB-402                  | SB-402-0102                | 1 - 2           | 37                                      | 2E-07          | 3E-06              |          |
| SB-405                  | SB-405-0102                | 1 - 2           | 36<br>30                                | 2E-07          | 3E-06              |          |
| SB-398<br>SB-401        | SB-398-0102<br>SB-401-0102 | 1 - 2<br>1 - 2  | 29<br>25                                | 1E-07<br>1E-07 | 2E-06<br>2E-06     |          |
| SB-056                  | F-SB-56RE-1                | 1 - ∠<br>1 - 1  | 23                                      | 8E-08          | 2E-06<br>2E-06     |          |
| SB-646                  | F-SB-646-1                 | 1 - 1           | 23                                      | 8E-08          | 2E-06              |          |
| SB-635D                 | F-SB-635D-1                | 1 - 1           | 20                                      | 7E-08          | 2E-06              |          |
| SB-652C                 | F-SB-652C-1                | 1 - 1           | 19                                      | 6E-08          | 1E-06              |          |
| SB-651                  | F-SB-651-1                 | 1 - 1           | 14                                      | 7E-08          | 1E-06              |          |
| SB-799                  | F-SB-799-SS                | 1 - 1           | 13                                      | 5E-08          | 1E-06              |          |
| SB-387                  | SB-387-0102                | 1 - 2           | 12                                      | 8E-08          | 1E-06              |          |
| SB-390                  | SB-390-0102                | 1 - 2           | 9.9                                     | 7E-08          | 9E-07              |          |
| SB-489                  | SB-489-0102                | 1 - 2           | 9.6                                     | 7E-08          | 9E-07              |          |
| SB-400                  | SB-400-0102                | 1 - 2           | 9.1                                     | 7E-08          | 9E-07              |          |
| SB-650                  | F-SB-650-1                 | 1 - 1           | 4.1                                     | 1E-08          | 3E-07              |          |
| SB-642C                 | F-SB-642C-1                | 1 - 1           | 1.7                                     | 6E-09          | 1E-07              |          |
| SB-056                  | F-SB-56RE-2                | 2 - 2           | 1.5 U                                   | 3E-09          | 6E-08              |          |
| SB-022                  | SB-22A-SS                  | 0 - 1           | 430 U                                   | 2E-06          | 2E-05              |          |
| SB-025                  | SB-25A-SS                  | 0 - 1           | 400 U                                   | 2E-06          | 3E-05              |          |
| SB-023                  | SB-23A-SS                  | 0 - 1           | 380 U                                   | 2E-06          | 3E-05              |          |
| SB-096                  | F-SB-96RE-2                | 2 - 2           | 1.6 U                                   | 3E-09          | 6E-08              |          |
| SB-798                  | F-SB-798-SS                | 1 - 1           | 3.7 U                                   | 6E-09          | 1E-07              |          |
| SB-648                  | F-SB-648-1                 | 1 - 1           | 2.2 U                                   | 4E-09          | 8E-08              |          |
| SB-649                  | F-SB-649-1                 | 1 - 1           | 2.2 U                                   | 4E-09          | 8E-08              |          |
| SB-391                  | SB-391-0102                | 1 - 2           | 1.6 U                                   | 4E-08          | 3E-07              |          |
| SB-395                  | SB-395-0102                | 1 - 2           | 1.6 U                                   | 4E-08          | 3E-07              |          |
| SB-382                  | SB-382-0102                | 1 - 2           | 1.5 U                                   | 4E-08          | 2E-07              |          |
| SB-384                  | SB-384-0102                | 1 - 2           | 1.5 U                                   | 4E-08          | 2E-07              |          |
| SB-403                  | SB-403-0102                | 1 - 2           | 1.5 U                                   | 4E-08          | 2E-07              |          |
| SB-404                  | SB-404-0102<br>F-SB-642A-1 | 1 - 2           | 1.5 U                                   | 4E-08          | 2E-07              |          |
| SB-642A<br>SB-385       |                            | 1 - 1           | 1.5 U                                   | 3E-09<br>4E-08 | 6E-08<br>2E-07     |          |
| SB-386                  | SB-385-0102<br>SB-386-0102 | 1 - 2<br>1 - 2  | 1.4 U<br>1.4 U                          | 4E-08          | 2E-07<br>2E-07     |          |
| SB-392                  | SB-392-0102                | 1 - 2           | 1.4 U                                   | 4E-08          | 2E-07<br>2E-07     |          |
| SB-399                  | SB-399-0102                | 1 - 2           | 1.4 U                                   | 4E-08          | 2E-07              |          |
| SB-638                  | F-SB-638-1                 | 1 - 1           | 1.4 U                                   | 2E-08          | 1E-07              |          |
| SB-643C                 | F-SB-643C-1                | 1 - 1           | 1.4 U                                   | 2E-09          | 5E-08              |          |
| SB-024A                 | F-SB-24ARE-1               | 1 - 1           |                                         | 0E+00          | 0E+00              |          |
|                         | F-SB-24ARE-2               | 2 - 2           |                                         | 0E+00          | 0E+00              |          |
| SB-050                  | SB-50-SS                   | 0 - 1           |                                         | 1E-06          | 1E-05              |          |
| SB-236                  | SB-236-SS                  | 0 - 1           |                                         | 2E-06          | 2E-05              |          |
|                         | SB-236-01                  | 1 - 2           |                                         | 2E-06          | 2E-05              |          |
| SB-237                  | SB-237-SS                  | 0 - 1           |                                         | 1E-06          | 1E-05              |          |
|                         | SB-237-01                  | 1 - 2           |                                         | 7E-06          | 9E-05              |          |
| SB-250                  | SB-250-SS                  | 0 - 1           |                                         | 5E-07          | 6E-06              |          |
|                         | SB-250-02                  | 1 - 2           |                                         | 1E-06          | 1E-05              |          |
| SB-251                  | SB-251-SS                  | 0 - 1           |                                         | 1E-06          | 1E-05              |          |
|                         | SB-251-02                  | 1 - 2           |                                         | 2E-06          | 2E-05              |          |
| SB-252                  | SB-252-SS                  | 0 - 1           |                                         | 7E-07          | 8E-06              |          |
| 00.050                  | SB-252-02                  | 1 - 2           |                                         | 2E-06          | 2E-05              |          |
| SB-253                  | SB-253-SS                  | 0 - 1           |                                         | 9E-07          | 1E-05              |          |
| CD CO4                  | SB-253-02                  | 1 - 2           |                                         | 9E-07          | 1E-05              |          |
| SB-624                  | F-SB-624-1                 | 1 - 1           |                                         | 0E+00          | 0E+00              |          |
| SB-625                  | F-SB-624-2<br>F-SB-625-1   | 2 - 2<br>1 - 1  |                                         | 0E+00<br>0E+00 | 0E+00<br>0E+00     |          |
| SD-020                  | F-SB-625-1<br>F-SB-625-2   | 1 - 1<br>2 - 2  |                                         | 0E+00<br>0E+00 | 0E+00<br>0E+00     |          |
| SB-626                  | F-SB-626-1                 | 2 - 2<br>1 - 1  |                                         | 0E+00<br>0E+00 | 0E+00<br>0E+00     |          |
| 3D-020                  | F-SB-626-2                 | 2 - 2           |                                         | 0E+00<br>0E+00 | 0E+00<br>0E+00     |          |
| SB-626B                 | F-SB-626B-(1-4)            | 1 - 4           |                                         | 0E+00          | 0E+00              |          |
| 1 0205                  | 1 (' ')                    | • •             |                                         | 500            | , ==:00            | '        |

#### Table B-1

#### Residual Risk Analysis Results - Block F - Surface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 4 of 5

| Ī |                         |             |                 | BaPEg                                   | Total ILCR <sup>(3)</sup> |             |          |
|---|-------------------------|-------------|-----------------|-----------------------------------------|---------------------------|-------------|----------|
|   | Location <sup>(1)</sup> | Sample ID   | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial                | Residential | Comments |
|   | SB-626C                 | F-SB-626C-1 | 1 - 1           |                                         | 0E+00                     | 0E+00       |          |
|   | SB-626D                 | F-SB-626D-1 | 1 - 1           |                                         | 0E+00                     | 0E+00       |          |

#### Table B-1

#### Residual Risk Analysis Results - Block F - Surface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 5 of 5

|                         |             |                 | BaPEq Total ILCR <sup>(3)</sup>         |            | ILCR <sup>(3)</sup> |          |
|-------------------------|-------------|-----------------|-----------------------------------------|------------|---------------------|----------|
| Location <sup>(1)</sup> | Sample ID   | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial | Residential         | Comments |
| SB-627                  | F-SB-627-1  | 1 - 1           |                                         | 0E+00      | 0E+00               |          |
|                         | F-SB-627-2  | 2 - 2           |                                         | 0E+00      | 0E+00               |          |
| SB-800                  | F-SB-800-SS | 1 - 1           |                                         | 0E+00      | 0E+00               |          |
| SB-801                  | F-SB-801-SS | 1 - 1           |                                         | 0E+00      | 0E+00               |          |
| SB-802                  | F-SB-802-SS | 1 - 1           |                                         | 0E+00      | 0E+00               |          |

- 1 Sample locations are listed in order from highest to lowest benzo(a)pyrene (BaPEq) concentrations.
- 2 One half the non-detected value was used for the calculation of the benzo(a)pyrene equivalents. If all concentrations were non-detect then the detection limit for benzo(a)pyrene was used as the benzo(a)pyrene equivalent concentration. Original and duplicate samples were averaged when calculating the benzo(a)pyrene equivalent concentration.
- 3 Total incremental lifetime cancer risk from exposure to all chemicals of potential concern in soil. Shading indicates cancer risk exceeds 1x10<sup>-4</sup> and location is considered to be a "hot spot" according to Maryland Department of Environmental Protection guidance (MDE, 2008).

BaPEq - benzo(a)pyrene equivalent ILCR - incremental lifetime cancer risk µg/kg - microgram per kilogram mg/kg - milligram per kilogram NA - not available, sample was not analyzed for polycyclic aromatic hydrocarbons PRG - preliminary remedial goal

U - not detected

UCL - upper confidence level

Table B-2

Residual Risk Analysis Results - Block F - Subsurface Soil Lockheed Martin, Middle River Complex

Middle River, Maryland Page 1 of 5

|                         |                            | Danth           | BaPEq                                   | Total          | ILCR <sup>(3)</sup> |                                               |
|-------------------------|----------------------------|-----------------|-----------------------------------------|----------------|---------------------|-----------------------------------------------|
| Location <sup>(1)</sup> | Sample ID                  | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial     | Residential         | Comments                                      |
| SB-268RE                | F-SB-268RE-3               | 3 - 3           | 7,600                                   | 3E-05          | 6E-04               | No samples need to be removed to meet         |
|                         | F-SB-268RE-4               | 4 - 4           | 740                                     | 3E-06          | 6E-05               | benzo(a)pyrene equivalents (BaPEq) industrial |
|                         | F-SB-268RE-7-AVG           | 7 - 7           | 1,900                                   | 6E-06          | 1E-04               | preliminary remedial goal (2,900 µg/kg or 2.9 |
|                         | F-SB-268RE-5               | 5 - 5           | 300                                     | 1E-06          | 2E-05               | mg/kg). Site 95% UCL is 260 μg/kg.            |
|                         | F-SB-268RE-6               | 6 - 6           | 1,400                                   | 5E-06          | 1E-04               | μ.σ. τ.σ., τ.σ., τ.σ. μ.σ. τ.σ.               |
| SB-238                  | SB-238-05                  | 5 - 5           | 3,000                                   | 2E-05          | 3E-04               |                                               |
| SB-390                  | SB-390-0203                | 2 - 3           | 1.7 U                                   | 2E-08          | 2E-07               |                                               |
|                         | SB-390-0405                | 4 - 5           | 990                                     | 3E-06          | 7E-05               |                                               |
|                         | F-SB-390RE-6               | 6 - 6           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
| 05.007                  | F-SB-390RE-7               | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
| SB-397                  | SB-397-0203                | 2 - 3           | 1.5 U                                   | 2E-08          | 1E-07               |                                               |
|                         | SB-397-0405                | 4 - 5           | 850                                     | 3E-06          | 6E-05               |                                               |
|                         | F-SB-397RE-6               | 6 - 6           | 37                                      | 1E-07          | 3E-06               |                                               |
| OD 004                  | F-SB-397RE-7               | 7 - 7           | 25                                      | 9E-08          | 2E-06               |                                               |
| SB-094                  | F-SB-94RE-3                | 3 - 3           | 1.6 U                                   | 1E-08          | 1E-07               |                                               |
|                         | F-SB-94RE-4                | 4 - 4           | 1.5 U                                   | 1E-08          | 1E-07               |                                               |
|                         | F-SB-94RE-5                | 5 - 5           | 1.5 U                                   | 1E-08          | 1E-07               |                                               |
|                         | F-SB-94RE-6                | 6 - 6           | 25                                      | 1E-07          | 2E-06               |                                               |
| OD 050                  | F-SB-94RE-7                | 7 - 7           | 1.5 U                                   | 1E-08          | 1E-07               |                                               |
| SB-652                  | F-SB-652-3                 | 3 - 3           | 33                                      | 1E-07          | 3E-06               |                                               |
|                         | F-SB-652-5                 | 5 - 5           | 390                                     | 1E-06          | 3E-05               |                                               |
| SB-636C                 | F-SB-652-7                 | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
| SB-030C                 | F-SB-636C-3                | 3 - 3           | 390                                     | 1E-06          | 3E-05               |                                               |
|                         | F-SB-636C-5                | 5 - 5<br>7 - 7  | 38                                      | 1E-07          | 3E-06               |                                               |
| SB-405                  | F-SB-636C-7                | 7 - 7           | 1.5 U<br>1.4 U                          | 3E-09          | 6E-08<br>1E-07      |                                               |
| SD-403                  | SB-405-0203<br>SB-405-0405 | 2 - 3           | 330                                     | 2E-08<br>1E-06 | 2E-05               |                                               |
| SB-393                  | SB-393-0203                | 4 - 5<br>2 - 3  | 1.4 U                                   | 2E-08          | 1E-05               |                                               |
| SB-393                  | F-SB-393RE-3               | 2 - 3<br>3 - 3  | 330                                     | 1E-06          | 2E-05               |                                               |
| 30-333                  | F-SB-393RE-4               | 3 - 3<br>4 - 4  | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
|                         | F-SB-393RE-5-AVG           | 4 - 4<br>5 - 5  | 44                                      | 2E-07          | 3E-06               |                                               |
|                         | F-SB-393RE-6               | 6 - 6           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
|                         | F-SB-393RE-7               | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
| SB-406                  | SB-406-0203                | 2 - 3           | 320                                     | 1E-06          | 2E-05               |                                               |
| OD 400                  | SB-406-0405                | 4 - 5           | 62                                      | 2E-07          | 5E-06               |                                               |
| SB-636                  | F-SB-636-3-AVG             | 3 - 3           | 100                                     | 4E-07          | 8E-06               |                                               |
| OB 000                  | F-SB-636-5                 | 5 - 5           | 320                                     | 1E-06          | 2E-05               |                                               |
|                         | F-SB-636-7                 | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
| SB-489                  | SB-489-0203                | 2 - 3           | 260                                     | 9E-07          | 2E-05               |                                               |
| 02 100                  | SB-489-0405                | 4 - 5           | 9.8                                     | 5E-08          | 8E-07               |                                               |
| SB-797                  | F-SB-797-03                | 3 - 3           | 3.7 U                                   | 6E-09          | 1E-07               |                                               |
|                         | F-SB-797-05                | 5 - 5           | 260                                     | 9E-07          | 2E-05               |                                               |
| SB-642B                 | F-SB-642B-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |                                               |
|                         | F-SB-642B-5                | 5 - 5           | 200                                     | 7E-07          | 2E-05               |                                               |
|                         | F-SB-642B-7                | 7 - 7           | 9.8                                     | 3E-08          | 7E-07               |                                               |
| SB-407                  | SB-407-0203                | 2 - 3           | 190                                     | 7E-07          | 1E-05               |                                               |
|                         | SB-407-0405                | 4 - 5           | 110                                     | 4E-07          | 8E-06               |                                               |
| SB-635C                 | F-SB-635C-3                | 3 - 3           | 26                                      | 9E-08          | 2E-06               |                                               |
|                         | F-SB-635C-5                | 5 - 5           | 28                                      | 1E-07          | 2E-06               |                                               |
|                         | F-SB-635C-7-AVG            | 7 - 7           | 140                                     | 5E-07          | 1E-05               |                                               |
| SB-490                  | SB-490-0405                | 4 - 5           | 110                                     | 4E-07          | 8E-06               |                                               |
| SB-637                  | F-SB-637-3                 | 3 - 3           | 3.7                                     | 2E-08          | 3E-07               |                                               |
|                         | F-SB-637-5                 | 5 - 5           | 68                                      | 2E-07          | 5E-06               |                                               |
| SB-409                  | SB-409-0203                | 2 - 3           | 1.6 U                                   | 2E-08          | 2E-07               |                                               |
|                         | SB-409-0405                | 4 - 5           | 67                                      | 3E-07          | 5E-06               |                                               |
| SB-647C                 | F-SB-647C-3                | 3 - 3           | 59                                      | 2E-07          | 4E-06               |                                               |
| SB-383                  | SB-383-0203                | 2 - 3           | 51                                      | 2E-07          | 4E-06               |                                               |
|                         | SB-383-0405                | 4 - 5           | 38                                      | 2E-07          | 3E-06               |                                               |
| SB-408                  | SB-408-0203                | 2 - 3           | 50                                      | 2E-07          | 4E-06               |                                               |
|                         | SB-408-0405                | 4 - 5           | 12                                      | 6E-08          | 1E-06               |                                               |

Table B-2

#### Residual Risk Analysis Results - Block F - Subsurface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 2 of 5

|                         |                            | Donth           | BaPEq                                   | Total ILCR <sup>(3)</sup> |                |          |
|-------------------------|----------------------------|-----------------|-----------------------------------------|---------------------------|----------------|----------|
| Location <sup>(1)</sup> | Sample ID                  | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial                | Residential    | Comments |
| SB-265RE                | F-SB-265RE-3               | 3 - 3           | 36                                      | 1E-07                     | 3E-06          |          |
| CD 000                  | F-SB-265RE-4               | 4 - 4           | 1.7 U                                   | 3E-09                     | 6E-08          |          |
| SB-093                  | F-SB-93RE-3                | 3 - 3           | 1.5 U                                   | 1E-08                     | 1E-07          |          |
|                         | F-SB-93RE-4                | 4 - 4           | 1.5 U                                   | 1E-08                     | 1E-07          |          |
|                         | F-SB-93RE-5                | 5 - 5           | 36                                      | 1E-07                     | 3E-06          |          |
|                         | F-SB-93RE-6                | 6 - 6           | 1.5 U                                   | 1E-08                     | 1E-07          |          |
| SB-636D                 | F-SB-93RE-7<br>F-SB-636D-3 | 7 - 7<br>3 - 3  | 1.5 U<br>34                             | 1E-08<br>1E-07            | 1E-07<br>3E-06 |          |
| 3D-030D                 | F-SB-636D-5                | 5 - 5           | 1.5 U                                   | 3E-09                     | 6E-08          |          |
|                         | F-SB-636D-7                | 7 - 7           | 1.6 U                                   | 3E-09                     | 6E-08          |          |
| SB-389                  | SB-389-0203                | 2 - 3           | 1.5 U                                   | 2E-08                     | 2E-07          |          |
| 3D-309                  | F-SB-389RE-3               | 3 - 3           | 1.5 U                                   | 3E-09                     | 6E-08          |          |
|                         | F-SB-389RE-4               | 4 - 4           | 1.5 U                                   | 3E-09                     | 6E-08          |          |
|                         | SB-389-0405                | 4 - 5           | 33                                      | 1E-07                     | 3E-06          |          |
| SB-398                  | SB-398-0203                | 2 - 3           | 33                                      | 1E-07                     | 3E-06          |          |
| 3D-390                  | SB-398-0405                | 4 - 5           | 1.5 U                                   | 2E-08                     | 1E-07          |          |
| SB-642                  | F-SB-642-3-AVG             | 3 - 3           | 1.5 U                                   | 3E-09                     | 6E-08          |          |
| 05 072                  | F-SB-642-5                 | 5 - 5           | 28                                      | 1E-07                     | 2E-06          |          |
|                         | F-SB-642-7                 | 7 - 7           | 1.5 U                                   | 3E-09                     | 6E-08          |          |
| SB-394                  | SB-394-0203                | 2 - 3           | 25                                      | 1E-07                     | 2E-06          |          |
| 02 00 .                 | SB-394-0405                | 4 - 5           | 1.5 U                                   | 2E-08                     | 2E-07          |          |
| SB-399                  | SB-399-0203                | 2 - 3           | 1.4 U                                   | 2E-08                     | 1E-07          |          |
|                         | SB-399-0405                | 4 - 5           | 22                                      | 1E-07                     | 2E-06          |          |
|                         | SB-392-0203                | 2 - 3           | 1.5 U                                   | 2E-08                     | 1E-07          |          |
| SB-392                  | SB-392-0405                | 4 - 5           | 20                                      | 9E-08                     | 2E-06          |          |
| SB-404                  | SB-404-0203                | 2 - 3           | 1.6 U                                   | 2E-08                     | 2E-07          |          |
|                         | SB-404-0405                | 4 - 5           | 18                                      | 8E-08                     | 1E-06          |          |
| SB-798                  | F-SB-798-03-AVG            | 3 - 3           | 11                                      | 4E-08                     | 8E-07          |          |
|                         | F-SB-798-05                | 5 - 5           | 3.6 U                                   | 6E-09                     | 1E-07          |          |
| SB-641                  | F-SB-641-3                 | 3 - 3           | 7.4                                     | 3E-08                     | 6E-07          |          |
|                         | F-SB-641-5                 | 5 - 5           | 2.2 U                                   | 4E-09                     | 8E-08          |          |
| SB-645                  | F-SB-645-3                 | 3 - 3           | 7.0                                     | 2E-08                     | 5E-07          |          |
|                         | F-SB-645-5                 | 5 - 5           | 2.3                                     | 8E-09                     | 2E-07          |          |
|                         | F-SB-645-7                 | 7 - 7           | 2.3                                     | 8E-09                     | 2E-07          |          |
| SB-266RE                | F-SB-266RE-3               | 3 - 3           | 2.5                                     | 2E-08                     | 2E-07          |          |
|                         | F-SB-266RE-4               | 4 - 4           | 1.5 U                                   | 1E-08                     | 1E-07          |          |
|                         | F-SB-639-3                 | 3 - 3           | 1.6 U                                   | 1E-08                     | 1E-07          |          |
| SB-639                  | F-SB-639-5                 | 5 - 5           | 2.4                                     | 2E-08                     | 2E-07          |          |
| SB-055                  | SB-55-05                   | 5 - 5           | 410 U                                   | 2E-06                     | 3E-05          |          |
| SB-296                  | SB-296-0405                | 4 - 5           | 410 U                                   | 4E-06                     | 5E-05          |          |
| SB-022                  | SB-22-05                   | 5 - 5           | 400 U                                   | 2E-06                     | 3E-05          |          |
| SB-295                  | SB-295-0405                | 4 - 5           | 400 U                                   | 3E-06                     | 4E-05          |          |
| SB-023                  | SB-23-05                   | 5 - 5           | 390 U                                   | 1E-06                     | 2E-05          |          |
| SB-024                  | SB-24-05                   | 5 - 5           | 390 U                                   | 2E-06                     | 3E-05          |          |
| SB-025                  | SB-25-05                   | 5 - 5           | 390 U                                   | 1E-06                     | 2E-05          |          |
| SB-298                  | SB-298-0405                | 4 - 5           | 390 U                                   | 2E-06                     | 3E-05          |          |
| SB-030                  | SB-30-05                   | 5 - 5           | 380 U                                   | 2E-06                     | 3E-05          |          |
| SB-297                  | SB-297-0405                | 4 - 5           | 380 U                                   | 3E-06                     | 3E-05          |          |
| SB-299                  | SB-299-0405                | 4 - 5           | 380 U                                   | 2E-06                     | 3E-05          |          |
| SB-799                  | F-SB-799-03                | 3 - 3           | 3.6 U                                   | 6E-09                     | 1E-07          |          |
| 00.07                   | F-SB-799-05                | 5 - 5           | 3.7 U                                   | 6E-09                     | 1E-07          |          |
| SB-647                  | F-SB-647-3                 | 3 - 3           | 2.3 U                                   | 4E-09                     | 9E-08          |          |
|                         | F-SB-647-5                 | 5 - 5           | 2.4 U                                   | 4E-09                     | 9E-08          |          |
| 00.040                  | F-SB-647-7                 | 7 - 7           | 2.1 U                                   | 4E-09                     | 8E-08          |          |
| SB-648                  | F-SB-648-3                 | 3 - 3           | 2.1 U                                   | 4E-09                     | 8E-08          |          |
|                         | F-SB-648-5                 | 5 - 5           | 2.2 U                                   | 4E-09                     | 8E-08          |          |
| 00.040                  | F-SB-648-7                 | 7 - 7           | 2.3 U                                   | 4E-09                     | 9E-08          |          |
| SB-646                  | F-SB-646-3-AVG             | 3 - 3           | 2.3 U                                   | 4E-09                     | 9E-08          |          |
|                         | F-SB-646-5                 | 5 - 5           | 2.2 U                                   | 4E-09                     | 8E-08          |          |
|                         | F-SB-646-7                 | 7 - 7           | 2.2 U                                   | 4E-09                     | 8E-08          |          |

Table B-2

#### Residual Risk Analysis Results - Block F - Subsurface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 3 of 5

|                         |                            | Donth           | BaPEq                                   | Total          | ILCR <sup>(3)</sup> |          |
|-------------------------|----------------------------|-----------------|-----------------------------------------|----------------|---------------------|----------|
| Location <sup>(1)</sup> | Sample ID                  | Depth<br>(feet) | Concentration <sup>(2)</sup><br>(µg/kg) | Industrial     | Residential         | Comments |
| SB-649                  | F-SB-649-3                 | 3 - 3           | 2.2 U                                   | 4E-09          | 8E-08               |          |
|                         | F-SB-649-5                 | 5 - 5           | 2.2 U                                   | 4E-09          | 8E-08               |          |
| SB-650                  | F-SB-650-3-AVG             | 3 - 3           | 2.1 U                                   | 4E-09          | 8E-08               |          |
| OD 004                  | F-SB-650-5                 | 5 - 5           | 2.1 U                                   | 4E-09          | 8E-08               |          |
| SB-391                  | SB-391-0203                | 2 - 3           | 2 U                                     | 3E-08          | 2E-07               |          |
| CD 000                  | SB-391-0405                | 4 - 5           | 1.5 U                                   | 2E-08          | 2E-07               |          |
| SB-096                  | F-SB-96RE-3                | 3 - 3           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-96RE-4<br>F-SB-96RE-5 | 4 - 4<br>5 - 5  | 1.7 U<br>1.5 U                          | 3E-09<br>3E-09 | 6E-08<br>6E-08      |          |
|                         | F-SB-96RE-6                | 5 - 5<br>6 - 6  | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-645C                 | F-SB-96RE-0<br>F-SB-645C-3 | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-382                  | SB-382-0203                | 2 - 3           | 1.7 U                                   | 2E-08          | 2E-07               |          |
| 3D-302                  | SB-382-0405                | 2 - 3<br>4 - 5  | 1.7 U                                   | 2E-08          | 2E-07<br>2E-07      |          |
| SB-095                  | F-SB-95RE-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| 3D-093                  | F-SB-95RE-4                | 4 - 4           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-95RE-5                | 5 - 5           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-95RE-6                | 6 - 6           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-95RE-7                | 7 - 7           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-635D                 | F-SB-635D-5                | 7 - 7<br>5 - 5  | 1.6 U                                   | 3E-09          | 6E-08               |          |
| OB 000B                 | F-SB-635D-7                | 7 - 7           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-636A                 | F-SB-636A-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| OB 000A                 | F-SB-636A-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-636A-7-AVG            | 7 - 7           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-643C                 | F-SB-643C-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| 05 0400                 | F-SB-643C-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-643C-7                | 7 - 7           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-652A                 | F-SB-652A-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| OD 002A                 | F-SB-652A-5                | 5 - 5           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-652A-7                | 7 - 7           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-056                  | F-SB-56RE-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| 02 000                  | F-SB-56RE-4                | 4 - 4           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-56RE-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-56RE-6                | 6 - 6           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-56RE-7                | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-636B                 | F-SB-636B-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| 02 0002                 | F-SB-636B-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-636B-7                | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-642A                 | F-SB-642A-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-642A-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-642A-7                | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-642C                 | F-SB-642C-3                | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-642C-5                | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-642C-7-AVG            | 7 - 7           | 1.55 U                                  | 3E-09          | 6E-08               |          |
| SB-643                  | F-SB-643-3                 | 3 - 3           | 1.5 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-643-5                 | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-643-7                 | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-644                  | F-SB-644-3-AVG             | 3 - 3           | 1.55 U                                  | 3E-09          | 6E-08               |          |
|                         | F-SB-644-5                 | 5 - 5           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-644-7                 | 7 - 7           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-401                  | SB-401-0203                | 2 - 3           | 1.5 U                                   | 2E-08          | 1E-07               |          |
|                         | SB-401-0405                | 4 - 5           | 1.6 U                                   | 2E-08          | 2E-07               |          |
| SB-402                  | SB-402-0203                | 2 - 3           | 1.5 U                                   | 2E-08          | 2E-07               |          |
|                         | SB-402-0405                | 4 - 5           | 1.6 U                                   | 2E-08          | 2E-07               |          |
| SB-269RE                | F-SB-269RE-3               | 3 - 3           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-269RE-4               | 4 - 4           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-383                  | F-SB-383RE-3               | 3 - 3           | 1.6 U                                   | 3E-09          | 6E-08               |          |
|                         | F-SB-383RE-4               | 4 - 4           | 1.5 U                                   | 3E-09          | 6E-08               |          |
| SB-647A                 | F-SB-647A-3                | 3 - 3           | 1.6 U                                   | 3E-09          | 6E-08               |          |
| SB-647B                 | F-SB-647B-3                | 3 - 3           | 1.6 U                                   | 3E-09          | 6E-08               |          |

Table B-2

Residual Risk Analysis Results - Block F - Subsurface Soil

Lockheed Martin, Middle River Complex Middle River, Maryland Page 4 of 5

| SB-652B<br>SB-643B | Sample ID<br>F-SB-652B-3<br>F-SB-652B-5 | Depth<br>(feet) | Concentration <sup>(2)</sup> | Industrial     | Decidential    | Comments |
|--------------------|-----------------------------------------|-----------------|------------------------------|----------------|----------------|----------|
|                    | F-SB-652B-5                             |                 | (µg/kg)                      | maasma         | Residential    |          |
| SB-643B            |                                         | 3 - 3           | 1.6 U                        | 3E-09          | 6E-08          |          |
| SB-643B            |                                         | 5 - 5           | 1.4 U                        | 2E-09          | 5E-08          |          |
| SB-643B            | F-SB-652B-7                             | 7 - 7           | 1.5 U                        | 3E-09          | 6E-08          |          |
| į                  | F-SB-643B-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| 1                  | F-SB-643B-5                             | 5 - 5           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-643B-7-AVG                         | 7 - 7           | 1.55 U                       | 3E-09          | 6E-08          |          |
| SB-637B            | F-SB-637B-5-AVG                         | 5 - 5           | 1.55 U                       | 3E-09          | 6E-08          |          |
| SB-645B            | F-SB-645B-3-AVG                         | 3 - 3           | 1.55 U                       | 3E-09          | 6E-08          |          |
| SB-096             | F-SB-96RE-7                             | 7 - 7           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-652C            | F-SB-652C-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-652C-5                             | 5 - 5           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-652C-7                             | 7 - 7           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-388             | SB-388-0203                             | 2 - 3           | 1.5 U                        | 2E-08          | 2E-07          |          |
|                    | F-SB-388RE-3                            | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-388RE-4                            | 4 - 4           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-388RE-5                            | 5 - 5           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-637C            | F-SB-637C-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
|                    | F-SB-637C-5                             | 5 - 5           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-638             | F-SB-638-3-AVG                          | 3 - 3           | 1.5 U                        | 1E-08          | 1E-07          |          |
|                    | F-SB-638-5                              | 5 - 5           | 1.5 U                        | 1E-08          | 1E-07          |          |
| SB-640             | F-SB-640-3                              | 3 - 3           | 1.5 U                        | 1E-08          | 1E-07          |          |
|                    | F-SB-640-5                              | 5 - 5           | 1.5 U                        | 1E-08          | 1E-07          |          |
| SB-651             | F-SB-651-3                              | 3 - 3           | 1.5 U                        | 1E-08          | 1E-07          |          |
|                    | F-SB-651-5                              | 5 - 5           | 1.5 U                        | 1E-08          | 1E-07          |          |
| SB-384             | SB-384-0203                             | 2 - 3           | 1.5 U                        | 2E-08          | 2E-07          |          |
| 00.000             | SB-384-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 2E-07          |          |
| SB-386             | SB-386-0203                             | 2 - 3           | 1.5 U                        | 2E-08          | 1E-07          |          |
| 00.007             | SB-386-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 1E-07          |          |
| SB-387             | SB-387-0203                             | 2 - 3           | 1.4 U                        | 2E-08          | 1E-07          |          |
| 00.005             | SB-387-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 2E-07          |          |
| SB-395             | SB-395-0203                             | 2 - 3           | 1.4 U                        | 2E-08          | 1E-07          |          |
| OD 200             | SB-395-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 2E-07          |          |
| SB-396             | SB-396-0203                             | 2 - 3           | 1.5 U                        | 2E-08          | 2E-07          |          |
| CD 400             | SB-396-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 2E-07          |          |
| SB-400             | SB-400-0203                             | 2 - 3           | 1.4 U                        | 2E-08          | 1E-07          |          |
| CD 402             | SB-400-0405                             | 4 - 5           | 1.5 U                        | 2E-08          | 2E-07          |          |
| SB-403             | SB-403-0203                             | 2 - 3           | 1.5 U                        | 2E-08          | 1E-07<br>2E-07 |          |
| CD 267DE           | SB-403-0405                             | 4 - 5           | 1.5 U                        | 2E-08          |                |          |
| SB-267RE           | F-SB-267RE-3                            | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-270RE           | F-SB-267RE-4<br>F-SB-270RE-3            | 4 - 4<br>3 - 3  | 1.5 U<br>1.5 U               | 3E-09<br>3E-09 | 6E-08<br>6E-08 |          |
| SD-21UNE           | F-SB-270RE-3<br>F-SB-270RE-4            | 3 - 3<br>4 - 4  | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-637B            | F-SB-637B-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-641A            | F-SB-641A-3                             | 3 - 3<br>3 - 3  | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-641B            | F-SB-641B-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-641C            | F-SB-641C-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-645A            | F-SB-645A-3                             | 3 - 3           | 1.5 U                        | 3E-09          | 6E-08          |          |
| SB-385             | SB-385-0203                             | 2 - 3           | 1.3 U                        | 2E-08          | 1E-07          |          |
| 05 000             | SB-385-0405                             | 2 - 3<br>4 - 5  | 1.4 U                        | 2E-08          | 1E-07          |          |
| SB-024A            | F-SB-24ARE-4                            | 4 - 4           | 1.40                         | 0E+00          | 0E+00          |          |
|                    | F-SB-24ARE-5                            | 5 - 5           |                              | 0E+00          | 0E+00          |          |
| SB-050             | SB-50-05                                | 5 - 5           |                              | 7E-07          | 8E-06          |          |
| SB-093             | SB-93-05                                | 5 - 5           |                              | 8E-07          | 1E-05          |          |
| SB-095             | SB-95-05                                | 5 - 5           |                              | 8E-07          | 9E-06          |          |
| SB-096             | SB-96-05                                | 5 - 5           |                              | 3E-07          | 2E-06          |          |
| SB-236             | SB-236-05                               | 5 - 5           |                              | 3E-06          | 3E-05          |          |
| SB-237             | SB-237-05                               | 5 - 5           |                              | 1E-06          | 1E-05          |          |
| SB-626             | F-SB-626-3                              | 3 - 3           |                              | 0E+00          | 0E+00          |          |
|                    | F-SB-626-4                              | 4 - 4           |                              | 0E+00          | 0E+00          |          |
|                    | F-SB-626-5                              | 5 - 5           |                              | 0E+00          | 0E+00          |          |

#### Table B-2

#### Residual Risk Analysis Results - Block F - Subsurface Soil Lockheed Martin, Middle River Complex Middle River, Maryland Page 5 of 5

|                         | Sample ID       | Depth<br>(feet) | BaPEq<br>Concentration <sup>(2)</sup><br>(μg/kg) | Total      | ILCR <sup>(3)</sup> |          |  |
|-------------------------|-----------------|-----------------|--------------------------------------------------|------------|---------------------|----------|--|
| Location <sup>(1)</sup> |                 |                 |                                                  | Industrial | Residential         | Comments |  |
| SB-800                  | F-SB-800-03     | 3 - 3           |                                                  | 0E+00      | 0E+00               |          |  |
|                         | F-SB-800-05-AVG | 5 - 5           |                                                  | 0E+00      | 0E+00               |          |  |
| SB-801                  | F-SB-801-03     | 3 - 3           |                                                  | 0E+00      | 0E+00               |          |  |
|                         | F-SB-801-05     | 5 - 5           |                                                  | 0E+00      | 0E+00               |          |  |
| SB-802                  | F-SB-802-03     | 3 - 3           |                                                  | 0E+00      | 0E+00               |          |  |
|                         | F-SB-802-05     | 5 - 5           |                                                  | 0E+00      | 0E+00               |          |  |
| SB-024A                 | F-SB-24ARE-3    | 3 - 3           |                                                  | 0E+00      | 0E+00               |          |  |
| SB-626C                 | F-SB-626C-3     | 3 - 3           |                                                  | 0E+00      | 0E+00               |          |  |

- 1 Sample locations are listed in order from highest to lowest benzo(a)pyrene (BaPEq) concentrations.
- 2 One half the non-detected value was used for the calculation of the benzo(a)pyrene equivalents. If all concentrations were non-detect then the detection limit for benzo(a)pyrene was used as the benzo(a)pyrene equivalent concentration. Original and duplicate samples were averaged when calculating the benzo(a)pyrene equivalent concentration.
- 3 Total incremental lifetime cancer risk from exposure to all chemicals of potential concern in soil.

BaPEq - benzo(a)pyrene equivalent ILCR - incremental lifetime cancer risk μg/kg - microgram per kilogram mg/kg - milligram per kilogram NA - not available, sample was not analyzed for polycyclic aromatic hydrocarbons PRG - preliminary remedial goal

U - not detected

UCL - upper confidence level

| Attachment C                                                  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Final Cumulative Risk Estimates (Post Residual Risk Analysis) |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |  |  |  |

| Attachment C Final Cumulative Risk Estimates (Post Residual Risk Analysis) |  |  |  |  |  |
|----------------------------------------------------------------------------|--|--|--|--|--|
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |
|                                                                            |  |  |  |  |  |

## TABLE 3.1.RME EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURE LOCKHEED MARTIN, MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Scenario Timeframe: Current

Medium: Surface Soil

Exposure Medium: Surface Soil

| Exposure Point | Chemical of                | Units | Arithmetic | 95% UCL        | Maximum Concentration | Exposure Point Concentration |       |                                   |               |
|----------------|----------------------------|-------|------------|----------------|-----------------------|------------------------------|-------|-----------------------------------|---------------|
|                | Potential Concern          |       | Mean       | (Distribution) | (Qualifier)           | Value                        | Units | Statistic                         | Rationale     |
| Block F        | Benzo(a)pyrene Equivalents | mg/kg | 0.859      | 2.3 (L)        | 19                    | 2.3                          | mg/kg | 97.55% KM (Chebyshev) UCL         | ProUCL 4.1.01 |
|                | Aroclor-1254               | mg/kg | 0.049      | (1)            | 0.096                 | 1.4                          | mg/kg | Maximum Detected Concentration    | (1)           |
|                | Aroclor-1260               | mg/kg | 0.093      | 0.16 (L)       | 1.4                   | 0.160                        | mg/kg | 95% KM (BCA) UCL                  | ProUCL 4.1.01 |
|                | Antimony                   | mg/kg | 1.12       | 1.38 (NP)      | 4                     | 1.38                         | mg/kg | 95% KM (BCA) UCL                  | ProUCL 4.1.01 |
|                | Arsenic                    | mg/kg | 2.87       | 3.7 (G)        | 12                    | 3.7                          | mg/kg | 95% KM (Percentile Bootstrap) UCL | ProUCL 4.1.01 |
|                | Cadmium                    | mg/kg | 1.08       | 1.21 (L)       | 4.5                   | 1.21                         | mg/kg | 95% KM (t) UCL                    | ProUCL 4.1.01 |
|                | Cobalt                     | mg/kg | 6.14       | 6.95 (N)       | 11.7                  | 6.95                         | mg/kg | 95% Student's-t UCL               | ProUCL 4.1.01 |
|                | Mercury                    | mg/kg | 0.459      | 0.87 (G)       | 2.7                   | 0.87                         | mg/kg | 95% KM (Chebyshev) UCL            | ProUCL 4.1.01 |
|                | Molybdenum                 | mg/kg | 3.49       | (1)            | 63                    | 63                           | mg/kg | Maximum Detected Concentration    | (1)           |
|                | Nickel                     | mg/kg | 10.2       | 12.4 (N)       | 27                    | 12.4                         | mg/kg | 95% KM (t) UCL                    | ProUCL 4.1.01 |
|                | Vanadium                   | mg/kg | 31.8       | 35 (N)         | 49                    | 35                           | mg/kg | 95% Student's-t UCL               | ProUCL 4.1.01 |
|                | Hexavalent Chromium        | mg/kg | 1.33       | 2.67 (NP)      | 9.25                  | 2.67                         | mg/kg | 95% Chebyshev (Mean, Sd) UCL      | ProUCL 4.1.01 |

G = Gamma

L = Lognormal

N = Normal

NP = Non-parametric

- 1 There are less than four detected concentrations. Reliable statistics cannot be computed. The Maximum concentration was used as the EPC.
- 2 USEPA Guidance recommends using the average concentration for the exposure point concentration for lead.

#### TABLE 3.2.RME **EXPOSURE POINT CONCENTRATION SUMMARY** REASONABLE MAXIMUM EXPOSURE LOCKHEED MARTIN, MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Scenario Timeframe: Future

Medium: Surface Soil

Exposure Medium: Subsurface Soil

| Exposure Point | Chemical of                | Units | Arithmetic | 95% UCL        | Maximum<br>Concentration | Exposure Point Concentration |       |                                |               |
|----------------|----------------------------|-------|------------|----------------|--------------------------|------------------------------|-------|--------------------------------|---------------|
|                | Potential Concern          |       | Mean       | (Distribution) | (Qualifier)              | Value                        | Units | Statistic                      | Rationale     |
| Block F        | Benzo(a)pyrene Equivalents | mg/kg | 0.100      | 0.26 L         | 7.6                      | 0.26                         | mg/kg | 95% KM (Chebyshev) UCL         | ProUCL 4.1.01 |
|                | Naphthalene                | mg/kg | 7.23       | (1)            | 159                      | 159                          | mg/kg | Maximum Detected Concentration | (1)           |
|                | Aroclor-1260               | mg/kg | 0.024      | 0.17 (N)       | 0.027 J                  | 0.17                         | mg/kg | 95% KM (t) UCL                 | ProUCL 4.1.01 |
|                | Arsenic                    | mg/kg | 2.33       | 3.1 (N)        | 7                        | 3.1                          | mg/kg | 95% KM (t) UCL                 | ProUCL 4.1.01 |
|                | Cobalt                     | mg/kg | 11.2       | 17.5 (G)       | 32.3                     | 17.5                         | mg/kg | 95% KM (BCA) UCL               | ProUCL 4.1.01 |
|                | Mercury                    | mg/kg | 0.275      | 0.41 (G)       | 1.8 L                    | 0.41                         | mg/kg | 95% KM (t) UCL                 | ProUCL 4.1.01 |
|                | Vanadium                   | mg/kg | 36.1       | 44 (G)         | 61.6                     | 44                           | mg/kg | 95% Approximate Gamma UCL      | ProUCL 4.1.01 |
|                | Hexavalent Chromium        | mg/kg | 0.891      | 1.1 (N)        | 1.935                    | 1.1                          | mg/kg | 95% KM (t) UCL                 | ProUCL 4.1.01 |

G = Gamma

N = Normal

NP = Non-parametric

- 1 There are less than four detected concentrations. Reliable statistics cannot be computed. The Maximum concentration was used as the EPC.2 USEPA Guidance recommends using the average concentration for the exposure point concentration for lead.

### TABLE 4.1.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS

# REASONABLE MAXIMUM EXPOSURE - INDUSTRIAL WORKERS - SOIL LOCKHEED MARTIN, MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Scenario Timeframe: Current/Future Medium: Surface Soil/Subsurface Soil Exposure Medium: Surface/Subsurface Soil

| Exposure Route | Receptor Population | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition               | Value             | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name             |
|----------------|---------------------|--------------|----------------|-------------------|------------------------------------|-------------------|--------------|-------------------------|--------------------------------------------|
| Ingestion      | Industrial Workers  | Adult        | Block F        | CS                | Chemical concentration in soil     | Max or 95% UCL    | mg/kg        | USEPA, 2002a            | Intake (mg/kg/day) =                       |
|                |                     |              |                | IR-S              | Ingestion Rate                     | 50                | mg/day       | USEPA, 2002b            |                                            |
|                |                     |              |                | CF3               | Conversion Factor 3                | 0.000001          | kg/mg        |                         | CS x IRS x CF3 x FI x EF x ED              |
|                |                     |              |                | FI                | Fraction Ingested                  | 1                 | unitless     | USEPA, 2002b            | BW x AT                                    |
|                |                     |              |                | EF                | Exposure Frequency                 | 250               | days/year    | USEPA, 2002b            |                                            |
|                |                     |              |                | ED                | Exposure Duration                  | 25                | years        | USEPA, 2002b            |                                            |
|                |                     |              |                | BW                | Body Weight                        | 70                | kg           | USEPA, 1989             |                                            |
|                |                     |              |                | AT-C              | Averaging Time (Cancer)            | 25550             | days         | USEPA, 1989             |                                            |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)        | 9125              | days         | USEPA, 1989             |                                            |
| Dermal         | Industrial Workers  | Adult        | Block F        | CS                | Chemical concentration in soil     | Max or 95% UCL    | mg/kg        | USEPA, 2002             | Dermally Absorbed Dose (mg/kg/day) =       |
|                |                     |              |                | CF3               | Conversion Factor 3                | 0.000001          | kg/mg        |                         |                                            |
|                |                     |              |                | SA                | Skin Surface Available for Contact | 3300              | cm2          | USEPA, 2004             | CS x CF3 x SA x SSAF x DABS x EV x EF x ED |
|                |                     |              |                | SSAF              | Soil to Skin Adherence Factor      | 0.2               | mg/cm2/event | USEPA, 2004             | BW x AT                                    |
|                |                     |              |                | DABS              | Absorption Factor                  | Chemical Specific | unitless     | USEPA, 2004             |                                            |
|                |                     |              |                | EV                | Events Frequency                   | 1                 | events/day   | USEPA, 2004             |                                            |
|                |                     |              |                | EF                | Exposure Frequency                 | 250               | days/year    | USEPA, 2002b            |                                            |
|                |                     |              |                | ED                | Exposure Duration                  | 25                | years        | USEPA, 1989             |                                            |
|                |                     |              |                | BW                | Body Weight                        | 70                | kg           | USEPA, 1989             |                                            |
|                |                     |              |                | _                 | Averaging Time (Cancer)            | 25550             | days         | USEPA, 1989             |                                            |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)        | 9125              | days         | USEPA, 1989             |                                            |

# Sources:

USEPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A.

USEPA, 2002a:Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10, December.

USEPA, 2002b: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

USEPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

# **Unit Intake Calculations**

Incidental Ingestion Intake = (IR-S x CF3 x FI x EF x ED)/(BW x AT)

Dermal Intake = (CF3 x SA x SSAF x EF x ED)/(BW x AT)

Cancer Ingestion Intake = 1.75E-07 Cancer Dermal Intake = 2.31E-06

Noncancer Ingestion Intake = 4.89E-07 Noncancer Dermal Intake = 6.46E-06

Cancer risk from ingestion = Soil concentration x Cancer Ingestion Intake x Oral Cancer Slope Factor

Cancer risk from dermal contact = Soil concentration x Cancer Dermal Intake x Absorption Factor x Dermal Cancer Slope Factor

Hazard Index from ingestion = Soil concentration x Noncancer Ingestion Intake / Oral Reference Dose

Hazard Index from dermal contact = Soil concentration x Noncancer Dermal Intake x Absorption Factor / Dermal Reference Dose

### TABLE 4.2.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS

# REASONABLE MAXIMUM EXPOSURE - INDUSTRIAL WORKERS - SOIL TO AIR

LOCKHEED MARTIN, MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Scenario Timeframe: Current/Future Medium: Surface/Subsurface Soil Exposure Medium: Air

| Exposure Route | Receptor Population | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition                         | Value             | Units      | Rationale/<br>Reference | Intake Equation/<br>Model Name   |
|----------------|---------------------|--------------|----------------|-------------------|----------------------------------------------|-------------------|------------|-------------------------|----------------------------------|
| Inhalation     | Industrial Workers  | Adult        | Block F        | CA                | Chemical concentration in air                | Calculated        | mg/m3      | USEPA, 2002a            | Exposure Concentration (mg/m³) = |
|                |                     |              |                | CS                | Chemical concentration in soil               | Max or 95% UCL    | mg/kg      | USEPA, 2002b            |                                  |
|                |                     |              |                | ET                | Exposure Time                                | 8                 | hours/day  | (1)                     | CA x ET x EF x ED                |
|                |                     |              |                | EF                | Exposure Frequency                           | 250               | days/year  | USEPA, 2002a            | AT x 24 hours/day                |
|                |                     |              |                | ED                | Exposure Duration                            | 25                | years      | USEPA, 2002a            |                                  |
|                |                     |              |                | AT-C              | Averaging Time (Cancer)                      | 25550             | days       | USEPA, 1989             | CA = (1/PEF + 1/VF) x Cs         |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)                  | 9125              | days       | USEPA, 1989             |                                  |
|                |                     |              |                | PEF               | Particulate Emission Factor                  | 3.23E+09          | m3/kg      | USEPA 2013              |                                  |
|                |                     |              |                | VF                | Volatilization Factor                        | Chemical-specific | m3/kg      | USEPA, 2002a            |                                  |
|                |                     |              |                | Q/C               | Inverse of mean concentration at             | 87.36898          | g/m2-s per | USEPA 2013              |                                  |
|                |                     |              |                |                   | center of source                             |                   | kg/m3      |                         |                                  |
|                |                     |              |                | Ut                | Equivalent threshold of wind velocity at 7m. | 11.32             | m/sec      | USEPA 2013              |                                  |
|                |                     |              |                | Um                | Mean annual wind speed                       | 4.29              | m/sec      | USEPA 2013              |                                  |
|                |                     |              |                | V                 | Fraction of vegetative cover                 | 0.5               | unitless   | USEPA 2013              |                                  |
|                |                     |              |                | F(x)              | Function dependent of Um/Ut                  | 0.0993            | unitless   | USEPA 2013              |                                  |

# Notes:

1 - Length of typical work day.

### Sources:

USEPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. USEPA/540/1-86/060.

USEPA, 2002a: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

USEPA, 2002b:Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10, December.

USEPA, 2013: Soil Screening Guidance calculation Internet site at http://risk.lsd.ornl.gov/calc\_start.htm. Site-specific values for Philadelphia, PA.

# Unit Intake Calculations

Unit Exposure Concentration = (ET x EF x ED)/(AT x 24 hours/day)

Cancer Inhalation Intake = 8.15E-02

Noncancer Inhalation Intake = 2.28E-01

Cancer risk from inhalation = Air concentration x Cancer Inhalation Intake x Inhalation Cancer Slope Factor Hazard Index from inhalation = Air concentration x Noncancer Inhalation Intake / Inhalation Reference Dose

# TABLE 5.1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL BLOCK F LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

| Chemical of Potential      | Chronic/<br>Subchronic | Oral RfD |           | Oral Absorption<br>Efficiency | Absorbed Rf | D for Dermal <sup>(2)</sup> | Primary<br>Target | Combined<br>Uncertainty/Modifying | RfD:Target Organ(s) |                         |
|----------------------------|------------------------|----------|-----------|-------------------------------|-------------|-----------------------------|-------------------|-----------------------------------|---------------------|-------------------------|
| Concern                    |                        | Value    | Units     | for Dermal <sup>(1)</sup>     | Value       | Value Units                 |                   | Factors                           | Source(s)           | Date(s)<br>(MM/DD/YYYY) |
| Polycyclic Aromatic Hydroc | arbons                 |          |           |                               |             |                             |                   |                                   |                     |                         |
| Benzo(a)pyrene             | NA                     | NA       | NA        | NA                            | NA          | NA                          | NA                | NA                                | NA                  | NA                      |
| Polychlorinated Biphenyls  | •                      |          | •         | •                             |             | •                           | •                 | •                                 |                     |                         |
| Aroclor-1254               | Chronic                | 2.0E-05  | mg/kg/day | 1                             | 2.0E-05     | mg/kg/day                   | Autoimmune        | 300/1                             | IRIS                | 6/20/2013               |
| Aroclor-1260               | NA                     | NA       | NA        | NA                            | NA          | NA                          | NA                | NA                                | NA                  | NA                      |
| Metals                     | •                      |          | •         |                               |             | •                           |                   |                                   |                     |                         |
| Antimony                   | Chronic                | 4.0E-04  | mg/kg/day | 0.15                          | 6.0E-05     | mg/kg/day                   | Blood             | 1000/1                            | IRIS                | 6/20/2013               |
| Arsenic                    | Chronic                | 3.0E-04  | mg/kg/day | 1                             | 3.0E-04     | mg/kg/day                   | Skin, CVS         | 3/1                               | IRIS                | 6/20/2013               |
| Cadmium <sup>(3)</sup>     | Chronic                | 1.0E-03  | mg/kg/day | 0.03                          | 2.5E-05     | mg/kg/day                   | Kidney            | 10/1                              | IRIS                | 6/20/2013               |
| Cobalt                     | Chronic                | 3.0E-04  | mg/kg/day | 1                             | 3.0E-04     | mg/kg/day                   | Blood             | NA                                | PPRTV               | 8/25/2008               |
| Mercury <sup>(4)</sup>     | Chronic                | 3.0E-04  | mg/kg/day | 0.07                          | 2.1E-05     | mg/kg/day                   | Autoimmune        | 1000/1                            | IRIS                | 6/20/2013               |
| Molybdenum                 | Chronic                | 5.0E-03  | mg/kg/day | 1                             | 5.0E-03     | mg/kg/day                   | Gout              | 30/1                              | IRIS                | 6/20/2013               |
| Nickel                     | Chronic                | 2.0E-02  | mg/kg/day | 0.04                          | 8.0E-04     | mg/kg/day                   | Body Weight       | 300/1                             | IRIS                | 6/20/2013               |
| Vanadium                   | Chronic                | 5.0E-03  | mg/kg/day | 1                             | 5.0E-03     | mg/kg/day                   | Kidney            | 300                               | RSL                 | 5/2013                  |
| Miscellaneous Parameters   |                        |          | -         |                               |             |                             | -                 |                                   |                     |                         |
| Hexavalent Chromium        | Chronic                | 3.0E-03  | mg/kg/day | 0.025                         | 7.5E-05     | mg/kg/day                   | None Reported     | 300/3                             | IRIS                | 6/20/2013               |

# Notes:

- 1 U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted dermal RfD = Oral RfD x Oral Absorption Efficiency for Dermal.
- 3 Values are for cadmium diet.
- 4 Values are for mercuric chloride.

Definitions:

ATSDR = Agency for Toxic Substances and Disease Registry CVS = Cardiovascular system.

IRIS = Integrated Risk Information System.

NA = Not available.

RSL = USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites, May 2013.

PPRTV = Provisional Peer Reviewed Toxicity Value.

# TABLE 5.2 NON-CANCER TOXICITY DATA -- INHALATION **BLOCK F** LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

| Chemical<br>of Potential         | Chronic/<br>Subchronic | Inhalation RfC |                   | Extrapol | ated RfD <sup>(1)</sup> | Primary<br>Target | Combined Uncertainty/Modifying | RfC : Target Organ(s) |                         |  |
|----------------------------------|------------------------|----------------|-------------------|----------|-------------------------|-------------------|--------------------------------|-----------------------|-------------------------|--|
| Concern                          |                        | Value          | Units             | Value    | Units                   | Organ(s)          | Factors                        | Source(s)             | Date(s)<br>(MM/DD/YYYY) |  |
| Polycyclic Aromatic Hydrocarbons |                        |                |                   |          |                         |                   |                                |                       |                         |  |
| Benzo(a)pyrene                   | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Polychlorinated Biphenyls        |                        |                |                   |          |                         |                   |                                |                       |                         |  |
| Aroclor-1254                     | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Aroclor-1260                     | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Metals                           |                        |                |                   |          |                         |                   |                                |                       |                         |  |
| Antimony                         | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Arsenic                          | Chronic                | 1.5E-05        | mg/m3             | 4.3E-06  | (mg/kg/day)             | NA                | NA                             | Cal EPA               | 11/2010                 |  |
| Cadmium                          | Chronic                | 1.0E-05        | mg/m3             | 2.9E-06  | (mg/kg/day)             | Kidney            | NA                             | ATSDR                 | 9/2008                  |  |
| Cobalt                           | Chronic                | 6.0E-06        | mg/m <sup>3</sup> | 1.7E-06  | (mg/kg/day)             | Lungs             | NA                             | PPRTV                 | 8/25/2008               |  |
| Mercury <sup>(2)</sup>           | Chronic                | 3.0E-05        | mg/m <sup>3</sup> | 8.6E-06  | (mg/kg/day)             | Autoimmune        | NA                             | Cal EPA               | 11/2010                 |  |
| Molybdenum                       | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Nickel                           | Chronic                | 9.0E-05        | mg/m <sup>3</sup> | 2.6E-05  | (mg/kg/day)             | Body Weight       | NA                             | ASTDR                 | 9/2005                  |  |
| Vanadium                         | NA                     | NA             | NA                | NA       | NA                      | NA                | NA                             | NA                    | NA                      |  |
| Miscellaneous Parameters         |                        |                |                   |          |                         |                   |                                |                       |                         |  |
| Hexavalent Chromium              | Chronic                | 1.0E-04        | mg/m <sup>3</sup> | 2.9E-05  | (mg/kg/day)             | Lungs             | 300/1                          | IRIS                  | 6/20/2013               |  |

Notes: 1 - Extrapolated RfD = RfC \*20m³/day / 70 kg

2 - Value is for mercuric chloride.

# Definitions:

ATSDR = Agency for Toxic Substances and Disease Registry.
Cal EPA = California Environmental Protection Agency.

IRIS = Integrated Risk Information System.

NA = Not available.

# TABLE 6.1 CANCER TOXICITY DATA -- ORAL/DERMAL BLOCK F LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

| Chemical of Potential         | Oral Cancer | Slope Factor              | Oral Absorption<br>Efficiency |         | cer Slope Factor          | Weight of Evidence/<br>Cancer Guideline | Oral CSF  |                         |  |
|-------------------------------|-------------|---------------------------|-------------------------------|---------|---------------------------|-----------------------------------------|-----------|-------------------------|--|
| Concern                       | Value       | Units                     | for Dermal <sup>(1)</sup>     | Value   | Units                     | Description                             | Source(s) | Date(s)<br>(MM/DD/YYYY) |  |
| Polycyclic Aromatic Hydrocar  | bons        |                           |                               |         |                           |                                         |           |                         |  |
| Benzo(a)pyrene <sup>(3)</sup> | 7.3E+00     | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E+00 | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | IRIS      | 6/20/2013               |  |
| Polychlorinated Biphenyls     | •           |                           |                               |         |                           |                                         |           |                         |  |
| Aroclor-1254                  | 2.0E+00     | (mg/kg/day) <sup>-1</sup> | 1                             | 2.0E+00 | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 9/1996                  |  |
| Aroclor-1260                  | 2.0E+00     | (mg/kg/day) <sup>-1</sup> | 1                             | 2.0E+00 | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 9/1996                  |  |
| Metals                        |             |                           |                               |         |                           |                                         |           |                         |  |
| Antimony                      | NA          | NA                        | NA                            | NA      | NA                        | NA                                      | NA        | NA                      |  |
| Arsenic                       | 1.5E+00     | (mg/kg/day) <sup>-1</sup> | 1                             | 1.5E+00 | (mg/kg/day) <sup>-1</sup> | A / Known human carcinogen              | IRIS      | 6/20/2013               |  |
| Cadmium                       | NA          | NA                        | NA                            | NA      | NA                        | B1 / Probable human carcinogen          | IRIS      | 6/20/2013               |  |
| Cobalt                        | NA          | NA                        | NA                            | NA      | NA                        | NA                                      | NA        | NA                      |  |
| Mercury                       | NA          | NA                        | NA                            | NA      | NA                        | C / Possible human carcinogen           | IRIS      | 6/20/2013               |  |
| Molybdenum                    | NA          | NA                        | NA                            | NA      | NA                        | NA                                      | NA        | NA                      |  |
| Nickel                        | NA          | NA                        | NA                            | NA      | NA                        | NA                                      | NA        | NA                      |  |
| Vanadium                      | NA          | NA                        | NA                            | NA      | NA                        | NA                                      | NA        | NA                      |  |
| Miscellaneous Parameters      | ·           |                           |                               |         |                           | ·                                       |           |                         |  |
| Hexavalent Chromium(3)        | 5.0E-01     | (mg/kg/day) <sup>-1</sup> | 0.025                         | 2.0E+01 | (mg/kg/day) <sup>-1</sup> | A / Known human carcinogen              | NJ        | 4/8/2009                |  |

# Notes:

- 1 USEPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted cancer slope factor for dermal = Oral cancer slope factor / Oral Absorption Efficiency for Dermal.
- 3 Several PAHs and hexavalent chromium are considered to act via the mutagenic mode of action. These chemicals are evaluated in accordance with USEPA's Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (2005).

Cal EPA = California Environmental Protection Agency.

IRIS = Integrated Risk Information System.

NA = Not available.

NJ = New Jersey.

PPRTV = Provisional Peer Reviwed Toxicity Value.

USEPA(1) = USEPA, PCBs: Cancer Dose-Response Assessment and Applications to Environmental Mixtures, September 1996, EPA/600/P-96/001F.

# TABLE 6.2 CANCER TOXICITY DATA -- INHALATION BLOCK F LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

| Chemical<br>of Potential           | Unit    | Risk                               |         | on Cancer<br>Factor <sup>(1)</sup> | Weight of Evidence/<br>Cancer Guideline | Unit Risk : I | nhalation CSF           |
|------------------------------------|---------|------------------------------------|---------|------------------------------------|-----------------------------------------|---------------|-------------------------|
| Concern                            | Value   | Units                              | Value   | Units                              | Description                             | Source(s)     | Date(s)<br>(MM/DD/YYYY) |
| Polycyclic Aromatic Hydrocart      | oons    |                                    |         |                                    |                                         |               |                         |
| Benzo(a)pyrene <sup>(2)</sup>      | 1.1E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.9E+00 | (mg/kg/day) <sup>-1</sup>          | NA                                      | Cal EPA       | 11/2010                 |
| Polychlorinated Biphenyls          |         |                                    |         |                                    |                                         |               |                         |
| Aroclor-1254                       | 5.7E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.0E+00 | (mg/kg/day) <sup>-1</sup>          | B2 / Probable human carcinogen          | USEPA(1)      | 9/1996                  |
| Aroclor-1260                       | 5.7E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.0E+00 | (mg/kg/day) <sup>-1</sup>          | B2 / Probable human carcinogen          | USEPA(1)      | 9/1996                  |
| Metals                             |         |                                    |         |                                    |                                         | -             |                         |
| Antimony                           | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                      |
| Arsenic                            | 4.3E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 1.5E+01 | (mg/kg/day) <sup>-1</sup>          | A / Known human carcinogen              | IRIS          | 6/20/2013               |
| Cadmium                            | 1.8E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 6.3E+00 | (mg/kg/day) <sup>-1</sup>          | B1 / Probable human carcinogen          | IRIS          | 6/20/2013               |
| Cobalt                             | 9.0E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.2E+01 | (mg/kg/day) <sup>-1</sup>          | NA                                      | PPRTV         | 8/25/2008               |
| Mercury                            | NA      | NA                                 | NA      | NA                                 | C / Possible human carcinogen           | IRIS          | 6/20/2013               |
| Molybdenum                         | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                      |
| Nickel                             | 2.6E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 9.1E-01 | (mg/kg/day) <sup>-1</sup>          | NA                                      | Cal EPA       | 11/2010                 |
| Vanadium                           | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                      |
| Petroleum Hydrocarbons             |         |                                    |         |                                    |                                         |               |                         |
| Diesel Range Organics              | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                      |
| Gasoline Range Organics            | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                      |
| Miscellaneous Parameters           |         |                                    |         | _                                  |                                         |               |                         |
| Hexavalent Chromium <sup>(2)</sup> | 8.4E-02 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.9E+02 | (mg/kg/day) <sup>-1</sup>          | A / Known human carcinogen              | IRIS          | 6/20/2013               |

### Notes:

- 1 Inhalation CSF = Unit Risk \* 70 kg / 20m<sup>3</sup>/day.
- 2 Several PAHs and hexavalent chromium are considered to act via the mutagenic mode of action. These chemicals are evaluated in accordance with USEPA's Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (2005).

# Definitions:

Cal EPA = California Environmental Protection Agency.

IRIS = Integrated Risk Information System.

NA = Not available.

PPRTV = Provisional Peer Reviewed Toxicity Value.

USEPA(1) = USEPA, PCBs: Cancer Dose-Response Assessment and Applications to Environmental Mixtures, September 1996, EPA/600/P-96/001F.

# TABLE 7.1.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES LOCKHEED MARTIN, MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 2

Scenario Timeframe: Current Receptor Population: Industrial Workers Receptor Age: Adult

| Producted Coccorn   Value   Units   Inspection   Control   Contr   | Medium       | Exposure Medium       | Exposure Point       | Exposure Route   | Chemical of                | Е       | PC                |                | Can                  | cer Risk Calcula | ations                             |             |                                                | Non-Ca               | ncer Hazard C | alculations          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|----------------------|------------------|----------------------------|---------|-------------------|----------------|----------------------|------------------|------------------------------------|-------------|------------------------------------------------|----------------------|---------------|----------------------|-----------------|
| Surface Soil   Broke F   Image   Ima   |              | · ·                   | ·                    | ·                | Potential Concern          | Value   | Units             | Intake/Exposur |                      |                  |                                    | Cancer Risk | Intake/Exposu                                  |                      |               |                      | Hazard Quotient |
| Andreion-1282   1.40   mogla   2.46-07   (maghatay)   2.06-00   (maghatay)   4.60-07   6.80-07   (maghatay)   2.06-00   (maghatay)   4.60-07   (maghatay)   4.   |              |                       |                      |                  |                            |         |                   | Value          | Units                | Value            | Units                              |             | Value                                          | Units                | Value         | Units                |                 |
| Ancote-1290   1-100   mayby   2-45-07   (maybaglow)   2-65-07   (maybaglow)   5-67-08   16-60   (maybaglow)   5-67-08   16-60   (maybaglow)   5-67-08   (maybaglow)   5-67-0   | Surface Soil | Surface Soil          | Block F              | Ingestion        | Benzo(a)pyrene Equivalents | 2.30    | mg/kg             | 4.0E-07        | (mg/kg/day)          | 7.3E+00          | (mg/kg/day) <sup>-1</sup>          | 2.9E-06     | 1.1E-06                                        | (mg/kg/day)          | NA            | (mg/kg/day)          |                 |
| Anteriory   1.30 m/pkg   2.4E-07 (mpkg/day)   NA mg/lag (gay)*     6.8E-07 (mpkg/day)*   6.7E-07 (mpkg/da      |              |                       |                      |                  | Aroclor-1254               | 1.40    | mg/kg             | 2.4E-07        | (mg/kg/day)          | 2.0E+00          |                                    | 4.9E-07     | 6.8E-07                                        | (mg/kg/day)          | 2.0E-05       | (mg/kg/day)          | 0.03            |
| Amazona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                       |                      |                  | Aroclor-1260               | 0.160   | mg/kg             | 2.8E-08        | (mg/kg/day)          | 2.0E+00          | (mg/kg/day) <sup>-1</sup>          | 5.6E-08     | 7.8E-08                                        | (mg/kg/day)          | NA            | (mg/kg/day)          |                 |
| Codmiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                       |                      |                  | Antimony                   | 1.38    | mg/kg             | 2.4E-07        | (mg/kg/day)          | NA               | (mg/kg/day) <sup>-1</sup>          |             | 6.8E-07                                        | (mg/kg/day)          | 4.0E-04       | (mg/kg/day)          | 0.002           |
| Cocat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                       |                      |                  | Arsenic                    | 3.70    | mg/kg             | 6.5E-07        | (mg/kg/day)          | 1.5E+00          | (mg/kg/day) <sup>-1</sup>          | 9.7E-07     | 1.8E-06                                        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.006           |
| Meccury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                       |                      |                  | Cadmium                    | 1.21    | mg/kg             | 2.1E-07        | (mg/kg/day)          | NA               | (mg/kg/day) <sup>-1</sup>          |             | 5.9E-07                                        | (mg/kg/day)          | 1.0E-03       | (mg/kg/day)          | 0.0006          |
| Molocherum   63.0 mg/kg   1.1E-05   (mg/kg/day)   NA   (mg/kg/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                       |                      |                  |                            | 6.95    | mg/kg             |                | (mg/kg/day)          |                  | (mg/kg/day) <sup>-1</sup>          |             |                                                | (mg/kg/day)          |               | (mg/kg/day)          | 0.01            |
| Note   12.4   mg/kg   2.1E-08   (mg/kg/day)   NA   (mg/kg/day)     6.1E-06   (mg/kg/day)   2.0E-02   (mg/kg/day)   1.0E-04   (mg/kg/day)   1.0E-0      |              |                       |                      |                  |                            |         | mg/kg             | 1.5E-07        | (mg/kg/day)          |                  | (mg/kg/day) <sup>-1</sup>          |             | 4.3E-07                                        | (mg/kg/day)          |               | (mg/kg/day)          | 0.001           |
| Vanadum   5.0 mg/kg   6.1-6-06 (mg/kg/day)   NA (mg/kg/day)   2.5E-07   (mg/   |              |                       |                      |                  | *                          |         | 0 0               |                | , ,                  |                  |                                    |             |                                                |                      |               | , ,                  | 0.006           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                      |                  |                            |         |                   |                |                      |                  | (mg/kg/day) <sup>-1</sup>          |             |                                                |                      |               |                      | 0.0003          |
| Exp. Route Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                       |                      |                  |                            |         |                   |                | , ,                  |                  |                                    |             |                                                |                      |               | , ,                  | 0.003           |
| Demmal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                       |                      |                  | Hexavalent Chromium        | 2.67    | mg/kg             | 4.7E-07        | (mg/kg/day)          | 5.0E-01          | (mg/kg/day) <sup>-1</sup>          |             | 1.3E-06                                        | (mg/kg/day)          | 3.0E-03       | (mg/kg/day)          | 0.0004          |
| Acciden-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                       |                      |                  |                            |         |                   |                | 1                    |                  |                                    |             |                                                | 1                    | 1             | 1                    | 0.07            |
| Accober-1280   0.160   mg/kg   5.2E.68   (mg/kg/day)   2.DE-00   mg/kg/day)   1.1.DE-07   1.4E-07   (mg/kg/day)   NA (mg/kg/day)   Arsenic   3.70   mg/kg   3.2E.68   (mg/kg/day)   1.5E-00   mg/kg/day)   1   |              |                       |                      | Dermal           |                            |         |                   |                | ,                    |                  |                                    |             |                                                |                      |               | , ,                  | -               |
| Adminory   1.38 mg/kg   3.2E-08 (mg/kg/day)   NA (mg/kg/day)     8.8E-08 (mg/kg/day)   6.0E-05 (mg/kg/day)   mg/kg/day)   mg/kg/day)   mg/kg/day)   1.5E+00 (mg/kg/day)   mg/kg/day)        |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.06            |
| Arsenic 3.70 mg/kg 2.8E-07 (mg/kg/day)* 1.5E-00 (mg/kg/day)* 1.5E-00 (mg/kg/day)* 3.8E-07 7.2E-07 (mg/kg/day)* 3.0E-04 (mg/kg/day)* 0.0E-08 (mg/kg/day)* 0.0 |              |                       |                      |                  |                            |         | 0 0               |                | , ,                  |                  |                                    |             |                                                |                      |               | , ,                  |                 |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                       |                      |                  | ,                          |         |                   |                | , ,                  |                  |                                    |             |                                                |                      |               |                      | 0.001           |
| Cobalt   6.95 mg/kg   1.6E-07 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   3.0E-04 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   4.5E-06 (mg/kg/day)   NA (mg/kg/day)   4.5E-06 (mg/kg/day)   NA (mg/kg/day)   4.5E-06 (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA (mg/kg/day)   NA (mg/kg/day)   4.5E-07 (mg/kg/day)   NA                                     |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.002           |
| Mercury   0.370   mg/kg   2.0E-08   (mg/kg/dsy)   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.0003<br>0.001 |
| Molybdenum   63.0   mg/kg   1.5E-06   (mg/kg/day)   NA   (mg/kg/day)     4.1E-06   (mg/kg/day)   5.0E-03   (mg/kg/day)   NA   (mg/kg/day)     4.1E-06   (mg/kg/day)   5.0E-03   (mg/kg/day)   NA   (mg/kg/day)     2.5E-06   (mg/kg/day)   5.0E-03   (mg/kg/day)   NA   (mg/kg/day)     2.5E-06   (mg/kg/day)   1.2E-06   (mg/kg/day)   NA   (mg/kg/day)   1.2E-06   (mg/kg/day)   NA                     |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.001           |
| Nickel   12.4 mg/kg   2.9E-07 (mg/kg/day)   NA (mg/kg/day)   8.0E-07 (mg/kg/day)   8.0E-04 (mg/kg/day)   0.0E-03 (mg/m²)   0.0E-03 (mg/      |              |                       |                      |                  | *                          |         |                   |                | , ,                  |                  |                                    |             |                                                |                      |               |                      | 0.003           |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                       |                      |                  | *                          |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.000           |
| Hexavalent Chromium   2.67 mg/kg   6.2E-08 (mg/kg/day)   2.0E+01 (mg/kg/day)   1.2E-06   1.7E-07 (mg/kg/day)   7.7E-05   (mg/kg/day)   7.7E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.0005          |
| Exposure Point Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                       |                      |                  |                            |         | 0 0               |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.002           |
| Exposure Medium Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                       |                      | Exp. Route Total | Tioxaraioni omomiam        | 2.07    | grkg              | 0.22 00        | (mg/ng/ddy)          | 2.02.101         | (IIIg/kg/day)                      |             |                                                | (mg/ng/ddy)          | 7.02 00       | (mg/ng/ddy)          | 0.08            |
| Exposure Medium Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                       | Exposure Point Total | Exp. Houto Total |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               |                      | 0.1             |
| Air Block F Inhalation Benzo(a)pyrene Equivalents Arcelor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Exposure Medium Total | Exposure Four Fords  |                  |                            |         |                   |                |                      |                  |                                    |             | <u>.                                      </u> |                      |               |                      | 0.1             |
| Aroclor-1254 4,3E-10 mg/m³ 3.5E-11 (mg/m³) 5.7E-04 (ug/m³)¹ 2.0E-11 (mg/m³) NA (mg/m³) Aroclor-1260 4.9E-11 mg/m³ 4.0E-12 (mg/m³) 5.7E-04 (ug/m³)¹ 2.3E-12 1.1E-11 (mg/m³) NA (mg/m³) Antimony 4.2E-10 mg/m³ 3.4E-11 (mg/m³) NA (ug/m³)¹ 3.9E-10 2.6E-10 (mg/m³) NA (mg/m³) Arsenic 1.1E-9 mg/m³ 9.2E-11 (mg/m³) 4.3E-03 (ug/m³)¹ 3.9E-10 2.6E-10 (mg/m³) 1.5E-05 (mg/m³) Cadmium 3.7E-10 mg/m³ 3.0E-11 (mg/m³) 1.8E-03 (ug/m³)¹ 5.4E-11 8.4E-11 (mg/m³) 2.0E-05 (mg/m³) Cobalt 2.1E-9 mg/m³ 1.7E-10 (mg/m³) 9.0E-03 (ug/m³)¹ 1.6E-09 4.8E-10 (mg/m³) 6.0E-06 (mg/m³) Mercury 2.6E-10 mg/m³ 1.6E-09 (mg/m³) NA (ug/m³)¹ 6.0E-11 (mg/m³) 3.0E-04 (mg/m³) Nickel 3.8E-9 mg/m³ 1.6E-09 (mg/m³) NA (ug/m³)¹ 4.4E-09 (mg/m³) NA (ug/m³)¹ 4.4E-09 (mg/m³) 9.0E-05 (mg/m³) Nickel 3.8E-9 mg/m³ 8.7E-10 (mg/m³) NA (ug/m³)¹ 2.4E-09 (mg/m³) NA (mg/m³) Vanadium 1.1E-8 mg/m³ 8.7E-10 (mg/m³) NA (ug/m³)¹ 5.6E-09 1.9E-10 (mg/m³) NA (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Air                   | Block F              | Inhalation       | Benzo(a)pyrene Equivalents | 7.0E-10 | ma/m³             | 5.7E-11        | (ma/m³)              | 1.1E-03          | (ug/m <sup>3</sup> )-1             |             | 1.6E-10                                        | (ma/m³)              | NA            | (ma/m <sup>3</sup> ) |                 |
| Aroclor-1260 4.9E-11 mg/m³ 4.0E-12 (mg/m³) 5.7E-04 (ug/m³)¹ 2.3E-12 1.1E-11 (mg/m³) NA (mg/m³) Antimony 4.2E-10 mg/m³ 3.4E-11 (mg/m³) NA (ug/m³)¹ 9.6E-11 (mg/m³) NA (mg/m³) Arsenic 1.1E-9 mg/m³ 3.2E-11 (mg/m³) 4.3E-03 (ug/m³)¹ 3.9E-10 2.6E-10 (mg/m³) 1.5E-05 (mg/m³) Cadmium 3.7E-10 mg/m³ 3.0E-11 (mg/m³) 1.8E-03 (ug/m³)¹ 1.6E-09 4.8E-11 (mg/m³) 6.0E-06 (mg/m³) Cobalt 2.1E-9 mg/m³ 1.7E-10 (mg/m³) 9.0E-03 (ug/m³)¹ 1.6E-09 4.8E-10 (mg/m³) 6.0E-06 (mg/m³) Mercury 2.6E-10 mg/m³ 2.2E-11 (mg/m³) NA (ug/m³)¹ 4.4E-09 (mg/m³) NA (ug/m³)² 4.4E-09 (mg/m³) NA (ug/m³)² 4.4E-09 (mg/m³) NA (ug/m³)² 4.4E-09 (mg/m³) NA (ug/m³)² 4.4E-09 (mg/m³)                                                                                                                                                           |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                |                      |               | , , ,                |                 |
| Antimony 4.2E-10 mg/m³ 3.4E-11 (mg/m³) NA (ug/m³)-1 9.6E-11 (mg/m³) NA (mg/m³)  Arsenic 1.1E-9 mg/m³ 9.2E-11 (mg/m³) 4.3E-03 (ug/m³)-1 3.9E-10 2.6E-10 (mg/m³) 1.5E-05 (mg/m³)  Cadmium 3.7E-10 mg/m³ 3.0E-11 (mg/m³) 9.0E-03 (ug/m³)-1 5.4E-11 8.4E-11 (mg/m³) 2.0E-05 (mg/m³)  Mercury 2.6E-10 mg/m³ 2.2E-11 (mg/m³) NA (ug/m³)-1 1.6E-09 4.8E-10 (mg/m³) 3.0E-04 (mg/m³)  Molybdenum 1.9E-8 mg/m³ 1.6E-09 (mg/m³) NA (ug/m³)-1 6.0E-11 (mg/m³) NA (ug/m³)-1 4.4E-09 (mg/m³) NA (mg/m³)  Nickel 3.8E-9 mg/m³ 3.1E-10 (mg/m³) 2.6E-04 (ug/m³)-1 4.4E-09 (mg/m³) 9.0E-05 (mg/m³)  Vanadium 1.1E-8 mg/m³ 8.7E-10 (mg/m³) NA (ug/m³)-1 2.4E-09 (mg/m³) NA (mg/m³)  Hexavalent Chromium 8.1E-10 mg/m³ 8.7E-10 (mg/m³) 8.4E-02 (ug/m³)-1 5.6E-09 (mg/m³) 1.0E-04 (mg/m³)  Exp. Route Total 7.7E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                       |                      |                  |                            |         |                   |                |                      |                  |                                    |             |                                                | ,                    |               | , , ,                |                 |
| Arsenic 1.1E-9 mg/m³ 9.2E-11 (mg/m³) 4.3E-03 (ug/m³)¹ 3.9E-10 (mg/m³) 1.5E-05 (mg/m³)   Cadmium 3.7E-10 mg/m³ 3.0E-11 (mg/m³) 1.8E-03 (ug/m³)¹ 5.4E-11 8.4E-11 (mg/m³) 2.0E-05 (mg/m³)   Cobalt 2.1E-9 mg/m³ 1.7E-10 (mg/m³) 9.0E-03 (ug/m³)¹ 1.6E-09 4.8E-10 (mg/m³) 6.0E-06 (mg/m³)   Mercury 2.6E-10 mg/m³ 2.2E-11 (mg/m³) NA (ug/m³)¹ 6.0E-11 (mg/m³) 3.0E-04 (mg/m³)   Molybdenum 1.9E-8 mg/m³ 1.6E-09 (mg/m³) NA (ug/m³)¹ 4.4E-09 (mg/m³) NA (mg/m³)   Nickel 3.8E-9 mg/m³ 3.1E-10 (mg/m³) 2.6E-04 (ug/m³)¹ 8.0E-11 8.6E-10 (mg/m³) 9.0E-05 (mg/m³)   Vanadium 1.1E-8 mg/m³ 8.7E-10 (mg/m³) NA (ug/m³)¹ 2.4E-09 (mg/m³) NA (mg/m³)   Hexavalent Chromium 8.1E-10 mg/m³ 8.7E-10 (mg/m³) 8.4E-02 (ug/m³)¹ 5.6E-09 (mg/m³) 1.9E-10 (mg/m³) 1.0E-04 (mg/m³)   Exp. Route Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                       |                      |                  | Antimony                   |         |                   | 3.4E-11        |                      |                  |                                    |             |                                                |                      |               |                      |                 |
| Cadmium   3.7E-10   mg/m³   3.0E-11   (mg/m³)   1.8E-03   (ug/m³)¹   5.4E-11   8.4E-11   (mg/m³)   2.0E-05   (mg/m³)   (mg/m³)   1.7E-10   (mg/m³)   9.0E-03   (ug/m³)²   1.6E-09   4.8E-10   (mg/m³)   6.0E-06   (mg/m³)   (mg/m³)   6.0E-06   (mg/   |              |                       |                      |                  | Arsenic                    | 1.1E-9  |                   | 9.2E-11        |                      | 4.3E-03          | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.9E-10     | 2.6E-10                                        |                      | 1.5E-05       | , , ,                | 0.00002         |
| Cobalt   2.1E-9   mg/m³   1.7E-10   (mg/m³)   9.0E-03   (ug/m³)¹   1.6E-09   4.8E-10   (mg/m³)   6.0E-06   (mg/m³)   Mercury   2.6E-10   mg/m³   2.2E-11   (mg/m³)   NA   (ug/m³)²     4.4E-09   (mg/m³)   NA   (ug/m³)²     4.4E-09   (mg/m³)   NA   (ug/m³)²   Nickel   3.8E-9   mg/m³   3.1E-10   (mg/m³)   2.6E-04   (ug/m³)²   8.0E-11   8.6E-10   (mg/m³)   9.0E-05   (mg/m³)   NA   (ug/m³)²     2.4E-09   (mg/m³)   NA   (ug/m³)²     2.4E-09   (mg/m³)   NA   (mg/m³)   NA   (mg/m³)   NA   (ug/m³)²     2.4E-09   (mg/m³)   NA   (mg/m³                  |              |                       |                      |                  | Cadmium                    | 3.7E-10 |                   | 3.0E-11        |                      | 1.8E-03          |                                    | 5.4E-11     | 8.4E-11                                        |                      | 2.0E-05       | , , ,                | 0.000004        |
| Mercury   2.6E-10   mg/m³   2.2E-11   (mg/m³)   NA   (ug/m³)¹     6.0E-11   (mg/m³)   3.0E-04   (mg/m³)   Molybdenum   1.9E-8   mg/m³   1.6E-09   (mg/m³)   NA   (ug/m³)¹     4.4E-09   (mg/m³)   NA   (mg/m³)   NA   (mg/m³)   NA   (mg/m³)   NA   (mg/m³)   NA   (mg/m³)   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                       |                      |                  | Cobalt                     | 2.1E-9  |                   | 1.7E-10        | (mg/m³)              | 9.0E-03          |                                    | 1.6E-09     | 4.8E-10                                        | (mg/m <sup>3</sup> ) | 6.0E-06       | (mg/m <sup>3</sup> ) | 0.00008         |
| Molybdenum   1.9E-8   mg/m³   1.6E-09   (mg/m³)   NA   (ug/m³)¹     4.4E-09   (mg/m³)   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                       |                      |                  | Mercury                    | 2.6E-10 |                   | 2.2E-11        | (mg/m³)              | NA               | (ug/m <sup>3</sup> ) <sup>-1</sup> |             | 6.0E-11                                        |                      | 3.0E-04       | (mg/m <sup>3</sup> ) | 2.0E-7          |
| Nickel   3.8E-9   mg/m³   3.1E-10   (mg/m³)   2.6E-04   (ug/m³)¹   8.0E-11   8.6E-10   (mg/m³)   9.0E-05   (mg/m³)     Vanadium   1.1E-8   mg/m³   8.7E-10   (mg/m³)   NA   (ug/m³)²   2.4E-09   (mg/m²)   NA   (mg/m²)     Hexavalent Chromium   8.1E-10   mg/m³   6.6E-11   (mg/m³)   8.4E-02   (ug/m³)²   5.6E-09   1.9E-10   (mg/m³)   1.0E-04   (mg/m³)     Exp. Route Total   Exposure Point Total   7.7E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                       |                      |                  | Molybdenum                 | 1.9E-8  | mg/m <sup>3</sup> | 1.6E-09        |                      | NA               |                                    |             | 4.4E-09                                        |                      | NA            | (mg/m <sup>3</sup> ) |                 |
| Hexavalent Chromium   8.1E-10   mg/m³   6.6E-11   (mg/m³)   8.4E-02   (ug/m³)-1   5.6E-09   1.9E-10   (mg/m³)   1.0E-04   (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                       |                      |                  | Nickel                     | 3.8E-9  |                   | 3.1E-10        |                      | 2.6E-04          | (ug/m <sup>3</sup> ) <sup>-1</sup> | 8.0E-11     | 8.6E-10                                        | (mg/m <sup>3</sup> ) | 9.0E-05       | (mg/m <sup>3</sup> ) | 0.000010        |
| Exp. Route Total         7.7E-09           Exposure Point Total         7.7E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                      |                  | Vanadium                   | 1.1E-8  | mg/m <sup>3</sup> | 8.7E-10        | (mg/m <sup>3</sup> ) | NA               | (ug/m <sup>3</sup> ) <sup>-1</sup> |             | 2.4E-09                                        | (mg/m <sup>3</sup> ) | NA            | (mg/m <sup>3</sup> ) |                 |
| Exposure Point Total 7.7E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                       |                      |                  | Hexavalent Chromium        | 8.1E-10 | mg/m <sup>3</sup> | 6.6E-11        | (mg/m <sup>3</sup> ) | 8.4E-02          | (ug/m <sup>3</sup> ) <sup>-1</sup> |             | 1.9E-10                                        | (mg/m <sup>3</sup> ) | 1.0E-04       | (mg/m <sup>3</sup> ) | 0.000002        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                      | Exp. Route Total |                            |         |                   |                |                      |                  |                                    | 7.7E-09     |                                                |                      |               |                      | 0.0001          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       | Exposure Point Total |                  |                            |         |                   |                |                      |                  |                                    | 7.7E-09     |                                                |                      |               |                      | 0.0001          |
| Exposure Medium Total 7.7E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Exposure Medium Total |                      |                  |                            |         |                   |                |                      |                  |                                    | 7.7E-09     |                                                |                      |               |                      | 0.0001          |
| Medium Total         1.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Medium Total |                       |                      |                  |                            |         |                   |                |                      |                  |                                    | 1.2E-05     |                                                |                      |               |                      | 0.1             |

# TABLE 7.1.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES LOCKHEED MARTIN, MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

Scenario Timeframe: Current Receptor Population: Industrial Workers Receptor Age: Adult

| Medium          | Exposure Medium       | Exposure Point       | Exposure Route   | Chemical of                | EI      | PC                |                | Car                  | ncer Risk Calcula | ations                             |             |                | Non-Ca               | ncer Hazard C | alculations          |                 |
|-----------------|-----------------------|----------------------|------------------|----------------------------|---------|-------------------|----------------|----------------------|-------------------|------------------------------------|-------------|----------------|----------------------|---------------|----------------------|-----------------|
|                 | · ·                   |                      |                  | Potential Concern          | Value   | Units             | Intake/Exposur | e Concentration      | CSF/L             | Jnit Risk                          | Cancer Risk | Intake/Exposur | re Concentration     | Rf            | D/RfC                | Hazard Quotient |
|                 |                       |                      |                  |                            |         |                   | Value          | Units                | Value             | Units                              |             | Value          | Units                | Value         | Units                |                 |
| Subsurface Soil | Subsurface Soil       | Block F              | Ingestion        | Benzo(a)pyrene Equivalents | 0.260   | mg/kg             | 4.5E-08        | (mg/kg/day)          | 7.3E+00           | (mg/kg/day) <sup>-1</sup>          | 3.3E-07     | 1.3E-07        | (mg/kg/day)          | NA            | (mg/kg/day)          | -               |
|                 |                       |                      |                  | Naphthalene                | 159     | mg/kg             | 2.8E-05        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 7.8E-05        | (mg/kg/day)          | 2.0E-02       | (mg/kg/day)          | 0.004           |
|                 |                       |                      |                  | Aroclor-1260               | 0.170   | mg/kg             | 3.0E-08        | (mg/kg/day)          | 2.0E+00           | (mg/kg/day) <sup>-1</sup>          | 5.9E-08     | 8.3E-08        | (mg/kg/day)          | NA            | (mg/kg/day)          |                 |
|                 |                       |                      |                  | Arsenic                    | 3.10    | mg/kg             | 5.4E-07        | (mg/kg/day)          | 1.5E+00           | (mg/kg/day) <sup>-1</sup>          | 8.1E-07     | 1.5E-06        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.005           |
|                 |                       |                      |                  | Cobalt                     | 17.5    | mg/kg             | 3.1E-06        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 8.6E-06        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.03            |
|                 |                       |                      |                  | Mercury                    | 0.410   | mg/kg             | 7.2E-08        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 2.0E-07        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.0007          |
|                 |                       |                      |                  | Vanadium                   | 44.0    | mg/kg             | 7.7E-06        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 2.2E-05        | (mg/kg/day)          | 5.0E-03       | (mg/kg/day)          | 0.004           |
|                 |                       |                      |                  | Hexavalent Chromium        | 1.10    | mg/kg             | 1.9E-07        | (mg/kg/day)          | 5.0E-01           | (mg/kg/day) <sup>-1</sup>          | 9.6E-08     | 5.4E-07        | (mg/kg/day)          | 3.0E-03       | (mg/kg/day)          | 0.0002          |
|                 |                       |                      | Exp. Route Total |                            |         |                   |                |                      |                   |                                    | 1.3E-06     |                |                      |               |                      | 0.04            |
|                 |                       |                      | Dermal           | Benzo(a)pyrene Equivalents | 0.260   | mg/kg             | 7.8E-08        | (mg/kg/day)          | 7.3E+00           | (mg/kg/day) <sup>-1</sup>          | 5.7E-07     | 2.2E-07        | (mg/kg/day)          | NA            | (mg/kg/day)          | -               |
|                 |                       |                      |                  | Naphthalene                | 159     | mg/kg             | 4.8E-05        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 1.3E-04        | (mg/kg/day)          | 2.0E-02       | (mg/kg/day)          | 0.007           |
|                 |                       |                      |                  | Aroclor-1260               | 0.170   | mg/kg             | 5.5E-08        | (mg/kg/day)          | 2.0E+00           | (mg/kg/day) <sup>-1</sup>          | 1.1E-07     | 1.5E-07        | (mg/kg/day)          | NA            | (mg/kg/day)          |                 |
|                 |                       |                      |                  | Arsenic                    | 3.10    | mg/kg             | 2.1E-07        | (mg/kg/day)          | 1.5E+00           | (mg/kg/day) <sup>-1</sup>          | 3.2E-07     | 6.0E-07        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.002           |
|                 |                       |                      |                  | Cobalt                     | 17.5    | mg/kg             | 4.0E-07        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 1.1E-06        | (mg/kg/day)          | 3.0E-04       | (mg/kg/day)          | 0.004           |
|                 |                       |                      |                  | Mercury                    | 0.410   | mg/kg             | 9.5E-09        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 2.6E-08        | (mg/kg/day)          | 2.1E-05       | (mg/kg/day)          | 0.001           |
|                 |                       |                      |                  | Vanadium                   | 44.0    | mg/kg             | 1.0E-06        | (mg/kg/day)          | NA                | (mg/kg/day) <sup>-1</sup>          |             | 2.8E-06        | (mg/kg/day)          | 5.0E-03       | (mg/kg/day)          | 0.0006          |
|                 |                       |                      |                  | Hexavalent Chromium        | 1.10    | mg/kg             | 2.5E-08        | (mg/kg/day)          | 2.0E+01           | (mg/kg/day) <sup>-1</sup>          | 5.1E-07     | 7.1E-08        | (mg/kg/day)          | 7.5E-05       | (mg/kg/day)          | 0.0009          |
|                 |                       |                      | Exp. Route Total |                            |         |                   |                |                      |                   |                                    | 1.5E-06     |                |                      |               |                      | 0.02            |
|                 |                       | Exposure Point Total |                  |                            |         |                   |                |                      |                   |                                    | 2.8E-06     |                |                      |               |                      | 0.06            |
|                 | Exposure Medium Total |                      |                  |                            |         |                   |                |                      |                   |                                    | 2.8E-06     |                |                      |               |                      | 0.06            |
|                 | Air                   | Block F              | Inhalation       | Benzo(a)pyrene Equivalents | 7.9E-11 | mg/m <sup>3</sup> | 6.4E-12        | (mg/m <sup>3</sup> ) | 1.1E-03           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 7.1E-12     | 1.8E-11        | (mg/m <sup>3</sup> ) | NA            | (mg/m <sup>3</sup> ) |                 |
|                 |                       |                      |                  | Naphthalene                | 0.003   | mg/m <sup>3</sup> | 2.4E-04        | (mg/m <sup>3</sup> ) | 3.4E-05           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 8.2E-06     | 6.7E-04        | (mg/m <sup>3</sup> ) | 3.0E-03       | (mg/m <sup>3</sup> ) | 0.2             |
|                 |                       |                      |                  | Aroclor-1260               | 5.2E-11 | mg/m <sup>3</sup> | 4.2E-12        | (mg/m <sup>3</sup> ) | 5.7E-04           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.4E-12     | 1.2E-11        | (mg/m <sup>3</sup> ) | NA            | (mg/m <sup>3</sup> ) |                 |
|                 |                       |                      |                  | Arsenic                    | 9.4E-10 | mg/m <sup>3</sup> | 7.7E-11        | (mg/m <sup>3</sup> ) | 4.3E-03           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.3E-10     | 2.2E-10        | (mg/m <sup>3</sup> ) | 1.5E-05       | (mg/m <sup>3</sup> ) | 0.00001         |
|                 |                       |                      |                  | Cobalt                     | 5.3E-9  | mg/m <sup>3</sup> | 4.3E-10        | (mg/m <sup>3</sup> ) | 9.0E-03           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.9E-09     | 1.2E-09        | (mg/m <sup>3</sup> ) | 6.0E-06       | (mg/m <sup>3</sup> ) | 0.0002          |
|                 |                       |                      |                  | Mercury                    | 1.2E-10 | mg/m <sup>3</sup> | 1.0E-11        | (mg/m <sup>3</sup> ) | NA                | (ug/m <sup>3</sup> ) <sup>-1</sup> |             | 2.8E-11        | (mg/m <sup>3</sup> ) | 3.0E-04       | (mg/m <sup>3</sup> ) | 9.5E-8          |
|                 |                       |                      |                  | Vanadium                   | 1.3E-8  | mg/m <sup>3</sup> | 1.1E-09        | (mg/m <sup>3</sup> ) | NA                | (ug/m <sup>3</sup> ) <sup>-1</sup> |             | 3.1E-09        | (mg/m <sup>3</sup> ) | NA            | (mg/m <sup>3</sup> ) |                 |
|                 |                       |                      |                  | Hexavalent Chromium        | 3.3E-10 | mg/m <sup>3</sup> | 2.7E-11        | (mg/m <sup>3</sup> ) | 8.4E-02           | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.3E-09     | 7.6E-11        | (mg/m <sup>3</sup> ) | 1.0E-04       | (mg/m <sup>3</sup> ) | 7.6E-7          |
|                 |                       |                      | Exp. Route Total |                            |         |                   |                |                      |                   |                                    | 8.2E-06     |                |                      |               |                      | 0.2             |
|                 |                       | Exposure Point Total |                  |                            |         |                   |                |                      |                   | _                                  | 8.2E-06     |                |                      |               | -                    | 0.2             |
|                 | Exposure Medium Total |                      |                  |                            |         |                   |                |                      |                   |                                    | 8.2E-06     |                |                      |               |                      | 0.2             |
| Medium Total    | <del>-</del>          |                      | •                |                            |         |                   |                |                      |                   |                                    | 1.1E-05     |                | ·                    |               |                      | 0.3             |
|                 |                       |                      |                  |                            |         |                   | -              |                      |                   |                                    | -           | -              |                      |               |                      |                 |

#### Notes

<sup>1 -</sup> Mutagenic chemicals were evaluated in accordance with USEPA's Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (2005).

# TABLE 9.1.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURES LOCKHEED MARTIN, MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Scenario Timeframe: Current

Receptor Population: Industrial Workers Receptor Age: Adult

| Medium          | Exposure<br>Medium | Exposure<br>Point     | Chemical of Potential      |             |            | Carcinogenic | Risk                 |                          |                            | Non-Carcin     | ogenic Hazard | Quotient        |                          |
|-----------------|--------------------|-----------------------|----------------------------|-------------|------------|--------------|----------------------|--------------------------|----------------------------|----------------|---------------|-----------------|--------------------------|
|                 |                    |                       | Concern                    | Ingestion   | Inhalation | Dermal       | External (Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion      | Inhalation    | Dermal          | Exposure<br>Routes Total |
| Surface Soil    | Surface Soil       | Block F               | Benzo(a)pyrene Equivalents | 3E-06       |            | 5E-06        |                      | 8E-06                    | NA                         |                |               |                 |                          |
|                 |                    |                       | Aroclor-1254               | 5E-07       |            | 9E-07        |                      | 1E-06                    | Immune                     | 0.03           |               | 0.06            | 0.10                     |
|                 |                    |                       | Aroclor-1260               | 6E-08       |            | 1E-07        |                      | 2E-07                    | NA                         |                |               |                 |                          |
|                 |                    |                       | Antimony                   |             |            |              |                      |                          | Blood                      | 0.002          |               | 0.001           | 0.003                    |
|                 |                    |                       | Arsenic                    | 1E-06       |            | 4E-07        |                      | 1E-06                    | Skin, CVS                  | 0.006          |               | 0.002           | 0.008                    |
|                 |                    |                       | Cadmium                    |             |            |              |                      |                          | Kidney                     | 0.0006         |               | 0.0003          | 0.0009                   |
|                 |                    |                       | Cobalt                     |             |            |              |                      |                          | Thyroid                    | 0.01           |               | 0.001           | 0.01                     |
|                 |                    |                       | Mercury<br>Molybdenum      |             |            |              |                      |                          | CNS<br>Gout                | 0.001<br>0.006 |               | 0.003<br>0.0008 | 0.004<br>0.007           |
|                 |                    |                       | Nickel                     |             |            |              |                      |                          | Body Weight                | 0.006          |               |                 | 0.007                    |
|                 |                    |                       | Vanadium                   |             |            |              |                      |                          | Kidney                     | 0.0003         |               | 0.001<br>0.0005 | 0.001                    |
|                 |                    |                       |                            | 2E-07       |            |              |                      | 1E-06                    |                            | 0.003          |               | 0.0005          | 0.004                    |
|                 |                    |                       | Hexavalent Chromium        |             |            | 1E-06        |                      |                          | None Specified             |                |               |                 |                          |
|                 |                    |                       | Chemical Total             | 5E-06       |            | 8E-06        |                      | 1E-05                    |                            | 0.07           |               | 0.08            | 0.1                      |
|                 | <u> </u>           | Exposure Point Total  |                            | <u> </u>    |            |              |                      | 1E-05                    |                            |                |               |                 | 0.1                      |
|                 |                    | Medium Total          |                            | <u> </u>    |            |              |                      | 1E-05                    |                            |                |               |                 | 0.1                      |
|                 | Air                | Block F               | Benzo(a)pyrene Equivalents |             | 6E-11      |              |                      | 6E-11                    | NA                         |                | -             |                 |                          |
|                 |                    |                       | Aroclor-1254               |             | 2E-11      |              |                      | 2E-11                    | NA                         |                |               |                 |                          |
|                 |                    | 1                     | Aroclor-1260               |             | 2E-12      |              |                      | 2E-12                    | NA                         |                |               |                 |                          |
|                 |                    | 1                     | Antimony                   |             |            |              |                      |                          | NA                         |                |               |                 |                          |
|                 |                    |                       | Arsenic                    |             | 4E-10      |              |                      | 4E-10                    | NA                         |                | 0.00002       |                 | 0.00002                  |
|                 |                    |                       | Cadmium                    |             | 5E-11      |              |                      | 5E-11                    | Kidney, Respiratory        |                | 0.000004      |                 | 0.000004                 |
|                 |                    |                       | Cobalt                     |             | 2E-09      |              |                      | 2E-09                    | Respiratory                |                | 0.00008       |                 | 0.00008                  |
|                 |                    |                       | Mercury                    |             |            |              |                      |                          | CNS                        |                | 0.0000002     |                 | 0.0000002                |
|                 |                    |                       | Molybdenum                 |             |            |              |                      |                          | NA                         |                |               |                 |                          |
|                 |                    |                       | Nickel                     |             | 8E-11      |              |                      | 8E-11                    | Respiratory                |                | 0.000010      |                 | 0.000010                 |
|                 |                    |                       | Vanadium                   |             |            |              |                      |                          | NA                         |                |               |                 |                          |
|                 |                    |                       | Hexavalent Chromium        |             | 6E-09      |              |                      | 6E-09                    | Respiratory                |                | 0.000002      |                 | 0.000002                 |
|                 |                    |                       | Chemical Total             |             | 8E-09      |              |                      | 8E-09                    |                            |                | 0.0001        |                 | 0.0001                   |
|                 |                    | Exposure Point Total  |                            |             |            |              |                      | 8E-09                    |                            |                |               |                 | 0.0001                   |
|                 | Exposure           | Medium Total          |                            |             |            |              |                      | 8E-09                    |                            |                |               |                 | 0.0001                   |
| Medium Total    |                    |                       |                            | ĺ           |            |              |                      | 1E-05                    |                            |                |               |                 | 0.1                      |
| Subsurface Soil | Subsurface Soil    | Block F               | Benzo(a)pyrene Equivalents | 3E-07       |            | 6E-07        |                      | 9E-07                    | NA                         |                |               |                 |                          |
|                 |                    |                       | Naphthalene                |             |            |              |                      |                          | Body Weight                | 0.004          |               | 0.007           | 0.01                     |
|                 |                    |                       | Aroclor-1260               | 6E-08       |            | 1E-07        |                      | 2E-07                    | NA                         |                |               |                 |                          |
|                 |                    |                       | Arsenic                    | 8E-07       |            | 3E-07        |                      | 1E-06                    | Skin, CVS                  | 0.005          |               | 0.002           | 0.007                    |
|                 |                    |                       | Cobalt                     |             |            |              |                      |                          | Thyroid                    | 0.03           |               | 0.004           | 0.03                     |
|                 |                    | 1                     | Mercury                    |             |            |              |                      |                          | CNS                        | 0.0007         |               | 0.001           | 0.002                    |
|                 |                    | 1                     | Vanadium                   |             |            |              |                      |                          | Kidney                     | 0.004          |               | 0.0006          | 0.005                    |
|                 |                    |                       | Hexavalent Chromium        | 1E-07       |            | 5E-07        |                      | 6E-07                    | None Specified             | 0.0002         |               | 0.0009          | 0.001                    |
|                 |                    |                       | Chemical Total             | 1E-06       |            | 2E-06        |                      | 3E-06                    | i '                        | 0.04           |               | 0.02            | 0.06                     |
|                 |                    | Exposure Point Total  | -1-                        |             | 1          |              |                      | 3E-06                    |                            |                | ·             | ··              | 0.06                     |
|                 | Exposure           | Medium Total          |                            | Ì           |            |              |                      | 3E-06                    |                            |                |               |                 | 0.06                     |
|                 | Air                | Block F               | Benzo(a)pyrene Equivalents |             | 7E-12      |              |                      | 7E-12                    | NA                         |                |               |                 |                          |
|                 | [ "                | Diooki                | Naphthalene                |             | 8E-06      |              |                      | 8E-06                    | Respiratory                |                | 0.2           |                 | 0.2                      |
|                 |                    | 1                     | Aroclor-1260               |             | 2E-12      |              |                      | 2E-12                    | NA                         |                | 0.2           |                 |                          |
| 1               |                    | 1                     | Arsenic                    |             | 3E-10      |              |                      | 3E-10                    | NA<br>NA                   |                | 0.00001       |                 | 0.00001                  |
|                 |                    | 1                     | Cobalt                     |             | 4E-09      |              |                      | 4E-09                    | Respiratory                |                | 0.0002        |                 | 0.0002                   |
|                 |                    | 1                     | Mercury                    |             |            |              |                      |                          | CNS                        |                | 9E-8          |                 | 9E-8                     |
|                 |                    | 1                     | Vanadium                   |             |            |              |                      |                          | NA<br>NA                   |                |               |                 |                          |
|                 |                    | 1                     | Hexavalent Chromium        |             | 2E-09      |              |                      | 2E-09                    | Respiratory                |                | 0.0000008     |                 | 0.0000008                |
|                 |                    | 1                     | Chemical Total             |             | 8E-06      |              | l                    | 8E-06                    | rvespiratory               |                | 0.0000008     |                 | 0.0000008                |
|                 |                    | Francisco Deint Tot 1 | Chemical Total             | <del></del> | 0E-U0      |              |                      |                          | -                          |                | 0.2           |                 |                          |
| I               |                    | Exposure Point Total  |                            | <u> </u>    |            |              |                      | 8E-06                    |                            |                |               |                 | 0.2                      |
|                 | Exposure           | Medium Total          |                            | <u> </u>    |            |              |                      | 8E-06                    |                            |                |               |                 | 0.2                      |
| Medium Total    |                    |                       |                            |             |            |              |                      | 1E-05                    | II                         |                |               |                 | 0.3                      |

Notes:

<sup>1 -</sup> Mutagenic chemicals were evaluated in accordance with USEPA's Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (2005).

| APPENDIX E—BaPEq CALCULATION |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |

# Appendix E Calculation of Benzo(a)Pyrene Equivalent Concentrations Block F Remedial Action Plan

# Lockheed Martin Middle River Complex Middle River, Maryland Page 1 of 2

Polycyclic aromatic hydrocarbons (PAHs) are typically found in the environment as mixtures. These PAHs include benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene. The individual PAH vary widely in terms of carcinogenic potency, but have a common toxicity mechanism. Using a toxicity equivalency approach, the total PAH concentrations for a group or subset of similar PAHs can be expressed in terms of their toxicity relative to benzo(a)pyrene, with concentrations expressed as benzo(a)pyrene equivalents (BaPEq).

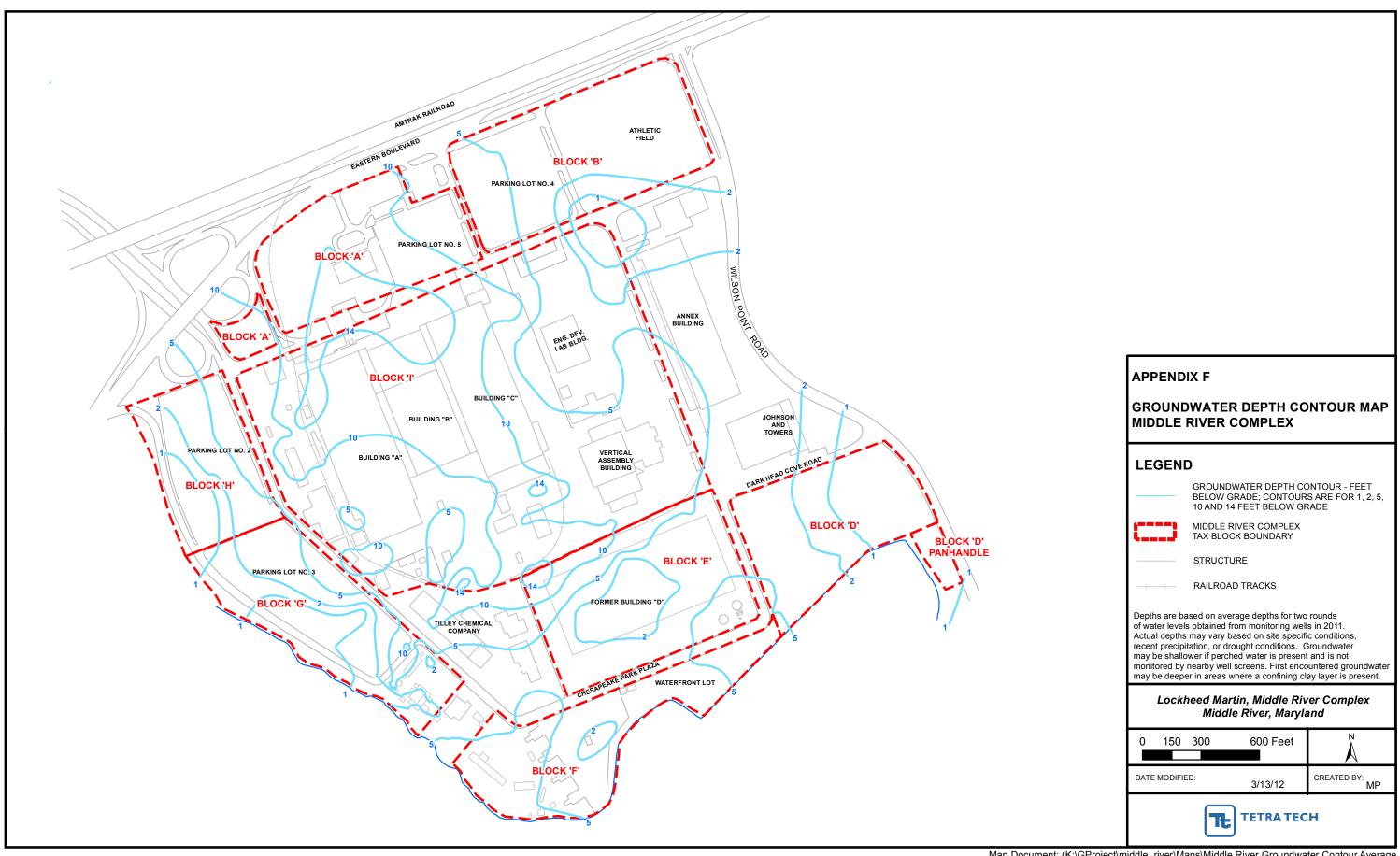
For sites contaminated with PAHs, using a standard subset of seven PAHs, the BaPEq is calculated as the sum of each individual PAH concentration times its toxicity equivalency factor (TEF). These TEFs for the seven standard PAHs are presented in Table E-1. For example, the TEF for benzo(a)anthracene is 0.1; this means that benzo(a)pyrene is ten times more toxic than benzo(a)anthracene. If the benzo(a)anthracene concentration in a soil sample is 10 micrograms per kilogram ( $\mu$ g/kg), this is equivalent to 1  $\mu$ g/kg of benzo(a)pyrene [10  $\mu$ g/kg (benzo(a)anthracene) x 0.1 (TEF) = 1  $\mu$ g/kg (BaPEq)].

| Table E-1 Toxicity Equivalency Factors (TEF) for Polycyclic Aromatic Hydrocarbons (PAHs) |       |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|
| PAH TEF                                                                                  |       |  |  |  |  |  |  |  |  |
| Benzo(a)pyrene                                                                           | 1.0   |  |  |  |  |  |  |  |  |
| Benzo(a)anthracene                                                                       | 0.1   |  |  |  |  |  |  |  |  |
| Benzo(b)fluoranthene                                                                     | 0.1   |  |  |  |  |  |  |  |  |
| Benzo(k)fluoranthene                                                                     | 0.01  |  |  |  |  |  |  |  |  |
| Chrysene                                                                                 | 0.001 |  |  |  |  |  |  |  |  |
| Dibenz(a,h)anthracene                                                                    | 1.0   |  |  |  |  |  |  |  |  |
| Indeno(1,2,3-c,d)pyrene                                                                  | 0.1   |  |  |  |  |  |  |  |  |

The application of benzo(a)pyrene TEFs to PAH concentrations and the subsequent calculation of BaPEq can provide a more accurate evaluation of environmental risk exposure to PAHs.

• A conservative approach to calculating BaPEq for environmental samples is performed using the product of the respective TEF's for each of the seven PAHs and a representative concentration using <u>both</u> positive results and ½ of the reported detection limit for non-detected values. This approach, given its conservative means of incorporating toxicity of all seven PAHs even if some are present below laboratory detection limits, has been used in the Block F risk-assessment estimations and related calculations of risk-based remedial goals. The

# Appendix E Calculation of Benzo(a)Pyrene Equivalent Concentrations Block F Remedial Action Plan Lockheed Martin Middle River Complex Middle River, Maryland Page 2 of 2


resulting BaPEq values estimated using this method are referred to as "BaPEq-Half ND" when used in risk calculations or reported in data tables and figures.

• Alternatively, sample calculations for BaPEq may be performed using <u>only</u> positive results as the product of the reported analyte concentrations and the respective TEF's for each of the seven reported PAHs. Non detected results within a given sample are entirely ignored and only positively reported concentrations are considered for use in summation when this latter calculation method is employed. This calculated value, referred to as "BaPEq-POS", has typically been used in reporting data from Block F for the purposes of presenting and screening data.

The reported concentration of the benzo(a)pyrene detection limit is used as the default representative value of the BaPEq in cases where *all* of the seven PAHs are reported as non-detected results.

Currently, there are only seven PAHs which are included in the calculation of the BaPEq. It is expected the United States Environmental Protection Agency will be adding additional PAHs to the calculation process likely beginning sometime in 2013.

| APPENDIX F—BLOCK F DEPTH-TO-WATER CONTOURS |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |



| APPENDIX G—SITEWISE™ INFORMATION |
|----------------------------------|
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |

# **APPENDIX G**

Environmental Footprint Evaluation
Remedial Action Plan
Block F
Middle River Complex
Middle River, Maryland
August 2013

# **OBJECTIVE**

This Environmental Footprint Evaluation of remedial alternatives is provided as an Appendix to the Remedial Action Plan (RAP) for Block F, located at Middle River Complex in Middle River, MD. The purpose of the footprint evaluation is to assess the environmental impacts of the four remedial alternatives using the metrics of greenhouse gas (GHG) and criteria pollutant emissions, energy use, water consumption, and worker safety. The results of this footprint evaluation are intended to provide additional information for consideration during remedy selection, design, and to enhance the understanding of the environmental impacts throughout the remedy life-cycle for each of the proposed alternatives.

# **POLICY BACKGROUND**

The environmental footprint evaluation was performed in accordance with Lockheed Martin's Remedy Selection Process Manual.

Applying optimization concepts with an environmental footprint evaluation within the remedy selection and design phases allows for the following benefits:

- Determining factors in each remedial alternative with the greatest environmental impacts and gathering insight into how to reduce these impacts;
- Evaluating remedial alternatives with optimized or reduced environmental footprints in conjunction with other selection criteria;
- Designing and implementing a more robust remedy while balancing the impact to the environment; and
- Ensuring efficient, cost-effective and sustainable site closeout.

# **EVALUATION TOOLS**

This evaluation was performed using a hybrid model of the Navy's SiteWise™ tool supplemented with GSRx, Tetra Tech developed model as appropriate for a more detailed input site-specific items.

SiteWise<sup>TM</sup> is a life-cycle footprint assessment tool developed jointly by the U.S. Navy, U.S. Army Corps of Engineers (USACE), and Battelle. SiteWise<sup>TM</sup> assesses the environmental footprint of a remedial alternative/technology using a consistent set of metrics. The assessment is conducted using a building block approach, where each remedial alternative is first broken down into modules that follow the phases for most remedial actions, including remedial investigation (RI), remedial action construction (RA-C), remedial action operation (RA-O), and long-term monitoring (LTM). Once broken down by remedial phase, the footprint of each phase is calculated. The phase-specific footprints are then combined to estimate the overall footprint of the remedial alternative. This building block approach reduces redundancy in the footprint assessment and facilitates the identification of specific impact drivers that contribute to the environmental footprint. The inputs that need to be considered include (1) production of material required by the activity; (2) transportation of the required materials to the site, transportation of personnel; (3) all site activities to be performed; and (4) management of the waste produced by the activity.

GSRx builds off of SiteWise<sup>™</sup> and allows for a flexible, detailed analysis, particularly for materials and equipment use. GSRx was used to account for materials and activities not readily input into SiteWise<sup>™</sup> and where equipment usage assumptions built into SiteWise<sup>™</sup> were not consistent with site-specific requirements.

# **ENVIRONMENTAL FOOTPRINT EVALUATION FRAMEWORK AND LIMITATIONS**

The environmental footprint evaluation performed for Block F at the Middle River Complex RAP considered life-cycle quantitative metrics for global warming potential (through greenhouse gas emissions), criteria air pollutant emissions (through nitrogen oxides  $[NO_x]$ , sulfur oxides  $[SO_x]$  and particulate matter  $[PM_{10}]$  emissions), energy consumption, water usage, and worker safety.

Life cycle inventory inputs in SiteWise™ were divided into four categories – 1) materials production; 2) transportation of personnel, materials and equipment; 3) equipment use and miscellaneous; and 4) residual handling and disposal. Cost estimates from the RAP and design calculations were used as a basis for inventory quantities and other input model assumptions. Emission factors, energy consumption, and water usage data were correlated to material quantities, equipment use, transportation distances, and installation time frames in order to calculate life-cycle emissions, energy consumption, water usage, and worker safety. Default SiteWise™ emission, energy usage, water consumption, and worker fatality and accident risk factors were utilized.

Although GSRx was used to minimize limitations resulting within SiteWise<sup>™</sup>, elimination of all limitations was not possible while using a hybrid model of SiteWise<sup>™</sup> and GSRx. For example, several materials and construction equipment inventoried were input into GSRx and these impacts were incorporated into SiteWise<sup>™</sup> within the "Equipment Use and Miscellaneous" sector. This sector in SiteWise<sup>™</sup> does not

differentiate into the specific equipment usage or material consumption items that are input in GSRx, but rather are considered miscellaneous items. However, impact drivers for items input in GSRx can be identified and evaluated directly within the respective GSRx evaluation and output summary sheets. In addition, worker safety results in general do not include worker safety related to equipment usage that was input within GSRx because GSRx was not developed to evaluate worker safety.

# **EVALUATION RESULTS:**

The following are the alternatives that were analyzed with SiteWise™ and GSRx for the Block F RAP:

- Alternative 1:No Action
- Alternative 2: Institutional Controls
- Alternative 3: Excavation and ofG-site disposal of impacted soils to a depth of two feet, removal
  of underground storage tanks (USTs), and institutional controls
- Alternative 4: Limited excavation and soil cover over impacted areas, UST removal, and institutional controls
- Alternative 5: Enhanced bioremediation of impacted surface soils, UST removal, and institutional controls
- Alternative 6: In situ stabilization of impacted soils to the groundwater table, UST removal, and institutional controls

The following sections summarize the relative environmental impacts and primary impact drivers for the four alternatives and their respective metrics. In addition, the attachment includes the inventory and output sheets that were used for the SiteWise™/GSRx hybrid model. An evaluation of SiteWise™ and GSRx output summary sheets and related figures included in the footprint evaluation attachments (Appendix G-2 and G-3), provides detailed information on the contribution to each metric from each phase of the remedial process (RI, RAC, RAO, and LTM) and for each respective input category (materials production, transportation, equipment usage, etc). Further data review and evaluation of related inventory sheets provide information on the specific contribution to a metric from each item of material, transportation, equipment, etc. The environmental impacts of the alternatives analyzed are summarized quantitatively in Table 1.

# **Greenhouse Gas Emissions**

Emissions of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O were normalized to CO<sub>2</sub> equivalents (CO<sub>2</sub>e), which is a cumulative method of weighing GHG emissions relative to global warming potential. Figure 1 shows the overall GHG emissions of each of the alternatives analyzed; the x-axis represents the four alternatives evaluated and the y-axis represents the GHG emissions in metric ton of CO<sub>2</sub>e.

The total amount of GHG emissions released to the atmosphere resulting from the activities during Alternative 3 is 82.85metric ton of  $CO_2e$ . The activities that have the highest contribution to GHG emissions during Alternative 3 are:

- Production of borrow soil emits 32.34 metric ton of CO<sub>2</sub>e (39 percent of total amount of GHG emissions), the amount of borrow soil used during this alternative is 1,034 CY
- Transportation and disposal of non-hazardous waste: releases 29.85 metric ton of  $CO_2e$  (36 percent of total amount of GHG emissions) due to the 1,368 ton of non-hazardous waste transported 130 miles away from the site, and 253 ton of water (from dewatering activities) transported 15 miles
- Laboratory analytical services emits 8.85 metric ton of CO<sub>2</sub>e (11 percent of total amount of GHG emissions) due to the 75 samples that were obtained during the Alternative lifetime

The total amount of GHG emissions released to the atmosphere resulting from the activities during Alternative 4 is 26.13 metric ton of CO<sub>2</sub>e. The activities that have the highest contribution to GHG emissions during Alternative 4 are:

- Production of borrow soil emits 15.22 metric ton of CO<sub>2</sub>e (58 percent of total amount of GHG emissions), the amount of borrow soil used during this alternative is 487 CY
- Laboratory analytical services emits 6.25 metric ton of CO<sub>2</sub>e (24 percent of total amount of GHG emissions) due to the 53 samples that were obtained during the Alternative lifetime
- Transportation of materials releases 2.87 metric ton of CO<sub>2</sub>e (11 percent of total amount of GHG emissions)

The total amount of GHG emissions released to the atmosphere resulting from the activities during Alternative 5 is 26.88 metric ton of  $CO_2e$ . The activities that have the highest contribution to GHG emissions during Alternative 5 are:

- Production of ZVI, to be used as a part of the mix of the surrogate amendment during treatment, releases 12.47 metric ton of CO<sub>2</sub>e (34 percent of total amount of GHG emissions)
- Laboratory analytical services releases 8.96 metric ton of CO<sub>2</sub>e (25 percent of total amount of GHG emissions) due to 76 samples being analyzed
- Use of the agricultural tractor emits 5.08 metric ton of CO<sub>2</sub>e (14 percent of total amount of GHG emissions), is used for the tilling and mixing of the amendments with the soil to be treated

The total amount of GHG emissions released to the atmosphere resulting from the activities during Alternative 6 is 172.28 metric ton of  $CO_2e$ . The activities that have the highest contribution to GHG emissions during Alternative 6 are:

- Production of cement, used as a soil stabilizing chemical during treatment, releases 146.80 metric ton of CO<sub>2</sub>e (85 percent of total amount of GHG emissions)
- Laboratory analytical services releases 8.26 metric ton of CO<sub>2</sub>e (approximately five percent of total amount of GHG emissions) due to 70 samples being analyzed
- Production of lime, used as a soil stabilizing chemical during treatment, emits 6.12 metric ton of CO<sub>2</sub>e (approximately four percent of total amount of GHG emissions)

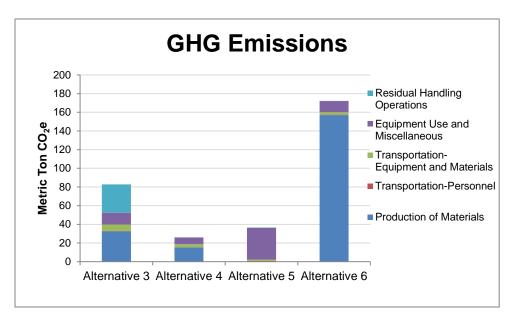



Figure 1: GHG Emissions for Alternatives at Block F, Middle River Complex

Figure 2 shows the breakdown of the percent that each of main activities of each alternative (x-axis) contributes to the GHG emissions (y-axis).

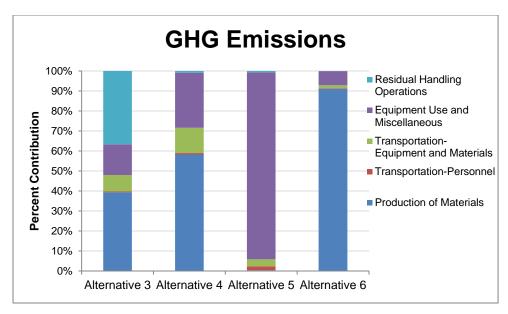



Figure 2: GHG Emissions percentage breakdown for Alternatives at Block F, Middle River Complex

# **Criteria Pollutant Emissions**

# $NO_X$

Figure 3 shows the breakdown of the  $NO_X$  emissions for the four alternatives evaluated. The x-axis of this figure represents the eight alternatives evaluated; the y-axis represents the  $NO_X$  emissions in metric ton.

The total amount of  $NO_X$  released to the atmosphere resulting from the activities during Alternative 3 is  $1.46x10^{-1}$  metric ton of  $NO_X$ . The activities that have the highest contribution to  $NO_X$  emissions during Alternative 3 are:

- Transportation and disposal of non-hazardous waste: 9.14x10<sup>-2</sup> metric ton of NO<sub>X</sub> (62 percent of total amount of NO<sub>X</sub> emissions) due to 1,368 ton of non-hazardous waste transported 130 miles away from the site, and 253 tons of water (from dewatering activities) transported 15 miles
- Laboratory analytical services releases 3.06x10<sup>-2</sup> metric ton of NO<sub>x</sub> (21 percent of total amount of NO<sub>x</sub> emissions) due to the number of samples analyzed through the lifetime of the project (75 samples)
- Use of excavation (for removal and placement of soil) releases 1.71x10<sup>-2</sup> metric ton of NO<sub>X</sub> (12 percent of total amount of NO<sub>X</sub> emissions) due to 28 hours of being in operation

The total amount of  $NO_X$  released to the atmosphere resulting from the activities during Alternative 4 is  $2.89x10^{-2}$  metric ton of  $NO_X$ . The activities that have the highest contribution to  $NO_X$  emissions during Alternative 4 are:

- Laboratory analytical services emits 2.16x10<sup>-3</sup> metric ton of NO<sub>X</sub> (75 percent of total amount of NO<sub>X</sub> emissions) due to the 53 samples analyzed
- Use of excavator (2 CY) releases 5.49x10<sup>-3</sup> metric ton of NO<sub>X</sub> (19 percent of total amount of NO<sub>X</sub> emissions) due to nine hours being in operation
- Transportation of materials releases 9.03x10<sup>-4</sup> metric ton of NO<sub>X</sub> (approximately three percent of total amount of NO<sub>X</sub> emissions)

The total amount of  $NO_X$  released to the atmosphere resulting from the activities during Alternative 5 is  $8.69x10^{-2}$  metric ton of  $NO_X$ . The activities that have the highest contribution to  $NO_X$  emissions during Alternative 5 are:

- Use of agricultural tractor releases 4.25x10<sup>-2</sup> metric ton of NO<sub>X</sub> (49 percent of total amount of NO<sub>X</sub> emissions) due to 64 hours that the tractor was in operation
- Laboratory analytical services emits 3.10x10<sup>-2</sup> metric ton of NO<sub>X</sub> (36 percent of total amount of NO<sub>X</sub> emissions) due to the 76 samples analyzed through the lifetime of the project
- Production of ZVI, to be used as a part of the mix of the surrogate amendment during treatment, releases 9.59x10<sup>-3</sup> metric ton of NO<sub>X</sub> (11 percent of total amount of NO<sub>X</sub> emissions)

The total amount of  $NO_X$  released to the atmosphere resulting from the activities during Alternative 6 is  $3.53x10^{-2}$  metric ton of  $NO_X$ . The activities that have the highest contribution to  $NO_X$  emissions during Alternative 6 are:

- Laboratory analytical services emits 2.86x10<sup>-2</sup> metric ton of NO<sub>X</sub> (81 percent of total amount of NO<sub>X</sub> emissions) due to the 70 samples analyzed through the lifetime of the project
- Use of agricultural tractor releases 2.50x10<sup>-3</sup> metric ton of NO<sub>X</sub> (approximately seven percent of total amount of NO<sub>X</sub> emissions) for being in operation for four hours
- Use of excavator (2 CY) releases 2.44x10<sup>-3</sup> metric ton of NO<sub>X</sub> (approximately seven percent of total amount of NO<sub>X</sub> emissions) due to four hours of being in operation

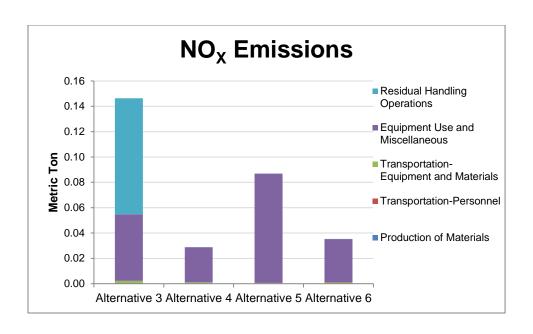



Figure 3 NO<sub>X</sub> Emissions for Proposed Alternatives at Block F, Middle River Complex

Figure 4 shows the percentage contribution from each of the main activity sectors.

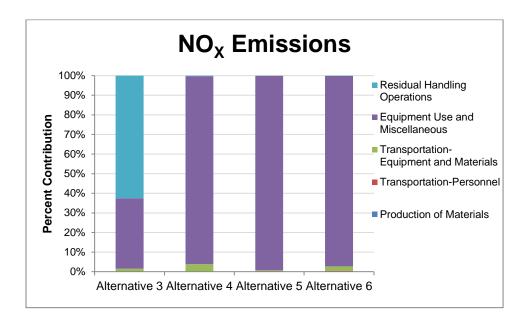



Figure 4: NO<sub>X</sub> Emissions percentage breakdown for Alternatives at Block F, Middle River Complex

# $SO_{x}$

Figure 5 contains the distribution of the  $SO_X$  emissions resulting from the activities related to all proposed Alternatives. The x-axis of this graph represents the four Alternatives evaluated; the y-axis represents the  $SO_X$  emissions in metric ton.

The total amount of  $SO_X$  released to the atmosphere resulting from the activities during Alternative 3 is  $7.28 \times 10^{-2}$  metric ton of  $SO_X$ . The activities that have the highest contribution to  $SO_X$  emissions during Alternative 3 are:

- Transportation and disposal of non-hazardous waste releases 4.66x10<sup>-2</sup> metric ton of SO<sub>X</sub> (64 percent of total amount of SO<sub>X</sub> emissions) due to 1,368 ton of non-hazardous waste transported 130 miles away from the site, and 253 tons of water (from dewatering activities) transported 15 miles
- Laboratory analytical services release 2.04x10<sup>-2</sup> metric ton of SO<sub>X</sub> (28 percent of total amount of SO<sub>X</sub> emissions) due to the number of samples analyzed through the lifetime of the project (75 samples)
- Use of excavator (2 CY) releases 5.03x10<sup>-2</sup> metric ton of SO<sub>X</sub> (approximately seven percent of total amount of SO<sub>X</sub> emissions) due to 28 hours of being in operation

The total amount of  $SO_X$  released to the atmosphere resulting from the activities during Alternative 4 is  $1.62x10^{-2}$  metric ton of  $SO_X$ . The activities that have the highest contribution to  $SO_X$  emissions during Alternative 4 are:

- Laboratory analytical services release 1.44x10<sup>-3</sup>metric ton of SO<sub>X</sub> (89percent of total amount of SO<sub>X</sub> emissions) due to the 53 samples analyzed
- Use of excavator (2 CY) releases 1.62x10<sup>-3</sup> metric ton of SO<sub>X</sub> (10 percent of total amount of SO<sub>X</sub> emissions) due to nine hours of being in operation
- Use of crane (30 hp) emits 1.09x10<sup>-4</sup> metric ton of SO<sub>X</sub> (approximately one percent of total amount of SO<sub>X</sub> emissions) due to its operation during 7 hours

The total amount of  $SO_X$  released to the atmosphere resulting from the activities during Alternative 5 is  $3.21x10^{-2}$  metric ton of  $SO_X$ . The activities that have the highest contribution to  $SO_X$  emissions during Alternative 5 are:

 Laboratory analytical services releases 2.07x10<sup>-2</sup>metric ton of SO<sub>X</sub> (64 percent of total amount of SO<sub>X</sub> emissions) due to the 76 samples analyzed

- Production of ZVI, to be used as a part of the mix of the surrogate amendment during treatment, releases 6.86x10<sup>-3</sup> metric ton of SO<sub>X</sub> (21 percent of total amount of SO<sub>X</sub> emissions)
- Production of vegetable oil, to be used as a part of the mix of the surrogate amendment during treatment, releases 3.27x10<sup>-3</sup> metric ton of SO<sub>X</sub> (10 percent of total amount of SO<sub>X</sub> emissions)

The total amount of  $SO_X$  released to the atmosphere resulting from the activities during Alternative 6 is  $2.53x10^{-2}$  metric ton of  $SO_X$ . The activities that have the highest contribution to  $SO_X$  emissions during Alternative 6 are:

- Laboratory analytical services releases 1.91x10<sup>-2</sup>metric ton of SO<sub>X</sub> (75 percent of total amount of SO<sub>X</sub> emissions) due to the 70 samples analyzed
- Production of lime, a chemical used for soil stabilization used during the treatment, emits 4.37x10<sup>-3</sup> metric ton of SO<sub>X</sub> (17 percent of total amount of SO<sub>X</sub> emissions)
- Use of crane (500 hp) releases  $7.19x10^{-4}$  metric ton of  $SO_X$  (approximately three percent of total amount of  $SO_X$  emissions) which is used for 32 hours for mixing the soil with the stabilizing chemicals

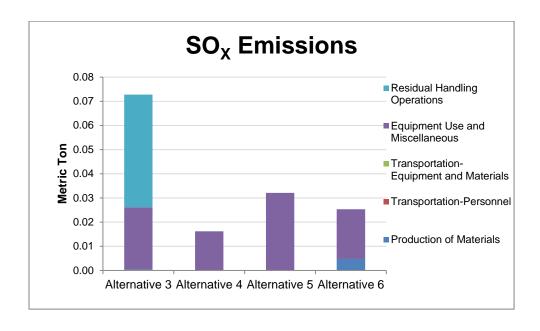



Figure 5: SO<sub>X</sub> Emissions for Alternatives at Block F, Middle River Complex

Figure 6 shows the percentage breakdown of the activities contributing to SO<sub>X</sub> emissions.

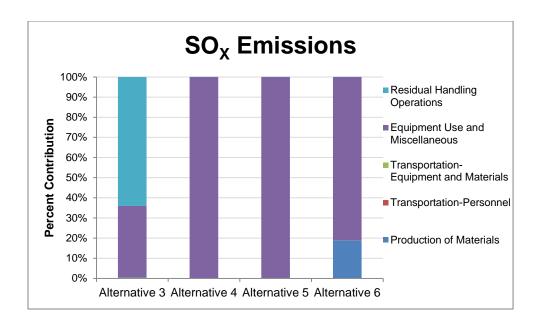



Figure 6: SO<sub>X</sub> Emissions percentage breakdown for Alternatives at Block F, Middle River Complex

# PM<sub>10</sub>

The breakdown of the distribution of the  $PM_{10}$  emissions resulting from the activities involved in the Alternatives is shown in Figure 7. The x-axis of this figure represents the four Alternatives evaluated, while the y-axis represents the  $PM_{10}$  emissions in metric ton.

The total amount of  $PM_{10}$  released to the atmosphere resulting from the activities during Alternative 3 is  $2.52x10^{-1}$  metric ton of  $PM_{10}$ . The activities that have the highest contribution to  $PM_{10}$  emissions during Alternative 3 are:

- Transportation and disposal of non-hazardous waste releases 2.49x10<sup>-1</sup> metric ton of PM<sub>10</sub> (99 percent of total amount of PM<sub>10</sub> emissions) due to 1,368 ton of non-hazardous waste transported 130 miles away from the site, and 253 tons of water (from dewatering activities) transported 15 miles
- Use of excavator (2 CY) releases 1.62x10<sup>-3</sup> metric ton of PM<sub>10</sub> (approximately one percent of total amount of PM<sub>10</sub> emissions) due to 28 hours of being in operation
- Laboratory analytical services releases 7.76x10<sup>-4</sup> metric ton of PM<sub>10</sub> (less than one percent of total amount of PM<sub>10</sub> emissions) due to the 75 samples analyzed

The total amount of  $PM_{10}$  released to the atmosphere resulting from the activities during Alternative 4 is  $1.45 \times 10^{-3}$  metric ton of  $PM_{10}$ . The activities that have the highest contribution to  $PM_{10}$  emissions during Alternative 4 are:

- Laboratory analytical services releases 5.48x10<sup>-4</sup> metric ton of PM<sub>10</sub> (38 percent of total amount of PM<sub>10</sub> emissions) due to the 53 samples analyzed
- Use of excavator (2 CY) releases 5.22x10<sup>-4</sup> metric ton of PM<sub>10</sub> (36 percent of total amount of PM<sub>10</sub> emissions) due to nine hours of being in operation
- Use of crane (30 hp) releases 2.66x10<sup>-4</sup> metric ton of PM<sub>10</sub> (18 percent of total amount of PM<sub>10</sub> emissions) due to seven hours of being in operation

The total amount of  $PM_{10}$  released to the atmosphere resulting from the activities during Alternative 5 is  $4.63x10^{-3}$  metric ton of  $PM_{10}$ . The activities that have the highest contribution to  $PM_{10}$  emissions during Alternative 5 are:

- Use of agricultural tractor releases 3.21x10<sup>-3</sup> metric ton of PM<sub>10</sub> (769 percent of total amount of PM<sub>10</sub> emissions) due to 68 hours of being in operation
- Laboratory analytical services emits 7.86x10<sup>-4</sup> metric ton of PM<sub>10</sub> (17 percent of total amount of PM<sub>10</sub> emissions) due to 76 being analyzed during the lifetime of the project
- Use of crane (30 hp) releases 2.66x10<sup>-4</sup> metric ton of PM<sub>10</sub> (approximately six percent of total amount of PM<sub>10</sub> emissions) due to seven hours of being in operation

The total amount of  $PM_{10}$  released to the atmosphere resulting from the activities during Alternative 6 is  $5.78x10^{-3}$  metric ton of  $PM_{10}$ . The activities that have the highest contribution to  $PM_{10}$  emissions during Alternative 6 are:

- Production of lime, used as a stabilizing chemical during treatment, releases 3.01x10<sup>-3</sup> metric ton of PM<sub>10</sub> (52 percent of total amount of PM<sub>10</sub> emissions)
- Use of crane (500 hp) emits 1.21x10<sup>-3</sup> metric ton of PM<sub>10</sub> (21 percent of total amount of PM<sub>10</sub> emissions) due to being in operation for 32 hours and is used for mixing the stabilizing chemicals in the soil
- Laboratory analytical services emits 7.24x10<sup>-4</sup> metric ton of PM<sub>10</sub> (13 percent of total amount of PM<sub>10</sub> emissions) due to 70 being analyzed during the lifetime of the project

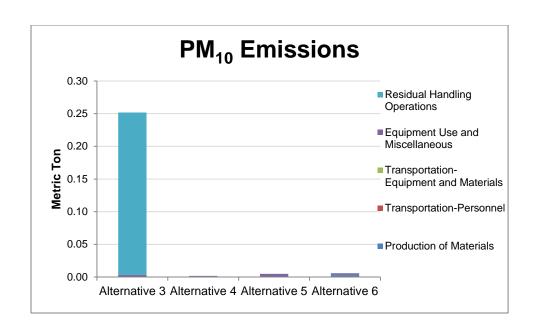



Figure 7: PM<sub>10</sub> Emissions for Alternatives at Block F, Middle River Complex

Figure 8 shows the percentage of  $PM_{10}$  emissions contributed by each of the activity sectors per alternative.

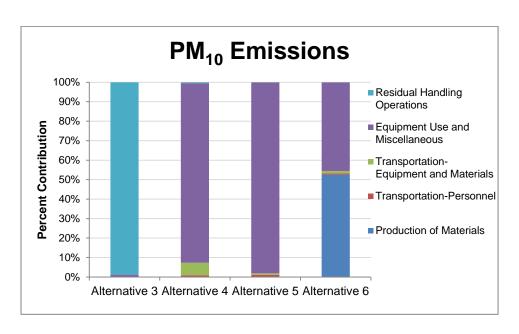



Figure 8: PM<sub>10</sub> Emissions percentage breakdown for Alternatives at Block F, Middle River Complex

# **Energy Consumption**

The energy consumption for each of the alternatives evaluated is shown in Figure 9. The x-axis shows the four alternatives evaluated, and the y-axis shows the amount of energy consumed in units of million British Thermal Units (MMBTU).

The total amount of energy used resulting from the activities during Alternative 3 is 3,747.10 MMBTU. The activities that have the highest energy consumption during Alternative 3 are:

- Production of borrow soil consumes 2,916.04 MMBTU (78 percent of total energy consumed), the amount of borrow soil used for this Alternative is 1,034 CY
- Transportation and disposal of non-hazardous waste consumes 514.87 MMBTU (14 percent of total energy consumed) due to 1,368 ton of non-hazardous waste transported 130 miles away from the site, and 253 ton of water (from dewatering activities) transported 15 miles
- Laboratory analytical services consumes 132.00 MMBTU (approximately four percent of total energy consumed) due to 75 samples being analyzed

The total amount of energy used resulting from the activities during Alternative 4 is 1,541.89 MMBTU. The activities that have the highest energy consumption during Alternative 4 are:

- Production of borrow soil consumes 1,537.73 MMBTU (89 percent of total energy consumed), the amount of borrow soil used for this Alternative is 486 CY
- Laboratory analytical services consumes 93.28 MMBTU (approximately six percent of total energy consumed) due to 53 samples being analyzed
- Transportation of materials consumes 37.52 MMBTU (approximately two percent of total energy consumed)

The total amount of energy used resulting from the activities during Alternative 5 is 1,409.17 MMBTU. The activities that have the highest energy consumption during Alternative 5 are:

- Production of ZVI, to be used as a part of the mix of the surrogate amendment during treatment, consumes 416.12 MMBTU (30 percent of total energy consumed)
- Production of vegetable oil, to be used as a part of the mix of the surrogate amendment during treatment, consumes 390.83 MMBTU (28 percent of total energy consumed)
- Production of burrow soil consumes 342.82 MMBTU (24 percent of total energy consumed), the amount of borrow soil used during this Alternative is 122 CY

The total amount of energy used resulting from the activities during Alternative 6 is 4,596.71 MMBTU. The activities that have the highest energy consumption during Alternative 6 are:

- Production of cement, used as a stabilizing chemical during treatment, consumes 3,749.49
   MMBTU (82 percent of total energy consumed)
- Production of burrow soil consumes 342.82 MMBTU (approximately seven percent of total energy consumed), the amount of borrow soil used during this Alternative is 122 CY
- Production of lime, used as a stabilizing chemical during treatment, consumes 184.05 MMBTU (approximately four percent of total energy consumed)

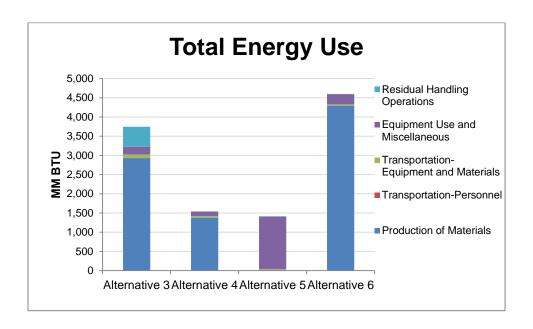



Figure 9: Energy Consumption for Alternatives at Block F, Middle River Complex

Figure 10 shows the percentage breakdown contribution of energy consumption from the different activity groups.

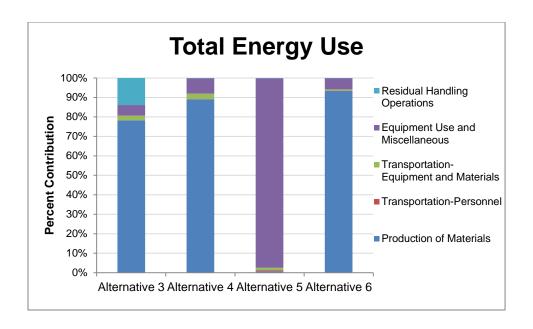



Figure 10: Energy Consumption percentage breakdown for Alternatives at Block F, Middle River Complex

# **Water Usage**

The water consumption of the evaluated alternatives is shown in Figure 11. The x-axis shows the four evaluated alternatives, and the y-axis show the amount of water consumed in thousands of gallons.

The total amount of water use resulting from the activities during Alternative 3 is 3.6 thousand gallons of water. The activities that have the highest water consumption during Alternative 3 are:

- Cleaning USTs consumes 3.5 thousand gallons of water (98 percent of total water consumption)
- Production of fertilizer consumes 59.27 gallons of water (approximately two percent of total water consumption)

The total amount of water resulting from the activities during Alternative 4 is 3.5 thousand gallons of water. The activity that has the highest water consumption during Alternative 4 is:

Cleaning USTs consumes 3.5 thousand gallons of water (100 percent of total water consumption)

The total amount of water resulting from the activities during Alternative 5 is 39.2 thousand gallons of water. The activities that have the highest water consumption during Alternative 5 are:

 Water required for bioremediation is 17.7 thousand gallons of water (45 percent of the total water consumption)

- Production of vegetable oil, to be used as a part of the mix of the surrogate amendment during treatment, consumes 10 thousand gallons of water (25 percent of total water consumption)
- Production of ZVI, to be used as a part of the mix of the surrogate amendment during treatment, consumes 8 thousand gallons of water (20 percent of total water consumption)

The total amount of water use resulting from the activities during Alternative 6 is 8.4 thousand gallons of water. The activities that have the highest water consumption during Alternative 6 are:

- Mixing water requirements account for 4.8 thousand gallons of water (58 percent of the total water consumption)
- Cleaning USTs consumes 3.5 thousand gallons of water (42 percent of total water consumption)
- Production of fertilizer consumes 59.27 gallons of water (approximately one percent of total water consumption)

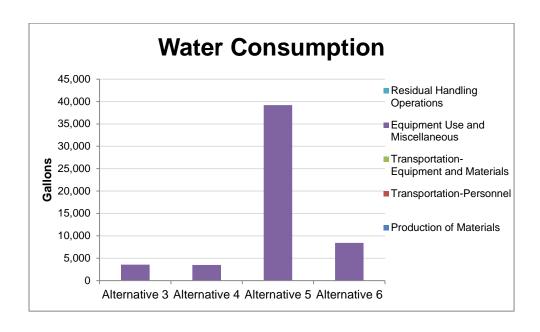



Figure 11: Water Consumption for Alternatives at Block F, Middle River Complex

Figure 12 has a representation of the percentage breakdown of the contribution of the different sectors of the water use through the lifetime of the alternatives.

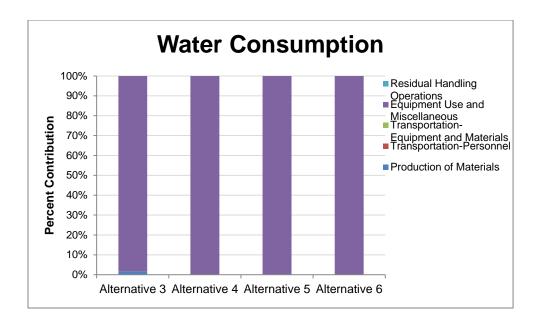



Figure 12: Water Consumption percentage breakdown for Alternatives at Block F, Middle River Complex

# **Accident Risk**

# **Accident Risk Fatality**

Figure 13 shows the risk of fatality between the evaluated alternatives. The x-axis represents the four alternatives evaluated, and the y-axis represents the risk of fatality.

For Alternative 3, the activity with the highest risk of fatality is the residual handling operations, followed by transportation of equipment and materials.

For Alternative 4, the activity with the highest risk of fatality is the transportation of equipment and materials, followed by transportation of personnel.

For Alternative 5, the activity with the highest risk of fatality is transportation of personnel, followed by the equipment use.

For Alternative 6, the activity with the highest risk of fatality is the transportation of personnel, followed by transportation of equipment and materials.

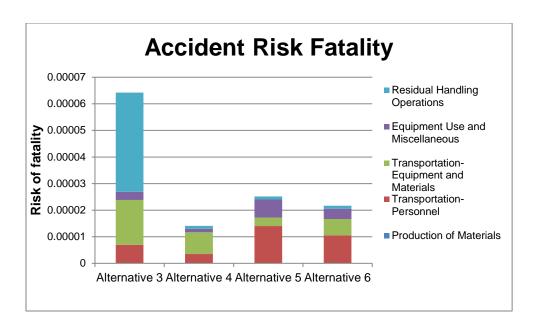



Figure 13 Risk of Fatality for Alternatives at Block F, Middle River Complex

# **Accident Risk Injury**

Figure 14 shows the risk of injury between the evaluated alternatives. The x-axis represents the four alternatives evaluated, and the y-axis represents the risk of injury.

For Alternative 3, the activity with the highest risk of injury is the residual handling operations, followed by the transportation of equipment and materials.

For Alternative 4, the activity with the highest risk of injury is the transportation of equipment and materials, followed by the equipment use.

For Alternative 5, the activity with the highest risk of injury is the equipment use, followed by the transportation of personnel.

For Alternative 6, the activity with the highest risk of injury is the equipment use, followed by transportation of personnel.

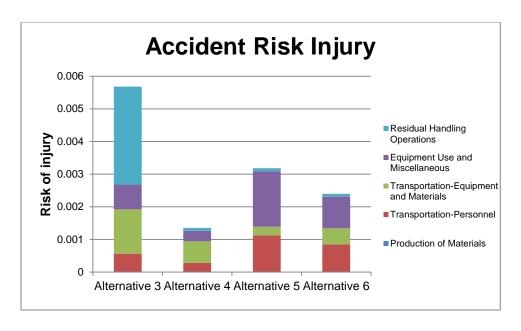



Figure 14 Risk of Injury for Alternatives at Block F, Middle River Complex

# CONCLUSIONS AND RECOMMENDATIONS

During selection and design of the remedy, a sensitivity analysis considering elements of the remedy that have the greatest impact on remedy effectiveness, life-cycle cost, and environmental footprint metrics may provide additional insight into appropriate remedy optimization. To aid in the sensitivity analysis, an impact analysis summary was created to qualitatively highlight the relative impact of respective metrics for the two alternatives and to identify the primary drivers of emissions, energy consumption, and water usage for each alternative (see Table 2).

Figures 2, 4, 6, 8, 10 and 12 show the percentage breakdown of each of the sectors that take place during the remedial alternatives. In these graphs, it is easy to identify the sector whose contribution is largest from all other sectors to that impact category. An advantage to identifying where the large contributions are, the optimization process for lowering the environmental impacts is faster and could be more efficient.

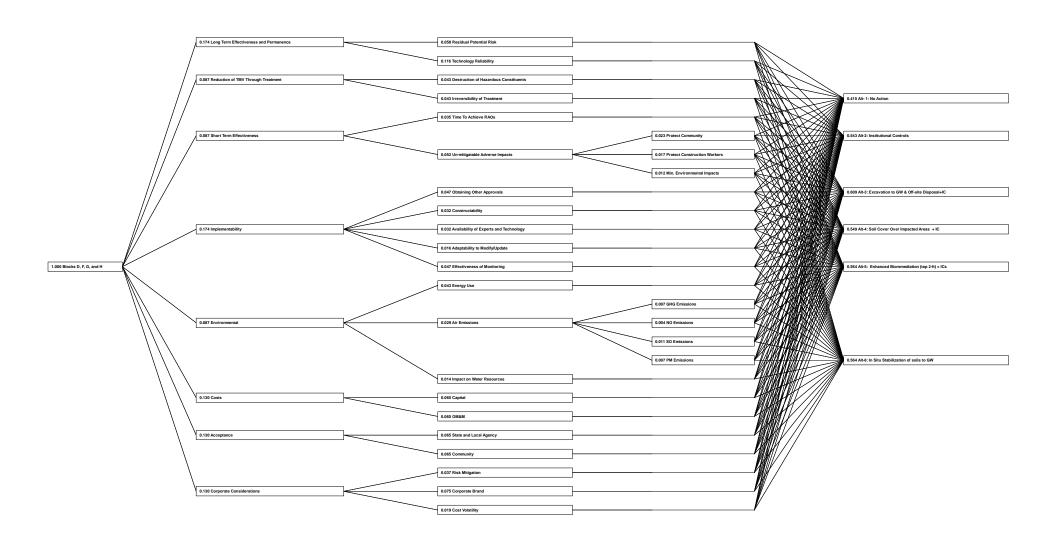
For this particular analysis, the choice to use a mix of equal parts vegetable oil and ZVI as a surrogate for the amendment is because of the data that is available for our tool. The emissions that are associated with the production of vegetable oil and zvi could be comparable to the ones associated with the amendment used for this treatment (Daramend). While obtaining the particular emissions associated with the production of Daramend would be ideal; however the amount of time and effort spent in that endeavor does not justify the difference in the emissions.

Measures identified in the evaluation that may reduce the environmental footprint of the alternatives are listed below for consideration.

- Alternatives: Consider the use of alternative transportation of wastes (if possible) to transport such material to the disposal facilities.
- Alternatives 3 and 4: Consider optimization of the amount of soil that needs to be used as backfill.
   The amount of soil used during these Alternatives is one of the main drivers of the environmental metrics.
- For All Alternatives: Consider a more efficient mode of transportation of materials such as rail.
   Consider an optimization schedule in order to take advantage to transport materials to the site the best way possible.
- All Alternatives: Some reduction of the environmental footprint, particularly air emissions, could
  be obtained for all alternatives through the possible use of emission control measures such as
  alternate fuel sources (e.g. biodiesel), equipment exhaust controls (e.g. diesel), and equipment
  idle reduction.
- Alternative 5: Consider the optimization of the amount of amendments used during the treatment stage.
- Alternative 6: Consider optimization of the amount of stabilizing chemicals during the treatment stage.
- All Alternatives: Consider optimizing of the use of equipment, particularly the use of the
  excavators, and even the type of equipment used during operations. An optimized operation
  schedule might be able to reduce the environmental impacts, specially the NO<sub>X</sub> emissions.
- All Alternatives: Optimize the number of samples analyzed for disposal and quality purpose.
- All Alternatives: Consider ways to reduce vehicle mileage to reduce worker risk as well as energy
  use and emissions. Encourage site workers to carpool daily to the site to reduce total vehicle
  mileage.

Table 1
Environmental Footprint Evaluation Results
Block F, Middle River Complex
Middle River, Maryland
Page 1 of 1

|               |                          | GHG<br>Emissions                | Total Energy<br>Used | Water<br>Impacts | NO <sub>X</sub><br>Emissions | SO <sub>X</sub><br>Emissions | PM <sub>10</sub><br>Emissions | Accident      | Accident    |
|---------------|--------------------------|---------------------------------|----------------------|------------------|------------------------------|------------------------------|-------------------------------|---------------|-------------|
| Alternative   | Activities               | Metric Ton<br>CO <sub>2</sub> e | MMBTU                | Gallons          | Metric Ton                   | Metric Ton                   | Metric Ton                    | Risk Fatality | Risk Injury |
|               | Materials Production     | 32.61                           | 2,930.17             | 59.27            | 6.17E-08                     | 4.14E-04                     | 2.69E-05                      | NA            | NA          |
|               | Transportation-Personnel | 0.34                            | 4.31                 | NA               | 1.27E-04                     | 4.47E-06                     | 2.57E-05                      | 7.02E-06      | 5.65E-04    |
| Alternative 3 | Transportation-Equipment | 6.80                            | 88.81                | NA               | 2.14E-03                     | 3.78E-05                     | 1.90E-04                      | 1.68E-05      | 1.36E-03    |
| Alternative 3 | Equpiment Use and Misc   | 12.71                           | 201.94               | 3,500.00         | 5.26E-02                     | 2.57E-02                     | 2.90E-03                      | 3.02E-06      | 7.59E-04    |
|               | Residual Handling        | 30.38                           | 521.87               | NA               | 9.15E-02                     | 4.66E-02                     | 2.49E-01                      | 3.73E-05      | 3.00E-03    |
|               | Total                    | 82.85                           | 3,747.10             | 3,559.27         | 1.46E-01                     | 7.28E-02                     | 2.52E-01                      | 6.42E-05      | 5.68E-03    |
|               | Materials Production     | 15.22                           | 1,372.67             | 0.00             | 0.00E+00                     | 0.00E+00                     | 0.00E+00                      | NA            | NA          |
|               | Transportation-Personnel | 0.17                            | 2.16                 | NA               | 6.35E-05                     | 2.24E-06                     | 1.29E-05                      | 3.51E-06      | 2.83E-04    |
| Alternative 4 | Transportation-Equipment | 3.31                            | 43.17                | NA               | 1.04E-03                     | 1.84E-05                     | 9.24E-05                      | 8.19E-06      | 6.59E-04    |
| Allemative 4  | Equpiment Use and Misc   | 7.19                            | 120.87               | 3,500.00         | 2.77E-02                     | 1.62E-02                     | 1.34E-03                      | 1.28E-06      | 3.22E-04    |
|               | Residual Handling        | 0.23                            | 3.03                 | NA               | 7.29E-05                     | 1.29E-06                     | 6.48E-06                      | 1.13E-06      | 9.10E-05    |
|               | Total                    | 26.13                           | 1,541.89             | 3,500.00         | 2.89E-02                     | 1.62E-02                     | 1.45E-03                      | 1.41E-05      | 1.35E-03    |
|               | Materials Production     | 0.16                            | 10.12                | 59.27            | 0.00E+00                     | 5.95E-05                     | 1.20E-07                      | NA            | NA          |
|               | Transportation-Personnel | 0.69                            | 8.63                 | NA               | 2.54E-04                     | 8.94E-06                     | 5.15E-05                      | 1.40E-05      | 1.13E-03    |
| Alternative 5 | Transportation-Equipment | 1.30                            | 16.92                | NA               | 4.07E-04                     | 7.21E-06                     | 3.62E-05                      | 3.21E-06      | 2.58E-04    |
| Alternative 5 | Equpiment Use and Misc   | 34.21                           | 1,370.47             | 39,129.28        | 8.62E-02                     | 3.20E-02                     | 4.54E-03                      | 6.77E-06      | 1.70E-03    |
|               | Residual Handling        | 0.23                            | 3.03                 | NA               | 7.30E-05                     | 1.29E-06                     | 6.49E-06                      | 1.13E-06      | 9.10E-05    |
|               | Total                    | 36.58                           | 1,409.17             | 39,188.55        | 8.69E-02                     | 3.21E-02                     | 4.63E-03                      | 2.52E-05      | 3.18E-03    |
|               | Materials Production     | 156.99                          | 4,290.48             | 5.93             | 5.73E-07                     | 4.79E-03                     | 3.04E-03                      | NA            | NA          |
|               | Transportation-Personnel | 0.51                            | 6.47                 | NA               | 1.90E-04                     | 6.71E-06                     | 3.86E-05                      | 1.05E-05      | 8.48E-04    |
| Alternative 6 | Transportation-Equipment | 2.49                            | 32.48                | NA               | 7.82E-04                     | 1.38E-05                     | 6.95E-05                      | 6.16E-06      | 4.96E-04    |
| Allemative 0  | Equpiment Use and Misc   | 12.05                           | 264.25               | 8,409.12         | 3.42E-02                     | 2.05E-02                     | 2.63E-03                      | 3.84E-06      | 9.66E-04    |
|               | Residual Handling        | 0.23                            | 3.03                 | NA               | 7.30E-05                     | 1.29E-06                     | 6.49E-06                      | 1.13E-06      | 9.10E-05    |
|               | Total                    | 172.28                          | 4,596.71             | 8,415.04         | 3.53E-02                     | 2.53E-02                     | 5.78E-03                      | 2.17E-05      | 2.40E-03    |

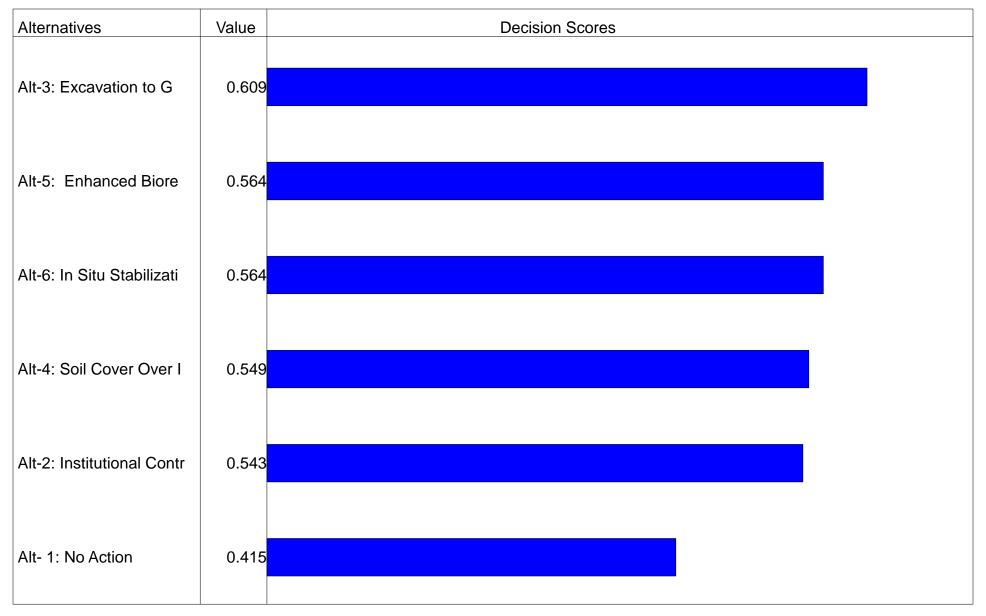

| APPENDIX H—TOTAL COST ANALYSIS |
|--------------------------------|
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |

# Appendix H-1 MRC Block F RAP

# **Remedial Cost Summary**

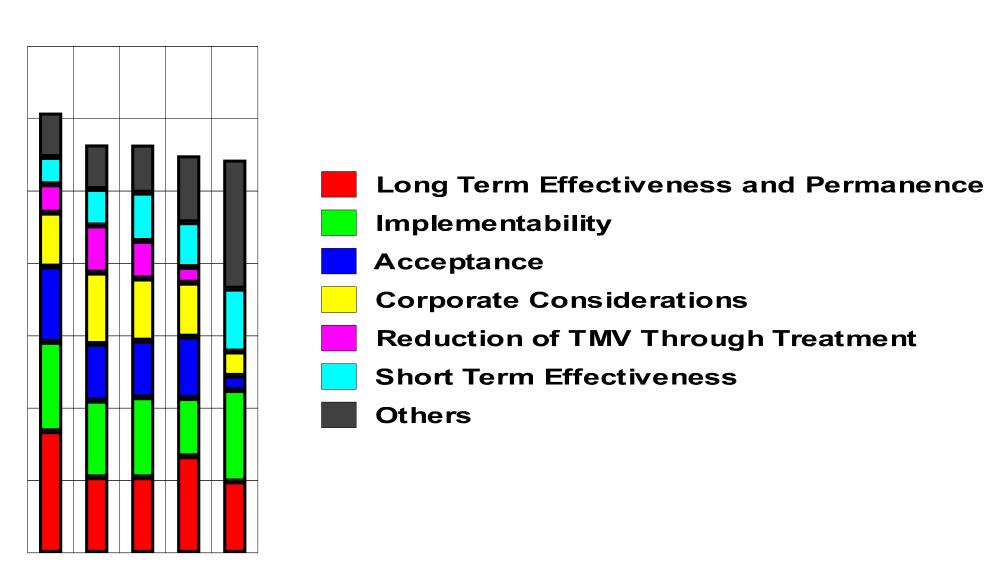
| Alternative                                                          | Capital       |    | O&M*    | Total           |
|----------------------------------------------------------------------|---------------|----|---------|-----------------|
| Alternative 1. No Action                                             | \$<br>=       | \$ | -       | \$<br>-         |
| Alternative 2. Institutional Controls                                | \$<br>139,155 | \$ | 47,844  | \$<br>187,000   |
| Alternative 3. Excavation & Disposal of All Impacted Surface Soils   |               |    |         |                 |
| Above the Groundwater Table (Based on Residual Risk Analysis) +      |               |    |         |                 |
| ICs                                                                  | \$<br>952,291 | \$ | 47,844  | \$<br>1,000,136 |
| Alternative 4. Soil Cover (Based on Residual Risk Analysis) + ICs,   |               |    |         |                 |
| Soil Cover - 1'-6" fill + 6" Topsoil                                 | \$<br>590,052 | \$ | 95,689  | \$<br>685,741   |
| Alternative 5. Enhanced Bioremediation, Land Farming (Based on       |               |    |         |                 |
| the Residual Risk Analysis - down to the groundwater table) - top 2  |               |    |         |                 |
| ft + ICs                                                             | \$<br>791,523 | \$ | 104,089 | \$<br>895,612   |
| Alternative 6. In-Situ Stabilization Of All Impacted Soils (Based on |               | _  |         |                 |
| Residual Risk Analysis - down to the groundwater table) + ICs        | \$<br>910,464 | \$ | 47,844  | \$<br>958,308   |

<sup>\*</sup> O&M costs for Alternatives 2 to 6 related to ICs; O&M costs for Alternative 5 related to ICs and O&M during implementation of bioremediation.




1

| Goal Level          | Mojahta | Rating Set                      | No Level Name                   | Weights | Rating Set                      |
|---------------------|---------|---------------------------------|---------------------------------|---------|---------------------------------|
| Blocks D, F, G, an  |         | Long Term Effectiveness and Per | Long Term Effectiveness and Per | 50.00   | Residual Potential Risk         |
| DIUCKS D, F, G, all | 50.00   | Reduction of TMV Through Treat  | Long term Ellectiveness and Fer | 100.00  | Technology Reliability          |
|                     | 50.00   | Short Term Effectiveness        | Reduction of TMV Through Treat  | 50.00   | Destruction of Hazardous Con    |
|                     | 100.00  | Implementability                |                                 | 50.00   | Irreversibility of Treatment    |
|                     | 50.00   | Environmental                   | Short Term Effectiveness        | 50.00   | Time To Achieve RAOs            |
|                     | 75.00   | Costs                           | Short term Ellectiveness        | 75.00   | Un-mitigatable Adverse Impacts  |
|                     | 75.00   | Acceptance                      | Implementability                | 75.00   | Obtaining Other Approvals       |
|                     | 75.00   | Corporate Considerations        |                                 | 50.00   | Constructability                |
|                     | 7 3.00  | Corporate Considerations        |                                 | 50.00   | Availability of Experts and Tec |
|                     |         |                                 |                                 | 25.00   | Adaptability to Modify/Update   |
|                     |         |                                 |                                 | 75.00   | Effectiveness of Monitoring     |
|                     |         |                                 | Environmental                   | 75.00   | Energy Use                      |
|                     |         |                                 | Environmental                   | 50.00   | Air Emissions                   |
|                     |         |                                 |                                 | 25.00   | Impact on Water Resources       |
|                     |         |                                 | Costs                           | 50.00   | Capital                         |
|                     |         |                                 | 00010                           | 50.00   | OM&M                            |
|                     |         |                                 | Acceptance                      | 50.00   | State and Local Agency          |
|                     |         |                                 | recoptance                      | 50.00   | Community                       |
|                     |         |                                 | Corporate Considerations        | 50.00   | Risk Mitigation                 |
|                     |         |                                 |                                 | 100.00  | Corporate Brand                 |
|                     |         |                                 |                                 | 25.00   | Cost Volatility                 |
|                     |         |                                 |                                 |         | - Coor Toriumity                |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     | 1       |                                 | 1                               | 1       |                                 |


| Level 2                         | Weights | Rating Set             | Attributes                      | Alt- 1: No Acti | Alt-2: Institutional Co |
|---------------------------------|---------|------------------------|---------------------------------|-----------------|-------------------------|
| Residual Potential Risk         |         | Alternatives           | Residual Potential Risk         | 0.00            | 3.00                    |
| Technology Reliability          |         | Alternatives           | Technology Reliability          | 0.00            | 7.00                    |
| Destruction of Hazardous Con    |         | Alternatives           | Destruction of Hazardous Con    | 0.00            | 0.00                    |
| Irreversibility of Treatment    |         | Alternatives           | Irreversibility of Treatment    | 0.00            | 0.00                    |
| Time To Achieve RAOs            |         | Alternatives           | Time To Achieve RAOs            | 0.00            | 10.00                   |
| Un-mitigatable Adverse Impacts  | 100.00  | Protect Community      | Protect Community               | 10.00           | 10.00                   |
|                                 |         | Protect Construction W | Protect Construction Workers    | 10.00           | 10.00                   |
|                                 | 50.00   | Min. Environmental Imp | Min. Environmental Impacts      | 10.00           | 10.00                   |
| Obtaining Other Approvals       |         | Alternatives           | Obtaining Other Approvals       | 10.00           | 8.00                    |
| Constructability                |         | Alternatives           | Constructability                | 10.00           | 10.00                   |
| Availability of Experts and Tec |         | Alternatives           | Availability of Experts and Tec | 10.00           | 10.00                   |
| Adaptability to Modify/Update   |         | Alternatives           | Adaptability to Modify/Update   | 10.00           | 10.00                   |
| Effectiveness of Monitoring     |         | Alternatives           | Effectiveness of Monitoring     | 0.00            | 2.00                    |
| Energy Use                      |         | Alternatives           | Energy Use                      | 10.00           | 10.00                   |
| Air Emissions                   | 50.00   | GHG Emissions          | GHG Emissions                   | 10.00           | 10.00                   |
|                                 | 25.00   | NO Emissions           | NO Emissions                    | 10.00           | 10.00                   |
|                                 | 75.00   | SO Emissions           | SO Emissions                    | 10.00           | 10.00                   |
|                                 | 50.00   | PM Emissions           | PM Emissions                    | 10.00           | 10.00                   |
| Impact on Water Resources       |         | Alternatives           | Impact on Water Resources       | 10.00           | 10.00                   |
| Capital                         |         | Alternatives           | Capital                         | 10.00           | 8.61                    |
| OM&M                            |         | Alternatives           | OM&M                            | 10.00           | 5.40                    |
| State and Local Agency          |         | Alternatives           | State and Local Agency          | 0.00            | 3.00                    |
| Community                       |         | Alternatives           | Community                       | 0.00            | 0.00                    |
| Risk Mitigation                 |         | Alternatives           | Risk Mitigation                 | 0.00            | 2.00                    |
| Corporate Brand                 |         | Alternatives           | Corporate Brand                 | 0.00            | 1.00                    |
| Cost Volatility                 |         | Alternatives           | Cost Volatility                 | 10.00           | 10.00                   |

| Alt-3: Excavation to GW & Off-site Di | Alt-4: Soil Cover Over Impacted Ar | Alt-5: Enhanced Bioremediation (top | Alt-6: In Situ Stabilization of soil |
|---------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| 9.00                                  | 5.00                               | 6.00                                | 6.00                                 |
| 10.00                                 | 9.00                               | 6.00                                | 6.00                                 |
| 0.00                                  | 0.00                               | 7.00                                | 7.00                                 |
| 9.00                                  | 5.00                               | 8.00                                | 5.00                                 |
| 8.00                                  | 9.00                               | 4.00                                | 8.00                                 |
| 3.00                                  | 7.00                               | 7.00                                | 8.00                                 |
| 1.00                                  | 5.00                               | 7.00                                | 7.00                                 |
| 1.00                                  | 5.00                               | 7.00                                | 7.00                                 |
| 6.00                                  | 3.00                               | 6.00                                | 7.00                                 |
| 5.00                                  | 3.00                               | 7.00                                | 7.00                                 |
| 9.00                                  | 10.00                              | 5.00                                | 5.00                                 |
| 8.00                                  | 4.00                               | 7.00                                | 7.00                                 |
| 8.00                                  | 4.00                               | 6.00                                | 6.00                                 |
| 1.96                                  | 6.74                               | 6.96                                | 0.00                                 |
| 5.12                                  | 8.47                               | 7.82                                | 0.00                                 |
| 0.00                                  | 8.00                               | 4.20                                | 7.70                                 |
| 0.00                                  | 7.80                               | 5.70                                | 6.60                                 |
| 0.00                                  | 10.00                              | 10.00                               | 10.00                                |
| 9.10                                  | 9.10                               | 0.00                                | 7.80                                 |
| 0.00                                  | 3.21                               | 1.61                                | 0.42                                 |
| 5.52                                  | 0.64                               | 0.00                                | 5.40                                 |
| 10.00                                 | 8.00                               | 6.00                                | 6.00                                 |
| 6.00                                  | 5.00                               | 6.00                                | 6.00                                 |
| 6.00                                  | 4.00                               | 8.00                                | 7.00                                 |
| 6.00                                  | 6.00                               | 8.00                                | 6.00                                 |
| 4.00                                  | 8.00                               | 5.00                                | 8.00                                 |



| Attribute                              | Alt- 1: No Acti | Alt-2: Instituti | Alt-3: Excavat | Alt-4: Soil Co | Alt-5: Enhanc | Alt-6: In Situ | Model Weights |
|----------------------------------------|-----------------|------------------|----------------|----------------|---------------|----------------|---------------|
| Impact on Water Resources              | 1.000           | 1.000            | 0.910          | 0.910          | 0.000         | 0.780          | 0.014         |
| Energy Use                             | 1.000           | 1.000            | 0.196          | 0.674          | 0.696         | 0.000          | 0.043         |
| Constructability                       | 1.000           | 1.000            | 0.500          | 0.300          | 0.700         | 0.700          | 0.032         |
| Obtaining Other Approvals              | 1.000           | 0.800            | 0.600          | 0.300          | 0.600         | 0.700          | 0.047         |
| NO Emissions                           | 1.000           | 1.000            | 0.000          | 0.800          | 0.420         | 0.770          | 0.004         |
| Availability of Experts and Technology | 1.000           | 1.000            | 0.900          | 1.000          | 0.500         | 0.500          | 0.032         |
| Irreversibility of Treatment           | 0.000           | 0.000            | 0.900          | 0.500          | 0.800         | 0.500          | 0.043         |
| State and Local Agency                 | 0.000           | 0.300            | 1.000          | 0.800          | 0.600         | 0.600          | 0.065         |
| Residual Potential Risk                | 0.000           | 0.300            | 0.900          | 0.500          | 0.600         | 0.600          | 0.058         |
| Cost Volatility                        | 1.000           | 1.000            | 0.400          | 0.800          | 0.500         | 0.800          | 0.019         |
| GHG Emissions                          | 1.000           | 1.000            | 0.512          | 0.847          | 0.782         | 0.000          | 0.007         |
| Adaptability to Modify/Update          | 1.000           | 1.000            | 0.800          | 0.400          | 0.700         | 0.700          | 0.016         |
| Community                              | 0.000           | 0.000            | 0.600          | 0.500          | 0.600         | 0.600          | 0.065         |
| Min. Environmental Impacts             | 1.000           | 1.000            | 0.100          | 0.500          | 0.700         | 0.700          | 0.012         |
| PM Emissions                           | 1.000           | 1.000            | 0.000          | 1.000          | 1.000         | 1.000          | 0.007         |
| OM&M                                   | 1.000           | 0.540            | 0.552          | 0.064          | 0.000         | 0.540          | 0.065         |
| Time To Achieve RAOs                   | 0.000           | 1.000            | 0.800          | 0.900          | 0.400         | 0.800          | 0.035         |
| Capital                                | 1.000           | 0.861            | 0.000          | 0.321          | 0.161         | 0.042          | 0.065         |
| Risk Mitigation                        | 0.000           | 0.200            | 0.600          | 0.400          | 0.800         | 0.700          | 0.037         |
| Technology Reliability                 | 0.000           | 0.700            | 1.000          | 0.900          | 0.600         | 0.600          | 0.116         |
| SO Emissions                           | 1.000           | 1.000            | 0.000          | 0.780          | 0.570         | 0.660          | 0.011         |
| Destruction of Hazardous Constituents  | 0.000           | 0.000            | 0.000          | 0.000          | 0.700         | 0.700          | 0.043         |
| Corporate Brand                        | 0.000           | 0.100            | 0.600          | 0.600          | 0.800         | 0.600          | 0.075         |
| Protect Community                      | 1.000           | 1.000            | 0.300          | 0.700          | 0.700         | 0.800          | 0.023         |
| Effectiveness of Monitoring            | 0.000           | 0.200            | 0.800          | 0.400          | 0.600         | 0.600          | 0.047         |
| Protect Construction Workers           | 1.000           | 1.000            | 0.100          | 0.500          | 0.700         | 0.700          | 0.017         |
| Results                                | 0.415           | 0.543            | 0.609          | 0.549          | 0.564         | 0.564          |               |

# Contributions to Blocks D, F, G, and H from Level:



Alternative 2. Institutional Controls

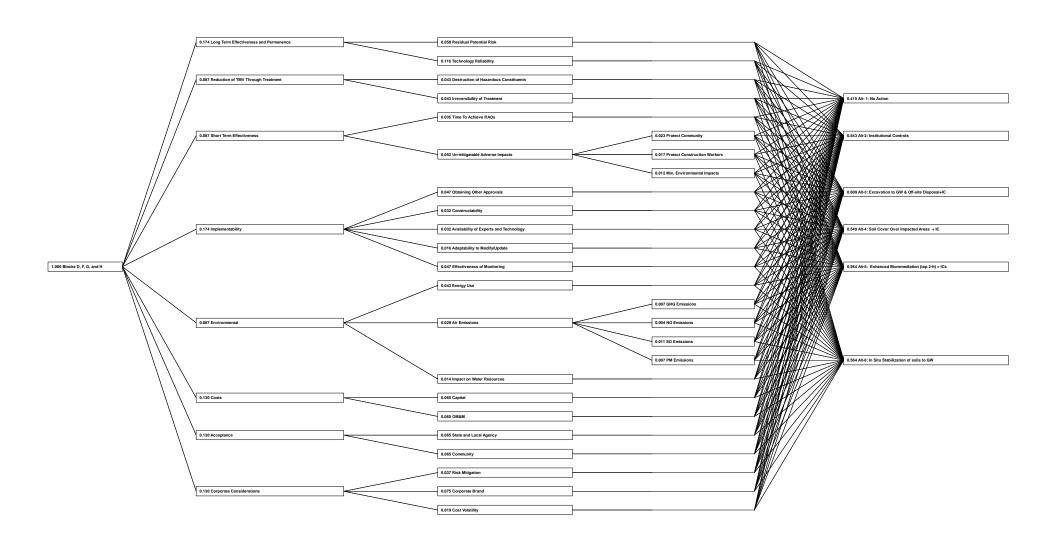
DATE: \_\_\_\_April 2013\_\_\_\_\_

|          | LEVEL OF ESTIMATE: Screening Or Detailed Discount rate: 7% ESCALATION RATE |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               |                |        |
|----------|----------------------------------------------------------------------------|---------------------------|-------------------------------------------|-----|-------------------------|--------------------------------------------------|-------------------|----------------------|-----------------|------------|----------------------|-----------------------------------------------|----------------|--------|
| Α        | В В                                                                        | C C                       | D E                                       | E   | G G                     | . н                                              |                   | J K                  | L               | М          | N                    | 0                                             | P              | 0      |
| 1        | Element                                                                    |                           | Description                               | Qty | Units                   | \$/Unit                                          | Cost Extension \$ |                      | Current Dollars |            | (NPV c               | Cost in NPV Dol<br>osts that have been distri |                |        |
| 2        |                                                                            | (Expla                    | ain Element as necessary)                 | 4.9 | (Select as appropriate) | V/OIIIC                                          | ( F x H)          | Implementation       | OM&M            | Closure    | TOTAL<br>(O+P+Q)     | Implementation                                | OM&M           | Closur |
| 3        | Remedial Design                                                            |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               |                |        |
| 4        | Bench/Pilot Testing                                                        | n/a                       |                                           |     | LS or V                 |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 5        | Field Investigation                                                        |                           |                                           | 0   | LS or UC and LOE        |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 6        | Modeling                                                                   | n/a                       |                                           | 0   | LS                      |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 7        | Reporting/Deliverables                                                     |                           |                                           | 0   | LS                      | 0/ 0 1                                           | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| В        | Total Remedial Design Effort (Alternative to<br>above sub-topics)          |                           |                                           | 15% | %                       | Of Remedy<br>Implementation<br>(Excluding NRDs)  |                   | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 9        | Subtotal                                                                   |                           |                                           |     | *                       | \ ¥                                              | \$0.000           | \$0.000              |                 |            | \$0                  | \$0                                           |                |        |
| 0        | Remedy Implementation                                                      |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               | •              |        |
| 1        | Mobilization                                                               |                           |                                           | 1   | LS or %                 |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 2        | Implementation                                                             |                           |                                           |     | V or UC                 |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 3        | Deed restrictions and legal/administrative costs                           |                           |                                           | 1   | LS                      | \$105,440                                        | \$105,440         | \$105,440            |                 |            | \$105,440            | \$105,440                                     |                |        |
| 4        | Reporting/Deliverables                                                     | Contractor submittals, p  | pre/post-construction surveying, as-built | 1   | LS or LOE               |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 5        | Sale Tax                                                                   | Maryland sales tax (6%    | applied to Remedy Implementation          | 1   | LS or LOE               |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 6        | Third Party Payments                                                       |                           |                                           |     | UC                      |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           | ]              |        |
| 17       | Bonds                                                                      | 2%                        |                                           | 1   | %                       |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 18       | Insurance                                                                  | 0.50%                     |                                           | 1   | %                       |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 19       | NRDs                                                                       |                           |                                           |     | LS                      |                                                  | \$0               | \$0                  |                 |            | \$0                  | \$0                                           |                |        |
| 0        | Subtotal                                                                   |                           |                                           |     |                         |                                                  | \$105,440         | \$105,440            |                 |            | \$105,440            | \$105,440                                     |                |        |
| 1        | OM&M                                                                       |                           |                                           |     | Annual                  |                                                  |                   |                      |                 |            |                      |                                               |                |        |
| 22       | IC Monitoring and Inspection                                               | Monitoring and inspection | ion over 50 years based on EPA estimation | 1   | LS                      | \$120,000                                        | \$120,000         |                      | \$120,000       |            | \$35,440             |                                               | \$35,440       |        |
| 23       | Laboratory                                                                 |                           |                                           |     | UC                      |                                                  | \$0               |                      | \$0             |            | \$0                  |                                               | \$0            | 1      |
| 4        | Field Activities                                                           |                           |                                           |     | UC and LOE              |                                                  | \$0               |                      | \$0             |            | \$0                  |                                               | \$0            | 1      |
| 25       | Materials, Fuels and Treatment Media                                       |                           |                                           |     | UC or V                 |                                                  | \$0               |                      | \$0             |            | \$0                  |                                               | \$0            | 1      |
| 26       | Reporting/Deliverables                                                     |                           |                                           |     | LS or LOE               |                                                  | \$0               |                      | \$0             |            | \$0                  |                                               | \$0            | ]      |
| 7        | Modeling                                                                   |                           |                                           |     | LOE                     |                                                  | \$0               |                      | \$0             |            | \$0                  |                                               | \$0            | 1      |
| 28       | Total OM&M Costs (Alternative to above sub-                                |                           |                                           |     | LOE                     |                                                  |                   |                      | \$0             |            | \$0                  |                                               | \$0            | 1      |
|          | topics)                                                                    |                           |                                           |     | Attached Work She       | eet                                              | ****              |                      |                 |            | · ·                  |                                               |                |        |
| 19       | Subtotal                                                                   |                           |                                           |     |                         |                                                  | \$120,000         |                      | \$120,000       |            | \$35,440             |                                               | \$35,440       |        |
| 0        | Project Closure                                                            |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               |                |        |
| 11       | Assessments                                                                | Assume 5% of Design+      |                                           | 1   | V or UC and LOE         |                                                  |                   |                      |                 | \$0        | \$0                  |                                               |                | \$0    |
| 2        | Decommissioning                                                            | Assume 5% of Design+      | Fimplementation                           | 1   | LS, % or V              |                                                  | \$0               |                      |                 | \$0        | \$0<br><b>\$0</b>    |                                               |                | \$0    |
| 3        | Subtotal                                                                   |                           |                                           |     |                         |                                                  | \$0               |                      |                 | \$0        | \$0                  |                                               |                | \$0    |
| 14       | Project Management <sup>3</sup>                                            |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               | ,              |        |
| 35       | During Implementation                                                      | Assumed                   |                                           | 8%  | %                       | Of Remedial Design &<br>Remedy<br>Implementation | \$8,435           | \$8,435              |                 |            | \$8,435              | \$8,435                                       |                |        |
| 6        | During OM&M                                                                | Assumed                   |                                           | 8%  | %                       | Of OM&M                                          | \$9,600.00        |                      | \$9,600         | 1          | \$2,835              |                                               | \$2,835        | l      |
| 37       | During Closure                                                             | Assumed                   |                                           | 8%  | %                       | Of Closure                                       | \$0.00            |                      | Ψο,σσσ          | \$0        | \$0                  | 1                                             | <b>\$2,000</b> | \$0    |
| 38       | Subtotal                                                                   |                           |                                           |     | - 72                    |                                                  | \$18,035          | \$8.435              | \$9,600         | \$0        | \$11,270             | \$8,435                                       | \$2.835        | \$(    |
| 39       | SUBTOTAL COST OF ELEMENT                                                   | ESTIMATES                 |                                           |     |                         |                                                  |                   | \$113,875            | \$129,600       | \$0        | \$152,151            | \$113,875                                     | \$38,276       | \$     |
| 40       | Contingencies                                                              | Implementation            | OM&M Closure                              |     |                         |                                                  |                   |                      | ,.,.            |            |                      |                                               |                |        |
| +0<br>41 |                                                                            |                           | 15% 25%                                   |     |                         |                                                  |                   | \$12,002             | \$19,440        | en.        | \$19,634             | \$13,893                                      | \$5,741        | \$0    |
| 12<br>12 | Scope (10 to 25%)<br>Bid (10 to 20%)                                       | 12.2%<br>10%              | 15% 25%<br>10% 20%                        |     |                         |                                                  |                   | \$13,893<br>\$11,388 | \$19,440        | \$0<br>\$0 | \$19,634<br>\$15,215 | \$13,893<br>\$11,388                          | \$5,741        | \$0    |
| 42<br>43 | Subtotal                                                                   | 1076                      | 1076 2076                                 |     |                         |                                                  |                   | \$11,300             | \$12,960        | \$0<br>\$0 | \$15,215             | \$11,366                                      | \$9,569        | \$0    |
| 14       | GRAND TOTAL COST                                                           |                           |                                           |     |                         |                                                  |                   | \$139,155            | \$162,000       | \$0        | 404,040              | \$139,155                                     | \$47,844       | \$     |
|          | GRAND TOTAL COST                                                           |                           |                                           |     |                         |                                                  |                   |                      |                 | ψU         |                      | \$139,133                                     | \$41,044       | 20     |
| 45       |                                                                            |                           |                                           |     |                         |                                                  |                   | \$                   | 301,155         |            | \$187,000            |                                               |                |        |
| 46       |                                                                            |                           |                                           |     |                         |                                                  | •                 |                      |                 |            |                      | -                                             |                |        |
|          |                                                                            |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               |                |        |
|          |                                                                            |                           |                                           |     |                         |                                                  |                   |                      |                 |            |                      |                                               |                |        |

Escalation Factor

Subtotal or Grand Total lines

47 ESCALATED CASH FLOW COSTS (45 YEARS)

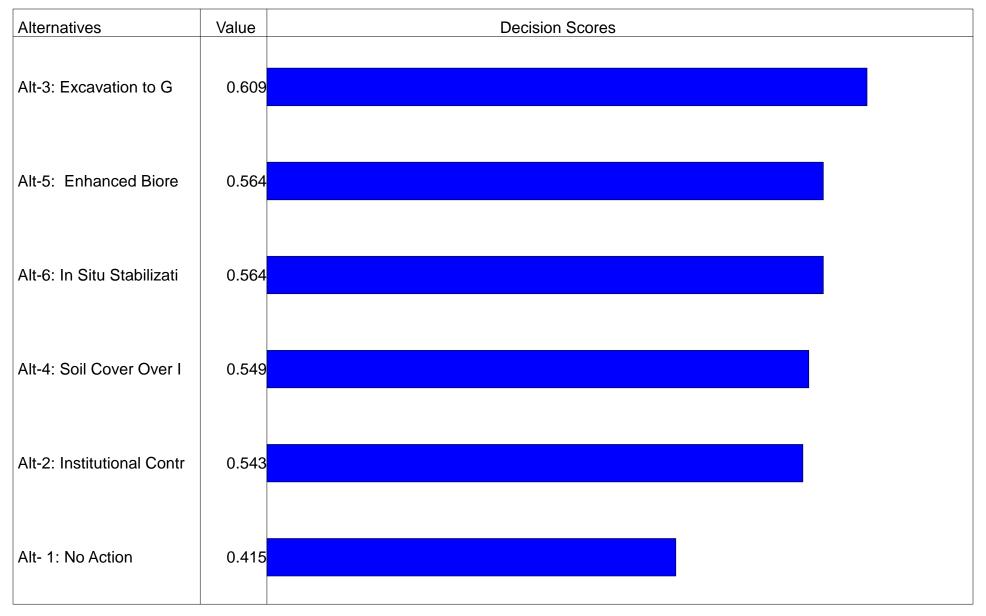

LOE Level Of Effort
LS Lump Sum

LS Lump Sum
NPV Net Present Value
NRDs Natural Resource Damages
OM&M Operational, Maintenance & Monitoring
UC Unit Cost
V Vendor
% Percent

\$165,715

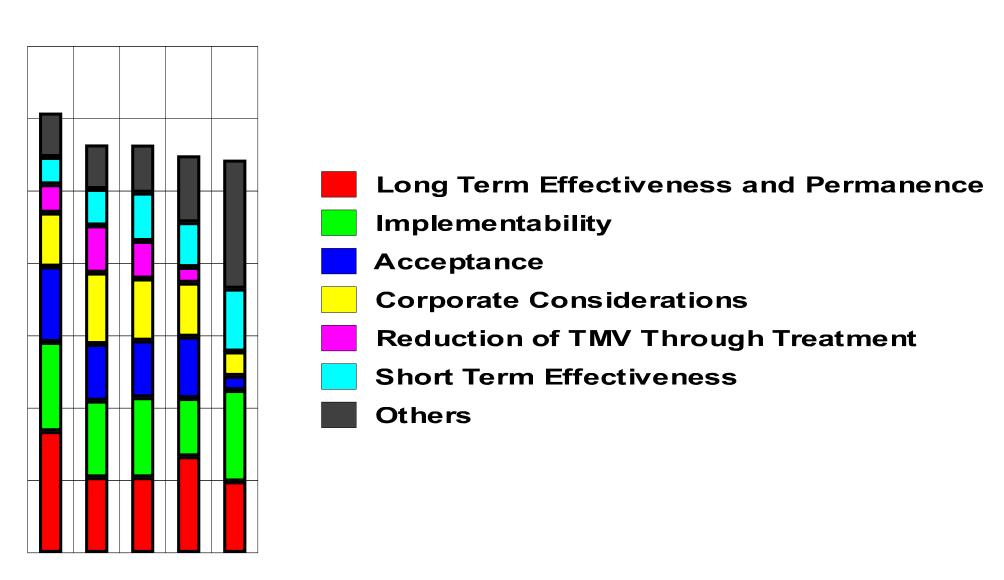
| For use in the CDP analysis | Capital Cost = \$139,155 NPV | OM&M Cost = \$47,844 NPV |

| APPENDIX I—CRITERIUM® DECISIONPLUS® ANALYSIS |
|----------------------------------------------|
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |




1

| Goal Level          | Mojahta | Rating Set                      | No Level Name                   | Weights | Rating Set                      |
|---------------------|---------|---------------------------------|---------------------------------|---------|---------------------------------|
| Blocks D, F, G, an  |         | Long Term Effectiveness and Per | Long Term Effectiveness and Per | 50.00   | Residual Potential Risk         |
| DIUCKS D, F, G, all | 50.00   | Reduction of TMV Through Treat  | Long term Ellectiveness and Fer | 100.00  | Technology Reliability          |
|                     | 50.00   | Short Term Effectiveness        | Reduction of TMV Through Treat  | 50.00   | Destruction of Hazardous Con    |
|                     | 100.00  | Implementability                |                                 | 50.00   | Irreversibility of Treatment    |
|                     | 50.00   | Environmental                   | Short Term Effectiveness        | 50.00   | Time To Achieve RAOs            |
|                     | 75.00   | Costs                           | Short term Ellectiveness        | 75.00   | Un-mitigatable Adverse Impacts  |
|                     | 75.00   | Acceptance                      | Implementability                | 75.00   | Obtaining Other Approvals       |
|                     | 75.00   | Corporate Considerations        |                                 | 50.00   | Constructability                |
|                     | 7 3.00  | Corporate Considerations        |                                 | 50.00   | Availability of Experts and Tec |
|                     |         |                                 |                                 | 25.00   | Adaptability to Modify/Update   |
|                     |         |                                 |                                 | 75.00   | Effectiveness of Monitoring     |
|                     |         |                                 | Environmental                   | 75.00   | Energy Use                      |
|                     |         |                                 | Environmental                   | 50.00   | Air Emissions                   |
|                     |         |                                 |                                 | 25.00   | Impact on Water Resources       |
|                     |         |                                 | Costs                           | 50.00   | Capital                         |
|                     |         |                                 | 00010                           | 50.00   | OM&M                            |
|                     |         |                                 | Acceptance                      | 50.00   | State and Local Agency          |
|                     |         |                                 | recoptance                      | 50.00   | Community                       |
|                     |         |                                 | Corporate Considerations        | 50.00   | Risk Mitigation                 |
|                     |         |                                 |                                 | 100.00  | Corporate Brand                 |
|                     |         |                                 |                                 | 25.00   | Cost Volatility                 |
|                     |         |                                 |                                 |         | - Coor Toriumity                |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     |         |                                 |                                 |         |                                 |
|                     | 1       |                                 | 1                               | 1       |                                 |


| Level 2                         | Weights | Rating Set             | Attributes                      | Alt- 1: No Acti | Alt-2: Institutional Co |
|---------------------------------|---------|------------------------|---------------------------------|-----------------|-------------------------|
| Residual Potential Risk         |         | Alternatives           | Residual Potential Risk         | 0.00            | 3.00                    |
| Technology Reliability          |         | Alternatives           | Technology Reliability          | 0.00            | 7.00                    |
| Destruction of Hazardous Con    |         | Alternatives           | Destruction of Hazardous Con    | 0.00            | 0.00                    |
| Irreversibility of Treatment    |         | Alternatives           | Irreversibility of Treatment    | 0.00            | 0.00                    |
| Time To Achieve RAOs            |         | Alternatives           | Time To Achieve RAOs            | 0.00            | 10.00                   |
| Un-mitigatable Adverse Impacts  | 100.00  | Protect Community      | Protect Community               | 10.00           | 10.00                   |
|                                 |         | Protect Construction W | Protect Construction Workers    | 10.00           | 10.00                   |
|                                 | 50.00   | Min. Environmental Imp | Min. Environmental Impacts      | 10.00           | 10.00                   |
| Obtaining Other Approvals       |         | Alternatives           | Obtaining Other Approvals       | 10.00           | 8.00                    |
| Constructability                |         | Alternatives           | Constructability                | 10.00           | 10.00                   |
| Availability of Experts and Tec |         | Alternatives           | Availability of Experts and Tec | 10.00           | 10.00                   |
| Adaptability to Modify/Update   |         | Alternatives           | Adaptability to Modify/Update   | 10.00           | 10.00                   |
| Effectiveness of Monitoring     |         | Alternatives           | Effectiveness of Monitoring     | 0.00            | 2.00                    |
| Energy Use                      |         | Alternatives           | Energy Use                      | 10.00           | 10.00                   |
| Air Emissions                   | 50.00   | GHG Emissions          | GHG Emissions                   | 10.00           | 10.00                   |
|                                 | 25.00   | NO Emissions           | NO Emissions                    | 10.00           | 10.00                   |
|                                 | 75.00   | SO Emissions           | SO Emissions                    | 10.00           | 10.00                   |
|                                 | 50.00   | PM Emissions           | PM Emissions                    | 10.00           | 10.00                   |
| Impact on Water Resources       |         | Alternatives           | Impact on Water Resources       | 10.00           | 10.00                   |
| Capital                         |         | Alternatives           | Capital                         | 10.00           | 8.61                    |
| OM&M                            |         | Alternatives           | OM&M                            | 10.00           | 5.40                    |
| State and Local Agency          |         | Alternatives           | State and Local Agency          | 0.00            | 3.00                    |
| Community                       |         | Alternatives           | Community                       | 0.00            | 0.00                    |
| Risk Mitigation                 |         | Alternatives           | Risk Mitigation                 | 0.00            | 2.00                    |
| Corporate Brand                 |         | Alternatives           | Corporate Brand                 | 0.00            | 1.00                    |
| Cost Volatility                 |         | Alternatives           | Cost Volatility                 | 10.00           | 10.00                   |

| Alt-3: Excavation to GW & Off-site Di | Alt-4: Soil Cover Over Impacted Ar | Alt-5: Enhanced Bioremediation (top | Alt-6: In Situ Stabilization of soil |
|---------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| 9.00                                  | 5.00                               | 6.00                                | 6.00                                 |
| 10.00                                 | 9.00                               | 6.00                                | 6.00                                 |
| 0.00                                  | 0.00                               | 7.00                                | 7.00                                 |
| 9.00                                  | 5.00                               | 8.00                                | 5.00                                 |
| 8.00                                  | 9.00                               | 4.00                                | 8.00                                 |
| 3.00                                  | 7.00                               | 7.00                                | 8.00                                 |
| 1.00                                  | 5.00                               | 7.00                                | 7.00                                 |
| 1.00                                  | 5.00                               | 7.00                                | 7.00                                 |
| 6.00                                  | 3.00                               | 6.00                                | 7.00                                 |
| 5.00                                  | 3.00                               | 7.00                                | 7.00                                 |
| 9.00                                  | 10.00                              | 5.00                                | 5.00                                 |
| 8.00                                  | 4.00                               | 7.00                                | 7.00                                 |
| 8.00                                  | 4.00                               | 6.00                                | 6.00                                 |
| 1.96                                  | 6.74                               | 6.96                                | 0.00                                 |
| 5.12                                  | 8.47                               | 7.82                                | 0.00                                 |
| 0.00                                  | 8.00                               | 4.20                                | 7.70                                 |
| 0.00                                  | 7.80                               | 5.70                                | 6.60                                 |
| 0.00                                  | 10.00                              | 10.00                               | 10.00                                |
| 9.10                                  | 9.10                               | 0.00                                | 7.80                                 |
| 0.00                                  | 3.21                               | 1.61                                | 0.42                                 |
| 5.52                                  | 0.64                               | 0.00                                | 5.40                                 |
| 10.00                                 | 8.00                               | 6.00                                | 6.00                                 |
| 6.00                                  | 5.00                               | 6.00                                | 6.00                                 |
| 6.00                                  | 4.00                               | 8.00                                | 7.00                                 |
| 6.00                                  | 6.00                               | 8.00                                | 6.00                                 |
| 4.00                                  | 8.00                               | 5.00                                | 8.00                                 |



| Attribute                              | Alt- 1: No Acti | Alt-2: Instituti | Alt-3: Excavat | Alt-4: Soil Co | Alt-5: Enhanc | Alt-6: In Situ | Model Weights |
|----------------------------------------|-----------------|------------------|----------------|----------------|---------------|----------------|---------------|
| Impact on Water Resources              | 1.000           | 1.000            | 0.910          | 0.910          | 0.000         | 0.780          | 0.014         |
| Energy Use                             | 1.000           | 1.000            | 0.196          | 0.674          | 0.696         | 0.000          | 0.043         |
| Constructability                       | 1.000           | 1.000            | 0.500          | 0.300          | 0.700         | 0.700          | 0.032         |
| Obtaining Other Approvals              | 1.000           | 0.800            | 0.600          | 0.300          | 0.600         | 0.700          | 0.047         |
| NO Emissions                           | 1.000           | 1.000            | 0.000          | 0.800          | 0.420         | 0.770          | 0.004         |
| Availability of Experts and Technology | 1.000           | 1.000            | 0.900          | 1.000          | 0.500         | 0.500          | 0.032         |
| Irreversibility of Treatment           | 0.000           | 0.000            | 0.900          | 0.500          | 0.800         | 0.500          | 0.043         |
| State and Local Agency                 | 0.000           | 0.300            | 1.000          | 0.800          | 0.600         | 0.600          | 0.065         |
| Residual Potential Risk                | 0.000           | 0.300            | 0.900          | 0.500          | 0.600         | 0.600          | 0.058         |
| Cost Volatility                        | 1.000           | 1.000            | 0.400          | 0.800          | 0.500         | 0.800          | 0.019         |
| GHG Emissions                          | 1.000           | 1.000            | 0.512          | 0.847          | 0.782         | 0.000          | 0.007         |
| Adaptability to Modify/Update          | 1.000           | 1.000            | 0.800          | 0.400          | 0.700         | 0.700          | 0.016         |
| Community                              | 0.000           | 0.000            | 0.600          | 0.500          | 0.600         | 0.600          | 0.065         |
| Min. Environmental Impacts             | 1.000           | 1.000            | 0.100          | 0.500          | 0.700         | 0.700          | 0.012         |
| PM Emissions                           | 1.000           | 1.000            | 0.000          | 1.000          | 1.000         | 1.000          | 0.007         |
| OM&M                                   | 1.000           | 0.540            | 0.552          | 0.064          | 0.000         | 0.540          | 0.065         |
| Time To Achieve RAOs                   | 0.000           | 1.000            | 0.800          | 0.900          | 0.400         | 0.800          | 0.035         |
| Capital                                | 1.000           | 0.861            | 0.000          | 0.321          | 0.161         | 0.042          | 0.065         |
| Risk Mitigation                        | 0.000           | 0.200            | 0.600          | 0.400          | 0.800         | 0.700          | 0.037         |
| Technology Reliability                 | 0.000           | 0.700            | 1.000          | 0.900          | 0.600         | 0.600          | 0.116         |
| SO Emissions                           | 1.000           | 1.000            | 0.000          | 0.780          | 0.570         | 0.660          | 0.011         |
| Destruction of Hazardous Constituents  | 0.000           | 0.000            | 0.000          | 0.000          | 0.700         | 0.700          | 0.043         |
| Corporate Brand                        | 0.000           | 0.100            | 0.600          | 0.600          | 0.800         | 0.600          | 0.075         |
| Protect Community                      | 1.000           | 1.000            | 0.300          | 0.700          | 0.700         | 0.800          | 0.023         |
| Effectiveness of Monitoring            | 0.000           | 0.200            | 0.800          | 0.400          | 0.600         | 0.600          | 0.047         |
| Protect Construction Workers           | 1.000           | 1.000            | 0.100          | 0.500          | 0.700         | 0.700          | 0.017         |
| Results                                | 0.415           | 0.543            | 0.609          | 0.549          | 0.564         | 0.564          |               |

# Contributions to Blocks D, F, G, and H from Level:



| APPENDIX J—PERMITS |
|--------------------|
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 20

| Regulation/Statute           | Permit                        | Applicability                 | Permit Process                                                           | Cost   |
|------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------|--------|
| Section 404 Clean Water Act  | Maryland State Programmatic   | Fill of Waters of the U.S.    | Complete the Joint Application for alteration " of any Floodplain,       | No Fee |
| (33 U.S.C. 1344) USACE       | General Permit (MDSPGP-4)     | including non-tidal wetlands  | Waterway, Tidal or Nontidal Wetland in Maryland"" application. 2)        |        |
| Regulations 33 CFR Part 320- | or Individual Department of   | and waters and tidal wetlands | Mail the original plus four copies of the application, plans, vicinity   |        |
| 330                          | the Army (DA) Permit -        | and waters including all      | maps and any supporting documentation to: Regulatory Services            |        |
|                              |                               | areas below the Mean High     | Coordination (RSC)Office MDE, Water Management                           |        |
|                              | Note: Part of "Joint          | Water or landward extent of   | Administration 1800 Washington Boulevard, Suite 430 Baltimore,           |        |
|                              | Federal/State Application for | tidal wetlands                | Maryland 21230-1708 3) Upon receipt of the application package,          |        |
|                              | the Alteration of any         |                               | the RSC will determine what type of permit is necessary and will         |        |
|                              | Floodplain, Waterway, Tidal   |                               | forward the application to the appropriate governmental agencies.        |        |
|                              | or                            |                               | The RSC receives applications for the Nontidal Wetlands and              |        |
|                              | Nontidal Wetland in           |                               | Waterways Division, Tidal Wetlands Division, and Dam Safety              |        |
|                              | Maryland"                     |                               | Division of the Maryland Department of the Environment, as well as       |        |
|                              | application.                  |                               | the U.S. Army Corps of Engineers. The Department conducts the            |        |
|                              |                               |                               | review in cooperation with local, state, and federal agencies.           |        |
|                              |                               |                               | Although the Department often coordinates with local governments         |        |
|                              |                               |                               | on specific applications, it is the applicant's responsibility to obtain |        |
|                              |                               |                               | all local approvals for the project. 4) Depending on the nature of the   |        |
|                              |                               |                               | project, it may be advertised for comment and an opportunity for a       |        |
|                              |                               |                               | public informational hearing. The applicant may be required to notify    |        |
|                              |                               |                               | adjacent property owners. 5) The Department may perform a site           |        |
|                              |                               |                               | evaluation. 6) At the conclusion of the review process, the              |        |
|                              |                               |                               | Department will make a decision on the application. Upon receipt of      |        |
|                              |                               |                               | final construction plans, a permit or license is issued by the           |        |
|                              |                               |                               | Department. In some instances, a license may be issued by the            |        |
|                              |                               |                               | Maryland Board of Public Works (BPW) based on a                          |        |
|                              |                               |                               | recommendation from the Department                                       |        |
|                              |                               |                               |                                                                          |        |
|                              |                               |                               |                                                                          |        |

# **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 20

| Regulation/Statute              | Permit                        | Applicability                 | Permit Process | Cost            |
|---------------------------------|-------------------------------|-------------------------------|----------------|-----------------|
| USACE – Section 10 Rivers and   | Maryland State Programmatic   | Impacts including dredge and  | See above      | No Fee          |
| Harbors Act - 33 USC 401, et    | General Permit (MDSPGP-4)     | fill of navigable waters from |                |                 |
| seq                             | or Individual DA Permit -     | Mean High Water Line          |                |                 |
|                                 |                               | Seaward                       |                |                 |
|                                 | Note: Part of "Joint          |                               |                |                 |
|                                 | Federal/State Application for |                               |                |                 |
|                                 | the Alteration of any         |                               |                |                 |
|                                 | Floodplain, Waterway, Tidal   |                               |                |                 |
|                                 | or                            |                               |                |                 |
|                                 | Nontidal Wetland in           |                               |                |                 |
|                                 | Maryland"                     |                               |                |                 |
|                                 | application.                  |                               |                |                 |
|                                 |                               |                               |                |                 |
|                                 |                               |                               |                |                 |
| MDE Tidal Wetlands Protection   | Maryland State Programmatic   | The following activities in   | See above      | A fee of up to  |
| Act – Environment Article 16 of | •                             | tidal wetlands/waters are     |                | \$1000 may be   |
| the Annotated Code of           | or Tidal Wetland License -    | regulated by the Department:  |                | assessed by the |
| Maryland – COMAR 26.24          |                               | • Filling of open water and   |                | BPW, depending  |
| ,                               | Note: Part of "Joint          | vegetated wetlands            |                | on the purpose  |
|                                 | Federal/State Application for | • Construction of piers,      |                | of the project. |
|                                 | the Alteration of any         | bulkheads, revetments         |                |                 |
|                                 | Floodplain, Waterway, Tidal   | Dredging                      |                |                 |
|                                 | or                            | • Marsh                       |                |                 |
|                                 | Nontidal Wetland in           | establishmentAlteration of    |                |                 |
|                                 | Maryland"                     | Non-tidal Wetlands and other  |                |                 |
|                                 | application.                  | Jurisdictional Waters of the  |                |                 |
|                                 |                               | State                         |                |                 |
| 1                               |                               |                               |                |                 |
| 1                               |                               |                               |                |                 |
|                                 |                               |                               |                |                 |
| <u> </u>                        |                               |                               |                |                 |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 20

| Regulation/Statute                                                                                                | Permit                                                                                                                                          | Applicability                                                                                                                                                                                                      | Permit Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cost   |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Section 106 of the National<br>Historic Preservation Act<br>(Public Law 89-665; 16 U.S.C.<br>470 et seq)          | Maryland Heritage Trust<br>(MHT) Review and Approval<br>is required to comply with the<br>conditions of the MDSPGP-4<br>or Individual DA Permit | Section 106 regulates any direct or indirect effects on any district, site, building, structure, or object that is included in or eligible for inclusion in the National Register                                  | Section 404 permitting triggers the need for review of the project by the Maryland Heritage Trust. If the MHT determineds that the project will have "no effect" on listed or eligible sites no further action will be required. If the MHT determines that an impact would occur avoidance, minimization, or potential mitigation measures will need to be employed                                                                                                                                                                                                                                                                                          | No Fee |
| Section 7 of the Federal Endangered Species Act (ESA)                                                             | USFWS review and (potentially) consultation is required to comply with the conditions of the MDSPGP-4 or Individual DA Permit                   | Section 7 of the ESA requires federal agencies to evaluate potential impacts on listed species and/or habitat as a result of issuance of a federal permit including a Section 404 MDSPGP-4 or Individual DA permit | Review request letter is submitted to the USFWS to request information on listed species/habitat in the proejct area. If the USACE/Lockheed determine that there is potential impacts on listed species/habitat an evaluation and preliminary determination of affect is prepared and submitted to the USFWS for concurrence. If the project will have either a "no affect" or "may affect, but not likely to adversely affect" determination then informal consultation is concluded and no further action is required. If the project will have an adverse affect formal consultation with the USFWS must be initiated to acquire an incidental take permit | No Fee |
| NOAA Fisheries review Section<br>305(b)(2) of the Magnuson-<br>Stevens Fishery Conservation<br>and Management Act | NOAA Fisheries review and (potentially) consultation is required to comply with the conditions of the MDSPGP-4 or Individual DA Permit          | 1                                                                                                                                                                                                                  | Review request letter is submitted to NOAA Fisheries to request information on listed species and EFH in the proejct area. If NOAA/Lockheed determine that there is potential impacts on listed species/habitat an evaluation and preliminary determination of affect is prepared and submitted to NOAA for concurrence. If the project will have either a "no affect" or "may affect, but not likely to adversely affect" determination then informal consultation is concluded and no further action is required. If the project will have an adverse affect formal consultation with NOAA must be initiated to acquire approval                            | No Fee |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 20

| Regulation/Statute          | Permit                      | Applicability                  | Permit Process                                                         | Cost   |
|-----------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------------|--------|
| Maryland Nongame and        | Maryland DNR Review and     | Potential impacts to state     | Review request letter is submitted to DNR to request information on    | No Fee |
| Endangered Species          | Approval to comply with the | listed species need to be      | listed species in the proejct area. If DNR/Lockheed determine that     |        |
| Conservation Act (Annotated | requirements of the MDSPGP- | evaluated as part of the Joint | there is potential impacts on listed species/habitat an evaluation and |        |
| Code of Maryland 10-2A-01;  | 4 or Individual DA Permit   | Permit Application review      | preliminary determination of affect is prepared and submitted to       |        |
| also, Code of Maryland      |                             | process                        | DNR for concurrence. If the project will have either a "no affect"     |        |
| Regulations 08.03.08        |                             |                                | determination then the review is concluded and no further action is    |        |
|                             |                             |                                | required. If the project will have an adverse affect avoidance,        |        |
|                             |                             |                                | minimization, and possibly mitigation measures may be required to      |        |
|                             |                             |                                | acquire approval                                                       |        |
|                             |                             |                                |                                                                        |        |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 5 of 20

|                                                                                                   | Cost                            |
|---------------------------------------------------------------------------------------------------|---------------------------------|
| the Critical Area Commission                                                                      | No Fee                          |
| completed: Public notice of the                                                                   |                                 |
| ss day in a newspaper of general                                                                  |                                 |
| which the proposed development                                                                    |                                 |
| provided for public comment in                                                                    |                                 |
| oposed development would                                                                          |                                 |
| sted in accordance with the                                                                       |                                 |
| .03.01.03 D.Critical Area                                                                         |                                 |
| submitted for review and                                                                          |                                 |
| ical Area Project Notification                                                                    |                                 |
| tes wholly or partially within                                                                    |                                 |
| s at least15,000 square feet                                                                      |                                 |
| tification Application content                                                                    |                                 |
| rith Buffer areas and other                                                                       |                                 |
| as applicable) on each plan,site                                                                  |                                 |
| ar floodplain boundaries                                                                          |                                 |
| CA areas, acreage of disturbed                                                                    |                                 |
| surface area, and pre- and post-                                                                  |                                 |
|                                                                                                   |                                 |
|                                                                                                   |                                 |
|                                                                                                   |                                 |
|                                                                                                   |                                 |
|                                                                                                   |                                 |
|                                                                                                   |                                 |
| oith Buffer areas and cas applicable) on each ar floodplain boundar.  CA areas, acreage of cases. | other h plan,site ies disturbed |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 6 of 20

| Regulation/Statute          | Permit | Applicability                  | Permit Process                                                       | Cost               |
|-----------------------------|--------|--------------------------------|----------------------------------------------------------------------|--------------------|
| Utility Clearance           | N/A    | Miss Utility for Maryland      | N/A                                                                  | No Fee             |
| •                           |        | will be notified (1- 800-257-  |                                                                      |                    |
|                             |        | 7777, www.missutility.net)     |                                                                      |                    |
|                             |        | at least 48 hours, but not     |                                                                      |                    |
|                             |        | more than 10 working days,     |                                                                      |                    |
|                             |        | before any excavation or well  |                                                                      |                    |
|                             |        | drilling activities are        |                                                                      |                    |
|                             |        | conducted.                     |                                                                      |                    |
| MDE/Baltimore County – Well |        | A well construction permit is  | Permits are obtained through a well driller licensed in the State of | Environment        |
| Construction Permit         |        | required before installing any | Maryland                                                             | Article Section 9- |
|                             |        | well that will explore for     |                                                                      | 1307 allows up     |
|                             |        | water, obtain or monitor       |                                                                      | to \$160 per       |
|                             |        | ground water, or inject water  |                                                                      | permit.            |
|                             |        | into any underground           |                                                                      | Each county        |
|                             |        | formation from which ground    |                                                                      | establishes the    |
|                             |        | water may be produced. The     |                                                                      | fee,               |
|                             |        | well construction permit is    |                                                                      | but may not        |
|                             |        | obtained by the well driller   |                                                                      | exceed \$160 per   |
|                             |        | from the local health          |                                                                      | permit.            |
|                             |        | department                     |                                                                      | Baltimore          |
|                             |        |                                |                                                                      | County indicates   |
|                             |        |                                |                                                                      | cost of            |
|                             |        |                                |                                                                      | \$80 per permit.   |
|                             |        |                                |                                                                      | . Fr F             |
|                             |        |                                |                                                                      |                    |
|                             |        |                                |                                                                      |                    |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 7 of 20

| Regulation/Statute          | Permit                      | Applicability                  | Permit Process                                                   | Cost |
|-----------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|------|
| Baltimore County – Building | Baltimore County – Building | A well construction permit is  | Develop and submit a site plan (two to ten copies, depending on  |      |
| Permits                     | Permits                     | required before installing any | the type of work) drawn to scale and showing what is to be built |      |
|                             |                             | well that will explore for     | and how it is to be situated on the property. Construction plans |      |
|                             |                             | water, obtain or monitor       | (two sets) are required for buildings over 1,000 square feet and |      |
|                             |                             | ground water, or inject water  | additions over 600 square feet. Commercial permit applications   |      |
|                             |                             | into any underground           | require a Plan Review Data Sheet (three copies). Major work and  |      |
|                             |                             | formation from which ground    | commercial work requires these plans be sealed by an architect   |      |
|                             |                             | water may be produced. The     | or engineer. The tax account number of the property will also be |      |
|                             |                             | well construction permit is    | required                                                         |      |
|                             |                             | obtained by the well driller   |                                                                  |      |
|                             |                             | from the local health          |                                                                  |      |
|                             |                             | department"                    |                                                                  |      |
|                             |                             | "Any time a building greater   |                                                                  |      |
|                             |                             | than 100 square feet in size   |                                                                  |      |
|                             |                             | is erected, altered, added to, |                                                                  |      |
|                             |                             | or demolished, a permit is     |                                                                  |      |
|                             |                             | required. Building permits     |                                                                  |      |
|                             |                             | also are required for piers,   |                                                                  |      |
|                             |                             | bulkheads, retaining walls,    |                                                                  |      |
|                             |                             | swimming pools over 250        |                                                                  |      |
|                             |                             | square feet, fences over 42    |                                                                  |      |
|                             |                             | inches high, and accessory     |                                                                  |      |
|                             |                             | buildings                      |                                                                  |      |
|                             |                             |                                |                                                                  |      |
|                             |                             |                                |                                                                  |      |
|                             |                             |                                |                                                                  |      |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 8 of 20

| Regulation/Statute            | Permit                         | Applicability                  | Permit Process                                                         | Cost              |
|-------------------------------|--------------------------------|--------------------------------|------------------------------------------------------------------------|-------------------|
| Section 402 Clean Water Act   | Notice of Intent for Coverage  | Required for all construction  | 1) Obtain an application form for an individual permit at the website  | 1 to less than 10 |
| (33 U.S.C. 1342) and 40 CFR   | under the Construction General | activity in Maryland with a    | below or by calling the Department at (410)537-3510. Complete the      | acres - \$100     |
| 122.26; Maryland Environment  | Permit for Stormwater          | planned total disturbance of 1 | form and mail with payment to: MDE, Water Management                   | 10 to less than   |
| Article, Title 9, Subtitle 3: |                                | acre or more. Conditions of    | Administration P.O. Box 2057 Baltimore, MD 21203-2057 The              | 15 acres - \$500  |
| COMAR 26.08.04                |                                | the permit include             | individual permit can be submitted any time prior to the start of      | 15 to less than   |
|                               |                                | compliance with approved       | construction activity, but note that the permit issuance process takes | 20 acres -        |
|                               |                                | erosion/sediment control and   | 60 to 90 days, and may take longer in some instances. 2) The           | \$1,500           |
|                               |                                | stormwater management          | Department reviews the application to insure completion. 3) The        | 20 acres or more  |
|                               |                                | plans, compliance with water   | Department then places the NOI on the publicly available database.     | - \$2,500         |
|                               |                                | quality standards and          | 4) Following the public database posting period and submission to      |                   |
|                               |                                | TMDLs, self-monitoring and     | the department of the approval for erosion and sediment control from   |                   |
|                               |                                | record keeping.                | the SCD, the Department then sends the applicant a package which       |                   |
|                               |                                |                                | includes a letter verifying coverage and issuing the project a unique  |                   |
|                               |                                |                                | permit number, a copy of the individual permit, and a receipt card     |                   |
|                               |                                |                                | which must be posted at the site.                                      |                   |
|                               |                                |                                |                                                                        |                   |
|                               |                                |                                |                                                                        |                   |
|                               |                                |                                |                                                                        |                   |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 9 of 20

| Regulation/Statute              | Permit                        | Applicability                  | Permit Process                                                         | Cost              |
|---------------------------------|-------------------------------|--------------------------------|------------------------------------------------------------------------|-------------------|
| Section 1.04 of the Code of the | Grading Plan approval. Also   | If the proposed grading        | To acquire the grading permit for the MRC site, a combined Grading     | \$0.002 per       |
| Baltimore County Regulations    | requires approval or variance | disturbs over 5,000 square     | Plan and Erosion and Sediment Control Plan will be submitted for       | square foot of    |
| (COBAR) Baltimore County        | from stormwater management    | feet of surface area or over   | review and approval by the Baltimore County Soil Conservation          | land on           |
| Grading                         | from Baltimore County and     | 100 cubic yards of fill        | District (BC SCD). Per BCC 33-5-202(b)(1) and COMAR                    | which grading     |
| Permit (Baltimore County Code   | approval of E&S plans from    | material is utilized, a permit | 26.17.01.05F, the grading permit application must include the          | activities occur. |
| 33-4 and 33-5; COMAR            | Baltimore County Soil         | is required. As a condition of | approved Grading Plan and the approved Erosion and Sediment            | The minimum       |
| 26.17.01 and 26.17.02)          | Conservation District         | grading permit issuance, a     | Control Plan. Additionally, a grading permit may notbe issued for      | fee is \$40 and   |
|                                 |                               | Stormwater Management          | any site unless a performance security has been posted, an             | the               |
|                                 |                               | Plan (see below) will be       | environmental agreement has been executed, and a Stormwater            | maximum fee is    |
|                                 |                               | submitted to Baltimore         | Management Plan has either been approved or an exemption, waiver,      | \$5,000. In       |
|                                 |                               | County for review and          | or variance for the Stormwater Management Plan has been granted        | addition, a       |
|                                 |                               | approval as well as erosion    | (BCC 33-4-108). Necessary grading plan content includes the site       | performance       |
|                                 |                               | and sediment control           | plan and vicinity maps, limits of disturbance, existing and proposed   | security equal to |
|                                 |                               | approval from SCD.             | contours reflecting changes made to topography and surface finishes,   | \$0.05 per square |
|                                 |                               |                                | and changes in the site impervious area. Separate proposed contours    | foot of land area |
|                                 |                               |                                | maps will not be necessary for the MRC site because post               | to be disturbed,  |
|                                 |                               |                                | construction site grades will match pre-construction grades and post-  | not to            |
|                                 |                               |                                | construction surface finishes will be the same as preconstruction site | exceed \$30,000,  |
|                                 |                               |                                | finishes                                                               | is also required. |
|                                 |                               |                                |                                                                        |                   |
|                                 |                               |                                |                                                                        |                   |
|                                 |                               |                                |                                                                        |                   |
|                                 | 1                             |                                |                                                                        |                   |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 10 of 20

| Regulation/Statute              | Permit                        | II v                           | Permit Process                                                      | Cost             |
|---------------------------------|-------------------------------|--------------------------------|---------------------------------------------------------------------|------------------|
| Baltimore County -              | Baltimore County –            | Erosion/Sediment Control       | 1 1 1                                                               | Flat rate of     |
| Erosion/Sediment Control Plan   | Erosion/Sediment Control Plan |                                | · · · · · · · · · · · · · · · · · · ·                               | \$0.004 per      |
|                                 | Approvals                     | 2                              | Erosion and Sediment Control (MDE, 1994), the 2011 Maryland         | square foot of   |
|                                 |                               | disturbs 5,000 square feet or  |                                                                     | disturbed area   |
|                                 |                               | more of soil or results in the | and the Baltimore County Urban Policy and Guidelines Manual;        | with a maximum   |
|                                 |                               | excavation of 100 cubic        |                                                                     | fee of \$3,000.  |
|                                 |                               | yards or more of soil.         | be considered. An initial submittal will be made that will include  |                  |
|                                 |                               |                                | signed/sealed plan sheets, plan information sheet, drainage area    |                  |
|                                 |                               |                                | maps, and the calculated fee. The review process will then follow   |                  |
|                                 |                               |                                | the 3 stage review procedure for the stormwater management and      |                  |
|                                 |                               |                                | grading plan process including concept, development, and final plan |                  |
|                                 |                               |                                | review.                                                             |                  |
|                                 |                               |                                |                                                                     |                  |
| Section 402 Clean Water Act     | Stormwater Management         | General stormwater             | A Stormwater Management Plan is required to be submitted to the     | Flat rate of     |
| (33 U.S.C. 1342) and 40 CFR     | Variance from Baltimore       | discharges to waters of the    | Baltimore County Department of Environmental Protection and         | \$50.00 per acre |
| 122.26; Environment Article,    | County                        | US and state (Federal          |                                                                     | of               |
| Title 4, Subtitle 1 for erosion |                               | NPDES program                  | before a grading permit can be issued and soil response action      | disturbed area   |
| and sediment control and        |                               | adminstered by MDE); In        | activities can commence unless an exemption, waiver, or variance    | with a minimum   |
| Subtitle 2 for stormwater       |                               | Baltimore County this          | has been granted. The Stormwater Management Plan will be            | fee of \$50.00   |
| management (COMAR               |                               | includes new stormwater        | designed in accordance with the "2000 Maryland Stormwater           | and a maximum    |
| 26.17.01 and 26.17.02); Article |                               | discharges; Development or     | Design Manual, Volumes I and II," revised in 2009.                  | fee of \$450     |
| 33 Title 4 of the Code of the   |                               | redevelopment of land for      | -                                                                   |                  |
| Baltimore County Regulations    |                               | residential, commercial,       |                                                                     |                  |
| (COBAR) Baltimore County        |                               | industrial, institutional, or  |                                                                     |                  |
| Stormwater Management           |                               | governmental use               |                                                                     |                  |
|                                 |                               | <del>-</del>                   |                                                                     |                  |
|                                 |                               |                                |                                                                     |                  |
|                                 |                               |                                |                                                                     |                  |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 11 of 20

| Approval Time                    | Duration      | Link          | Agency    | Contact       |
|----------------------------------|---------------|---------------|-----------|---------------|
| Minor projects - 6 to 9 months   | Maximum of    | http://www.n  | USACE and | Jon Romeo     |
| Major projects - 12 months       | five years    | ab.usace.army | EPA       | (410) 962-    |
| Minor Projects: Projects that    | and may be    | .mil/Wetlands |           | 6079 or       |
| involve less than 1 acre and/or  | extended for  | %20Permits/p  |           | jon.romeo@    |
| 2,000 lf of stream for non-tidal | an additional | ermits.htm    |           | usace.army.mi |
| and less than 1/2 acre and less  | five years.   |               |           | 1             |
| than 400 cy of fill in tidal     | Construction  |               |           |               |
| wetlands/waters. Minor           | must be       |               |           |               |
| projects are not placed on       | initiated     |               |           |               |
| public notice.                   | within three  |               |           |               |
| Major Projects: Projects that    | years.        |               |           |               |
| propose permanent impacts to:    |               |               |           |               |
| construct, reconstruct a         |               |               |           |               |
| reservoir, dam or other          |               |               |           |               |
| waterway obstruction;            |               |               |           |               |
| construct a waterway; or,        |               |               |           |               |
| dredge, fill, bulkhead or        |               |               |           |               |
| change                           |               |               |           |               |
| the shoreline. Major projects    |               |               |           |               |
| are placed on public notice.     |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |
|                                  |               |               |           |               |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 12 of 20

| Approval Time | Duration     | Link               | Agency       | Contact        |
|---------------|--------------|--------------------|--------------|----------------|
| See above     | See above    | http://www.n       | USACE and    | Jon Romeo      |
|               |              | ab.usace.army      | EPA          | (410) 962-     |
|               |              | .mil/Wetlands      |              | 6079 or        |
|               |              | %20Permits/p       |              | jon.romeo@     |
|               |              | ermits.htm         |              | usace.army.mi  |
|               |              |                    |              | 1              |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |
| See above     | Maximum of 3 | http://www.m       | MDE          | Robert         |
|               | years        | de.state.md.u      | Wetlands/Wat | Rushlow - 410- |
|               |              | s/programs/W       |              | 537-4023       |
|               |              | ater/Wetlands      | Division     |                |
|               |              | <u>andWaterway</u> |              |                |
|               |              | s/PermitsandA      |              |                |
|               |              | pplications/Pa     |              |                |
|               |              | ges/Programs/      |              |                |
|               |              | WaterProgram       |              |                |
|               |              | s/Wetlands_W       |              |                |
|               |              | aterways/per       |              |                |
|               |              | mits_applicati     |              |                |
|               |              | ons/tidal_per      |              |                |
|               |              | mits.aspx          |              |                |
|               |              |                    |              |                |
|               |              |                    |              |                |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 13 of 20

| A 1 m                          | D        | T * .1        | A              | C. A.A        |
|--------------------------------|----------|---------------|----------------|---------------|
| Approval Time                  | Duration | Link          | Agency         | Contact       |
| Approximately one month        | 3 years  | http://mht.ma |                | Beth Cole     |
|                                |          |               | Heritage Trust | (410) 514-    |
|                                |          | jectreview.ht |                | 7631          |
|                                |          | <u>ml</u>     |                | bcole@mdp.st  |
|                                |          |               |                | ate.md.us     |
|                                |          |               |                |               |
|                                |          |               |                |               |
| 3 months for informal          | 5 years  | http://www.f  | United States  | Cherry Keller |
| consultation and up to 18      |          | ws.gov/chesap | Fish and       | 410/573 4532  |
| months for formal consultation |          | eakebay/EndS  | Wildlife       | cherry_keller |
|                                |          | ppWeb/ELEM    | Service        | @fws.gov      |
|                                |          | ENTS/ProjRevi |                |               |
|                                |          | ew.html       |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
| 3 months for informal          | 5 years  |               | NOAA           |               |
| consultation and up to 18      |          |               | Fisheries      |               |
| months for formal consultation |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |
|                                |          |               |                |               |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland

| Approval Time | Duration | Link            | Agency        | Contact     |
|---------------|----------|-----------------|---------------|-------------|
| 3 months      | N/A      | http://www.d    | Maryland      | Lori Byrne  |
|               |          | nr.state.md.us  | Department of | Phone: 410- |
|               |          | /wildlife/Habit | Natural       | 260-8573    |
|               |          | at/er.asp       | Resources     |             |
|               |          |                 |               |             |
|               |          |                 |               |             |
|               |          |                 |               |             |
|               |          |                 |               |             |
|               |          |                 |               |             |
|               |          |                 |               |             |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 15 of 20

|                                  | -          |                |                |                |
|----------------------------------|------------|----------------|----------------|----------------|
| Approval Time                    | Duration   | Link           | Agency         | Contact        |
| A Critical Area Project          | Two years  | http://www.b   | Baltimore      | Regina         |
| Notification Application will    | plus any   | altimorecount  | County         | Esslinger 410- |
| be sent for BC DEPRM review      | applicable | ymd.gov/Agen   | Department of  | 887-3980       |
| at the same time that the        | extension  | cies/environm  | Environmental  |                |
| Erosion and Sediment Control     |            | ent/eir/index. | Protection and |                |
| Plan and Stormwater              |            | html           | Sustainability |                |
| Management Plan are              |            |                | Environmental  |                |
| submitted for review. The time   |            |                | Impact Review  |                |
| of review by the BC DEPRM        |            |                |                |                |
| is expected to be similar to the |            |                |                |                |
| review periods for the Erosion   |            |                |                |                |
| and Sediment Control Plan and    |            |                |                |                |
| Stormwater Management            |            |                |                |                |
| Plans.                           |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |
|                                  |            |                |                |                |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 16 of 20

| Approval Time                                                     | Duration        | Link | Agency | Contact                                                                                                             |
|-------------------------------------------------------------------|-----------------|------|--------|---------------------------------------------------------------------------------------------------------------------|
| N/A                                                               | 10 Working Days |      | N/A    | Miss Utility of<br>Maryland<br>800-257-7777                                                                         |
| 30 days (This may vary depending on the local health department.) |                 |      |        | MDE - Barry<br>Glotfelty<br>Delegated<br>Program<br>Section<br>bglotfelty@m<br>de.state.md.us<br>(410) 537-<br>3784 |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland

Page 17 of 20

| Approval Time | Duration | Link | Agency | Contact      |
|---------------|----------|------|--------|--------------|
| Up to 30 days |          |      |        | Building     |
|               |          |      |        | Permit       |
|               |          |      |        | Processing   |
|               |          |      |        | Bureau       |
|               |          |      |        | 410-887-3900 |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |
|               |          |      |        |              |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 18 of 20

| Approval Time          | Duration            | Link               | Agency        | Contact      |
|------------------------|---------------------|--------------------|---------------|--------------|
| At least 60 to 90 days | Expires five years  | http://www.m       | Maryland      | Karen Smith  |
|                        | from                | de.state.md.u      | Department of | ksmith@mde.s |
|                        | the date the permit | s/programs/P       | the           | tate.md .us  |
|                        | is                  | ermits/Water       | Environment   | Phone: (410) |
|                        | issued to the       | <b>ManagementP</b> |               | 537-3510     |
|                        | project or          | ermits/Water       |               |              |
|                        | until a Notice of   | DischargePer       |               |              |
|                        | Termination has     | mitApplication     |               |              |
|                        | been completed      | s/Pages/permi      |               |              |
|                        |                     | ts/watermana       |               |              |
|                        |                     | gementpermit       |               |              |
|                        |                     | s/water appli      |               |              |
|                        |                     | cations/gp co      |               |              |
|                        |                     | nstruction.asp     |               |              |
|                        |                     | <u>x</u>           |               |              |
|                        |                     |                    |               |              |
|                        |                     |                    |               |              |
|                        |                     |                    |               |              |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 19 of 20

| Approval Time                   | Duration            | Link          | Agency        | Contact       |
|---------------------------------|---------------------|---------------|---------------|---------------|
| An estimate of the average      | Two years from the  | http://www.b  | Baltimore     | Al Wirth/Ed   |
| review time is approximately 3- | date of issuance    | altimorecount | County EPS    | Schmaus with  |
| 6 months.                       | with an option to   | ymd.gov/Agen  | Stormwater    | Baltimore     |
|                                 | request an          | cies/environm | Engineering   | County        |
|                                 | extension of up to  | ent/stormwat  | and Baltimore | Grading and   |
|                                 | one additional year | er/index.html | County Soil   | Stormwater    |
|                                 | upon written        |               | Conservation  | Engineering   |
|                                 | request             |               | District      | 410-887-3768  |
|                                 |                     |               |               | eschmaus@ba   |
|                                 |                     |               |               | ltimorecounty |
|                                 |                     |               |               | md.gov        |
|                                 |                     |               |               | rwirth@baltim |
|                                 |                     |               |               | orecountymd.g |
|                                 |                     |               |               | ov            |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 |                     |               |               |               |
|                                 | l                   | i             | i             | 1             |

#### **Block F Soil Remedial Action Plan**

# Lockheed Martin Middle River Complex, Middle River, Maryland Page 20 of 20

| Approval Time                  | Duration          | Link          | Agency       | Contact        |
|--------------------------------|-------------------|---------------|--------------|----------------|
| An estimate of the average     | 2 years from date | http://www.m  | Baltimore    | Dave           |
| review time is approximately 6 | of issuance       | ascd.net/BCSC | County Soil  | Bachman with   |
| weeks                          |                   | D/            | Conservation | Baltimore      |
|                                |                   |               | District     | County Soil    |
|                                |                   |               |              | Conservation   |
|                                |                   |               |              | District (410) |
|                                |                   |               |              | 527-5920, ext. |
|                                |                   |               |              | 115            |
|                                |                   |               |              | dbachman@ba    |
|                                |                   |               |              | ltimorecounty  |
|                                |                   |               |              | md.gov         |
|                                |                   |               |              |                |
|                                |                   |               |              |                |
| An estimate of the average     | 2 years from date | http://www.b  | Baltimore    | Al Wirth/Ed    |
| review time is approximately 6 | of issuance       | altimorecount | County EPS   | Schmaus with   |
| weeks.                         |                   | ymd.gov/Agen  | Stormwater   | Baltimore      |
|                                |                   |               | Engineering  | County         |
|                                |                   | ent/stormwat  |              | Grading and    |
|                                |                   | er/index.html |              | Stormwater     |
|                                |                   |               |              | Engineering    |
|                                |                   |               |              | 410-887-3768   |
|                                |                   |               |              | eschmaus@ba    |
|                                |                   |               |              | ltimorecounty  |
|                                |                   |               |              | md.gov         |
|                                |                   |               |              | rwirth@baltim  |
|                                |                   |               |              | orecountymd.g  |
|                                |                   |               |              | ov             |
|                                |                   |               |              |                |